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Abstract

Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of
single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture
the general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of
dendritic arborizations as locally optimized graphs. Inspired by Ramón y Cajal’s laws of conservation of cytoplasm and
conduction time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This
approach allows us to generate synthetic branching geometries which replicate morphological features of any tested
neuron. The essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a
single parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines
a neuron’s electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be
directly attributed to developmental processes or a neuron’s computational role within its neural circuit. The simulations
presented here are implemented in an open-source software package, the ‘‘TREES toolbox,’’ which provides a general set of
tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any
particular cell group and an approach for a model-based supervised automatic morphological reconstruction from
fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures.
They also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing
realistic synthetic neural networks.
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Introduction

Neuronal circuits are composed of a large variety of branched

structures – axons and dendrites – forming a highly entangled web,

reminiscent of a stochastic fractal [1]. Despite this apparent chaos,

more than a century ago Ramón y Cajal was able to extract order

from this neuroanatomical complexity, formulating fundamental

anatomical principles of nerve cell organization [2]. Cajal described

three biological laws of neuronal architecture (Chapter V, p.115–125,

in [2]): optimization principles for conservation of space, cytoplasm

and conduction time in the neural circuitry. These principles helped

him to classify his observations and allowed him to postulate a wide

variety of theories of functionality and directionality of signal flow in

various brain areas. In the meantime, many of these ideas have been

substantiated by applying more rigorous statistical analysis: circuitry

and connectivity considerations as well as simple wire-packing

constraints have been shown to determine the statistics of dendritic

morphology [3–5]. It has also been shown mathematically that the

specific organization and architecture of many parts of the brain

reflect the selection pressure to reduce wiring costs for the circuitry

[6–9].

In parallel, the development of compartmental modelling

techniques based on the theories of Wilfrid Rall have highlighted

the importance of a neuron’s precise branching morphology for its

electrophysiological properties [10], and have shown that

dendrites can play an important role in the computations

performed on the inputs to the cell [11,12]. In fact, requirements

for highly selective connectivity [13,14], coherent topographic

mapping, sophisticated computation or signal compartmentaliza-

tion at the level of the single cell [15] and the network could all

contribute to this observed intricacy of brain wiring.

These two lines of investigation raise the question as to whether

computation plays the determining role in shaping the morpho-

logical appearance of neuronal branching structures. Alternatively,

the simple laws of material and conduction time preservation of

Ramón y Cajal could have more influence.

Using computational techniques it has become possible to

construct synthetic neuronal structures in silico governed by the

simulation of physical and biological constraints [1,16–21]. In two

recent papers [19,20], we derived a growth algorithm for building

dendritic arborisations following closely the constraints previously

described by Ramón y Cajal. The algorithm builds tree structures

which minimize the total amount of wiring and the path from the

root to all points on the tree, corresponding to material and

conduction time conservation respectively. Synthetic insect

dendrite morphologies were faithfully reproduced in terms of

their visual appearance and their branching parameters in this

way.
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Here we explore the algorithm’s general applicability and its

potential to describe any type of dendritic branching. If the

algorithm is sufficient to accurately mimic the essential structure of

neuronal circuitry we can resolve the relative importance of

computation and wiring constraints in shaping neuronal mor-

phology. We can then claim that Ramón y Cajal’s laws are

sufficient for shaping neuronal morphology. Specific computation

will then only play a subordinate role in determining a neuron’s

branching pattern. We show here that while Cajal’s laws do

represent a strict constraint on neuronal branching, a neuronal

morphology has a certain freedom to operate within these

constraints. Firstly, by adjusting the balance between the two

wiring costs, a dendrite can efficiently set its electrotonic

compartmentalization, a quantity attributable to computation.

Secondly, the density profile of the spanning field in which a

dendrite grows determines its shape dramatically. Thirdly, a few

weaker constraints such as the suppression of multifurcations, the

addition of spatial jitter or the sequential growth of sub-regions of

a dendrite are helpful for reproducing the dendritic branching

patterns of particular preparations. These additional constraints

might shed light on further functional, computational, develop-

mental or network determinants for certain dendritic structures,

and more of these will follow when applying our method to many

more preparations. Moreover, the simple principles presented in

this study can be used to efficiently edit, visualize, and analyze

neuronal trees. Finally, these approaches allow one to generate

highly realistic synthetic branched structures, and to automatically

reconstruct neuronal branching from microscopy image stacks.

Results

The neuronal tree as a graph
Before generating complex neuronal morphologies, a simple

formalism is required to compare and assess natural and synthetic

neuronal trees. We derive such a formalism from graph theory: a

neuronal tree is a graph which connects a set of labelled nodes via

directed edges away from a root labelled ‘‘1’’ (Figure 1A). This

distinct directionality is useful since properties describing a

neuron’s branching typically relate to the root of the tree, e.g.

the branch order which increases after each branch point away

from the root. In general, the graph describing a specific neuronal

tree should be entirely unique in order to be used to compare two

trees topologically (their branching properties) or electrotonically

(their functional properties). To achieve this, a unique labelling of

the nodes is required. We constrain labelling by imposing a

hierarchical order (node label values increase with distance from

the root), continuous labelling within sub-trees (see for example

nodes ‘‘6’’, ‘‘7’’, ‘‘8’’ and ‘‘9’’, which form a sub-tree, Figure 1A)

and a topological sorting in which at any branch point the sub-tree

with a higher topological depth is labelled first (see Figure 1A and

‘‘label sorting’’ section in Methods). Apart from requiring unique

labelling, a unique representation of a tree requires its nodes to be

precisely distributed along its geometry. The process of manual

reconstruction assigns node locations in an arbitrary manner

(Figure 1B, original tree). We introduce a process we term

resampling, in which nodes are redistributed on the same tree

structure, assigning homogeneous inter-nodal distances (Figure 1B

shows 10 and 20 mm resampling; see ‘‘resampling’’ section in

Methods).

When node labelling and distribution are attributed in a distinct

manner, a unique representation of the tree is provided. By

rearranging the node locations of a sample tree (Figure 1C, sample

tree) based on its label order while preserving segment lengths, one

obtains a unique electrotonic equivalent (Figure 1C, equivalent

tree; see ‘‘Electrotonic equivalent’’ section in Methods). Dendritic

structure can then also be described by a single unique adjacency

matrix, which indicates for each node its direct parent node

(Figure 1D, adjacency matrix). Consistent with the adjacency

matrix, a matrix containing the current transfer from any node to

any other in the tree is a good representation of its electrotonic

properties (Figure 1D, electrotonic signature). As a result of the

continuous node labelling within sub-trees, electrotonic compart-

mentalization expresses itself as square sub-regions with high

reciprocal current transfer. Because of the unique graphical

representation, the electrotonic signature is independent of the

reconstruction procedure. Note that simplified tree structures,

which preserve the electrotonic compartmentalization, can be

obtained by a coarser resampling (Figure 1D, electrotonic

signature of the same tree as in Figure 1B with 20 mm sampling).

Computing current flow in a corresponding compartmental model

is much faster since the number of nodes is decreased drastically

(from 297 to 39 in the example of Figure 1D). Finally, a simple and

unique one-dimensional string can be used to describe the

topology of the tree entirely, which we term the ‘‘topological

gene’’. In this string each branch is described in the order of its

node labels by its length value followed by a ‘‘B’’ if the branch ends

in a branch point or by a ‘‘T’’ if it ends in a termination point. The

‘‘topological gene’’ can be displayed as a sequence of green (‘‘B’’)

and black (‘‘T’’) pieces (Figure 1E). If diameter values for each

node are known, the electrotonic signature can be reconstructed

solely from this one-dimensional string, since segment lengths and

topology are conserved.

Optimized graphs for implementing Cajal’s laws
In order to incorporate Cajal’s hypotheses about wiring

optimization in our theoretical description of a neuronal tree, we

implemented optimization procedures known from graph theory.

This approach was previously shown to be successful for

generating synthetic dendritic structures of fly interneurons

[19,20] as well as recently for neocortical axons [22]. We now

generalize it to more arbitrary neuronal geometries. Figure 2A

exemplifies the general approach of assembling a set of

unconnected carrier points to such an optimized graph. A greedy

algorithm based on the minimum spanning tree algorithm [23]

starts at the root with an empty tree and connects unconnected

carrier points (red dots) one by one to the nodes of the tree (black

dots). At each step, the unconnected carrier point which is the

point closest to the tree according to a cost function connects to the

Author Summary

More than a century has passed since Ramón y Cajal
presented a set of fundamental biological laws of neuronal
branching. He described how the shape of the core
elements of the neural circuitry – axons and dendrites –
are constrained by physical parameters such as space,
cytoplasmic volume, and conduction time. The existence
of these laws enabled him to organize his histological
observations, to formulate the neuron doctrine, and to
infer directionality in signal flow in the nervous system. We
show that Cajal’s principles can be used computationally
to generate synthetic neural circuits. These principles
rigorously constrain the shape of real neuronal structures,
providing direct validation of his theories. At the same
time, this strategy provides us with a powerful set of tools
for generating synthetic neurons, as well as a model-based
approach for automated reconstructions of neuronal trees
from confocal image stacks.

Probing the Basis of Neuronal Branching
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node in the tree to which it is nearest. The distance cost is

composed of two factors: 1) A wiring cost represented by the

Euclidean distance between the carrier point and the node in the

tree (red dashed lines show three sample segment distances for

point P); this quantity loosely corresponds to the material

conservation constraint by Cajal; 2) A path length cost of the

Figure 1. The topological and electrotonic identity of a neuronal tree. (A) The tree consists of cylinders or frusta (red) connecting each two
nodes along the directed edges (away from the root node, arrows). Branch points and termination points represent the topology (topological points).
A branch is a set of continuation points between two topological points. The labelling of the nodes is unique following three principles: hierarchical
sorting, continuous labelling preserving sub-tree consistency and topological sorting (see text). (B) Rearrangement of node locations on a sample
tree. Examples of equidistant node redistribution resulting in 10 or 20 mm resampling and a 20 mm resampling including length conservation (see
text and ‘‘resampling’’ section of Methods). (C–E) Unique representations of topology and electrotonic properties from sample tree from (B). (C)
Applying topological sorting, a unique electrotonic equivalent tree can be constructed by mapping node label hierarchy on the branch angle
(equivalent tree). (D) The adjacency matrix depicts the connectivity between the nodes of a tree. The corresponding electrotonic signature (current
transfer from a node to another, i.e. the potential difference measured in one node as a result of a current injection into another) describes the
dendritic compartmentalization (see text). The electrotonic signature corresponding to the 20 mm resampled tree preserves the compartmental-
ization of the original tree. (E) A one-dimensional string fully describes the topology once the nodes of a tree are sorted topologically. Green pieces
represent branches ending with a branch point while black pieces end with a termination point. Branch lengths correspond to real metric length and
their order follows the node label sorting. Because all representations observe the same continuous labelling, they preserve the sub-tree structure (a
red transparent patch highlights one such sub-tree throughout all representations in (C–E)).
doi:10.1371/journal.pcbi.1000877.g001

Probing the Basis of Neuronal Branching
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path along the tree from the root (large black node) to the carrier

point; this quantity is consistent with the conduction time

conservation constraint by Cajal. In the example here, even

though P is closer to node 5 in Euclidean terms, the additional cost

of path length (adding node 5 on the path) might tip the balance in

favour of node 4. A balancing factor bf, which weighs these two

costs against each other in the cost function (total cost = wiring cost

+bf ? path length cost), represents the one and only parameter of the

model.

Figure 2B illustrates the approach for neuronal trees grown on

homogeneously distributed random carrier points in a circular

envelope when the root is located at its centre. Since the two

constraints (minimizing wiring and minimizing path length to the

root) are weighted according to the balancing factor bf

determining the contribution of the second constraint, the

synthetic trees range along the dimension of that parameter from

a pure minimum spanning tree, which grows in a wide spiral, to a

purely stellate architecture (Figure 2B, from left to right).

In the following, we will apply this method of creating optimized

graphs to reproduce morphologies in various neuronal prepara-

tions. The main effort will be to obtain an adequate set of carrier

points for the application of the algorithm; this will prove to

depend strongly on the density profile of the spanning field in the

respective geometries. When additional constraints will be

required in generating neurons in specific brain areas, this will

provide clues pointing to actual computational or functional

features of neuronal morphology.

A geometric approach for generating neuronal trees
Whereas our previous work was limited to insect dendrites

[19,20], here we explored whether the algorithm is also able to

reproduce a variety of neuronal structures. We first investigated

the simple case of a planar neuron: the starburst amacrine cell of

the mammalian retina. Its root is invariably located at the centre of

a circular planar structure (data from [24]; Figure 3A). This

arrangement provides a common geometrical context for these

cells. In order to best generate synthetic starburst amacrine cell-

like neurites, random carrier points were distributed according to a

ring-shaped density function around the centre in the root, limited

by a simple circular hull (Figure 3B). The locus of increased

density most likely corresponds to the area where an increased

number of connections is being made in the real cell, with

directional selectivity probably being computed there [25,26].

Figure 3C demonstrates that this process successfully generates a

synthetic neurite. The right balance between the two optimization

constraints plays a crucial role, as is evident from a synthetic tree

grown with a different balancing factor (bf = 0.2, Figure 3D). An

appropriate balancing factor was determined by quantitatively

comparing total cable length, mean path length to the root and

number of branch points to the original real tree (Figure 3E).

Using the corresponding balancing factor resulted in realistic

distributions of branch order and path length values as well as a

realistic Sholl plot [27], which counts the number of intersections

of the tree with root-centred concentric spheres of increasing

diameter values (Figure 3F–H). The starburst amacrine cell neurite

required a higher bf than did the insect dendrites (0.6 versus 0.4,

see [19,20]). Additionally, suppressing multifurcations improved

the growth process (compare Figure 3CD with Figure 2B). This

was generally beneficial for all neurons studied here, and might

reflect a constraint for the underlying developmental growth

process. To better reproduce the appearance of reconstructions of

real neurons, spatial jitter was added in all cases in the form of low-

pass filtered spatial noise applied directly on the coordinates of the

nodes in the resulting tree. Note that homogeneous noise

application was only possible after the tree was resampled to a

fixed segment length. Spatial noise in real reconstructions is partly

due to fixation (e.g. shrinkage or reconstruction artefacts) and

should therefore not necessarily be reproduced by the synthetic

morphologies. However, wriggly paths in neuronal branching,

corresponding to a spatial jitter along the branches, can be a result

of obstacle avoidance and therefore can be associated with space

packing issues [3], relating to the third law described by Ramón y

Cajal. In this study, however, we do not model volumetric

optimization or space packing of other neuronal and non-neuronal

structures in the tissue. We thus simply note here that in order to

fully reproduce starburst amacrine cell reconstructions, multi-

furcations were suppressed and spatial jitter was added.

We next studied dendrites of hippocampal granule cells, which

fill a three-dimensional volume rather than a plane (template data

Figure 2. Generating neuronal branching structures using optimized graphs. (A) The growth described by an extended minimum spanning
tree algorithm (see text). Unconnected carrier points (red) are connected one by one to the nodes of a tree (black). Red dashed lines indicate three
sample Euclidean distances to the nodes of the tree for sample point P. (B) Example trees grown on homogeneously distributed random carrier
points in a circular hull starting from a root located at its centre (see top). Plotted as a function of the balancing factor bf, the trees range from perfect
minimum spanning trees (left) to almost direct connections from the root to any point (right).
doi:10.1371/journal.pcbi.1000877.g002

Probing the Basis of Neuronal Branching
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from [28]; see sample cells in Figure 4A). We first centred the

original cell reconstructions on the soma location and rotated

them manually in all three dimensions to produce axial symmetry

with respect to each axis. Then, the dendrites were scaled to the

average limits over the population of real morphologies for each of

the three dimensions. Surprisingly, the spanning fields overlapped

delineating again a common context for all cells (Figure 4B). A

geometric approach to describing the envelope of the dendrites is

to intersect an elliptical cone with a sphere whose centre lies

outside beyond the tip of the cone along the cone’s central axis.

The density profile of topological points (branch and termination

points only) seemed to increase close to the origin of the volume

and again further out at the rim (Figure 4B). Growing synthetic

trees on random carrier points distributed according to this type of

density profile within the constructed cone-like volume resulted in

realistic dendritic structures (see examples in Figure 4C). Again,

altering the balancing factor resulted in significant changes in

branching behaviour (Figure 4D). This could be used to determine

an appropriate balancing factor, which was higher for these cells.

For comparison, full distributions of branching statistics are shown

for synthetic granule cells and real counterparts in Figure 4E–G in

analogy to Figure 3F–H. The two cases indicate that adequately

balancing the costs for wiring with the costs for path length

distances to the root is crucial to describing the dendritic

morphology.

A generalized approach for generating neuronal trees
The two cases described in Figures 3 and 4 used a geometrical

construction to produce the density profile from which the

carrier points were obtained, i.e. a ring-like density confined by

a circle or a bimodal density profile within a volume obtained by

intersecting a cone with a sphere. We next tried to generalize

the approach taken with hippocampal granule cells to all neuron

types. We derived context and spanning fields for a wide variety

of existing cell types using a common feature that we observed

in hippocampal granule cells: their scalability. This scalability is

consistent with the fact that neuronal trees can be described as

fractal-like structures in terms of their resolution (or complexity)

Figure 3. Generating dendritic structures by constructing geometric spanning fields: I. the retinal starburst amacrine cell. (A)
Reconstruction of a starburst amacrine cell in the inner plexiform layer of the rabbit retina (data from [24]). (B) Synthetic starburst amacrine cell
morphologies can be best obtained by distributing random carrier points along a density ring limited by a circular hull. (C) An example tree grown on
random carrier points distributed according to B following the algorithm described in Figure 2. Spatial jitter was added to reproduce the wriggliness
of the original structure. (D) A tree grown on exactly the same points as (C) with a lower balancing factor. (E) The number of randomly distributed
carrier points and the balancing factor bf determine the synthetically generated morphology. Here, the areas are plotted in which the synthetic trees
match the original according to certain criteria (blue: total cable length 6200 mm; red: total number of branch points 65; green: mean path length to
the root 63 mm). The area of overlap corresponds to a reasonable parameter set for the synthetic trees. (F–H) Branch order distribution, path length
distribution and Sholl intersections are compared for the original tree (red) and for one sample synthetic tree (grey).
doi:10.1371/journal.pcbi.1000877.g003

Probing the Basis of Neuronal Branching
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within the field in which they span rather than by their real

dimensions (see [1]). Based on the assumption that the principles

of scalability hold true, we applied the following procedure on

various dendritic structures: after all dendritic trees were

centred around their somata, they were rotated manually such

as to maximize the dendritic overlap. This was straightforward

for cortical pyramidal cells and hippocampal granule cells where

the main axis is obvious. Others, such as hippocampal

pyramidal cells which will be discussed briefly further below,

did not overlap since their precise branching contours depended

greatly on the context and the location within the neuronal

circuit. After rotating the cells into a common context, the limits

of the spanning fields were measured separately for each region

of the neuronal branching structure (apical and basal dendrite

for example). In Figure 5A such limits are shown for apical and

basal dendrites of layer 2/3, layer 4 and layer 5 pyramidal cells

of the developing somatosensory cortex (data from [29]). The

coordinates of all nodes belonging to an individual region were

scaled to the mean limits of that region within each group of

cells. This resulted in size-normalized cells. Surprisingly, the

scaling of the different individual region limits did not typically

correlate with each other, i.e. a large apical dendrite did not

necessarily mean a large basal dendrite. After scaling, the

topological points belonging to one specific region could all be

lumped together and a bounded density cloud was calculated

(exemplary density clouds for the cells as a whole are overlaid in

Figure 5A). This procedure can be applied not only to different

types of cells but also to different developmental stages of one

particular cell type (data from perirhinal cortical pyramidal cells

[30]; see Figure 3B). Carrier points were then distributed

randomly according to the density distributions of each region

one by one and connected by the growth algorithm. The

number of carrier points used was increased for each synthetic

tree until it matched a target branch point number picked from

Figure 4. Generating dendritic structures by constructing geometric spanning fields: II. the hippocampal dentate gyrus granule
cell. (A) Reconstructions of four sample hippocampal granule cells (data from [28]). (B) After centring, rotating and scaling all cells adequately, the
50 mm iso-distance volume hulls (black lines) around the set of all topological points (black dots) overlap in all dimensions. Left, xy-projection; Middle,
xz-projection; Right; yz-projection. Overlay colours represent local density with same colormap as in Figure 3. (C) Examples of synthetically generated
granule cells (based on the data in AB) with bf = 0.85. (D) Third cell from the left in C was grown on the same carrier points with different balancing
factors to show the effect of bf here. (E–G) Overlaid branch order distributions, path length distributions and Sholl intersections for original trees (red)
and for synthetic trees with suitable parameter bf = 0.85 (black).
doi:10.1371/journal.pcbi.1000877.g004

Probing the Basis of Neuronal Branching
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Figure 5. A general strategy for generating synthetic morphologies: Cortical pyramidal cells. (A) After rotating rat somatosensory cortex
layer 2/3, 4 and 5 pyramidal cells to overlap, the limits of their individual regions were extracted: black shaded boxes show the mean limits in XY for
the apical region; the black empty boxes delineate one standard deviation away from the mean. Corresponding red boxes duplicate this procedure
for the basal dendrites. Cells are then scaled region-by-region to the mean limits of each region. Overlay colours describe local density (colormap see
Figure 2D) of lumped topological points of scaled trees. (B) Same procedure for three groups of cortical pyramidal cells during development. (C)
Construction stages of a sample layer 5 pyramidal cell according to spanning fields described in A. First the apical tuft is constructed, then oblique
dendrites and finally the basal dendrite. Spatial jitter and diameter values are added subsequently.
doi:10.1371/journal.pcbi.1000877.g005

Probing the Basis of Neuronal Branching
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the distribution observed in the real cells. In pyramidal cells, it

was necessary to split the apical dendrite in a tuft region and a

lower oblique dendrite region, hinting possibly to a functional or

developmental requirement. The tuft was grown first and

resampled to 5 mm segments to provide attaching points along

the main branch for the lower part of the apical dendrite to

grow on. The basal dendrite was grown separately and the

resulting cells subsequently subjected to spatial jitter, soma

diameter mapping and dendritic diameter tapering (see

Figure 5C and ‘‘Extended minimum spanning tree’’ section of

Methods as well as Protocol S1 for more details).

Using this approach, dendritic morphologies of different

pyramidal cells (Figure 6A–C: layer 2/3, layer 4 and layer 5, all

bf = 0.7) were generated based on the spanning fields of Figure 5A.

In this case, a wide range of suitable balancing factors (bf = 0.4–

0.7) matched the distributions of total cable length and average

path lengths in the resulting synthetic morphologies leading to

realistic branching statistics (see below). In contrast to obtaining

the density profiles for distributing random carrier points by a

geometrical construction, these synthetic dendrite morphologies

were obtained directly from scaled density plots from the real

reconstructions. This increases the parameter space describing the

generation of synthetic cells considerably. With this additional

restriction, we obtain synthetic cells that are indistinguishable by

eye from their real counterparts. The same approach can be used

to generate pyramidal cells at different developmental stages

(Figure 6D bf = 0.7, from the spanning fields of Figure 5B). We

note that apart from the different spanning fields shown in

Figure 5AB, different diameters and spatial jitter, all pyramidal cell

clones were constructed according to the exact same procedure. In

conclusion, Cajal’s laws impose a general constraint on dendritic

branching in all preparations and at all developmental stages we

have investigated.

Distributions of branching parameters to compare the

synthetic pyramidal cells with their real counterparts are shown

in Figure 7A–I. As mentioned above, because of a higher

variability between pyramidal cells than for example hippocam-

pal granule cells, branching statistics lose their informative value.

Note however, that, as observed previously for insect dendrites

[20], path length distributions are similar to Sholl intersections

for both real and synthetic geometries, which is a direct

consequence of minimizing conduction times (since path lengths

along the tree are kept to tightly match direct Euclidean

distances). Synthetic pyramidal cells grown with a non-optimal

balancing factor on the other hand were clearly flawed, as

illustrated by the example of layer 5 pyramidal neuron clones

(Figure 7K, compare bf = 0 and bf = 0.2 with more adequate

bf = 0.7). The electrotonic signature, developed in Figure 1 to

compare electrotonic compartmentalization between neuronal

trees, revealed the deficiencies of the synthetic dendrites with

wrong balancing factor. When the balancing factor was too low,

the electrotonic signature exhibited a distorted compartmental-

ization compared to an original tree (Figure 7L, leftmost). This

can be loosely quantified by measuring the average size of an

electrotonic compartment in real morphologies compared to

synthetic ones with different balancing factors (Figure 7M). This

quantity for a compartment size was obtained by averaging

dendritic length exceeding 60% of the maximal potential

deflection for current injections in all nodes one at a time. Thus,

the balancing factor determines the degree of compartmentali-

zation of the neuronal tree. This is expected, since a more

stellate-like morphology associated with a higher balancing factor

(Figure 2B, right side) should exhibit greater electrotonic

segregation in its sub-trees.

Relationship between the growth process and the
network context

The local circuitry ultimately determines the context in which

neuronal trees grow. There are global boundaries given by the

neural tissue such as layers, topography or physical borders.

However, competition for inputs between neighbouring neurons

also seems to play a major role. Competition is easily

implementable in the greedy growth algorithm introduced here

because of the iterative nature of the algorithm. This can then be

considered as a greedy extension of the growth algorithm and

should be applicable in the network context. When grown under

competitive conditions in which trees connect to a carrier point

one after the other, the immediate consequence is spatial tiling.

This can be seen in 2D for example when trees were grown from

starting points on a spatial grid in a homogeneous substrate of

random carrier points (Figure 8A). In fact, both Cajal’s material

cost and his conduction time cost independently lead to this type of

tiling, which does not happen in the case of random wiring (not

shown). Competitive dendrite growth can directly reproduce the

sharp borders observed in Purkinje cell dendrites of the

cerebellum. Using the geometric approach described in Figure 3

and 4, 16 cells were grown on random carrier points distributed

homogeneously in a ring-shaped area in a competitive manner. As

was the case for the apical tuft of pyramidal cells, Purkinje cell

dendrites required to be grown in two stages: first the thick

primary dendrites and then the thinner ones covered in spines

(three sample cells are displayed in Figure 8B). The sharp borders

of Purkinje cell dendrites could well be reproduced but whether

this actually is a result of tiling in sagittal planes of the cerebellum

remains to be determined experimentally. Cajal’s laws can

therefore explain more than just the inner branching rule: tiling

between cells can emerge directly from his suggested optimization

principles applied at the network level.

As mentioned above, the network context also plays a major

role in governing neuronal spanning fields and their density

profiles. Arranging the hippocampal granule cells developed in

Figure 4 onto the contours of the dentate gyrus should for example

fully determine their scaling variability (Figure 8C). Growing CA3

hippocampal pyramidal cells in a context-dependent manner (here

in a competitive growth process bounded by the CA3 contours of

the hippocampus, from Golgi, see Ref. [31]) might determine the

variability in neuronal branching seen in the reconstructions. This

is the right place to express a caveat regarding the use of branching

statistics to compare dendritic structures. The branching statistics

of two synthetic hippocampal pyramidal cells grown on both

extremities of the CA3 region will differ entirely because of the

different network context. This is the case even though these were

grown using the exact same growth rule, they belong to the same

cell class and they resemble their real counterparts. The idea that

the network context determines a neuron’s branching can be

followed further: both input and output locations can serve as

direct constraints for the cell morphology, as is the case when an

array of photoreceptors (Figure 8D, yellow) in the retina connects

to an array of starburst amacrine cells (Figure 8D, green obtained

as in Figure 3) via a set of bipolar cells. In such a case, the input-

output topography of the connection determines the morphology

of bipolar cells given that these grow in a competitive manner

(Figure 8D, black).

Finally, as shown previously [20], the growth algorithm can

serve as a tool for automatic reconstruction of neuronal trees from

tiled image stacks containing fluorescently labelled neurons.

Figure 9A displays an example of such a tiled image stack from

a small part of an insect interneuron dendrite. In order to obtain

the carrier points necessary to grow the tree, the image stack is first
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Figure 6. Sample cells grown using the general strategy. (A), (B) and (C) show sample synthetically generated model cells of layer 2/3, layer 4 and layer 5
cortical pyramidal cells respectively, all grown using the general strategy described in Figure 5. In A and B, all dendrites were thickened by 1 mm over all cells for
clarity purposes. (D) When data from developing neurons was binned into three groups (P0–5, P8–12, P36–44), synthetically generated cortical pyramidal cells
could be generated for the different developmental stages. Vertical or horizontal locations of the cells are purely for layout purposes in all cases.
doi:10.1371/journal.pcbi.1000877.g006
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Figure 7. Validating synthetic branching structures of pyramidal cells. While branching statistics of starburst amacrine cells and hippocampal granule
cells were moderately homogeneous, pyramidal cells exhibited stronger variations. Balancing factors leading to reasonable branching statistics ranged from 0.4
to 0.7. In the following we compare branching parameter distributions as in Figure 4 for synthetic (black) and original dendrites (red) of layer 2/3 (A–C), layer 4
(D–F) and layer 5 (G–I) pyramidal cells grown with a balancing factor bf = 0.7, 0.6 and 0.5 respectively. (K) Representative layer 5 pyramidal cells grown with
different balancing factors bf = 0, bf = 0.2, bf = 0.7. (L) Representative electrotonic signatures of these synthetically generated dendrites and of one original layer
5 pyramidal cell for comparison. (M) Simple relationship between electrotonic compartmentalization and balancing factor. Straight line connects averages of
each 100 model dendrites at different balancing factor values. Dashed line shows average compartment size of real reconstructions.
doi:10.1371/journal.pcbi.1000877.g007
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subjected to a local threshold (blue overlay) which is then 3D

skeletonised (all green dots). The green dots are sparsened (only

larger green dots with black surround) and a starting point is

chosen (red dot). Apart from the cost functions described above,

additional costs can be implemented here to connect the carrier

points according to the image stack information (indicated by

yellow lines between the dots). Connecting the carrier points

results in a tree that can be further processed (Figure 9A, bottom,

Figure 8. The interactions between neuronal branching and the network context. (A) Nine synthetic neuronal trees grown competitively on a
sample square substrate of homogeneously distributed random carrier points: the competitive greedy growth results automatically in tiling of the available
space. (B) Three out of 16 neuronal trees grown competitively on random carrier points distributed on a ring: this simulates well the sharp borders of
Purkinje cells in the cerebellum. Whether Purkinje cell dendrites actually tile in sagittal planes of the cerebellum remains to be determined. (C) Hippocampal
granule cells from Figure 4 were scaled and positioned along the contours of a human dentate gyrus obtained from a sketch by Camillo Golgi [31]. Growing
synthetic CA3 hippocampal pyramidal cells competitively with the limits from the template resulted in realistic hippocampal pyramidal cells affected by
mutual avoidance. Synthetic dendrites were overlaid on the background of the original sketch. (D) Bipolar cells (black) in the retina were grown
competitively to connect an array of photoreceptors (yellow) to an array of starburst amacrine cells (green, obtained using the algorithm in Figure 3). In such
a case the full morphology of bipolar cells is determined by the context of the circuitry, after prescribing soma locations of the bipolar cells. For all panels of
Figure 8 precise scale bars would depend on the details of the preparations and were therefore omitted.
doi:10.1371/journal.pcbi.1000877.g008
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green tree structure). The procedure can be applied competitively

and in an automated or semi-automated way to recover multiple

trees such as the three entangled pyramidal cells and one

interneuron from a set of tiled image stacks (Figure 9BC). Note

that manual post-processing was required to obtain these clean

reconstructions. But the simple representation of the cost function

in the growth algorithm allows it to be easily extended to a state-of-

the-art model-based reconstruction tool.

Discussion

We present a new framework for understanding dendritic

branching in neurons based on the use of graph theory. Our

results demonstrate that the laws of conservation of cytoplasm and

conduction time formulated by Ramón y Cajal from simple

observation represent a fundamental constraint to dendritic

branching. Generation of synthetic tree structures using a simple

algorithm derived from these constraints creates highly realistic

neuronal branching structures across a wide range of neuronal

types. Nevertheless, there remains flexibility within these natural

constraints. Notably, the weighting of both components, the

balancing factor – which determines a neuron’s electrotonic

compartmentalization – is an adjustable parameter and can differ

from one cell type to the next. Within these constraints, neuronal

processes can grow and adapt depending on their specific

functionality. Most strikingly, the spanning field and density

profile are key determinants of nerve cell individuality and depend

on the sharp physical boundaries of the tissue and on the network

input-output topography. Finally, additions to this rule are

required in certain cases such as the suppression of multifurcations

and the addition of spatial jitter. These might relate to the

developmental bio-mechanistic growth process or specific compu-

tational features and we are confident we will find many more in

further preparations.

Figure 9. Automated reconstruction of multiple cells using the greedy algorithm. (A) Example of an additional application of the algorithm:
automated model-based tree reconstruction from image stacks. Maximum intensity projection of tiled image stacks containing a sample sub-tree of a
fluorescently labelled neuronal tree. Blue overlay in top panel corresponds to the output of a non-linear thresholding. The resulting binary matrix is then
reduced to single points in space (green dots) via a skeletonization procedure. After a distance graph is obtained which describes the probability of a
connection between these points due to the image data the points are used as carrier points for the growth algorithm to obtain the corresponding tree
using the distance graph as an additional cost factor. After unlikely branches are removed the underlying tree structure is captured (green tree structure in
the lower panel, see text for more detail; note absence of scale bar since this a sample image stack). (B) Maximum intensity projections of tiled 2-photon
fluorescent image stacks acquired at 820 nm from primary visual cortex of a p13 JAX transgenic mouse (strain #007677, [38]) expressing GFP in
parvalbumin interneurons, of which one is present. Three further layer 5 pyramidal neurons are also imaged; all cells were filled with a fluorescent dye Alexa
594 via whole cell patch-clamp recording. Data courtesy of Kate Buchanan and Jesper Sjöström. (C) Corresponding reconstructions (with the interneuron in
green) grown in a competitive manner on the image stacks after manual post-processing.
doi:10.1371/journal.pcbi.1000877.g009
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Relating computation and morphology
The spanning field in which a dendrite grows plays a major role

in defining the computational and functional features of axons and

dendrites. This is reflected in its importance in the process of

accurately reproducing single cell morphologies. Furthermore, to

replicate dendrite regions such as the apical tuft of layer 5

pyramidal neurons or the primary dendrites of Purkinje cells, a

timed growth process was required in which subparts of a region

were grown in a second step. This could indicate a functional

constraint governing neuronal outgrowth in these cells. However,

two limitations of the greedy algorithm must be considered. Firstly,

the growth process does not guarantee a global optimum since it is

based on an algorithm which optimizes at the local level, adding

carrier points one by one. Secondly, it does not involve volumetric

considerations. Both cable diameter when optimizing the amount

of material used and space packing issues in conjunction with

axons and dendrites of other neurons as well as with glia cells are

known to play a role in determining wiring properties in the brain

[3]. It is likely that some of these restrictions are responsible for the

extra steps necessary in the construction of synthetic neuronal

branching structures. These two possible extensions are good

starting points for subsequent studies.

Spanning fields and the network context
We show that spatial tiling as observed in many dendritic structures

(Figure 8, [32,33]) is a direct consequence of Cajal’s laws when

applied at the network level. Indeed, network structure in general is

expected to be determined by the same optimization principles, a

feature which Cajal highlighted throughout his work. We have

implemented this directly with the example of bipolar cells, whose

carrier points were directly obtained from arrays of other existing

input and output neurons rather than indirectly from its individual

spanning field and its respective density profiles. By optimally

arranging input and output locations, the spanning field, the major

contributor to shaping the synthetic neuronal trees we have presented

here, was strictly constrained by the same wiring and conduction time

costs. Defining starting locations (e.g. somata) and synaptic target

partners should therefore generally suffice to fully determine the

architecture of a network. This is most likely to be a general principle

and should be investigated further in future work.

Methods derived from analyzing neuronal trees as
graphs

Based on the formalisms of optimized graphs, we have derived

several new ways of representing dendritic structure and function.

First, we show that graph resampling and labelling order lead to

an objective representation for electrotonic compartmentalization.

Simplified models which still faithfully represent the compartmen-

talization behaviour can be obtained with such a process. Second,

taking advantage of their scalability, we derived generalized

spanning fields and their density profile descriptions. These

representations may be useful for comparing branching structures

of different neuronal cell types. We show here how these can be

useful for generating synthetic neuronal tree clones. Finally, as

mentioned previously [20] after extracting carrier points directly

from image stacks, the greedy algorithm is capable of a model-

based automated reconstruction of neuronal trees from microsco-

py data. The simplicity of the algorithm and the fact that the cost

factors are arbitrarily adjustable render this method an easily

extendable tool. This could be crucial for combining the wide

existing set of various approaches [34–37] in one process. For

example, costs for segment orientation [37] can be integrated into

the cost function directly.

Conclusion
In summary, we find that a simple growth algorithm which

optimizes total cable length and the path length from any point to

the root in an iterative fashion can generate synthetic dendritic

trees that are indistinguishable from their real counterparts for a

wide variety of neurons. This represents a direct validation of the

fundamental constraints on neuronal circuit organization de-

scribed originally by Cajal. Furthermore, this approach provides

a new framework for understanding dendritic tiling, which is a

direct consequence of using this algorithm. The availability of

these tools in a comprehensive software package (the TREES

toolbox; see Protocol S1) should now allow these principles to be

applied to any arbitrary dendritic or axonal architecture, and

permit synthetic neurons and neural networks to be generated

with high precision.

Methods

We have developed a software toolbox, the TREES toolbox

(deposited at www.treestoolbox.org), written in MATLAB (Math-

works, Natick, MA), with corresponding extensive documentation.

All methods used in this paper are based on applications from this

toolbox and are only explained briefly here; detailed documen-

tation regarding the toolbox is presented in Supplementary

Information (Protocol S1). Dendritic morphologies were obtained

from the neuromorpho database (www.neuromorpho.org, see

[16]).

Label sorting
The labelling of the nodes of a tree should be unique in order to,

for example, compare the graphs of two trees topologically or

electrotonically. In order to obtain such a unique labelling, nodes

were first sorted according to their topological depth, chosen here

to be the sum of the path length values of all children. Each node

was then inserted in that order into a one-dimensional string, one-

by-one directly behind its direct parent node. Subsequently, the

resulting string of labels was mapped back onto the nodes of the

tree. We refer to the Supplementary Information for more details

on this subject (Protocol S1).

Resampling
The direct comparison of two trees along strict criteria also

requires a unique distribution of node locations on the graph. We

redistributed nodes on a tree structure with equal inter-nodal

distances, a process we termed resampling. Each terminal branch

was first lengthened by half the sampling distance. Then, starting

at the root, extra nodes were positioned at integer multiples of the

sampling distance along the path of the tree. All other nodes were

then removed while maintaining the connectivity. During this

process all segments become shorter or remain the same length;

this is because a wriggly path is simplified by a straight line (which

is by definition always shorter). In order to preserve the total

branching length and the electrotonic properties all segments were

then elongated to the given sampling length (Figure 1B, length

conservation).

Electrotonic equivalent
Rearranging the metrics of a tree after sorting the labels leads to

generation of its unique electrotonic equivalent tree. To obtain the

equivalent tree, its metrics were rearranged according to a circular

dendrogram where the angle towards which a segment is directed

within a circle around the root corresponds to the value of the

label of its target node.
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Electrotonic signature
To obtain the electrotonic signature, the conductance matrix

describing the axial conductances along the edges of the graph

(following the adjacency matrix structure) and the membrane leak

conductances (on the diagonal of the matrix) was simply inverted.

The result is a potential matrix (in mV) corresponding to the

resulting steady-state potential in one node when 1 nA current was

injected in another node, i.e. the current transfer from any node to

another. The passive axial and membrane conductances were

100 Vcm and 2000 Vcm2 for the sample insect dendrite sub-tree

in Figure 1 and 100 Vcm and 20000 Vcm2 for the layer 5

pyramidal cells in Figure 7.

Extended minimum spanning tree
The branching growth was implemented as a greedy algorithm

[23] as in [19,20]. In some cases (Figure 5C rightmost, and all

morphologies in Figures 6, 7 and 8), quadratic diameter decay was

mapped on the resulting trees [19] and a soma-like increase of

diameters was obtained by applying a cosine function to the

diameters in close vicinity of the root (see Protocol S1 for exact

methods).

Automated reconstruction
Two-photon microscopy 3D image stacks containing neurons

filled with a fluorescent dye or expressing a fluorescent protein

were subject to local brightness level thresholding. After 3D

skeletonization and sparsening of the resulting carrier points, these

were submitted to the same greedy algorithm (started at a user

defined dendrite root location) as used for obtaining synthetic

dendrites. In the case of multiple entangled neurons as in Fig. 9BC,

manual cleaning was required using the user interface provided by

the TREES toolbox. See Supplementary Information for more

information including the software implementing these algorithms

(Protocol S1).

Supporting Information

Protocol S1 The TREES toolbox documentation.

Found at: doi:10.1371/journal.pcbi.1000877.s001 (6.97 MB PDF)
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