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Abstract

Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex
biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation,
gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we
apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila
visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal
pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously
identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes.
Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been
previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene
regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis
of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale
gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular
mechanisms that regulate visual system wiring.
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Introduction

The adult visual system of Drosophila melanogaster is a powerful

genetic model for exploring the molecular and cellular mecha-

nisms involved in axon growth, guidance, and synaptic specificity

[1]. The adult retina consists of some 800 ommatidia, each

containing 8 photoreceptor cells (R1–R8) that form topographic

connections in distinct layers of the optic lobe. These connections

are established during the late larval and early pupal stages. As

photoreceptors begin to differentiate in the eye imaginal disc, the

R1–R8 axons from each ommatidium form a single fascicle that

extends topographically into the brain. Within the optic lobe, the

R1–R8 axons then defasciculate and select their individual target

regions. R1–R6 cells connect to targets in the lamina region of the

optic lobe as part of a circuit specialized for motion detection. R7

and R8 cells, which mediate color vision, project axons through

the lamina to terminate in distinct layers of the underlying

medulla.

Large-scale forward genetic screens have been used to isolate

numerous mutations disrupting various aspects of visual system

wiring [2–5]. A small subset of these mutations has been selected

for positional cloning, and the genes thus identified have provided

important entry points for further mechanistic studies [6]. As with

most large-scale genetic screens performed in Drosophila, the

selection of mutations for gene identification has often been made

on an ad hoc basis. In many cases, selection has been guided in

part by the strength and specificity of the mutant phenotype, but

also rather opportunistically by the number of alleles recovered

and any prior genetic information that might facilitate the

challenging task of positional cloning.

For these reasons, the potential of this model system has not yet

been fully exploited. In particular, the bias for strong and specific

mutant phenotypes has evidently enriched for genes encoding

regulatory proteins such as transcription factors and cell surface

receptors. Mutations affecting the basic machinery of axon

growth, guidance, and targeting are likely to result in more

pleiotropic defects. Additionally, because of protein perdurance

and possible genetic redundancy, mutations in such genes may not

always lead to a pronounced wiring defect. For these reasons, we

were motivated to take a more systematic approach to gene

identification–one that would be robust enough to identify even

those genes with only one mutant allele, and efficient enough to
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justify identifying those with less specific or less potent mutant

phenotypes. Accordingly, we developed methods for genetic

mapping using single nucleotide polymorphisms (SNPs) [7]. We

have now used these methods to systematically identify the gene

disrupted for nearly all the mutations recovered in a large-scale

forward genetic screen for visual system connectivity defects.

Results/Discussion

Isolation of Mutations that Disrupt Visual System Wiring
Using eyFLP to generate whole-eye clones [4], we screened each

of the four major autosomal arms for chemically-induced

mutations that disrupt visual system wiring. Eye-Brain complexes

were dissected from 3rd instar larvae harbouring the glass-lacZ

reporter [8], fixed and stained by X-gal to visualize R-axon

projections. Specimens were examined under a light stereomicro-

scope. Lines exhibiting aberrantly patterned retinas, as assessed

initially from the external morphology of the adult eye and

subsequently from tangential sections, were not further processed.

Thus, we retained only those mutants in which the R cells appear

to be appropriately specified, but their axons do not project

correctly within the optic lobe [4]. Ultimately, we retained 122

mutants from a total of 32,175 lines screened (Table 1). Sporadic

transheteroallelic larval or adult survivors were tested for

phenotypic non-complementation either by staining of 3rd instar

larval eye-brain complexes or horizontal adult head sections,

respectively. Additionally, we analysed the R-cell projections in

adult eyFLP mosaics of each complementation group by staining

horizontal head sections to test the phenotypic consistency within

the group. On this basis, mutant lines were assigned to 42 loci, 21

of which are represented by multiple alleles (Table 1).

Systematic Positional Cloning
Six genes were identified using standard positional cloning

procedures, and have been reported previously [4,9–12]. For the

remaining loci, we used SNP mapping to identify the relevant gene

[7]. The strategy was to isolate a set of ,50 recombinants between

the mutant and a reference chromosome, selecting for recombi-

nation events across the entire chromosome arm. Each of these

recombinants was then scored for a visual system wiring

phenotype (in eyFLP clones) and for SNP genotypes. This typically

mapped the mutation to an interval of 0.5–1.5 Mb. In a second

phase, a further set of 100–200 recombinants was generated within

this interval, usually using a pair of flanking P-element insertions as

markers. This second set of recombinants was also scored for a

visual system wiring defect and SNP genotype. In some cases,

rather than mapping the visual system phenotype at this second

stage, we alternatively tracked a lethal mutation within this

narrower interval (assuming the two to be due to the same genetic

lesion). In these cases, we generated around 100 recombinants

each from two P element insertion lines that were flanking the

interval. This procedure gave a resolution of approximately 10–

30 kb. Finally, we sequenced predicted coding regions in this

region, using genomic DNA extracted from homozygous mutant

and control embryos (see materials and methods). In some cases,

the mutant gene was identified by a failure to complement existing

alleles, in tests performed at various stages during the mapping

procedure. Whenever possible, complementation was confirmed

by examining visual system wiring in trans-heteroallelic animals.

Using these procedures we were able to identify a further 30

genes, two of which we have previously reported [7] and 28 of

which are described here. For 12 of these loci, the gene

identification was confirmed in a rescue experiment, generating

transgenic animals carrying either a cDNA under the control of

the eye-specific GMR or eyeless promoter, or inserting a genomic

fragment. In total, we have now identified 36 of the 42 genes

identified in this screen, including six genes identified by standard

positional cloning. These genes are listed in Table 2, along with a

summary of the evidence supporting each assignment. Of these 36

genes, visual system wiring defects have previously been reported

for 11 loci: brakeless, dead-ringer/retained, dock, flamingo, misshapen,

LAR, N-Cadherin, Pak, Ptp69D, golden goal and trio [3,4,7,9–20].

Another 5 genes have been reported to have neuronal phenotypes

in other developmental processes: chickadee, enoki mushroom, kinesin

heavy chain, unc-104 and sequoia [21–26]. The remaining 20 genes

have not previously been associated with neural phenotypes and

for five of these no mutations have previously been reported

(Br140, cdk8, wnk, ckIIa, GUK-holder).

Phenotypic Classification of Wiring Mutants
In parallel with the systematic gene identification, we also

performed a comprehensive phenotypic analysis of all mutant loci,

selecting one or two representative alleles for those loci with

multiple alleles. Our objective was to obtain an unbiased and semi-

quantitative description of visual system wiring defects in each

mutant as guide for future phenotypic and molecular studies. The

screen was performed with a general R axon marker (glass-lacZ),

which provides only low information content, we therefore

examined each mutant using a panel of additional R-cell class-

Table 1. Identification of genes required for visual system
wiring.

Chromosome
arm

Lines
screened

Mutations
recovered

Number of
loci

Genes
identified

2L 7,319 23 10 9

2R 9,781 32 9 9

3L 7,006 32 15 11

3R 8,069 35 8 7

Total 32,175 122 42 36

doi:10.1371/journal.pgen.1000085.t001

Author Summary

In the nervous system, every neuronal process should
know where to grow and when to establish contacts to the
next-order neurons. During development, it is known that
neural circuit formation is primarily determined by the
genes. To identify these genes, we focused on the
Drosophila visual circuitry as a model system, and
disrupted the genes randomly. From over 30,000 of these
mutants, we found more than 100 mutants which have
disrupted patterns of neural circuitry, which we assessed
as representing about 40 genes. We have successfully
nailed down which gene is disrupted in 36 of them. We
provide a list of all of the genes we identified. Altogether,
we performed a detailed characterization of the 35 mutant
phenotypes, to assess which aspects of neural circuit
formation are disrupted in each of the mutants. Summa-
rizing and categorizing the phenotypic fingerprints of each
mutant, we could see which genes are more closely related
to the others. These data will be useful for clarifying the
genetic program that controls neural circuit formation, not
only for the Drosophila visual system, but also generally for
nervous systems across the species.

Systematic Identification of Axon Wiring Genes
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specific markers—Rh1-tlacZ (R1–R6 axons), Rh4-mCD8:GFP (R7

axons), Rh6-mCD8:GFP (R8 axons), and omb-tlacZ (polar axons)—

as well as the additional general R-axon marker anti-Chaoptin

mAb24B10. For each marker and mutant, visual system wiring

was examined in whole-eye eyFLP clones in either 3rd instar larvae

(glass-lacZ and omb-tlacZ) or in adults (Rh1-tlacZ, Rh4-mCD8:GFP,

Rh6-mCD8:GFP, and mAb24B10). A total of 33 criteria of wiring

defect were identified (Table S1, Table S2), and each defect was

scored for each mutant using a scale of 0 (no defect) to 4 (most

severe).

The dock allele D333 was excluded from our phenotypic analysis

as molecular data [9], previously published reports [14] and

complementation analysis suggests that it is a weak hypomorph.

For each of the data point (A score for each defect criterion of

each mutant line), 2–5 hemispheres from multiple eye-brain

complexes were scored independently by two investigators (T.S.

and J.B.), generally from confocal microscope images. The two

investigators score the same images. Wherever the larger sample

size examination was possible, we prepared more than 10 samples

to assess more reliably the expressivity and the penetrance of the

phenotypes (e.g. omb-tlacZ (polar axons), adult gl-lacZ section and

Rh1-tlacZ sections). For the confocal samples which we appreci-

ated the resolution quality of the images that were taken, we

assessed the expressivity by calculating the difference between the

highest and the lowest score given within each defect criterion for

each mutant allele. This reflects the variation of the scores we

obtained and will help understand the expressivity of the each

phenotype in each mutant allele (Figure S1). We also demonstrate

the penetrance of the phenotype by checking whether each defect

criterion was ‘‘fully penetrant’’ in our analysis (Figure S1).

For classifying the mutants, we took advantage of hierarchical

clustering method. Instead of a single clustering based on all 33

defect criteria, we first selected five prominent defect criteria that

gave an informative primary classification of the mutants

(Figure 1). These 5 defects are axon stalling, dorsal-ventral (DV)

crossing, lamina pass-through, R8 defects, and R7 undershoot.

Although many mutants have more than one of these defects,

these phenotypes could nevertheless be used to classify the mutants

into 4 major phenotypic clusters, each representing a distinct

biological step in visual system wiring: axon growth, topographic

mapping, lamina targeting, and medulla targeting. With this

procedure, we put more weight on these selected five criteria,

which we consider of high biological importance. In the following

sections, we provide a brief overview of the genes and phenotypes

in each of these 4 classes, considering the full set of 33 defect

criteria.

Axon Growth
Mutations in four genes resulted in a characteristic stalling

phenotype, readily visualized with the omb-tlacZ transgene at the

larval stage (Figure 2). This marker labels axons from the dorsal

and ventral regions of the eye disc, which target the corresponding

dorsal and ventral regions of the optic lobe. In axon growth

mutants, a portion of axons appear to stall within the optic stalk, or

enter the optic lobe but fail to reach their normal target region.

Nevertheless, these axons generally appear to remain on course,

suggesting that the defect is primarily in axon growth rather than

guidance.

Two of the genes in the phenotypic cluster encode conserved

regulators of cytoskeletal dynamics (trio and Mbs), another encodes

a conserved cytoplasmic protein of unknown molecular function

(hdc), and a fourth encodes a hormone receptor co-activator (tai).

For each of these mutants, we performed a rigorous quantification

of the stalling phenotype (Figure 2C). For hdc, a partial rescue was

obtained with an eye-specific GMR-hdc transgene (Figure 2C); a

similar rescue experiment for trio has been reported previously [9].

We and others have previously characterised the axon stalling

defects in trio mutants, both in the visual system [9] and in the

embryonic CNS and PNS [27–30]. Trio is a RhoGEF that

activates the three Drosophila Rac GTPases, Rac1, Rac2, and Mtl.

Similar axon stalling defects occur in animals that lack multiple

copies of these Rac genes [27].

Mbs also encodes a cytoskeletal regulator—the regulatory

myosin-binding subunit of myosin phosphatise [31,32]. Myosin

phosphatase negatively regulates myosin II through dephosphor-

ylation of myosin regulatory light chain (MRLC). Loss of Mbs is

predicted to result in increased actomyosin contractility and hence

reduced motility. Consistent with this, Mbs mutations block

epithelial sheet movement during embryonic dorsal closure,

accompanied by an accumulation of F-actin at the leading edge

[31,32]. Mbs mutations have also been independently isolated in

an eyFLP screen for R cell differentiation, and shown to result in

the occasional translocation of the R cell body toward the axon

terminus [33]. We did not see this defect in our allele, perhaps

because it is hypomorphic. Stalling at the axon tip, like forward

translocation of the cell body, may be due to increased traction

within the R cell.

hdc encodes a cytoplasmic protein without any predicted

functional domains, but with highly conserved vertebrate homo-

logs [34–36]. In flies, hdc regulates branching of developing

tracheal tubes, and is required in cells that will branch in order to

inhibit branching of their neighbours [34]. Some indicative links

have been made between human hdc homologs and cancer

development [35,37].

The fourth gene in this class, tai, encodes a steroid receptor co-

activator related to the mammalian AIB-1 (or SRC-3), a gene that

is amplified in breast cancer [38,39]. tai regulates the migration of

border cells in the Drosophila ovary, probably in response to the

steroid hormone ecdysone [38]. Similarly, AIB-1 is evidently

required for mammary duct outgrowth in a mouse tumor model

[40]. In the Drosophila visual system, tai might similarly function in

the migration of R axon growth cones, perhaps in response to the

pulse of ecdysone that accompanies pupariation. Unlike the other

three mutants in this class, tai also shows an axon guidance

phenotype, in that the polar R axons labelled with omb-tlacZ often

innervate medial regions of the optic lobe (Figures 2A, B).

However, axon stalling is more frequent in tai than in any of the

other outgrowth mutants (Figure 2C), possibly indicating that this

misrouting is a secondary consequence of severe stalling defects.

Topographic Mapping
R-cell axons preserve their topographic arrangement as they

project along the optic stalk and then fan out within the optic lobe.

Topographic mapping along the dorsoventral axis is thought to

involve both local R-cell axon–axon interactions and long-range

positional cues, possibly involving molecular gradients [41,42].

The omb-tlacZ marker that we used to detect axon stalling defects

is an ideal marker to assess topographic mapping, as it labels the

dorsal- and ventral-most R-cells in the retina and their respective

projections to the dorsal and ventral regions of the optic lobe. With

this marker we identified mutations in two genes with strong

defects in topographic mapping: enoki mushroom (enok) and Br140

(Figure 3A).

In mutant eyFLP clones for either enok or Br140, the dorsal omb-

tlacZ axons projected aberrantly to the ventral region of the optic

lobe (Figures 3B(i) and 3C). They do not appear to stall, nor

innervate medial regions of the optic lobe. We infer that these

dorsal axons are not impaired in their growth, nor in their ability
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Figure 1. Classification of visual system wiring mutants. (A) Diagnostic phenotypic defects for the four major mutant classes, scored on a scale
from 0 (no defect, black) to 4 (most severe defect, yellow). ‘‘R8 defects’’ is an average of all R8 phenotypes (Table S1). (B) Wild-type visual system
anatomy and examples of mutants in each class. From left to right, images show: DV axons, whole-mount larval eye-brain complexes stained with
mAb24B10 to visualize all R-axons (red) and anti-b-galactosidase to visualize dorsal and ventral axons expressing an omb-tlacZ reporter (green); R1–
R6 axons, adult brain sections stained with anti-b-galactosidase to visualize R1–R6 axons expressing an Rh1-tlacZ reporter; R8-axons, confocal
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to distinguish polar from equatorial regions of the optic lobe.

Rather, they are specifically disrupted in their ability to choose a

dorsal rather than a ventral trajectory. The converse defect, of

ventral axons mistargeting to dorsal regions, was not observed in

either mutant.

The enok gene encodes a putative member of the MYST family

of acetyltransferases [24]. Mutations in enok have previously been

shown to disrupt proliferation of mushroom body neuroblasts [24].

We noted that enok mutant eyes are sometimes reduced in size, and

suspected a similar proliferation defect might also occur in the eye.

sections of adult brains stained with mAb24B10 (red) and anti-GFP to visualize R8-axons expressing an Rh6-GFP reporter (green); R7-axons, confocal
sections of adult brains stained with mAb24B10 (red) and anti-GFP to visualize R7 axons expressing an Rh4-GFP reporter (green). tai and enok
illustrate stalling and ventral mistargeting of dorsal omb-tlacZ axons, respectively (arrowheads). In cdk8 clones, some R1–R6 axons project through
the lamina and across the optic chiasm into the medulla (arrowhead). R8-and R7-axons are disorganized in gogo clones, and some R8-axons extend to
the R7 target layer (arrowheads). For the larval eye-brain complexes, dorsal is up and anterior left; for adult brain sections, anterior is up and lateral
left. Scale bars, 50 mm.
doi:10.1371/journal.pgen.1000085.g001

Figure 2. Axon growth genes. (A) Full phenotypic analysis of mutants in the axon growth class, scored for all defect criteria as in Figure 1A. (B)
Whole-mount larval eye-brain complexes stained with mAb24B10 to visualize all R-axons (red) and anti-b-galactosidase to visualize dorsal and ventral
axons expressing an omb-tlacZ reporter (green). Arrowheads indicate delayed or stalled axons; arrow indicates polar axons misrouted to the
equatorial regions of the optic lobe. Scale bar, 50 mm. (C) Quantification of stalling defects, scored by counting the percentage of larval eye-brain
complexes in which at least some omb-tlacZ axons failed to extend fully within the optic lobe, as visualized by X-gal stainings, (n).
doi:10.1371/journal.pgen.1000085.g002
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However, staining with the mitotic marker anti-phospho H3 did

not reveal any defects in cell proliferation (Figure 3B(ii)), and so we

conclude that the function of enok in topographic mapping of R cell

axons is unrelated to its role in cell proliferation. Our two alleles

are due to nonsense mutations before and within the catalytic

domain, respectively, suggesting that acetyltransferase activity is

essential for topographic mapping.

Mutations in Br140 have not been previously reported. This

gene encodes a protein with predicted C2H2 zinc-finger, PHD,

bromo, and PWWP domains. Bromodomains in other proteins

bind acetylated lysines [43], and the close similarity of the enok and

Br140 phenotypes suggest that Br140 might recognize Enok

substrates. Br140 proteins are highly conserved throughout

evolution, including the human Br140/peregrin protein [44] and

C. elegans LIN-49 [45].

Because mutations in both enok and Br140 specifically disrupted

dorsal and not ventral axon projections, we tested whether

expression in the ventral retina might be sufficient to reroute

ventral axons to the dorsal optic lobe. We prepared transgenes that

drive expression of enok or Br140 in the entire eye disc with either

the GMR or eyeless promoter. Introducing these transgenes into the

corresponding mutants with eyFLP clones restored normal

targeting of dorsal axons but did not lead to dorsal mistargeting

of ventral axons (Figure 3C and data not shown). We conclude

from these experiments that enok and Br140 are necessary but not

sufficient for dorsal targeting.

To test whether dorsoventral patterning of the eye disc is also

disrupted in these mutants, we examined the expression of mirror

(mrr), a dorsal eye marker [46] and fringe (fng), a ventral marker

[47]. We found that a mrr-lacZ reporter is expressed normally in

the dorsal eye disc in both enok and Br140 clones (Figure 3B(iii)),

but the ventral expression of a fng-lacZ reporter was significantly

reduced (Figure 3B(iv)). Loss of fng in the ventral eye disc does not

however account for the misrouting of dorsal axons, as these axons

project normally in fng mutant clones (not shown and [41]).

Dorsal-to-ventral targeting defects do occur in mutant clones

lacking all three genes of the Iroquois complex (Iro-C), to which mrr

belongs [41]. However, mrr-lacZ is still expressed normally in enok

and Br140 mutant clones, and enok and Br140 are ubiquitously

expressed in the eye disc, including the ventral regions where Iro-C

genes are absent. Thus, we infer that enok and Br140 act

independently of the Iro-C genes in patterning the dorsal region

of the eye disc, resulting in fng expression in the ventral region and

dorsal targeting of dorsal axons.

It is also interesting to note that the reciprocal phenotype, of

ventral axons targeting the dorsal region of the optic lobe, has

Figure 3. Topographic mapping genes. (A) Phenotypic analysis of enok and Br140 mutations, scored for all defect criteria as in Figure 1A. (B)
Whole-mount larval eye-brain complex of wild-type and eyFLP clones of enok and Br140. (i and i9) Staining of the optic lobe with mAb24B10 to
visualize all R-axons (red) and anti-b-galactosidase to visualize dorsal and ventral axons expressing an omb-tlacZ reporter (green). Left panels (i) show
both channels; right panels (i9) show the green channel only. Arrowheads indicate ventral misrouting of dorsal omb-tlacZ axons in the enok and Br140
mutants, which occurs at the surface of the optic lobe. (ii) Staining of the eye disc with the mitotic marker anti-phospho H3 (green). Arrowheads
indicate the position of the morphogenetic furrow. In both wild-type and mutant discs, mitotic cells are observed in a dispersed pattern ahead (left)
of the furrow and in a narrow zone just behind it. (iii) Staining of the eye disc with anti-elav to visual R-cell nuclei (red) and anti-b-galactosidase to
visualize dorsal cells expressing an mrr-lacZ reporter (green). (iv) Staining of the eye disc with anti-elav to visual R-cell nuclei (red) and anti-b-
galactosidase to visualize ventral cells expressing an fng-lacZ reporter (green). Expression of the fng-lacZ reporter is greatly reduced in the enok and
Br140 eye discs (arrowheads), but remains in the antennal disc (asterisks). (C) Quantification of dorsal-to-ventral mistargeting, scored by counting the
percentage of larval eye-brain complexes in which at least some (‘‘partial’’) or all (‘‘complete’’) dorsal omb-tlacZ axons projected ventrally within the
optic lobe, as visualized by X-gal stainings, (n).
doi:10.1371/journal.pgen.1000085.g003
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recently been reported for mutations in Wnt4, Dfrizzled2 and

dishevelled, implicating the Wnt signalling pathway in the

establishment of a ventral projection [41]. We did not recover

any mutations in these genes in our screen, presumably because

these mutations also disrupt eye patterning and would have been

discarded in our initial analysis.

Lamina Targeting
R1–R6 axons terminate in the lamina in response to signals

from lamina glial cells, the intermediate targets for these axons.

The nature of this glial signal, and how R1–R6 axons respond to

it, is unknown. However, if lamina glial cells are absent or reduced

in number, then R1–R6 axons continue through to the lamina

[48–50]. Such a ‘‘lamina pass-through’’ phenotype is readily

visualized with the marker Rh1-tlacZ, which labels the axonal

projections of R1–R6. In our screen, we identified mutations in 15

genes that exhibit a lamina pass-through phenotype. Although

they formed a well-defined phenotypic cluster in our initial

analysis (Figure 1A), these mutations are generally very pleiotropic

(Figure 4A), suggesting that many different types of defect may

result in some R1–R6 axons missing their stop signal in the

lamina.

The four genes in the lamina pass-through class with the most

pleiotropic phenotypes are kinesin heavy chain (khc), unc-104, Pak, and

misshapen (msn) (Figure 4A). Both khc and unc-104 encode kinesins,

belonging to the kinesin-1 family of conventional kinesins, and the

kinesin-3 family of monomeric kinesins, respectively [26,51,52].

These are the major kinesin families that deliver cargo to the tips

of growing axons, and so the pleiotropic wiring defects in these

mutants are perhaps not surprising. Interestingly, unc-104 has been

reported to be involved in retrograde transport of neurosecretory

vesicles, as well as the anterograde transport [53]. In our mutant

analysis, we noticed aberrant perpendicular turn of R7 axons

(Figure 4A), which is indicative of a failure in retrograde transport

of Smad2 protein mediated by the Drosophila Activin receptor

Baboon [54].

Pak and msn both encode Ste20-like serine-threonine kinases

[21,55]. The broad range of defects seen in these mutants, as

reported here (Figure 4A) and previously [9,17,18], may reflect

functions of these two kinases in diverse signaling pathways.

Another set of genes in this class encodes regulators of gene

expression, including two chromatin remodelling factors (trx, Psc)

[56,57], four putative transcription (co-)factors (bonus, brakeless

[bks], dri, sequoia) [11,19,25,58,59], an RNA polymerase II C-

terminal domain kinase (cdk8) [60], a splicing factor (Xe7) [61], and

a translational repressor (brat) [62,63].

The two remaining genes in this phenotypic cluster do not fit

neatly into a single molecular class. These are archipelago (ago) and

GUK-holder (gukh). ago encodes an F-box protein that is the

substrate-specificity unit of the SCF ubiquitin ligase, and acts as

a negative regulator of cell growth [64,65]. This raises the

possibility that excessive axon growth might contribute to the R1–

R6 pass-through phenotype in ago mutant clones. The gukh gene

was originally isolated in a two-hybrid screen for proteins

interacting with Discs Large, the Drosophila ortholog of the post-

synaptic scaffolding protein PSD-95 [66]. Gukh encodes two

protein isoforms, Gukh-PA and Gukh-PB, which function in

synaptic bouton budding at the larval neuromuscular junction

[66]. Both isoforms contain an N-terminal WASP homology

domain 1 (WH1), suggesting a possible role in the regulation of

actin polymerisation, as well as a C-terminal PDZ-binding motif.

Proteins with a similar structure are found in other species,

including the human Nance-Horan syndrome protein [67–69].

We isolated 3 gukh alleles, all associated with nonsense mutations.

One is predicted to truncate both the PA and PB isoforms,

whereas the other two truncate only the PA isoform. In rescue

experiments using GMR promoter, expression of Gukh-PA in the

eye disc was sufficient to fully rescue the R1–R6 lamina pass-

through phenotype in gukh mutant clones (Table 2).

Medulla Targeting
We isolated mutations in 14 genes for which the most

pronounced defect is aberrant targeting of R7 and R8 axons in

the medulla (Figures 1A and 5). Most of these mutations result in a

general disorganization of medulla projections, including an

irregular spacing of R7 and R8 axons. As for the lamina targeting

cluster, the set of genes in this group encode a diverse set of

molecules, including proteins involved in gene regulation, axonal

transport, cell–cell interactions, and intracellular signalling. Cell

signalling molecules are more prominent in the medulla targeting

cluster than in the lamina targeting cluster. This may be due to

mutations in these genes displaying less dramatic effects than those

involved in protein synthesis or transport, and such subtle defects

are more apparent in the fine arrangement of R7 and R8

projections in the medulla than in the crowded field of R1–R6

axons in the lamina.

Four genes in this cluster are involved in gene expression or

protein transport: kismet, which encodes a chromatin remodelling

factor [70], single-minded, encoding a bHLH-PAS domain tran-

scription factor [71], Hrb27c, encoding an RNA-binding protein

implicated in pre-mRNA splicing [72] and mRNA localization

[73], and Klp64D, encoding a member of the kinesin-2 family of

heterotrimeric kinesins [74,75].

All five of the genes identified from our screen that encode cell

surface proteins fall into the medulla targeting cluster. This

includes two Cadherin genes, N-cadherin [76] and flamingo [77], and

two receptor tyrosine phosphatase genes, Ptp69D and LAR [78].

Detailed phenotypic analyses of these genes have been presented

previously, by us [4,10,12] or the Zipursky lab [3,13,15,16]. The

fifth gene, which we call golden goal (gogo), encodes a novel single-

pass transmembrane protein with extracellular region that includes

a single Thrombospondin Type I and a single CUB domain. Both

of these domains are also found in other proteins involved in axon

guidance, such as the Neuropilin [79] and Unc-5 family receptors

[80]. The cytoplasmic region of the putative Gogo protein does

not contain any known protein domain or catalytic activity. gogo

mutant clones result in a severe disruption of R axon projections in

the medulla (Figure 5B and [20]), which we could rescue with a

GMR-gogo transgene (Table 2). It is interesting to note that the gogo

phenotype clusters closely with flamingo (Figure 5), potentially

suggesting a function in a common or related guidance mechanism

[20].

The remaining five genes in this cluster encode putative

cytoplasmic signalling molecules. These are non-stop (not), a protein

deubiquitinating enzyme [49], chickadee, which encodes Profilin

[81], and three members of the serine-threonine kinase superfam-

ily: basket [82,83], casein kinase IIa (ckIIa) [84,85], and wnk. The role

of chic in axon guidance has been well documented in numerous

systems [9,14,17,23,86,87]. As not is known to be required for the

migration of the lamina glia, and thus indirectly for targeting of

R1–R6 axons to the lamina, we wondered whether not mutant was

picked up due to occasional clones in the lamina or a true R-cell

autonomous role [49]. We did not observe defects in the migration

of the lamina glia in eyFLP clones of our not alleles, and we could

restore normal R-axon projections with a GMR-not transgene that

expresses not exclusively in the eye disc (Table 2). We conclude that

not has both autonomous and non-autonomous roles in R-axon

targeting.
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bsk, which encodes Jun N-terminal kinase, and ckIIa, which

encodes the catalytic subunit of casein kinase II, have been shown

to function in a variety of developmental processes. Functions of

bsk include various aspects of cellular morphogenesis, such as

dorsal closure and planar cell polarity [88]. A role for bsk in R

axon pathfinding has been suggested from experiments using

dominant negative constructs [41]. However, the specific topo-

graphic errors observed in these experiments do not match well

with the general disorganization in the medulla that we observed

in bsk mutant clones allele (Figure 5A). Functions of casein kinase

are even more diverse, reflecting perhaps a wider range of

substrates that includes the developmental proteins Cactus,

Dishevelled, Antennapedia, and Enhancer of Split proteins [89–

91]. Casein kinase II is a critical component of the circadian clock

[92], and a function in axon pathfinding has not previously been

reported. We confirmed an R-cell autonomous role for casein

kinase in establishing axon projections in rescue experiments using

a GMR-ckIIa transgene (Table 2).

Figure 4. Lamina targeting genes. (A) Phenotypic analysis of mutants in the lamina targeting class, scored for all defect criteria as in Figure 1A. (B)
Horizontal sections through the optic lobes of adult heads, stained with anti-b-galactosidase to visualize R1–R6 axons expressing an Rh1-tlacZ
reporter. Arrowheads indicate R1–R6 axons extending through the lamina into the medulla in whole-eye eyFLP clones of selected mutants.
doi:10.1371/journal.pgen.1000085.g004
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The wnk gene encodes the single Drosophila member of a recently

discovered and more enigmatic family of kinases, represented in

mammals by the four kinases WNK1-4. This family of serine-

threonine kinases is distantly related to the Ste20-like kinases, and

owes its inappropriate name (With No Lysine [K]) to the fact that

the lysine required for phosphoryl transfer lies in a different

position to all other protein kinases (kinase subdomain I rather

than subdomain II) [93]. The best characterised role of

mammalian WNKs is in the regulation of electrolyte homeostasis,

and mutations in two of the WNKs have been linked to

hypertension [94]. Additionally, WNK1 functions in synaptogen-

esis by phosphorylation of Synaptotagmin2 [95]. Our wnk alleles

carry mutations either within or C-terminal to the kinase domain,

suggesting that Wnk’s function in R-axon targeting requires its

kinase domain in addition to its long and poorly conserved C-

terminal region. We could rescue the wnk mutant phenotype with

a genomic transgene, confirming the role of wnk in R-axon

targeting (Table 2).

General Remarks
We observed several mutants that have striking R-axon

guidance phenotype in larvae but less severe phenotype in adults,

indicating a transient nature of the defect. This is particularly

evident in tai, kis, not, enok, Br140, cdk8 and wnk phenotypes

(Figures 1, 2, 3, 4, 5). One possible explanation for the

discrepancy between adult and larval phenotypes is that different

mechanisms underlie the development of the patterning of both

systems. For example, a recent study of gogo function suggested

Figure 5. Medulla targeting genes. (A) Phenotypic analysis of mutants in the medulla targeting class, scored for all defect criteria as in Figure 1A.
(B) Horizontal confocal sections of adult optic lobes, stained with anti-GFP to visualize R8 axons expressing an Rh6-mCD8-GFP reporter (green) and
mAb24B10 to visualize all R axons (red). Animals carried whole-eye eyFLP clones of the indicated mutants. Arrowheads indicate R8-axons that
overshoot their correct target layer and extend to or beyond the R7 target layer.
doi:10.1371/journal.pgen.1000085.g005
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that larval bundling defects are unrelated to the later defects seen

in target recognition by R8-axons [20]. Another explanation

could be that these mutants still retain the lamina cartridge

formation defects even in the adult, but other more discerning

assays would be needed. Analysis of R1–6 superposition defects in

the lamina targeting neurons in adult in these mutants might be

informative.

Concluding Remarks
We began this study [4] at a time when relatively little was

known about the molecular mechanisms of neuronal wiring in the

Drosophila visual system [96] and before the completion of the

Drosophila genome sequence [97]. Our long-term goal was to

systematically identify as many as possible of the genes required for

axon growth, guidance, and connectivity in this model system.

Initial progress in gene identification was encouraging [4,9–12],

but slow, prompting us to develop methods for SNP mapping in

Drosophila [7].

Using this method, we have been able to identify nearly all of

the genes displaying guidance defects in our screen, including

those represented by just a single allele. In most cases, the genetic

lesion has been mapped to a single base pair. Our systematic

identification of the genes and detailed characterisation of

associated mutant phenotypes will serve as a springboard for

further mechanistic studies of visual system wiring. Importantly,

our work also demonstrates the feasibility of large-scale positional

cloning in Drosophila. The large-scale mutagenesis screen has long

been the trademark of Drosophila genetics, and indeed is one of its

major strengths. Using approaches such as ours, systematic mutant

recovery can now be augmented with systematic gene identifica-

tion.

Materials and Methods

Genetics
Mutations were generated [4] and mapped [7] as described

previously. In the first phase of recombination mapping, SNP

genotypes were mostly determined by PLP assays [7], and in the

second phase by DNA sequencing. Mapping in this second phase

generally involved testing for the lethality of heteroallelic

combinations, or, in the case of single alleles, failure to

complement an existing deficiency. If a suitable deficiency was

not available, fine mapping was performed using stocks containing

two flanking EP elements [98] that had been placed in cis. Existing

mutants, deficiency stocks, and EP elements were obtained from

either the Bloomington or the Szeged stock centers. For

sequencing, we extracted DNA from single embryos, identified

homozygous mutant embryos by PCR with PLP primers [7],

pooled their genomic DNA, PCR, sequenced the coding region

and compared it to the parental reference chromosome.

Rescue Constructs
The wnk genomic rescue transgene consisted of a 22 kb Asp718

fragment isolated from BACRP98-26P10 that was cloned into a

pCaSpeR4 vector. GMR or eyeless rescue constructs were generated

using standard PCR cloning techniques, using either genomic

fragments containing small introns or full-length cDNAs as

templates. For hdc, we used the long isoform amplified from

UAS-hdcCAA [99]. For dri, brat, ckIIa, not, cdk8, and unc-104,

genomic regions from the start to stop codons were amplified from

genomic DNA. The gogo coding region was amplified from the

EST clone RE53634, and enok from a full-length cDNA provided

by Liqun Luo. Br140 was cloned as an EcoRI fragment from the

EST clone GH12223.

Histology
Tangential eye sections, adult head sections, whole-mount adult

brains, and whole-mount larval eye-brain complexes were

prepared and stained as described previously [4,10,12]. Primary

antibodies used were mAb24B10 (1:50, [100]), rabbit anti-b-

galactosidase (1:2500, Cappel), and rabbit anti-GFP (1:100–300,

Torrey Pines). Secondary antibodies used were goat anti-rabbit

Alexa-488 and goat anti-mouse Alexa-568 (1:250 each, Molecular

Probes). All fluorescent samples were mounted in Vectashield

(Vector Laboratories). Head section stainings were performed

manually for the initial characterisation, and using a Dako

Autostainer plus (Dako Cytomation) for mapping and rescue

experiments. Confocal images were acquired on Zeiss LSM 510

Axiovert 200M or LSM 510 Axioplan 2, or Leica SP2.

Phenotypic Classification
Samples were scored for each phenotypic criteria on a 0 (wild-

type) to 4 (most severe) scale according to the scale described in the

Table S1. For examination of confocal images with LSM5 Image

Examiner or Leica LCS lite, the final score was the average from

2–5 preparations. For larval omb-tlacZ, adult glass-lacZ sections

and adult Rh1-tlacZ sections were examined under normal light

microscope. Sections from 10–20 heads were examined for each

allele. For omb-tlacZ stainings, we examined around 50

hemispheres for each allele scored. All mutants were scored

independently by T.S. and J.B. and averaged. The genes for which

multiple alleles were scored were averaged. Data were clustered

using a k-means clustering algorithm [101], with manual

adjustment and transformed into heat map using MS Excel macro

function (Designed by Georg Dietzl). The range of phenotypic

scores was calculated as the subtraction of the lowest score from

the highest score among the samples from the same mutant allele

for each criterion. These are shown for confocal samples to

provide the tendency of expressivity of the phenotype. The range

of scores for two individuals was averaged and transformed into

color heat maps. For the scores quantified and averaged from

more than 10 samples at the same time (omb-tlacZ samples, adult

DAB sections and ‘‘lamina pass through’’) a range was not given,

however, the score itself gives the idea of penetration of the

phenotype.

Supporting Information

Figure S1 Expressivity and penetration of the phenotypic

defects. (A) Color coded panels showing the range of values for

each score for all the defect criteria and mutants shown in

Figures 2–5. The range is shown on a scale from 0 (white: no

variability) to 4 (blue: highly variable). The alleles and the genes

are the same as shown in Figures 2–5. (B) Color coded panels

showing the penetrance of the defects for each score for all the

defect criteria and mutants shown in Figures 2–5. The penetrance

is shown in 3 colors, red (fully penetrant), pink (partially penetrant)

and white (no penetrance). If all the scores from all the samples

from two scorers were never scored as wild type, it was defined as

‘‘fully penetrant’’. Vice versa if everything is ‘‘0’’, it is ‘‘no

penetrance’’. All other variations of scores were counted as

‘‘partially penetrant’’. The alleles and the genes are the same as

shown in A.

Found at: doi:10.1371/journal.pgen.1000085.s001 (20.32 MB

TIF)

Table S1 Defect criteria.

Found at: doi:10.1371/journal.pgen.1000085.s002 (0.16 MB

DOC)

Systematic Identification of Axon Wiring Genes

PLoS Genetics | www.plosgenetics.org 12 May 2008 | Volume 4 | Issue 5 | e1000085



Table S2 Scoring criteria for each defect criteria.

Found at: doi:10.1371/journal.pgen.1000085.s003 (0.11 MB

DOC)
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