
SENTENCE CONSTRUCTION

BY A PSYCHOLOGICALLY PLAUSIBLE FORMULATOR

GERARD KEMPEN

University of Nijmegen

Natural language production comprises a variety of processes that
may be grouped under two headings. The conceptualization processes
select a conceptual theme for expression. They decide which parts
of the theme must be actually communicated to the hearer and which
can be left unexpressed: the latter are already present in the
hearer's memory or can be inferred by him from what the speaker
said. And the conceptual content selected for expression must be
organized into a linear sequence of messages so that each is
expressible as a complete or partial sentence. The psychological
mechanism that accomplishes these tasks I will call the concept-
ualizer. The second main mechanism is the formulator which maps
each input conceptual message into a natural language utterance.
Formulating consists of two main processes:

(1) lexical search, for locating and retrieving from memory
language elements which express the conceptual information,
and

(2) sentence construction, i.e. assembling a partial or complete
sentence from language elements.

It is only the latter aspect of language production this paper is
concerned with. I will try to work the various empirical data that
are known about human sentence production into a blueprint of a
possible sentence construction procedure. The data I have in
mind are observations on speech errors (Fromkin, 1973; Garrett,
1975), hesitation and pausing phenomena,(Fodor, Bever and Garrett,
1974), experimental results on semantically constrained sentence
production and reproduction (several chapters in Rosenberg, 1976),

103

104 G. KEMPEN

and some general properties of the human cognitive system. I offer
the blueprint as a point of departure for more detailed and more
formal theorizing on human sentence production and as a source of
meaningful hypotheses for psychological experimentation.

Section I reviews the main empirical facts the sentence
construction system tries to encompass. Section II outlines the
system itself. Section III explores some linguistic consequences
of the model. Finally, Section IV contains a few detailed
generation examples.

I. Empirical observations on sentence construction

I.1 Heavy reliance on multiword units

As building blocks to construct sentences from, the formulator uses
not only single lexemes but also multiword units which span several
lexemes and/or "slots" to be filled by l xemes. Becker (1975)
argues a similar point. Left-to-right order of the elements of a
multiword unit is more or less fixed. I quote the following
observations in support:

(i) Phraseology linked to stereotype situations. People
speaking in a stereotype situation often have available
sentence schemes which they know will enable them to
express what is on their mind. Especially if rapid speech
is required, such schemes will actually be put to use
(example radio reporters doing running commentaries of
soccer matches or horse races). Although there is little
empirical data to either underpin or undermine this claim,
some informal observations by this author support it
strongly (Kempen, 1976b).

(ii) Syntactic retrieval plans. In a series of experiments on
paraphrastic reproduction of sentences, I demonstrated the
existence of retrieval mechanisms which look up a specific
pattern of conceptual information in memory and directly
express it in the form of a specific syntactic frame. For
details see Kempen (1976a,b) and Levelt & Kempen (1975).

(iii) Speech errors. Garrett (1975), in the most extensive and
detailed study of speech errors to date, suggests that
people sometimes use syntactic frames consisting of
functors (articles, prepositions, inflection morphs, etc.)
in left-to-right order, with slots to be filled by content
words. Occasionally, content words are put into a wrong
slot and speech errors like I'm not in the READ for MOODing
and she's already TRUNKed two PACKS result (inter-changed

SENTENCE CONSTRUCTION 105

pieces in capital). But Garrett never observed errors like The
boyING shouts disturbed us with functors interchanged.

I.2 A clause-like unit as the largest unit of planning

The units by which sentence construction proceeds vary from, say,
words to clauses. That is, the segments of speech that get attached
to the output string are neither very small units like single
phonemes nor very large ones like convoluted sentences. (I'm only
concerned with spontaneous speech production, not with writing).

The largest unit, and also a very predominant one, is often thought
to be the surface clause or the phonemic clause. Boundaries between
such clauses frequently attract pauses and hesitations. Boomer
(1965), however found that the highest proportion of pauses occurred
after the first word of a phonemic clause. Disregarding this
exception, the other positions showed a gradual decrease towards
the end of a clause.

Many first words of clauses must have been subordinate or coordinate
conjunctions. If so, Boomer's data suggest that decisions regarding
conjunctions are rather independent of decisions regarding the other
lexical material (verb, noun phrases, etc.) of a phonemic clause.
Two possibilities come to mind. First, the conjunction may have
been selected at a very early stage of the formulation process.
E.g. a speaker who wants to express a causal relation between two
events may very early on decide to construct an utterance of the
form "EVENT2 because EVENT1". After verbalization of EVENT2 he only
needs to put the word because that is waiting in some buffer store,
into the output stream. After because a pause may develop depending
on how much time it takes to verbalize EVENT1. The second
possibility is perhaps more interesting: the conjunction
initializing a certain clause may be syntactically required by the
verb of another clause. For instance, the _if in I don't know if John
is in is dependent on the verb know of the main clause, and can be
uttered even before the formulation process for the subordinate
clause has begun. The line of reasoning of this paragraph.

(i) I can't help you because *1* I don't know if *2* John is in.

would point at positions *1* and *2* of sentence (i) as likely
places for pausing. The segment between *1* and *2*, that just
misses being a phonemic clause, I will call a verb dependency
construction (VDC). A VDC contains a verb as the "head" or
"governor" and all the phrases that are dependent on it. In
sentence (i), if, don't, and I are dependents in the VDC which
has know as its governor. Two other VDCs in (i) are I can't help
you and John is in.

106 G. KEMPEN

My motivation for introducing notions of syntactic dependency here
is, first of all, that they nicely represent the relations between
"predicting" and "predicted" sentence elements, even if the
predictions surpass clause boundaries. Other empirical arguments
for dependency grammar are reviewed in sections 1.3 and III.2.

Raising a clause-like unit such as the VDC to the status of the
largest unit of planning is also supported by an observation on the
maximum size of idiomatic expressions. Except for proverbs, there
doesn't seem to exist any idiom or phraseology that is
substantially longer than a single clause. All idiomatic
expressions which allow for some variation (word order, slots to be
filled) observe this upper boundary. Proverbs sometimes spanning
several clauses, are no counterexamples since they are totally
fossilized and don't need a "formulator" at all. To put it
differently, non-fossilized phraseology never consists of, for
instance, two successive half clauses or two complete clauses. If
an expression spans more than one clause, then only one clause is
variable and all the others are fossilized. A Dutch example is:
"NP LACHEN als een boer die kiespijn heeft" (NP LAUGH as a farmer
who has toothache). This limitation on the size of syntactic
constructions suggests that the formulator never works on more than
one clause at the same time.

To be sure, non-fossilized idioms sometimes do violate clause
boundaries, but apparently only with conjunctions just as VDCs do.
Examples are: My name is not ... or ..., NP TAKE it that —

I.3 Speech errors which are exchanges within dependency levels

One category of speech errors in the collection studied by
Garrett (1975) are "word exchanges": two complete words which
occupy non-adjacent positions end up at each other's place.
Examples (2) through (13) are all the word exchange errors
(interchanged words in capital) Garrett lists in his paper.

(2) I have to fill up the GAS with CAR.

(3) Prior to the operation they had to shave all the HEAD off
my HAIR.

(A) She donated a LIBRARY to the BOOK.

(5) Older men CHOOSE to TEND younger wives.

(6) ...which was parallel TO a certain sense, IN an experience..

SENTENCE CONSTRUCTION 107

(7) Every time I put one of these buttons OFF, another one comes
ON.

(8) She SINGS everything she WRITES.

(9) — read the newspapers, WATCH the radio, and LISTEN to T.V.

(10) Slips and kids - I've got BOTH of ENOUGH.

(11) I broke a DINGHY in the STAY yesterday.

(12) Although MURDER is a form of SUICIDE, ...

(13) I've got to go home and give my BATH a hot BACK.

In his total corpus there are 97 such cases. Garrett remarks not
only that the interchanged words usually belong to the same word
class but also that they "come from corresponding positions within
their respective structures ... The parallelism of structure is most
strikingly evident for the word exchanges that cross clause
boundaries, but even the within-clause exchanges show a strong
correspondence, usually involving two similarly placed words from
distinct phrases. These phrases are quite often, for example, the
noun phrases (NPs) of direct and indirect objects, or the NPs from a
direct object and an adverbial phrase, or from successive adverbial
phrases" (p.155-156).

I would like to add one further constraint that seems operative in
such word exchanges. From examples (2) - (13) and some further
statistics provided by Garrett one can conclude that the overwhelming
majority of the exchanged words belong to the same syntactic
dependency level. This is true of 8 out of the 12 examples listed
above (5, 8, 10 and 12 seem to be exceptions).

These observations and those of the previous Section provide some
empirical basis - although I admit it is very slender - for setting
up the sentence construction process as one which roughly proceeds
dependency level by dependency level.

I.4 Parts of the syntactic form of an utterance may be given before
the formulation process starts.

In certain circumstances the formulator is not completely free in
determining the syntactic shape of an utterance. Stylistics includes
phenomena such as these: certain themes/contents and certain
audiences prefer certain syntactic forms; the syntax of individual
sentences is partly controlled by their position in the total text.
Apparently, some mechanism prior to the formulator (perhaps the
conceptualizer) biases him towards certain syntactic forms.

108 G. KEMPEN

Another instance of limited "freedom of expression" is provided by
situations of repetitive speech. A radio reporter who has to read
out a series of sports results is tempted to use the same
syntactic scheme for several successive scores. Elsewhere I have
discussed this point in detail (Kempen, 1976b).

I.5 Preferred word orders

Recent experiments by Ertel (1976), Osgood & Bock (1976) and
Jarvella (1976) have uncovered some of the rules underlying
preferred or "neutral" word order in spontaneous speech. For
instance, speakers have a tendency to express ego-related, vivid
and salient concepts early in the sentence. Such tendencies
importantly determine the selection the speaker makes from the
total set of paraphrases he might use to express the content he
has in mind.

In terms of standard transformational grammar, some such
paraphrases have a longer transformational history than others. For
instance, passive sentences are supposed to be more complex than
actives, and subject complement constructions with extra-positioned
(trailing) subject (It amazed me that he went) have a longer
derivation than their counterparts with subjects in initial
position. However, the available evidence disconfirms the
hypothesis that differences in derivational complexity will show
up in actual human sentence production. The experimental study of
James, Thompson & Baldwin (1973) renders very implausible the
hypothesis that passives are more difficult to produce than actives
(except, perhaps, for length). Jarvella (1976) compares ease of
production of subject complement sentences with the that-clause in
leading vs. trailing positions. He concludes "there was no real
indication that subject complements were effortfully postponed".

I.6 Very limited working memory

Humans have a small working memory and a huge, easily accessible
and very flexible long-term memory (LTM). The opposite is true of
modern computers. Large amounts of data (inputs, intermediate
results of computations, etc.) can be very quickly stored without
"rehearsal" and don't get lost as a function of time or of new data
coming in. On the other hand, LTM lookup of some little piece of
data in a large computerized data base is very cumbersome. Sentence
generators built by both transformational and computational
linguists tend to require a large working memory for keeping
intermediate results (typically, tree-like structures). And this
memory can only be cleared at a very late stage, if not after
completion, of the generation process. No part of the content of
the working memory may be released earlier, e.g. put into an output
channel for pronunciation since there is always the chance

SENTENCE CONSTRUCTION 109

for a later "transformation" to be dependent on it or to change
left-to-right word order.

Thus, in order to ease the burden put onto a working memory by the
sentence generation process, it seems wise to first decide upon the
left-to-right order of constituents so that speaking can start
relatively early and need not wait till all details of the total
utterances have been computed.

This line of reasoning, however, also applies to the level of the
conceptualizer. Since the conceptual messages it composes have to
fit in a small working memory it would be efficient if it could pass
partial results down to the formulator for quick translation into
natural language. Since most people would agree they often start
talking before they have completely worked out what they want to
communicate, I will allow for conceptual messages that are fed into
the formulator in bits and pieces. And the formuIator must be
enabled to start working on parts available instead of having to
wait until the complete message is in.

Such a system has an interesting consequence as regards naturalness
of word orders (cf. previous Section). The speech segments the
various conceptual pieces translate into will show an order
correlating positively with the order in which these pieces were
sent out by the conceptualizer. (Syntactic constraints on word
order will often prevent the correlation from being perfect).
Following a suggestion by Osgood & Bock (1976), we might
hypothesize that the order in which concepts are processed by the
conceptualizer is determined by saliency, vividness, ego-
relatedness, etc. Also, the linguistic notions of topic and
comment may be related to order of conceptualization (topic first,
comment later). Consequently, a formulator which is able to
process fragmentary conceptual messages in their order of arrival,
will spontaneously show natural or preferred word order and won't
need any special machinery for computing them. In other words, the
problem of natural word order should be studied at the level of the
conceptualizer, not the formulator.

II. Outline of the sentence construction procedure

II.1 A constructional lexicon

In Section I.1, the importance of syntactic frames, sentence
schemes, standard (canned) phrases and the like was discussed. Here
I will introduce the notion of a syntactic construction - a notion
that I think encompasses most multiword units occurring in natural
language, and one which has proved useful in accounting for the
results of some experiments on sentence (re-)production (Kempen,
1976a,b). A syntactic construction is a pair consisting

110 G. KEMPEN

of

(1) a pattern of conceptual information, and

(2) a sequence of lexemes and/or syntactic categories.

The latter I will call a syntactic frame, the former a conceptual
pattern. The syntactic frame expresses the conceptual pattern.

For example, the syntactic frame "NP1 give NP2 to NP3" expresses
a specific form of transfer of possession of NP2 between NP1, the
actor, and NP3, the recipient.

The "passive" syntactic frame "NP1 be given NP2 by NP3" belongs to a
separate syntactic construction whose conceptual pattern is identical
to that of the active give-construct ion. The idiomatic expression
"NP shoot Q bucks" is a syntactic frame expressing the number of
dollars NP spends. So far, the examples all have open slots
(indicated by capital letters) but there are also many constructions
whose syntactic frame is completely closed and allows no variation at
all, not even word order permutations (like as a matter of fact,
other things being equal, proverbs). Parenthetically, the examples
make it clear that I use the term syntactic frame in a broader sense
than Garrett (1975) who only considered sequences of functors as the
body of frames (e.g. The N is V-ing; cf. Section I.l.iii).

The lexicon contains syntactic constructions as lexical entries. An
individual lexeme (single word) figures as a lexical entry only if it
constitutes a syntactic frame on its own. (14) gives an idea of what
the syntactic frame of a VDC lexical entry looks like, in LISP
notation.

(14) VDC: ('(ppl {Cat: NDC; Case: Subj}) (leave {Cat:
V}) (pp2 {Cat: NDC; Case: Obj; Status:
Opt}))

It is a list containing three sublists as top-level elements. Each
of the sublists is a pair whose right-hand member is a list of
attribute-value pairs {between square brackets}. The latter provide
syntactic information for the procedures operating on lexical entries
that have been retrieved from the lexicon. These right-hand members
I will call synspecs (syntactic specifications). The left-hand
member of the top-level sublists is either a single lexeme or a
"pointer procedure" which computes a pointer to a field of the
conceptual pattern that is being translated. For instance, ppl sets
up a pointer to the actor field in the conceptual pattern. It is from
this field that the lexical filler for the subject slot will be
derived. Likewise, the value of pp2 will be a pointer to the
location the actor travels away from. {Cat: NDC; Case: Subj}

SENTENCE CONSTRUCTION 111

means: the lexical realization must be a Noun Dependency
Construction (or NP if you wish) in subject case. { Status: Opt}
in the third sublist marks this NDC as optional (leave is a middle
verb).

I will now give a more formal definition of a syntactic frame. It
is a list of one or more pairs of the form "(pp synspec)" or "(l
synspec)", where pp is a pointer procedure (returning a pointer to
a field of a conceptual pattern); synspec is a list of attribute-
value pairs (marking syntactic properties that have to show up in
the utterances under construction); and l is a lexeme (which can
be put into the output stream after the applicable morphological
rules have worked on it). Furthermore, I propose the following
conventions. If the left-hand member of a top-level sublist is a
lexeme and the right-hand member is a single attribute-value pair
{Cat: X}, where X is any part of speech, then the sentence
construction procedure will assume this lexeme can be dumped into
the output stream without any modification. E.g. (because { Cat:
Conj}) means that because, a conjunction, doesn't need any
morphological shaping up before it is pronounced. The part of
speech attributes can also be used to decide which sublist contains
the governor of a construction. Each syntactic frame in the
lexicon is explicitly marked as a Dependency Construction of some
sort: VDC, NDC, ConjDC, etc. The governor of the frame is the
sublist which contains the corresponding "Cat:" mark. (This will
work only if the frame contains exactly one such sublist. Nominal
compounds like apartment building or graduation day which have two
nouns in them could not be handled. Since the first noun cannot
be separated from the second one and is not subject to
morphological changes, I propose to treat these compounds as single
nouns, as is done in German and Dutch).

II.2. Sentence Assembly

II.2.1. General Overview

The formulator starts constructing an utterance with two pieces of
information:

(1) a conceptual pointer, and

(2) a synspec which enumerates zero or more syntactic properties
of the to-be-constructed utterance.

Empirical arguments for (2) were given in Section I.4. I will
first describe the workings of the proposed formulator if it
operates on complete conceptual patterns. In Section II.2.3 the
extra machinery for dealing with fragmentary conceptual patterns
will be outlined.

112 G. KEMPEN

As for terminology, the two main procedures the formulator uses I
will call LEX (for lexicalization) and FIN (for finalization). LEX
receives as input a formula, which is a pair of the form "(p
synspec)" or "(l synspec)" where p is a pointer to a conceptual
pattern, l a lexeme, and synspec as defined above.

The formulator passes the input, which is a formula, on to LEX which
replaces it by another formula or by a list of formulae. To this
output, LEX is applied again, that is, to each of the formulae,
going from left to right. The result of this "pass" or "sweep" of
the lexicalization procedure is, again, a new list of formulae. The
formulator continues such lexicalization sweeps until all formulae
in the list have the form "(l synspec)", i.e. until they all have
lexemes in them and no pointers to conceptual patterns anymore. To
this list, the formulator applies FIN which computes the final form
of the lexemes. The left-to-right order of lexemes in the formula
list corresponds to order of words in the final utterance.

Although this is not clear from the description just given, applying
LEX this way enables growing a syntactic dependency tree from top to
bottom, dependency level by dependency level. Consider the
dependency tree in Fig. 1 which depicts dependency relations among
the words of sentence (15).

Fig. 1 Syntactic dependency tree for sentence (15).

Suppose the formulation process starts out with the formula (pi
{Cat: S}. The first lexical frame LEX finds (N.B. this paper is
not concerned with lexical search itself) is the ConjDC "after S
S" which will replace the earlier formula:

((after {Cat: Conj}) (p2 {Cat: S}) (p3 {Cat: S})).

This list of three formulae, with the conjunction as governor, has
two slots to be filled. Pointers p2 and p3 refer to fields of pi:
the events between the temporal relation after is specified. These

SENTENCE CONSTRUCTION 113

pointers have been set by executing the pointer procedures (pp's) in
the syntactic frame. Now the formulator notices that after, the
leftmost lexeme in the list, has its final shape (cf. the end of
section II.1) and can be pronounced. The remaining two-member
formula list is then lexicalized with the VDC frames leave (see
(14) and die: (((p 4{Cat: NDC; Case: Subj}) (leave {Cat: V} (p5
{Cat: NDC; Case: Obj})) ((p4 {Cat: NDC; Case: Subj}) (die
{Cat: V}))).

The next lexicalization pass replaces the slots p4 and p5. During
this pass, LEX notices that p4 occurs twice, inhibits lexical lookup
for the second token and uses a pronoun instead.

This is a rough description of how lexicalization proceeds if the
complete conceptual pattern is known to the formulator right from
the start. After each lexicalization pass, the formulator checks
if the leftmost top-level element of the formula list has been
completely lexicalized. If so, this element is processed by FIN
which computes the definitive shape of its lexemes, dumped into the
output stream, and finally detached from the formula list. If the
new leading top-level element has been completely lexicalized, too,
FIN will work on it; if not, then the whole remaining formula list
is subjected to a new lexicalization pass. FIN will be mainly a
routine for handling VDCs, since top-level elements of the formula
list are either VDCs or unchangeable words like conjunctions or
sentence adverbs. The latter may be uttered as they are, without
any further processing. So FIN's task is to shape up the
constituents of VDCs in accordance with rules of tense, number,
person, case, etc. (To this purpose FIN might use, among other
things, a stock of syntactic frames in Garrett's sense (see Section
I.l.iii); FIN will call itself recursively if a VDC contains
another VDC.

This general setup of the formulator is consistent with the
empirical observations reviewed in Section 1. Since the left-to-
right order of formulae in the formula list is never changed, the
formulator can release leading VDCs, conjunctions and adverbs very
quickly and reclaim the freed working memory space (cf. Section
1.6). The observations on pausing in Section 1.2 can be
accommodated too. For sentence (16), Boomer's rule would identify
the transition between after and he as the place most likely to
attract a pause.
(16) The man died after he left the old church.

This is also true of the proposed model: after FIN has worked on
the first VDC the formulator can just read off the man died and
after. But then he has to complete lexicalization of the second VDC
and to finalize it before he left the old church can be said.
(Lexicalization of the second VDC takes one more lexicalization

114 G. KEMPEN

sweep than the first one, because of the modifier old.) Since
lexicalization proceeds dependency level by dependency level, the
type of speech errors discussed in Section 1.3 become
understandable. E.g. in terms of sentence (9), the VDCs watch and
listen to were interchanged during one lexicalization pass, or the
radio and T.V. were during another. (Exactly how such interchanges
come about, 1 don't know. Here I only appeal to some notion of
temporal contiguity - "within the same pass..." - but other factors
may be involved as well, e.g. similarity between interchanged
elements).

II.2.2 Details of the lexicalization procedure

The complicated job LEX has to do for each formula may be divided
into eight tasks. I will discuss them in turn, in the order they
are carried out. Subtasks i through v are mainly concerned with
finding adequate syntactic frames in the lexicon. By subtasks vi
through viii, a selected syntactic frame will be trimmed down to the
format needed for insertion in the formula list.

(i) Expanding synspec. The two sources of synspec we have
considered up till now are the conceptualizer and the
lexicon. Synspecs may be "incomplete", in the sense that
syntax requires further specifications. For instance, the
synspec {Cat: VDC} must be expanded so as to contain
information about subcategories "main" vs. "subordinate"
(at least in German and Dutch where they condition certain
aspects of word order). If the lexicon or conceptualizer
didn't specify which, the formulator must have a means of
adding this information; for instance by assuming a
default value, by looking at neighbouring formulae, or by
inspecting the current conceptual pattern. If "Subcat:
Main" is chosen, further information about Mode must be
added: declarative, interrogative or imperative. The
value of the Mode attribute can only be determined by
inspecting the conceptual pattern. Similarly, a synspec
{Cat: V} requires information about Tense, which can be
derived from time information in the conceptual pattern.

LEX must have a set of rules defining completeness of
synspecs, and mechanisms which execute the tasks
illustrated by the examples.

(ii) Inspecting the conceptual pattern. The pointer in a formula
points to a total conceptual pattern (i.e., the input
pattern delivered by the conceptualizer) or to a part of it
(e.g. the actor field of an event describing pattern). For
simplicity, I call them both "conceptual patterns". LEX
must know what kind of information to extract from the
current conceptual pattern. For instance, if it has the

SENTENCE CONSTRUCTION
115

form "EVENT 1 cause EVENT 2" or "EVENT 1 time-relation
EVENT 2", LEX should pick out the connector information
and not, say, the actor of EVENT 2.

(iii) Lexical search. The information extracted from the
conceptual pattern guides LEX through the lexicon when
searching for an adequate syntactic frame. A good example
of how to set up procedures for both (ii) and (iii) is
provided by Goldman's (1975) generator.

(iv) Matching a candidate frame to synspec. Not every syntactic
frame which expresses the current conceptual pattern can be
inserted into the formula list. First, a candidate frame
must be checked for compatibility with synspec. For
example, if synspec is {Cat: S} , then a NDC frame wouldn't
match, but a Conjunction-S-S frame would. Also, the
synspec of a formula may impose certain word order
restrictions upon the syntactic frame that will replace
it. So LEX has to check if these restrictions can be met by
a given candidate frame. What is needed of course, is a
system of rules formalizing the notion of "matching" and
"non-matching" frames.

(v) Checking for modifiers. Often, lexical search will not be
able to locate a syntactic frame which expresses all aspects
of the current conceptual pattern. In terms of sentence
(15), suppose a speaker of English doesn't have a single
syntactic frame expressing the conceptual pattern which
underlies old man. Lexical search will suggest man for
part of the conceptual pattern; which leaves the part
underlying old unexpressed. I assume this second part win
be lexicalized during LEX's next pass. As a reminder, LEX
will tag the formula (man {Cat: N}) with a special
synspec label: (man {Cat: N; NMOD: pi}). The attribute-
value pair "NMOD: pi" says that the conceptual pattern pi
will have to be lexicalized in the form of a noun modifier
(e.g. an adjective or a relative clause). LEX will find
this tag during the next pass and then come up with old as
the translation of pi. LEX must be supposed to know special
rules for modifier placement. (old {Cat: Adj.}) may simply
be placed before the formula containing man, but especially
in the case of verb modifiers LEX will need to consult
more complex rules.

(vi) Executing lexical procedures. A syntactic frame may
reference procedures that have to run before it is put
into a formula list. As yet, the only type of lexical
procedures we have seen are the pointer procedures (cf.
Section II. 1), but other types may very well prove
necessary).

116 G. KEMPEN

(vii) Transforming syntactic frames. It is generally recognised
that humans have a very limited working memory and a large
and easily accessible long-term memory (cf. Section 1.6).
In line with this, I assume that the lexicon, which is part
of long-term memory, contains many ready-made syntactic
constructions which in standard transformational grammar
would be produced by applying transformations, i.e. by
real-time computations in working memory. Examples are the
passive constructions and subject complement constructions
with extraposed subject. By assuming that these
constructions as well as their transformationally less
complex counterparts are both entries in the lexicon, we
have an easy way of accounting for the experimental data
mentioned in Section 1.5.

But I certainly do not hold the view that all
transformations should be dealt with this way. Consider,
for instance, interrogative sentences (yes-no questions) in
Dutch and German. They differ from declarative sentences
in that the subject follows the tensed verb; e.g. John
saw Mary ——> Saw Mary John? The problem at issue
is: does the lexicon contain a separate interrogative
entry in addition to each declarative VDC entry, or are
interrogative constructions computed from declarative
entries? Another feature of German and Dutch is word order
differences in subordinate and main clauses. E.g. "John
fainted, for he SAW MARY" turns into "John fainted, because
he MARY SAW". This example raises the same question: is
the NP1-V-NP2 order in the lexicon, or NP1-NP2-V, or both?
Whatever is the answer in these two concrete cases, I
don't think we can do without a limited number of
transformations which reorder or delete elements of
syntactic constructions retrieved from the lexicon.

Pro-forms, too, entail changes of constituent orders. For
instance, object NPs follow the verb in French, but precede
it if they are pronouns. In many languages, interrogative
pronouns occur in initial position, even if the standard
position of the questioned NP is further down the sentence
(e.g. John saw ?NP ——> What did John see?

Such transformations are applied to a syntactic frame
before it is inserted in a formula list, for at that time
the relevant synspec information is available. E.g. the
Question transformation will be applied to a syntactic
frame if synspec reads {Cat: VDC; Subcat: Main; Mode: Y/N-
Question} . The transformed syntactic frame is then put
into the formula list; whereafter synspec is lost. (The
formulator doesn't keep a generation history of the

SENTENCE CONSTRUCTION 117

formula list, for reasons of efficient management of working
memory).

At the present time I don't know which members of the set of
linguistically defined transformations should be treated in
terms of alterations to syntactic frames (like the Question
example) and which members deserve separate lexical entries
(like passive constructions). This problem may be
experimentally investigated in experiments where subjects
spontaneously construct sentences of a specific syntactic
format, e.g. while describing a perceived or memorized event
or picture.

(viii)Replacing the input formula. Finally, LEX replaces the input
formula with the selected and possibly transformed syntactic
frame.

II.2.3 Lexicalization of fragmentary conceptual patterns

The conceptualizer often delivers a conceptual pattern in bits and
pieces, and the formulator must be able to immediately operate on
such fragmentary information (cf.Section I.6). There are obviously
many ways to divide a conceptual pattern into parts, and many
different orders for feeding these parts into the formulator. I
will outline here how the present model can handle an interesting
subclass of all these cases, namely when a dependent (more
precisely: the conceptual pattern underlying a dependent) arrives
earlier than its governors, so that the natural top-down order of
lexicalization cannot be followed.

By way of example, the conceptualizer delivers the nominal concept
"Mary" to the formulator before embedding it in a conceptual
pattern as the recipient of a transfer-of-possession action. The
formulator prepares and utters "Mary..." without knowing what kind
of VDC it will have to fit in. Then, after receiving the
conceptual action, it is forced to look up a VDC which expresses
the recipient in leading position. The passive give-frame "NP1 be
given NP2 by NP3" will do, as well as the active get-frame "NP1
get NP2 from NP3", but neither the active give-frame nor "NP1 is
given NP2 by NP3".

To permit the formulator to handle such cases it has to be extended
along the following lines. The conceptualizer provides its output
messages with a delimiter symbol, informing the formulator when
messages start and finish. The input formula - which is either a
complete or a fragmentary conceptual pattern - is passed along, not
to LEX directly but to a monitor function MON. On the one hand,
MON watches the lexicalization sweeps and prepares a "syntactic
summary" for the utterance part LEX is constructing currently.

118 G. KEMPEN

On the other hand, MON registers any new parts the conceptualizer
adds to the current message. Suppose, at a given moment, LEX has
finished its last pass for a fragmentary conceptual pattern and, in
the meantime, the conceptualizer has added a new part to it. The
latter implies there is a new input formula with a new pointer and
a new synspec, MON will now

(1) append the syntactic summary for the last-produced
utterance part to the synspec of the new input formula,

(2) add a tag "DONE" to the part of the conceptual pattern which
has just been lexicalized, and

(3) register the role played by the DONE part in the new
conceptual pattern.

As a result of this, LEX will receive a new input formula whose
synspec tells it what kind of partial utterance the formulator has
committed itself to already, and which part of the conceptual
pattern need not be expressed anymore. This is enough information
for LEX to construct a good continuation, if any (I), of the
utterance.

In terms of the above example, if the synspec of the new input
formula would simply have said "produce an S for this conceptual
pattern", then MON would change it to "produce an S which expresses
the recipient as an NDC in leading position" (assuming here that
"NDC" is the syntactic summary for "Mary ...").

Finally, MON will hand over the modified input formula to LEX,
monitor and summarize the lexicalization process and, if it sees
no delimiter symbol, repeat its operation for still other
fragments coming in. This facility for handling fragmentary
conceptual patterns requires only one modification to LEX: rules
for treating DONE parts of conceptual patterns.

III The formulator viewed from a linguistic point of view.

In this Section attention is shifted from psychological and
computational to linguistic aspects of the proposed formulator.

(i) Except for cases discussed in Section II.2.3, lexicalization
proceeds top-down (dependency level by dependency level, and from
left to right within dependency levels). Is this regime
compatible with the bottom-up principle of the transformational
cycle, as discovered by transformational grammar?

SENTENCE CONSTRUCTION 119

A definite answer to this question cannot be given as long as many
details of the model remain unspecified. But the examples I have
worked out show that the proposed formulator is indeed able to
handle some sentence types which need cyclically applied
transformations in a standard transformational grammar. Consider
sentence (17) (cf. Fodor et al., 1974, p. 121-131), whose deep
structure contains a sentoid "doctor-examine-John" as part of the
verb phrase of the matrix sentoid "Bill-persuade-John".

(17) Bill persuaded John to be examined by the doctor.

Two cyclical transformations are applied to the subordinate
sentoid:

(1) passivization, resulting in "John-be-examined-by-the-doctor",
and

(2) equi-NP-deletion, deleting the first NP of the subordinate
sentoid ("John") which is referentially identical with the
object of the matrix sentoid.

The proposed formulator can use synspecs to make such
transformations superfluous. The active persuade-frame in the
constructional lexicon looks (informally) like (18):

(18) VDC: ((ppl {Cat: NDC; Case: Subj})
(persuade {Cat: V}) (pp2 {Cat:
NDC; Case: Obj}) (to {Cat:
Prep})
(pp3 {Cat: VDC; Subcat: Infinitive-construction;

Detail: ppl of this VDC must deliver the same
value as pp2}))

This frame is selected during one lexicalization sweep; during
the next, candidate frames for the subordinate VDC are matched
against the synspec following pp3. The active examine-frame
wouldn't do because the value of its pointer procedure ppl (the
concept "Doctor-such-and- such" in the field referenced by PP3) is
not the same as the value computed by pp2 of the persuade-frame
(the concept "John"). But the passive examine-frame would match.
The attribute-value pair "Subcat: infinitive-construction" has two
consequences as regards the final shape of the subordinate VDC:

(1) it influences later lexicalization sweeps in such a way that
no verb tensing will occur, and

(2) it will delete the subject NDC.

120 G. KEMPEN

The general idea seems to be:

(1) to make the synspecs for subordinate VDCs maximally specific
so that they are only matched by frames which approximate the
required syntactic shape as closely as possible:

(2) if any transformations to a selected frame are still needed,
to execute them before inserting the frame into the formula
list. The effect of doing this will be similar to the effect
of cyclically applied transformations, but the computational
processes are very different.

(ii) My chief motivation for using syntactic dependency as
generative mechanism is computational efficiency. The only
psychological evidence consists of the observations discussed in
sections I.2 and I.3. Linguistic evidence, be it of an indirect
nature, is provided by the study of linguistic intuitions. Levelt
(1974) summarizes several studies of so-called cohesion judgments.
They strongly favour dependency grammar over other grammar types
(e.g. constituent structure grammars). Schils (1975) has
confirmed this finding.

Levelt remarks that dependency trees do not represent the
difference between endocentric and exocentric constructions.
Interestingly, the difference J^s brought out by the lexicalization
procedure. Exocentric constructions (like verb with subject,
object, etc.) are the ones that are retrieved as a whole from the
constructional lexicon. Endocentric constructions result from
modifiers (see Section II.2.2 (v)): LEX notices it can only find a
syntactic frame which expresses part of the current conceptual
pattern, marks this frame with MOD, and lexicalizes the remainder
of the conceptual pattern at a later stage.

IV Two generation examples

(i) In Section II.2.1, the first lexicalization steps for sentence
(15) were discussed. Here I will follow the remaining passes. The
formula list after LEX's second pass looks like (19).

(19) (((p4 {Cat: NDC; Case: Subj})
(leave {Cat: V; Tense: Past}) (p5
{Cat: NDC; Case: Obj})) ((p4
{Cat: NDC; Case: Subj}) (die {Cat:
V; Tense: Past})))

It differs from the formula list given in Section II.2.1 in that it
contains tense properties for the verbs. These were added by LEX
because, in English, verbs dominated by S (finite verbs) have
obligatory tense markers. This is done by the procedure which

SENTENCE CONSTRUCTION 121

expands synspecs (Section II.2.2.(i)).

The third lexicalization pass works on the three noun dependency
constructions. The synspecs of (20) lists four properties:

(20) (man {Cat: N; Case: Subj; Number: Sing; Mod: p6})

Of these, the first two were simply copied from (19) , the other two
were added by the synspec expanding routine (Section II.2.2(i)) and
the modifier checking routine (Section II.2.2(v)) respectively. The
last NDC becomes (21) , with the appropriate Personal Pronoun
instead of the noun.

(21) (he {Cat: PP; Case: Subj; Number: Sing})

The fourth lexicalization pass adds one level of modifiers to the
lexeme string man-leave-church-he-die. (20) is changed to (22) by
looking up a frame for (part of) p6 and consulting rules for
placement of noun modifiers.

(22) ((old {Cat: Adj})
(man {Cat: N; Case: Subj; Number: Sing; Mod:p8}))

The fifth pass only leaves p8 to operate on. The article is
inserted before old. Others might prefer to determine the article
during the same pass as the governor noun. Speech errors like (2)
and (4) which have the articles at the correct place even though
the nouns have been interchanged, might be taken as evidence for
that alternative. Here I have strictly followed the dependency
hierarchy. The end result is formula list (23) to which FIN is
applied.

(23) ((((the {Cat: Art})
(old {Cat: Adj})
(man {Cat: N; Case; Subj; Number: Sing})))
(leave{Cat: V; Tense: Past}) ((the {Cat:
Art})
(church {Cat: N; Case: Obj; Number: Sing})))

((he {Cat: PP; Case: Subj; Number: Sing})
(die {Cat: V; Tense: Past})))

The first top-level element is processed, resulting in the
utterance the old man left the church. Finally, FIN treats
the remaining formula list (((he {...}) (die{...}))).

(ii) the second example has to do with fragmentary conceptual
patterns (Section II.2.3). I will demonstrate how sentence
(24) is produced

122 G. KEMPEN

(24) The old man left the church and then he died.

if the conceptual pattern underlying (15) comes in in two
fragments: first EVENT1, then" ... time-relation EVENT2".

The input formula for the first fragment is, I assume, (pl{Cat:S}).
The translation into English proceeds in exactly the same way as
the first VDC of (15). The syntactic summary prepared by MON reads
simply "Cat:S". Assuming that the input formula for the complete
conceptual pattern is (p2 {Cat: S}), MON changes it to (25).

(25) (p2 {Cat: S; Order: {EVENT1 {Cat: S} rest{ } })

MON has also figured out that pi plays the conceptual role of
EVENT1 in the event sequence delivered by the conceptualizer. The
notation between curly brackets specifies order and form of
expression of the various conceptual parts: first EVENT1 is an S
(which has been DONE already), then the rest in any form LEX wishes
(this synspec is empty). This order prescription excludes "After S
S" as a matching frame, but frame (26) is alright.

(26) ConjDC: ((ppl {Cat: S})
(and {Cat: Conj})
(then {Cat: Adv})
(pP2 {Cat: S}))

Procedures ppl and pp2 set pointers to EVENT1 and EVENT 2
respectively. During his first pass, LEX will simply detach the
first top-level element, that has been expressed already, and
select the die-frame for EVENT2. Subsequently, FIN will put and
and then into the output stream. Then the one remaining VDC is
lexicalized and finalized.

Notes

This paper was written when the author was a Postdoctoral
Researcher at the Department of Computer Science of Yale University
(1975-76). His stay there was made possible by a grant from the
Netherlands Organization for the Advancement of Pure Research.
(ZWO).

I'm indebted to Dick Proudfoot, Department of Computer Science, Yale
University for setting up a tentative computer implementation of
the model outlined in this paper and for commenting on earlier
drafts of the paper.

SENTENCE CONSTRUCTION 123

References

Becker, J. (1975). The phrasal lexicon. In R.C. Schank & B.
Nash-Webber (eds.) Theoretical issues in natural language
processing. Cambridge, Mass.;MIT.

Boomer, D.S. (1965). Hesitation and grammatical encoding.
Language and Speech, £, 148-158.

Ertel, S. (1976). Where do the subjects of sentences come from?
In Rosenberg (1976).

Fodor, J., Bever, T.G. & Garrett, M. (1974). The Psychology
of Language. New York: McGraw Hill.

Fromkin, V.A. (1973) (ed.). Speech Errors as Linguistic Evidence.
The Hague: Mouton.

Garrett, M. (1975). The analysis of sentence production .In G.
Bower, (ed.). The Psychology of Learning and Motivation,
Vol. 9. New York: Academic Press.

Goldman, N. (1976) Conceptual generation. In R.C. Schank
Conceptual information processing. Amsterdam: North
Holland.

James, C.T., Thompson, J.G., & Baldwin, J.M. (1973). The
reconstructive process in sentence memory. Journal of
Verbal Learning and Verbal Behaviour, 12, 51-63.

Jarvella, R. (1976). From verbs to sentences: some
experimental studies of predication. In Rosenberg (1976).

Kempen, G. (1976a). Syntactic constructions as retrieval plans.
British Journal of Psychology, 67, 149-160.

Kempen, G. (1976b). On conceptualizing and formulating in
sentence production. In Rosenberg (1976).

Levelt, W.J.M. (1974). Formal Grammars in Linguistics and
Psycholinguistics. The Hague: Mouton.

Levelt, W.J.M. & Kempen, G. (1975). Semantic and syntactic aspects
of remembering sentences. In R.A. Kennedy & A.L. Wilkes (eds.)
Studies in long-term memory. New York: Wiley.

Osgood, C.E. & Bock, J.K. (1976). Salience and sentencing: some
production principles. In Rosenberg (1976)

Rosenberg, S. (1976).(ed.) Sentence production: developments in
research and theory. Hillsdale, N.J.: Erlbaum.

Schils, E. (1975). Internal Report, Department of Psychology,
University of Nijmegen, The Netherlands.

