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Nichtlokale Anfangszustände und Korrelationen beim Anregungstransport im
FMO Komplex :

In dieser Arbeit untersuchen wir den Anregungstransfer während der Fotosynthese im
Fenna-Matthews-Olson Komplex. Wir beschreiben diesen mit Hilfe einer phänome-
nologischen Liouville-von-Neumann Gleichung in Lindbladform. Im ersten Teil der
Arbeit widmen wir uns dem Einfluss nichlokaler Anfangszustände auf die Transportef-
fizienz. Dabei ermitteln wir unter anderem jene nichtlokalen Anfangszustände, die bei
kohärenter Zeitenwicklung zu maximaler Transporteffizienz führen und stellen fest, dass
diese ihre hohe Effizienz auch unter dem Einfluss von Dephasierung über einen großen
Bereich von Dephasierungsraten erhalten. Darüber hinaus disktuieren die Möglichkeit,
dass die Anregung den Komplex über ein anderes Pigment als üblich verlässt. Im
zweiten Teil der Arbeit beschäftigen wir uns mit dem Auftreten von Korrelationen zwis-
chen den Eintritts- uns Ausgangspigmenten, initiiert durch die im ersten Teil bestimmten
Anfangszustände. Dazu nutzen wir die Klassifizierung durch Verschränkung, "Quantum
Discord" und Wechselseitiger "Mutual" Information. Wir finden heraus, dass die Dy-
namik, ausgehend von den hoch effizienten Anfangszuständen mit mehr Korrelationen
einhergeht als die der niedrig effizienten. Außerdem stellen wir einen Zusammenhang
zwischen den Quantenkorrelationen und einem einfachen Kohärenzmaß, sowie zwis-
chen den klassischen Korrelationen und der quantenmechanischen Reinheit eines Teil-
systems her. Diesen Beobachtungen geht ein Beweis der Äquivalenz der relativen Ver-
schränkungsentropie und dem Quantum Discord im Null- und Einanregungsraum vor-
raus. Abschließend gehen wir kurz auf die Möglichkeit doppelter Anregungen ein und
diskutieren dabei die Auswirkung von Kohärenzen im Anfangszustand auf die Entwick-
lung von Korrelationen.

Non-local Initial States and Correlations in the Excitation Transport of the FMO
Complex:

In this thesis, we investigate the excitation energy transfer process during photosynthesis
in the Fenna-Matthews-Olson complex described by a phenomenological Liouville-von-
Neumann equation in Lindblad form. In the first part, we focus on the effect of non-local
superpositions in the initial excitations on the transport efficiency. We identify those
non-local initial states that exhibit maximum efficiency for zero dephasing and find that
the efficiency is robust over a broad regime of dephasing rates. In addition, we discuss
the advantage of a trapping (exit) site other than the usual choice. In the second part,
we investigate the correlations between the entry sites and the exit sites in terms of
entanglement, quantum discord and mutual information for initial states found in the
first part. We see that the high efficiency states show more correlations than the low
efficiency states and recognize a connection between quantum correlations and a simple
coherence measure. Furthermore, the structure of classical correlations is found to be
related to a quantity based on the purity of a subsystem. Besides that, we give a proof
of the equivalence of the relative entropy of entanglement and quantum discord in the
zero- and single-excitation subspaces under assumptions valid in this model. Finally, we
briefly investigate the effect of initial coherence on the correlations in a straightforward
extension to higher excitations.
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1
Introduction

During the last few years, a new field of research, Quantum Biology Arndt et al. (2009);
Ball (2011), has emerged. The topics range from the avian compass, which allows birds
to sense subtle changes of the Earth’s magnetic field Gauger et al. (2011), to the highly ef-
ficient energy transfer during photosynthesis. But what is it that makes biology quantum?
For the avian compass, quantum information theory applied to the widely accepted rad-
ical pair model predicts entanglement between two spatially separated electron spins of
molecules located at the back of the bird’s eye persisting for up to hundreds of microsec-
onds. In the case of photosynthesis, there had been experiments that caused a change
of paradigm. Traditionally the excitation transfer in photosynthetic units was described
by an incoherent rate equation, where the rates were calculated by Fermi’s golden rule
Förster (1948). But sophisticated nonlinear spectroscopy techniques have found evidence
of wave-like behavior or, more precisely, quantum coherence between excitonic states at
cryogenic Brixner et al. (2005); Engel et al. (2007) and even at physiological tempera-
ture Collini et al. (2010); Panitchayangkoon et al. (2010). If the socalled quantum beats
(cf. Sec. 2.2) observed in the spectra are really caused by quantum coherence, then the
incoherent theory is not sufficient to describe the transport process and a true quantum
mechanical theory has to be applied. This opens new paths to understand the extraordi-
nary near unit efficiency of excitation transfer from the antenna complex, where the solar
photons are being harvested, to the reaction center, where the charge separation and the
conversion to chemical energy takes place. Although our interest is focused only on this
transport phenomenon, we formulate the key questions driving the whole field:

How can quantum phenomena, like entanglement and quantum coherence, occur in such

warm and wet environments, and do they play a vital role in the biological function and
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are thus a product of natural evolution?

Answering these questions could pave the way for new kinds of quantum technology like
ultra-efficient solar cells or eventually a quantum computer.

Entanglement, which Schrödinger (1935) called the characteristic trait of quantum me-

chanics, is a manifestation of quantum correlations and wires together subsystems in such
a manner that we have to describe them as a whole, even if they are spatially separated.
This phenomenon can be used as a valuable resource to accomplish certain tasks in a way
that is impossible in classical physics. Among them, we can mention quantum cryptog-
raphy Ekert (1991), quantum search Grover (2001) and quantum teleportation Bennett
et al. (1993). In the past years, also quantum correlations beyond entanglement have been
identified. The most popular, quantum discord Ollivier and Zurek (2001), already proved
to be sufficient for quantum computation Datta and Shaji (2008); Merali (2011), and al-
most every quantum system possesses it Ferraro et al. (2010). Moreover, for a long time
it was thought that entanglement can only occur if the interaction between the subsystems
is stronger than the thermal energy due to the coupling to the environment. A situation
that is typically only given for ultra-low temperatures. This, however, turned out to be
wrong. Galve et al. (2010) showed that entanglement can also persist at high tempera-
tures, if the environment is driven out of thermal equilibrium (see also Vedral (2010)). A
similar effect was recognized by Briegel and Popescu (2008). In this paper, they argued
that in open driven systems far from equilibrium, error correction can occur which can
maintain entanglement. Furthermore, Nalbach et al. (2010) pointed out that spatially cor-
related fluctuations of the environment can preserve coherence in a dimer. Therefore, it is
probable that the environment of the light-harvesting pigment’s electronic system, which
typically consists of the nuclear movement due to interaction with the protein scaffold
and solvent, plays a crucial role. Unfortunately, experiments that reveal detailed informa-
tion of the environment are missing, and the vast number of degrees of freedom makes it
extremely hard to perform accurate quantum mechanical calculations from microscopic
grounds. For this reason, the traditional approach to tackle open quantum systems is to
derive a quantum master equation by tracing out the environmental degrees of freedom,
assuming weak system-environment coupling and a large environment without memory.
This leads to the Redfield (1957) theory, but the approximations are in general not jus-
tified Ishizaki and Fleming (2009a). Today’s reference theory was derived by Ishizaki
and Fleming (2009b). It uses the Gaussian property of phonon operators in order to build
up a hierarchy of coupled equations of motion (HEOM). This theory is able to inter-
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1 Introduction

polate between Förster’s and Redfield’s theory, but is only practical for special spectral
densities and is computationally expensive. Kreisbeck et al. (2011) proposed that the ap-
proach is suitable for the usage of graphics processing units which can lead to a tremen-
dous decrease of computation time. Nalbach et al. (2011) used a path integral method
(QUAPI) whose results coincide with the former approach, but is likewise costly. A very
recent method by Ritschel et al. (2011), based on the non-Markovian quantum state dif-
fusion approach, showed also good agreement with the HEOM, and can be solved within
minutes on a standard PC. In addition, it was pointed out that in principle, complicated
structured spectral densities can be implemented, but the investigations have just started.
Besides that, also a more pragmatic, phenomenological ansatz turned out to be fruitful.
There, the coupling to the environment is simulated by adding Lindblad superoperators
to the Liouville-von-Neumann equation. These guarantee a positive and trace preserving,
though non-unitary, evolution of the system’s density matrix. Using such a model, the
phenomenon of noise-assisted transport was recognized by Plenio and Huelga (2008) and
Mohseni et al. (2008a). The basic idea thereby is the interplay of coherent dynamics and
noise to circumvent their respective disadvantages for excitation transfer. Moreover, the
occurrence of non-classical behavior, in form of entanglement Caruso et al. (2010); Fas-
sioli and Olaya-Castro (2010), violation of Leggett-Garg inequalities Wilde et al. (2010),
and quantum discord Brádler et al. (2010), was investigated.

If we take up the main questions from above again, we realize that we have reviewed
some suggestions to answer the first one, concerning the existence of quantum behavior.
But there is no definite answer of which is the ingredient that leads to preservation of
quantum behavior. Maybe there is no single answer and the interplay of different effects
is responsible. For the second part of the question, concerning the role of the effects, the
situation is even more involved. Plenio and Huelga (2008) pointed out that efficient trans-
port is incompatible with fully coherent evolution, and Fassioli and Olaya-Castro (2010)
even showed an inverse relationship between entanglement and efficiency. In contrast,
Scholak et al. (2011) concluded that efficient transfer is connected with the build-up of
strong intersite entanglement. Furthermore, all of these studies were performed under the
assumption that there is at most one excitation present. In this scenario, quantum coher-
ence, entanglement and also correlations beyond, as measured by quantum discord, are
closely related to each other as we will see later. Therefore, it is impossible to ascribe
distinct functional roles to them.

In this thesis, we will follow the latter, phenomenological ansatz to describe the excitation
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transport in a molecular aggregate, the Fenna-Matthews-Olson (FMO) complex, which is
part of the light-harvesting unit in certain bacteria. We take the view that there are general
features which can already be identified in the less realistic models, and trade the realism
with the possibility to investigate a broad parameter regime. The results can then be
approved within more sophisticated frameworks as discussed above.

The main questions that drive us throughout this thesis can be summarized as follows:

Can quantum superpositions of localized initial excitations affect the transport efficiency,

and is this connected to the appearance of quantum correlations between the entry and

exit sites?

On this journey, of course, other questions arise, which lead to surprising insights. These,
as well as the content of this thesis in general, will be briefly previewed in the remainder
of this introduction.

In Chapter 2, we introduce the FMO complex. We present its structure (Sec. 2.1), discuss
its role in the photosynthesis and review recent experiments which suggested the quan-
tum behavior (Sec. 2.2). After that, we construct the theoretical model in Chapter 3 on a
phenomenological basis, rather than from a microscopic derivation. In the end, we arrive
at a Markovian quantum master equation in Lindblad form and discuss its validity. With
the model at hand, we proceed to a discussion of the efficiency of the excitation transfer
in Chapter 4. There, the focus is on the interplay of specific initial superpositions and the
trapping process which passes the excitation to the next unit, the reaction center. We find
out that there exist superpositions of the entry sites allowing highly efficient excitation
transfer over a large regime of dephasing rates and is therefore robust against noise. We
recognize that in the network model of the FMO complex, another trapping site could
be more beneficial and motivate this observation by looking at a connectivity measure.
Chapter 5 is dedicated to the study of entanglement and correlations in general. A rather
new measure of quant um correlations, quantum discord, which in general reaches be-
yond entanglement is introduced (Sec. 5.1.2). We prove that under assumptions valid in
our model the quantum discord is equivalent to the relative entropy of entanglement (Sec.
5.2). After these formal considerations we follow the dynamics of quantum and classical
correlations between the subsystems, consisting of the entry and the trapping sites of the
network, for initial conditions we have identified to lead to optimal respective pessimal
efficiency (Sec. 5.3). We see that the correlations, especially the quantum correlations,
are greater if the transfer is more efficient. Strikingly, we are able to relate the quantum
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1 Introduction

correlations to a measure of coherence between the two subsystems, as well as the clas-
sical correlations to the purity of a subsystem’s density matrix. In the end (Sec. 5.4), we
briefly discuss the effect of the most simple incorporation of double-excitations on the
dynamics of quantum discord and entanglement, quantified by the logarithmic negativity.
In Chapter 6, we conclude with a summary and an outlook.
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2
The Fenna-Matthews-Olson Complex

The Fenna-Matthews-Olson (FMO) complex is part of the photosynthetic unit of the green
sulfur bacteria. Its functional role is the transport of excitation energy from the antenna
complex, where photons are absorbed, to the reaction center (RC), where charge separa-
tion takes place and the excitation energy is converted into chemical energy. Despite the
fact that it was the first antenna complex∗ whose X-ray structure was resolved in 1975
Fenna and Matthews (1975), it is still subject of active research. In this short introductory
chapter, we first describe the structure of of the complex. This will be useful for under-
standing the theoretical model we introduce in the next chapter. After that, we present the
technique of two-dimensional electronic spectroscopy and what we have already learned
from these experiments which essentially fueled the present discussions of quantum be-
havior in light-harvesting complexes.

2.1 Structure

The FMO complex is a trimer with three identical subunits. Each monomer was, until
recently, thought to consist of seven bacteriochlorophyll pigment molecules. Now it is
suggested that there are eight Schmidt am Busch et al. (2011). But in our calculations
we hold on to the seven site model. The actual type of pigment molecule depends on the
species of green sulfur bacteria. The pigment molecules, later also called sites, are respon-
sible for the excitation transport. They are embedded in a protein scaffold that causes an
effective local environment for each individual pigment. The pigment-pigment interaction

∗The FMO complex can be seen as part of the antenna, since it can also absorb photons.
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2 The Fenna-Matthews-Olson Complex

can be approximated as of dipole-dipole type, since the intramonomer distances between
pigments range from 4 Å to 11 Å. The closest intermonomer pigment-pigment distance is
24 Å, and the coupling is typically neglected Cheng and Fleming (2009). These numbers
are from the time when the 8th pigment had not been discovered yet. It seems that this
pigment is hard to assign to a monomer, since it is located between pigment 1 and 6 of
two distinct monomers (see e.g. Fig. 1 in Hoyer et al. (2011)).

Figure 2.1: (Left) Top-view of the Fenna-Matthews-Olson (FMO) protein trimer from green sulfur
bacterium Prosthecochloris aestuarii. The protein is depicted in yellow, and the bacteriochloro-
phyll (BChl) molecules are in green. (Right) The FMO complex is located between the photosyn-
thetic antenna complex (chlorosome) and the reaction center. The Figure is taken from Cheng and
Fleming (2009).

While the structure is now known to a precision of the order of 1 AA, the orientation
of the whole complex can not be resolved completely by optical experiments. Since
calculations of environmental dielectric effects by Louwe et al. (1997) and Adolphs and
Renger (2006); Adolphs et al. (2008) indicate that the site energies of site 3 and 4 are
downtuned, whereas the site energies of pigments 1,6 (and 8) are shifted to higher values,
it is assumed that the former are located near the RC, while the latter are close to the
antenna (see Fig. 2.2). Recent mass spectroscopy experiments support this assumption
Wen et al. (2009).

2.2 Transport Pathways and Quantum Effects

With the advent of two-dimensional electronic spectroscopy, a nonlinear technique based
on the photon echo spectroscopy, it became possible to examine the ultrafast excitation
transport on the femtosecond timescale. The experimental procedure can be summarized
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2.2 Transport Pathways and Quantum Effects
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Figure 2.2: Distribution of the pigments within a single monomer. Pigments 1 and 6 (and 8) are
assumed to be close to the antenna complex, whereas pigments 3 and 4 are located near the RC.
The Figure has been created with PyMOL.

as follows. The sample is hit by three successive ultrashort laser pulses with variable time
delays. Then the amplitude and phase of the fluorescence signal is measured in the phase
matching direction ks = −k1+k2+k3 as a function of the three delay times†. After a two-
dimensional Fourier transformation with respect to the delay times between the first and
the second pulse, and the third and the signal, we have a set of two-dimensional spectra‡.
Off-diagonal peaks in these spectra represent couplings between the excitons (∆t = 0)
and energy transfer (∆t > 0).

Engel et al. (2007) showed that these off-diagonal peaks show a beating, when observed
as a function of ∆t. These quantum beats, which are an evidence of quantum coherence
in the excitonic basis, were observed at 77 K for more than 600 fs. Later, these exper-
iments were repeated at ambient temperature Panitchayangkoon et al. (2010) and other
light-harvesting complexes Collini et al. (2010). Here, the beatings were observed at least
up to 300 fs, and therefore could be important for the excitation transfer which takes place
on this time scale. On the other hand, these two-dimensional spectra do not represent the
actual density matrix as one is sometimes misled to think Abramavicius and Mukamel
(2010). Thus, it is still required to rule out other processes which can lead to the same ob-
served beatings. A more direct attempt to test for quantum behavior would be to look for
violations of Bell-like Bell (1964) or Legget-Garg inequalities Leggett and Garg (1985);
Wilde et al. (2010).

†Two between the three pulses plus the one between the last pulse and the fluorescence signal.
‡One for each delay time ∆t between the second and the third pulse.

15



3
The Model

In this chapter, we give a concise introduction of the regimes of excitation transfer. Then,
we build a phenomenological model and discuss the underlying assumptions. Further-
more, we briefly discuss a microscopic model that leads to the same equation of motion
and provides a connection to the environmental temperature. This provides us with an
idea of the parameter regime in which our model is applicable.

3.1 Regimes of Excitation Transport

We can distinguish three regimes of excitation transport (cf. e.g. May and Kühn (2011)).
This classification is mainly given by the ratio of two different timescales, τtrans and τrel.
τtrans is the typical timescale of the excitation transport without any disturbance, and is
on the order of the inverse of a characteristic electronic coupling between the molecules.
τrel is the time a molecule needs to relax to the vibrational ground state after an electronic
excitation, and can be approximated by the timescale on which environmental correlations
vanish.

If τrel � τtrans, we can not write down a wave function that spreads over several molecules,
and the excitation transport is comparable to a diffusion process or random walk. The
theoretical description, in terms of incoherent rate equations, was formulated by Förster
(1948).

On the other hand, if τrel � τtrans, the electronic excitation has to be described by a
delocalized exciton. Especially in the case of weak exciton-phonon coupling a description
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3.1 Regimes of Excitation Transport

of the exciton dynamics by a Quantum Master Equation (QME) is appropriate. In Fig.
3.1, you can see an illustration of the transport process in the two marginal regimes.

1
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(a) Delocalized excitation moves through the
complex as a wave.
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4

5

6

7

8

(b) Incoherent diffusion of the localized excita-
tion.

Figure 3.1: Illustration of the coherent and incoherent excitation transport through the FMO com-
plex.

Of course, the third regime is where the two time scales are comparable, and it seems
that for excitation transport in photosynthetic units this is exactly the case. Here, the
electronic system and the motion of the molecules should be treated on the same footing.
There has been a lot of effort to find frameworks which allow to simulate the dynamics in
this regime efficiently Rebentrost et al. (2009); Ishizaki and Fleming (2009b); Huo and
Coker (2010); Kreisbeck et al. (2011); Nalbach et al. (2011); Ritschel et al. (2011). Ex-
cept for the last approach, all of them are computationally very expensive, and (yet) not
suitable to investigate a broad parameter regime (see also the discussion in the Introduc-
tion). Here, we choose a framework that was originally developed to interpolate between
both marginal regimes Haken and Strobl (1973). Instead of perturbative arguments, the
theory is built-up on the assumption that the environmental interaction can be modeled
by classical stochastic fluctuations. Therefore the question will be if this assumption is
appropriate.
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3 The Model

3.2 The Liouville-von-Neumann equation

This section is based on the derivation presented by Mohseni et al. (2008a). We start
with a single electronic excitation. The Hamiltonian describing the system of n coupled
two-level systems which represent electronic ground and first excited state, is known as
tight-binding Hamiltonian May and Kühn (2011)

HS =
n∑
i=1

~ωj |i〉 〈i|+
∑
i≤j

~vij(|i〉 〈j|+ |j〉 〈i|). (3.1)

The states |i〉 represent an excitation at site i. The site energies are denoted by ~ωi. In
a molecular aggregate they usually differ from site to site. This is even true in the case
of the FMO complex where the sites are identical molecules. The reason is the local
environment which shifts the site energies due to electrostatic interaction. The vij are the
couplings between sites i and j. Typically, these are given by the dipole-dipole interaction.
In what follows, we will use the Hamiltonian published by Adolphs and Renger (2006)
and discussed in Appendix A.1.

3.2.1 Haken-Strobl-Reineker Model and Pure Dephasing

We describe the coupling to the phonon bath solely as a stochastic modulation of the
site energies. Fluctuations of the intermolecular couplings are typically smaller and are
therefore neglected Cho et al. (2005); Adolphs and Renger (2006). The interaction Hamil-
tonian can then be written as

Hint(t) =
∑
i

qi(t) |i〉 〈i| , (3.2)

where the qi(t) describe stochastic bath fluctuations. These random variables are taken to
be unbiased Gaussian fluctuations, with 〈qi(t)〉 = 0 and

〈qi(t)qj(0)〉 = δijδ(t)γ̃. (3.3)

Note that for Gaussian fluctuations, n-point correlations up to arbitrary large n can be
decomposed into two-point correlations. This is the classical analog to Wick’s Theorem,
known from Quantum Field Theory. Therefore, the stochastic process is completely de-
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3.2 The Liouville-von-Neumann equation

termined by Eq. (3.3). Nevertheless, the assumptions inherent in Eq. (3.3) are very strong
and restrictive. The Kronecker delta δij , where δij = 1 for i = j and zero else, denotes
that the correlations are spatially uncorrelated, i.e. we have independent baths at each site.
This assumption is justified by recent calculations Olbrich et al. (2010). The following
delta distribution δ(t), which can here be seen as a continuous version of the Kronecker
delta δt0, represents the so-called Markov approximation. Here, we assume that the mem-
ory time of the bath is short compared to the timescale on which the reduced system
changes. Recent calculations for the autocorrelation function of the site energies show a
decay that can be described by two exponentials (besides oscillations). The decay times
of those can be interpreted as the memory time of the environment. There is a fast initial
decay time of about 4-5 fs for all sites, while the slower decay time is 140 fs for sites 1-6
and 8, and 230 fs for site 7 Olbrich et al. (2011). We can estimate the timescale of the
system by looking at the inverse of the largest coupling in the Hamiltonian (A.1), which is
about 50 fs. This indicates that non-Markovian effects could be important. We postpone
the discussion of the applicability of the model to the last paragraph in Sec. 3.2.1. The
last assumption, equal coupling strengths at each site, can be relaxed without further im-
plications in the final equation of motion which has the form of a Liouville-von-Neumann
equation with a Lindblad term

∂ρ(t)

∂t
= − i

~
[HS, ρ(t)] + L(ρ(t)). (3.4)

The first term of the right-hand side of Eq. (3.4) describes the familiar coherent evolution
of the system. Note that HS is now averaged with respect to the fluctuations and should
be denoted by 〈HS〉. But since we assumed Gaussian fluctuations with zero mean, we
have 〈HS〉 = HS . The second term which describes the irreversible effects due to the in-
teraction with the phonon bath is called Lindblad super operator. The term super operator
stems from the fact that it is acting on the density operator, and not on the states. The
Lindblad super operator of the Haken-Strobl-Reineker Model Haken and Strobl (1973),
with only diagonal fluctuations, has the effect of pure dephasing and is given by

Ldeph(ρ) = γ̃
∑
i

[AiρA
†
i −

1

2
{AiA†i , ρ}], (3.5)
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with the generators Ai = |i〉 〈i|. Introducing ladder operators for the two-level system
σ+
i = |i〉 〈0| and σ−i = |0〉 〈i|, we can recast Eq. (3.5) in the form Chin et al. (2010)

Ldeph(ρ) = γ
∑
i

[−{σ+
i σ
−
j , ρ}+ 2σ+

i σ
−
i ρσ

+
i σ
−
i ], (3.6)

with γ = γ̃
2
.

We pause for a moment to make two
Remarks:

1. As the name pure dephasing indicates, so far only the coherences of the density op-
erator in site basis are directly affected by the presence of environmental phonons.
To be precise, it leads to an exponential decay of the coherences.

2. If we look at the time evolution of the populations ρii(t) = 〈i| ρ(t) |i〉, we see
that after strong coherent oscillations driven by the Hamiltonian the final state is a
uniform distribution over all sites (see Fig. 3.2). This is, of course, not ideal for
transport to a specific site. The reason for that is the lack of a temperature in our
formalism. Thus, the system does not relax to a thermal ground state. However,
we will circumvent this problem in the next section (Sec. 3.2.2) by introducing a
process that traps excitation locally.
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Figure 3.2: Evolution of the populations ρii under the influence of pure dephasing (γ = 1 ps−1).

Connection to Environmental Temperature

Even though we started with a temperature-independent ansatz of the fluctuations to ar-
rive at a pure dephasing Lindblad term, it is possible to evoke a connection between the

20



3.2 The Liouville-von-Neumann equation

dephasing rate and the temperature of the environment Mohseni et al. (2008b), and there-
fore with the experiments. We consider a standard spin-boson model (see e.g. Breuer and
Petruccione (2007)) with an Ohmic spectral density with cut-off ωc,

J(ω) =
ER
~ωc

ωe−
ω
ωc . (3.7)

We start with the QME for the full density matrix, assume that the initial state of the
system and environment are uncorrelated and the environment is in thermal equilibrium.
Then, we trace over the environmental degrees of freedom and end up with an equation of
motion for the reduced density matrix of the system alone. The iterative solution of this
equation leads to a perturbation expansion in the system-environment coupling strength,
which is truncated at second order in the coupling (Born approximation). Thereafter, we
can compare the equation with Eq. (3.4) and see that the dephasing rates in the Markovian
regime are given by

γ = π
kT

~
∂J(ω)

∂ω
|ω=0 = π

kT

~
ER
~ωc

. (3.8)

For the FMO complex, we fix the reorganization energy and the cut-off frequency toER =
35 cm−1 Cho et al. (2005); Sarovar et al. (2010) and ωc = 150 cm−1 Adolphs and Renger
(2006). Note that of the ~ next to ωc in Eq. (3.8) has already taken care, since ωc is already
given in the same units as ER. The reorganization energy,

ER =

∫ ∞
0

dω
J(ω)

ω
, (3.9)

is often used as a measure for the coupling strength of the system to the environment
Cheng and Fleming (2009). Following this mode of thought, we see that with a reorga-
nization energy of 35 cm−1 and intersite couplings between 1 and 100 cm−1, the use of
second-order perturbation theory, as used in the derivation above, seems not to be jus-
tified. But, since the reorganization energy is a global measure, its importance can be
questioned. Indeed, Ritschel et al. (2011) showed that in many cases the reorganization
energy is not a reasonable measure for the coupling strength. Thus, we can hope to justify
the model, although we noticed that the reorganization energy and the intersite couplings
are comparable. For this reason, we calculate the dephasing rates for T = 77 K and T =
277 K with Eq. (3.8), which represent the values of the experiments by Engel et al. (2007)
and Panitchayangkoon et al. (2010),

γ77 K ≈ 7.4 ps−1 γ277 K ≈ 26.6 ps−1. (3.10)

21
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It turns out that the results are remarkably close to the values found by fitting an exponen-
tial function to the decay of the quantum beats in the experiment by Panitchayangkoon
et al. (2010). Tthey also found a linear connection between the dephasing rate and the
temperature, with a proportionality factor of approximately 0.1∗. This relation was seen
to hold for temperatures at least up to 150 K. The next measuring point, 277 K, deviates
much, but also the error is large. Therefore, we can be confident that our model is appli-
cable for dephasing rates up to 10 ps−1. Another note on the parameter regime is given in
Appendix A.2.

3.2.2 Trapping and Exciton Recombination

We have seen that, so far, our model is not appropriate to describe an excitation transport
process, since it leads to an equilibration of the populations. The critical process we have
to include is a trapping process, i.e. an irreversible process that transfers the excitation
from our system to a trap which represents the reaction center in a photosynthetic unit.

Since the net effect will be a decrease of our system’s population, a straightforward incor-
poration is an anti-hermitian Hamiltonian of the form

Htrap = −i~
∑
i

κi |i〉 〈i| , (3.11)

with local trapping rates κi. We note that an anti-hermitian Hamiltonian enters the Liouville-
von-Neumann equation by an anti-commutator instead of a commutator. Further, under
the impact of an anti-hermitian Hamiltonian, the trace of the density matrix is not con-
served. This is obvious, because the purpose of the introduction was to model a decrease
of the population. We can avoid this drawback by introducing an additional site which is
only coupled to the system through the trapping process. Then the effect of Eq. (3.11)
can also be recast into Lindblad form,

Ltrap(ρ) =
∑
i

κi[2σ
+
RCσ

−
i ρσ

+
i σ
−
RC − {σ

+
i σ
−
RCσ

+
RCσ

−
i , ρ}]. (3.12)

Here, σ+
RC and σ−RC are the ladder operators corresponding to the additional site, repre-

senting the reaction center. This leads to a breakdown of the equipartitioning, we observed
in the case of pure dephasing (Fig. 3.2), and is illustrated in Fig. 3.3.

∗This means for T = 77 K they get a dephasing rate of γ ≈ 7.7 ps−1.
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Figure 3.3: Evolution of the populations under the influence of pure dephasing (γ = 1 ps−1) and
local trapping at site 3 (κ3 = 1 ps−1). The increasing green line is the reaction center population.

We conclude our model with a term that takes care of the possibility that the excitation
energy dissipates into the environment due to exciton recombination. The assumption of
a large environment allows us to neglect the effect on the environment and we end up with
the two equivalent formulations of either the anti-hermitian Hamiltonian

Hdiss = −i~
∑
i

Γi |i〉 〈i| (3.13)

or the Lindblad super operator

Ldiss(ρ) =
∑
i

Γi[−{σ+
i σ
−
j , ρ}+ 2σ−i ρσ

+
i ]. (3.14)

The Γi are the local recombination rates, which are on the order of 1 ns for molecular
aggregates Owens et al. (1987), and therefore do not play a role in the ultrafast excitation
transfer, which happens on the (sub-) picosecond timescale.

We close this chapter by writing down the final form of the Quantum Master Equation in
Lindblad form,

∂ρ

∂t
= − i

~
[HS, ρ] + Ldeph(ρ) + Ltrap(ρ) + Ldiss(ρ). (3.15)

In the site representation, this is a system of coupled linear ordinary differential equations
for the matrix elements ρij , which can be solved numerically.
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3.3 Conclusion

We introduced a phenomenological model of coupled two-level systems that represent
the electronic ground and first excited state. The effect of the environment (nuclear
movement, protein scaffold) is modeled by frequency-independent (white noise) Gaus-
sian fluctuations of the site energies. The fluctuations are temporarily (Markovian) and
spatially uncorrelated. While the spatial correlations could be implemented, but seem to
be not important, the main drawback is the fact that the framework is not suitable to de-
scribe non-Markovian effects. Under these assumptions an exact Liouville-von-Neumann
equation was obtained (Haken-Strobl-Reineker), where the bath leads to pure dephasing
with one free parameter (in principle one for each site), the dephasing rate γ. We dis-
cussed the applicability of the model by reviewing an alternative microscopic derivation
and compared the dephasing rates with those obtained from experiments. This compar-
ison suggests that we should be careful with the interpretation of the results obtained
with dephasing rates beyond 10 ps. Moreover, we completed the model by introducing
additional terms on the level of the Liouville-von-Neumann equation that allow for local
excitation trapping in order to include the irreversible transfer to a reaction center, and
local dissipation of excitation energy.
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Efficiency

The quantity that is most important for those green sulfur bacteria that live at a depth of
2,500 meters beneath the surface of the Pacific Ocean Beatty et al. (2005) is the efficiency
of the excitation transport process. In this inhospitable environment, where no sunlight
reaches, they have to live of the low probability to absorb a thermal photon.

In this Chapter, we first give a definition of the transport efficiency. With this quantity
at hand, we proceed to discuss the interplay of the timescales of dephasing and trapping
in the FMO model from the viewpoint of a disordered fully connected open quantum
network and compare the results with a model where the site energies are set to zero. This
represents a network without disorder in the site energies. Thereafter, we investigate the
influence of different initial conditions that are motivated by the structure and orientation
of the complex. We relax the typical assumption that the transfer to the reaction center
takes place at site 3 and study also the effects of the trapping process at site 4, which is
also located close to the reaction center.

4.1 Definition

The probability that an excitation is transferred from site i to the reaction center within
the time interval [t, t+ dt] is given by

dp = 2κi 〈i| ρ |i〉 dt, (4.1)
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where the trapping rates κi were introduced in Eqs. (3.11) and (3.12). This leads to a
definition of the efficiency as the integrated probability of trapping up to a certain time τ
which is characterized by the timescale of the transport process,

η = 2
∑
i

κi

∫ τ

0

dt 〈i| ρ(t) |i〉 . (4.2)

This is nothing else than the population of the reaction center at time τ . If we consider
purely coherent transfer∗ for the moment, we can estimate the timescale on which the
transport process should be finished by looking at the inverse of the smallest off-diagonal
elements in the Hamiltonian. These are on the order of 1 cm−1 corresponding to transfer
time of approximately 5 ps. Therefore, we fix τ = 5 ps in the following.

4.2 Role of Trapping and Initial Superposition

The discussion about the excitation transfer in the FMO complex converged to the role of
the environment. It has been pointed out that pure coherent transfer can not explain the
high transfer efficiency Hoyer et al. (2010); Mohseni et al. (2008b); Chin et al. (2010).
However, we will see that this is not always true. Dephasing-assisted transport, as Chin
et al. (2010) termed it, has been identifyed as a general feature of ordered and disordered
networks, and it is robust against non-Markovianity. Other studies which focused on the
effects of non-Markovianity or of spatial correlations of the environmental fluctuations
are strongly model-dependent, and the conclusions are not clear and often conflicting.
For progress in this direction, experiments that are capable of distinguishing between
bath models are needed.

Besides that, the interplay of dephasing and trapping was investigated numerically in
Gaab and Bardeen (2004) for finite linear systems and rings, and more recently in Cao
(2009) also analytically for systems consisting of two to four sites. We briefly review the
main results of this paper:

1. In a linear arrangement of three sites without detuning (equal site energies) the
minimal transfer time is obtained for vanishing dephasing.

2. In the presence of detuning, the line-broadening effect of dephasing leads to a min-
imization of the transfer time.

∗Besides the trapping process.
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3. In topologies with closed loops, phases in the couplings lead to a modulation of the
transfer time because of pathway interference.

The last point can already be seen as a motivation to study the influence of a phase in initial
superpositions. Besides that, the geometrical aspect that sites 1 and 6 are both oriented
towards the antenna as well as the proximity and strong coupling of sites 1 and 2 fuel the
following investigations. In general, we note that until now, there was no emphasis on
the connection between dephasing, the location of trapping and the impact of non-local
superpositions in the initial states. In the following, we will close this gap. First, we will
show that under preservation of the usual assumption of trapping at site 3, it is possible
to achieve high efficiency by choosing a proper superposition of an initial excitation at
sites 1 and 2. We will explain this observation with a consideration of Chin et al. (2010)
and Plenio and Huelga (2008). After that, we will switch on trapping at site 4. We will
see that there is a regime of trapping rates that allow efficient transfer with and without
dephasing which is even quite unaffected by the choice of the initial condition. Finally,
we will investigate the scenario where trapping at site 3 is switched off. Here, we find
that an initial excitation almost localized at site 6 leads to efficient transfer for dephasing
rates up to 100 ps−1, and that trapping at site 4 is in general beneficial.

4.2.1 Trapping at Site Three

In the case of the FMO complex, the usual assumption is trapping at site 3 with vari-
ous rates ranging from 0.25 ps−1 Adolphs and Renger (2006) over 1 ps−1 Mohseni et al.

(2008b) up to 6 ps−1 Chin et al. (2010). Besides that, only Kreisbeck et al. (2011) con-
sidered trapping at site 3 and 4 with rates of 2.5 ps−1, but didn’t discuss it.

Figs. 4.1(a) and 4.1(b) show the efficiency as a function of dephasing and the trapping
rate at site 3. In Fig. 4.1(b), the site energies are set to zero, which represents a setting
without detuning. Both figures show the same characteristic behavior. As a function of
the trapping rate, the efficiency starts to rise, when the trapping rate is around 1 ps−1.
Surprising at first sight, if the trapping rate reaches the threshold on the order of 100 ps−1,
the efficiency suddenly drops again. This is due to the decoupling of the trapping site
from the rest of the system, as explained by Barvik and Herman (1992). The strong local
dephasing at the trapping site decreases the probability to find an excitation at there, and
hence the trapping process becomes inefficient. The drop with high dephasing stems from
the Quantum Zeno effect (cf. Appendix A.3). We have already seen that the regime of
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dephasing rates beyond 10 ps−1 should be treated with caution (Sec. 3.2.1). For strong en-
vironmental interactions the dynamics should be describable by incoherent rate equations
where the rates are calculated by Fermi’s golden rule, as done in Förster’s theory. This
theory which can be derived by classical arguments will not lead to the quantum zeno
limit. Therefore, we conclude that strong environmental interaction in the FMO complex
cannot be modeled solely by stochastic fluctuations of the site energies.

(a) Full FMO Hamiltonian. (b) Here, site energies are set to zero.

Figure 4.1: Efficiency as a function of dephasing and the rate of trapping at site 3. The initial state
is an excitation at site 1. The white dot in the left figure indicates efficiency above 90 %.

We proceed with discussing the regions of high efficiency. We see that for the trapping
rates typically used, high efficiency can only be achieved for dephasing rates on the order
of 10 ps−1. Without detuning, even rates on the order of 1 ps−1 are sufficient. But remark-
ably, also in this case optimal efficiency is obtained for non-zero dephasing. This is in
contrast to the observations made in a linear chain without detuning we mentioned in the
enumeration above (4.2). In the full system with disordered site energies, dephasing can
enhance transport due to line broadening. In Sec. 3.2.1, we saw that the effect of pure
dephasing on the density matrix level came from stochastic fluctuations of the site ener-
gies on the level of the Hamiltonian. Therefore, strong dephasing is equivalent to large
fluctuations of the site energies, which is able to shift the energy levels in resonance. If
there is no detuning, the site energies are already in resonance and line broadening can
therefore not be the explanation. But we can think of destructive interference of transport
pathways that hinders transport in the coherent case. The fact that interference may play
an important role in the transfer process motivates the study of the role of the initial con-
dition, especially the phase dependence of initial non-local superpositions, since this is a
pure quantum effect.
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(a) Complete FMO Hamiltonian.
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(b) Site energies are set to zero.

Figure 4.2: Efficiency as a function of dephasing and trapping at site 3 with a rate of 5 ps−1. The
blue lines correspond to an initial excitation at site 1, while the green, dashed lines denote an initial
excitation at site 6.

Influence of Initial Condition

Because of the alignment of the FMO complex respective to the light harvesting antenna,
the typical assumption is an initial excitation at site 1 or at site 6 (cf. Sec. 2.1 and
especially Fig. 2.2). In the following, we fix the trapping rate at site 3 to be 5 ps−1. This
is comparable to the trapping rates other authors use and also allows for high efficiencies.
Before we concentrate on superpositions, we start with the common initial conditions for
comparison.

The Figs. 4.2 can be seen as a cut through Figs. like 4.1 for a fixed trapping rate. In Fig.
4.2(a), we note that for low dephasing rates, the efficiency for an initial excitation at site 1
is more than double the efficiency for an initial excitation at site 6. This is because there
is a direct transfer path from site 1 over the strong coupled site 2 to site 3. In contrast,
the transfer from site 6 offers more opportunities for destructive interference (c.f. Fig
4.3) and even more importantly, the detuning between the sites involved in this transport
pathway is much more pronounced. For a dephasing rate around 10 ps−1, the difference
between the two initial conditions vanishes, but still almost 20% of the excitation is stuck
in a slow transfer channel. If we switch off the detuning (cf. Fig. 4.2(b)), the efficiency
for an initial excitation at site 6 increases dramatically in the low dephasing regime. This
underpins the statement that the detuning impedes the excitation transfer from site 6 and
that the line broadening effect of dephasing is crucial. Especially since site 6 and site 5,
which are part of the fast transport channel have the highest site energies. In contrast, the
transport from site 1 is hardly affected, at least in the limit of low dephasing. Moreover,
the maximum efficiency reaches almost unity and for both initial states the maximum
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efficiency is obtained for non-zero dephasing.

Figure 4.3: The FMO Hamiltonian with main transfer paths given by the magnitude of the cou-
plings.

It is natural to proceed with investigating the superposition of |1〉 and |6〉, because they are
both located close to the antenna (cf. Sec. 2.1) and therefore both have a finite probability
to get excited by the antenna.

We assume equal probabilities to find an excitation at site 1 and site 6 and concentrate
solely on the effect of the phase angle φ. The initial state is then

|ψ〉init =
1√
2

(|1〉+ e−iφ |6〉 . (4.3)

As can be seen in Fig. 4.4, the phase dependency is insignificant. The behavior is similar
to a classical mixture. Only for very low dephasing there is a slight modulation of the
efficiency (below 10%). This is not very surprising. If we take into account only the
strongest couplings (above 30 cm−1), the two pathways are just connected through site 3
(cf. Fig. 4.5). Since site 3 is the trapping site, it is exposed to local dephasing due to the
trapping process, and the interference is destroyed.

A scenario probable under laser excitation, would be a superposition between site 1 and
site 2. These are the sites which exhibit the largest coupling within the complex (v1,2 =
−104.1 cm−1 in comparison to v1,6 = −15.1 cm−1). Due to this strong coupling and the
proximity of the two sites, an excitation will immediately be delocalized. If the duration
of the laser pulse (e.g. 38 fs in Hayes and Engel (2011)) is comparable to the timescale
of the coherent oscillations between the two sites (about 50 fs), it is reasonable to ex-
pect a superposition. In addition, excitation transport from site 8 (cf. Fig. 1 of Hoyer
et al. (2011)) could in principle also create such a state. Thus, we will now discuss the
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Figure 4.4: Efficiency as a function of dephasing for various initial phases between |1〉 and |6〉.
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Figure 4.5: Illustration of the topology of the FMO network when only the strongest couplings
are considered. The local dephasing at site 3 due to the trapping process is indicated by the wiggly
lines.

implications of an initial excitation of the form

|ψinit〉 = cos(θ) |1〉+ e−iφ sin(θ) |2〉 . (4.4)

At first sight, there seems to be no difference in Figs. 4.6(a) and 4.6(b), but the scaling
is very distinct. While in Fig. 4.6(a), the brightest (darkest) spots represent an efficiency
of about 98% (9%), the maximum (minimum) in Fig. 4.6(b) is at 77% (63%). This
allows two conclusions. Firstly, without dephasing, there is an extraordinary dependency
of the efficiency on the superposition angles. Secondly, if the initial excitation is chosen
optimally, dephasing will reduce the efficiency. In contrast, the superpositions leading to
low efficiency for zero dephasing will be enhanced by the dephasing process.

We label the marginal initial states as |best〉 and |worst〉 and recognize that they are given
by

|best〉 =
1√
2

(|1〉+ |2〉) and |worst〉 =
1√
2

(|1〉 − |2〉). (4.5)

Forming the scalar product 〈best| worst〉, we see that these states are orthogonal and co-
incide with the |+〉 and |−〉 states in Chin et al. (2010). In this paper, Chin uses these
states to change to a hybrid basis and explains the observed effect by arguing that |best〉 is
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(a) Dephasing is zero. The brightest spot cor-
responds to an efficiency of 98%, the darkest to
9%.

(b) Dephasing is 1 ps−1. The brightest spot cor-
responds to an efficiency of 77%, the darkest to
63%.

Figure 4.6: Efficiency for initial superpositions of site 1 and site 2. Trapping at site 3 with rate
5 ps−1.

shifted towards |3〉, allowing for fast near-resonance transfer, while |worst〉 is shifted to
resonance with |6〉, which leads coherent oscillations between these two sites. Activating
dephasing, two things are happening if we start in |best〉. Dephasing jiggles the site ener-
gies and impedes the resonant transfer to site 3, and also destroys the superposition. This
can be seen as opening an incoherent transfer channel to |worst〉. Starting in |worst〉 the
latter effect leads to the enhancement of efficiency seen in Figs. 4.6(b) and 4.7. Now, we
can easily explain the blue line in Fig. 4.2(a). The state |1〉 can be seen as a superposition
of the states |best〉 and |worst〉, where both states are equally populated. If we add up
the efficiencies of |best〉 and |worst〉, as seen in Fig. 4.7, and normalize the resulting
efficiency by dividing by two, we end up with the blue line in Fig. 4.2(a). We can also
give an explanation for the rather low maximum efficiency around 80% in this plot. Since
|worst〉 is shifted towards |6〉, we can think of a fraction of the excitation that takes the
route through site 6 and hence suffers from a low probability to be at the trapping site in
time.

It is interesting to look not only at the integrated trapping probability, but also at the
evolution of the reaction center population. Fig. 4.8 shows the reaction center (RC)
population for the two marginal initial states and different dephasing rates. In Fig. 4.8(a),
we observe a steep rise in the RC population between 0.5 and 1 ps in the limit of low
dephasing. The crossing of the black and red line is due to the minimum seen in 4.7.
Comparing Figs. 4.8(a) and 4.8(b) (especially the insets), we see that the spreading with
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Figure 4.7: Efficiency as a function of dephasing. The blue line represents starting in |best〉, the
green, dashed line in |worst〉. Trapping at site 3 with rate 5 ps−1.

different dephasing rates begins an order of magnitude earlier in the case of |worst〉 being
the initial state and is more pronounced. For longer times, the latter was already observed
in Fig. 4.7.
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(a) Initial state is |best〉.
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(b) Initial state is |worst〉.

Figure 4.8: Reaction center population as a function of time for different dephasing rates (blue
solid: 0, green dashed : 0.1, red dotted: 1, black dashed: 10 ps−1). Trapping at site 3 with rate
5 ps−1.

Conclusion

In summary, we note that there is a regime in the parameter space spanned by the de-
phasing rate and the trapping rate that allows highly efficient transfer. Remarkably, this
regime begins usually for non-zero dephasing and it seems that the trapping rates should
be on the order of the coupling elements in the Hamiltonian. While this has already been
known for disordered networks, we have seen that it can also be true for networks with-
out detunings. Further, we found that efficient coherent transport can also be achieved by
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choosing an optimal initial superposition. In this case, adding dephasing hinders transport.
Therefore, if the protein environment is able to protect coherence and superpositions, the
transport process could benefit from a proper superposition in the initial excitation of the
complex.

4.2.2 Trapping at Site Four

In the next step, we introduce an additional trapping process at site 4. In Fig. 4.9, the
efficiency as a function of the trapping at site 3 and site 4 is shown. It is important to
note that there is no additional dephasing involved. Nevertheless, there is a broad regime
of near-unit efficiency. By comparing both plots, it is striking that the functional role of
the two trapping sites seems to be interchanged. This can be understood by looking at the
main excitation transfer pathways again (c.f. Fig. 4.3). Site 1 is more directly coupled to
site 3, and site 6 more to site 4. Another outstanding feature is captured in Fig. 4.9(b).
As the trapping rate at site 4 reaches a threshold of about 5 ps−1, the efficiency becomes
almost independent of the trapping rates at site 3 and site 4 for a wide range. For this
reason, we will now investigate the situation where site 3 is decoupled from the RC and
site 4 acts as the only trap with rate 5 ps−1.

(a) Initial excitation at site 1. (b) Initial excitation at site 6.

Figure 4.9: Efficiency as a function of trapping rates at site 3 and site 4. The dephasing is set to
be zero.

34



4.2 Role of Trapping and Initial Superposition

Influence of Initial Condition

Fig. 4.9 gives reason to expect a strong dependence at least on the angle θ of the superpo-
sition

|ψinit〉 = cos(θ) |1〉+ sin(θ) e−iφ |6〉 . (4.6)

More interesting is the question if there is also a strong dependence on the phase angle
φ. Looking at Fig. 4.10(a), we can affirm this question. If we fix θ = π

4
and scan over

φ, the modulation of the efficiency is significant. Similar to the case of a superposition
of |1〉 and |2〉 with trapping at site 3, the symmetric (φ = 0) superposition is efficient
while the antisymmetric (φ = π) is not. Furthermore, we recognize that it is beneficial
when the excitation is mainly localized at site 6 (θ ≈ nπ

2
) and unfavorable when it is

mainly localized at site 1 (θ ≈ nπ). This, of course, agrees with the intuitive picture of
the main transport paths we discussed repeatedly. But surprisingly, the optimal (pessimal)
transport is not obtained for θ = nπ

2
(θ = nπ), and we can transfer some population to

site 1 (by changing θ) without affecting the efficiency much if we adjust the phase angle
φ accordingly. Now, we activate dephasing. In Fig. 4.10(b), we see the efficiency of a
superposition leading to optimal and pessimal transport for zero dephasing ( θopt = 17π

50
,

φopt = 0 and θpes = 21π
25

, φpes = 0 ) as a function of dephasing. We will refer to those
states as |opt〉 and |pes〉 in what follows. Remarkably, the efficiency in the optimal case
is almost constant in the range of interest (up to the order of 10 ps−1), and on a high level
(around 90%). This is a desirable situation which could be interesting for engineering
artificial "quantum wires". There it should be possible to control the initial condition and
the demand is robustness against noise. Here, we have shown that this is indeed possible.
In addition, we can observe a complete new feature. In all other plots, the decay of the
efficiencies for high dephasing coincides for the investigated initial conditions. But here,
the blue and the green line deviate significantly which shows that a modulation of the
efficiency in the high dephasing regime by changing the initial superposition is possible.
Although we must not forget that the model is not appropriate for dephasing rates beyond
10 ps−1.

Since we have seen that a proper superposition of |1〉 and |2〉 can lead to a rich enhance-
ment of efficiency in the case of trapping at site 3, we want to explore this scenario also
for trapping at site 4.

As can be seen in Fig. 4.11, the situation is quite similar. The superpositions that lead to
the marginal efficiencies are exactly the same. But the effect is not as pronounced as in
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4 Efficiency

(a) Efficiency as a function of the initial excita-
tion defined in Eq. 4.6. Dephasing is zero.
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(b) Efficiency as a function of dephasing. The blue
line represents the initial condition leading to maxi-
mum efficiency for zero dephasing (|opt〉), the green,
dashed line leads to minimal efficiency (|pes〉).

Figure 4.10: Efficiency for trapping at site 4 with rate 5 ps−1.

the case of trapping at site 3. The maximum difference is only 63%, in comparison to the
89% before (Fig. 4.6(a)).

(a) Efficiency for initial superpositions of |1〉
and |2〉. No dephasing.
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(b) Efficiency as a function of dephasing. The blue
line represents starting in |best〉, the green, dashed
line in |worst〉.

Figure 4.11: Efficiency for trapping at site 4 with rate 5 ps−1. Dephasing is set to zero.

All in all, it seems that trapping at site 4 would be favorable. Of course, as we have seen
in the beginning of this Section, additional trapping at site 3 will not change much, but
can only be an enhancement. But what is it that distinguishes site 4? We try to answer this
question by looking at a measure of the connectivity of a site. We define the connectivity
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4.3 Conclusion

of the site j by
ζi =

∑
i 6=j

|vij|, (4.7)

where vij denotes the coupling between site i and site j. We see that site 4 (ζ4 = 330.1 cm−1)
is much better connected than site 3 (ζ3 = 98.7 cm−1). Moreover, site 4 has the highest
connectivity of the complete network.

4.3 Conclusion

At this point we close the discussion concerning the efficiency of the transport process.
While it was known that dephasing can enhance transport, we have shown here that a
superposition of an excitation at two entry sites can lead to high efficiency even in the
case of completely coherent transport. Moreover, the efficiency is quite robust against
dephasing. This effect can even be strengthened by allowing for trapping at site 4. We
made this plausible by computing the connectivity of the sites.
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5
Entanglement and Correlations

Since there was evidence of quantum effects in the form of quantum beats in the ex-
periments, and we saw in the last chapter that coherent superpositions can modulate the
efficiency, it is natural to ask for the role of quantum correlations. The well-established in-
carnation of quantum correlations is entanglement. It is known that entangled systems can
be in advantage to perform certain tasks, and entanglement was identified as a resource.
More recently, it was recognized that also non-entangled states can exhibit quantum cor-
relations. Thus, we will introduce one of those measures of quantum correlations that
reach beyond entanglement. This measure is called quantum discord Ollivier and Zurek
(2001) and has attracted a lot of interest in the past few years.

Interestingly, we will prove that in the zero- and single-excitation subspaces quantum
discord and relative entropy of entanglement coincide, at least under the assumption of
vanishing coherences between those two subspaces, as given in our model. Since Sarovar
et al. (2011) showed that coherence in the site basis is equivalent to entanglement, we
will be able to conclude that all effects based on quantum correlations are hidden in the
persistence of coherence in the site basis.

In the second part of this chapter, we look at the time evolution of quantum and classical
correlations between the sites that are excited initially and the trapping site, as well as at
their response to dephasing. Thereby, we concentrate essentially on the initial conditions
we found in the last chapter. Finally, in the last section, we investigate the dynamics of
quantum correlations of coherent and non-coherent initial states with higher excitations.
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5.1 Definitions

5.1 Definitions

In this section, we define entanglement and the entanglement measures we will use after-
wards. After that, we will define quantum discord and give an example of a non-entangled
state that exhibits non-zero quantum discord. Therefore, this section is rather technical.

5.1.1 Entanglement

Since we are dealing with an open quantum system, our system will usually be in a mixed
state. Therefore, we consider the case of bipartite entanglement for mixed states.

Imagine, to stay within our molecular framework, a dimer. The system consists of two
sites which are spatially separated. We denote one site as A and the other as B. The
density matrix of the whole dimer is ρ. We call ρ a product state, if we can write

ρ = ρA ⊗ ρB. (5.1)

Further, we say the state is separable, if there exist pi ≥ 0, with
∑

i pi = 1, and product
states ρAi ⊗ ρBi such that

ρ =
∑
i

piρ
A
i ⊗ ρBi . (5.2)

If we can not write the state in this form, it is called entangled.

While the definition is quite easy, there is no general algorithm or criterium to find out if
a given state is separable∗, except for some classes of states. But there exist at least some
criteria that imply separability or entanglement. Moreover, there is even the possibility
to quantify (although different measures yield different results) the amount of entangle-
ment.

In the following, we introduce two of them, the relative entropy of entanglement and the
logarithmic negativity, and use them to quantify entanglement present in our model of the
excitation transport in the FMO complex.

∗For a general two-qubit system there is such a criterium, but not for a system consisting of more qubits
or objects of higher dimensionality.
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5 Entanglement and Correlations

Relative Entropy of Entanglement

The relative entropy of entanglement Vedral et al. (1997) belongs to the class of distance
measures Gühne and Tóth (2009) and measures, in its basic definition, the global entan-
glement of a state. Thus, it is defined as the minimal distance of a state ρ to the next
separable state σ∗,

ER(ρ) = S(ρ ‖ σ∗) = inf
σ∈S

S(ρ ‖ σ). (5.3)

The quantity S(ρ ‖ σ) = tr[ρ log(ρ) − ρ log(σ)] is the relative entropy, and is not a true
metric, since it is not symmetric under the interchange of ρ and σ.

Besides this global measure, we can also define a bipartite version,

ER(ρ) = inf
σAB∈S

S(ρ ‖ σAB). (5.4)

Logarithmic Negativity

The logarithmic negativity Plenio (2005); Plenio and Virmani (2007) is an easy-to-compute
entanglement measure for bipartite systems. It originates from the PPT (positive partial
transpose) criterium of separability which states that the positivity of the partial transpose
of a state is a necessary condition for separability. The partial transposition of a bipartite
state represented by the density matrix ρAB =

∑
ρij,kl |i〉 〈j|A ⊗ |k〉 〈l|B with respect to

subsystem B is defined as

ρTB =
∑
i,j,k,l

ρij,kl |i〉 〈j|A ⊗ |l〉 〈k|B . (5.5)

To quantify the negativity in the spectrum of the partial transpose, one can define the
negativity

N(ρ) =
‖ρTB‖1−1

2
, (5.6)

where ‖X‖1:=
√
X†X is the trace norm. The negativity is a convex entanglement mono-

tone, but is not additive. We will use a related quantity that is additive but not convex, the
logarithmic negativity

EN(ρ) = log2‖ρTB‖1 (5.7)

The use of the logarithmic negativity will be in quantification of entanglement beyond
single excitations, because in this case there is no known formula to calculate the relative
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5.1 Definitions

entropy of entanglement without an expensive optimization procedure. If we restricted
ourselves to the case of the bipartite entanglement between two sites, e.g. one entry
and one trapping site, we could also use the concurrence or the related entanglement of

formation to quantify entanglement efficiency because of the famous analytical formula
found by Wootters (1998).

5.1.2 Quantum Discord

In classical information theory there exist two equivalent formulas for the mutual informa-
tion to quantify the strength of all correlations present in a bipartite system. The difference
of the quantum versions of these leads to a measure of the quantum excess correlations
called quantum discord Ollivier and Zurek (2001).

We start here by introducing the mutual information in the context of classical information
theory. There, it quantifies the correlation between two random variables X and Y , and
is defined by

J(X : Y ) = H(X)−H(X|Y ), (5.8)

where H is the classical Shannon entropy and H(X|Y ) =
∑

y pY=yH(X|Y = y) is the
conditional entropy of X given Y . Hence, the mutual information measures the average
decrease of entropy on X when Y is found. By applying Bayes rule Koch (2000)

pX|Y=y =
pX,Y=y

pY=y

(5.9)

one can show that H(X|Y ) = H(X, Y ) − H(Y ) which leads directly to another classi-
cally equivalent expression for the mutual information:

I(X : Y ) = H(X) +H(Y )−H(X, Y ) (5.10)

Now, we proceed by defining I and J for quantum systems. The original application
was for bipartite systems consisting of the actual physical system and a measurement
apparatus. In the following we are not so restrictive and define the quantities for arbitrary
bipartite quantum systems. In the case of I it is no problem to generalize to the quantum
case. All we have to do is to replace the classical Shannon entropyH by the von-Neumann
entropy S,

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (5.11)
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5 Entanglement and Correlations

In the case of J , the quantum version is more involved. This is because the conditional
entropy H(A|B) requires us to specify the state of A given the state of B which implies
a measurement on subsystem B. We restrict ourselves to perfect measurements, and
therefore consider a complete set of projectors {ΠB

j }, such that
∑

j ΠB
j = 1. The state of

the subsystem A after this measurement is

ρA|Π
B
j = trB(ΠB

j ρ
ABΠB

j )/ tr(ΠB
j ρ

AB), (5.12)

with probability pj = tr(ΠB
j ρ

AB). Knowing this, we can write down the conditional
entropy in the quantum case

S(ρA|{ΠB
j }) =

∑
j

pjS(ρA|Π
B
j ) (5.13)

and the quantum analogue of J (Eq. 5.8 is

J(ρAB){ΠB
j } = S(ρA)− S(ρA|{Π

B
j }). (5.14)

The quantum discord then is defined as the minimum of the difference between I and
J :

D(ρAB) = min{ΠB
j }[I(ρAB)− J(ρAB){ΠB

j }] (5.15)

= S(ρB)− S(ρAB) + min{ΠB
j }S(ρA|{ΠB

j }). (5.16)

We can give a general intuition in the case that ρAB is a pure state. In this instance, the
last two terms vanish. The second one does, because the von-Neumann entropy is zero for
pure states, and the third one vanishes for the same reason due to the purity of each ρA|Π

B
j .

Since S(ρB) = S(ρA) for a pure state ρAB, S(ρB) is an unique identifier for entanglement
and thus, quantum discord reduces to entanglement.

In addition, the nature of quantum discord as a measure of quantum correlations is also
revealed by the fact that Henderson and Vedral (2001) identified J as a measure of classi-
cal correlations independent of Ollivier and Zurek (2001). Then, of course, the difference
between the total correlations and the classical correlations is a reasonable measure of the
quantum correlations.

The minimization in Eq. (5.15) seeks for the measurement on subsystem B that least
disturbs the total quantum state and thus allows to obtain as much information as possible
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5.1 Definitions

from the subsystem A Auyuanet and Davidovich (2010). In fact it has been shown that

D(ρAB){ΠB
j } = 0 ⇔ ρAB =

∑
j

ΠB
j ρ

ABΠB
j , (5.17)

which says that quantum discord vanishes if and only if ρAB is a quantum-classical state.
Like relative entropy of entanglement, quantum discord is not a symmetric measure.

There is also a global version of quantum discord. The very appealing notion was given
by Modi et al. (2010) to present a ’Unified View of Quantum and Classical Correlations’.
Therein, the quantum discord of a state ρ is given by the minimal distance, again measured
by the relative entropy, to the next classical state χ∗,

D(ρ) = min
χ∈C

S(ρ ‖ χ). (5.18)

The set of classical states C is defined as the set containing mixtures of locally distin-

guishable states

χ =
∑
ki

pk1...kn |k1 . . . kn〉 〈k1 . . . kn| =
∑
~k

p~k
~|k〉 ~〈k|, (5.19)

where the pk1...kn ≥ 0 and
∑

ki
pk1...kn = 1, and the local states |ki〉 span an orthonormal

basis. The emphasis here is really on the local states. While we can diagonalize every
density matrix since it is Hermitian, a state is only classical if the density matrix is di-
agonal in a local basis. Considering our model system, the basis that diagonalizes the
Hamiltonian is called the excitonic basis. If the density matrix is diagonal in this basis,
the state is clearly non-local and therefore also non-classical. Instead, the site basis is
local, and the states that are diagonal with respect to the site basis are classical. We will
come back to this in the next section.

It has been shown that there are separable states exhibiting quantum correlations cap-
tured by the quantum discord (e.g. in Ollivier and Zurek (2001)). Therefore, quantum
discord can be seen as a more general identifier of quantumness than entanglement. Re-
cently, quantum discord could also be identified as a resource for quantum information
tasks Datta and Shaji (2008) and operational interpretations were found Cavalcanti et al.

(2011).

We will quickly reproduce the example of a separable state with non-zero quantum dis-
cord given in Ollivier and Zurek (2001) because we will use it again in the next section.
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Figure 5.1: Quantum discord for two qubit Werner states.

We consider the Werner (1989) states,

|W 〉 =
1− z

4
1 + z |ψ〉 〈ψ| with |ψ〉 = (|00〉+ |11〉)/

√
2. (5.20)

For z = 1, |W 〉 is a maximally entangled Bell state, whereas for z = 0 the state is
obviously separable. Concerning quantum discord one should note that 1 and |ψ〉 are in-
variant under local unitary rotations, and therefore discord does not depend on the choice
of a measurement basis. In Fig. 5.1 it is shown that quantum discord is non-zero for
z 6= 0, whereas entanglement sets in not before z ≥ 1/3.

5.2 The Single-Excitation Subspace

Projecting the Werner state (5.20) into the zero- and single-excitation subspace, only the
ground state part of the Bell state remains. The resulting (unnormalized) state,∣∣∣W̃〉

01
=

1− z
4

101 +
z

2
|00〉 〈00| (5.21)

=
1 + z

4
|00〉 〈00|+ 1− z

4
(|10〉 〈10|+ |01〉 〈01|), (5.22)

is separable, since every term is separable. By looking at Fig. 5.2, we see that quantum
discord also vanishes.

We have seen that although a state can have non-zero quantum discord while being entan-
gled in the full Hilbert space, a projection into the zero- and single-excitation subspace
can lead to a coincidence of the two measures.
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Figure 5.2: Quantum discord for two-qubit Werner states projected on zero- and single-excitation
subspace.

5.2.1 Equivalence of Quantum Discord and Relative Entropy
of Entanglement

In the case of our model system, the results of Brádler et al. (2010), as well as our own
numerical studies, suggest that quantum discord coincides with the (bipartite) relative
entropy of entanglement in the zero- and single-excitation subspaces. In the remainder of
this section, we will support these findings by a more formal proof.

Global Versions

But first, we take a look at the global measures to get some intuition. Sarovar et al. (2010)
showed that coherence in the site basis is necessary and sufficient for entanglement. More
formally, they showed that

ρ entangled ⇔ 〈i| ρ |j〉 6= 0 for some i 6= j, (5.23)

and moreover that the closest separable state is

σ∗ =
∑
i

|i〉 〈i| ρ |i〉 〈i| =
∑
i

ρii |i〉 〈i| . (5.24)

Knowing the closest separable state, we recall the definition of a classical state (5.19), and
note that the classical states also have the form

χ =
∑
i

pi |i〉 〈i| . (5.25)
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5 Entanglement and Correlations

Since the set of classical C and separable states S coincide in the single-excitation sub-
space, also the optimization will lead to the same result, pi = ρii. Also, Theorem
2 in Modi et al. (2010) states that the closest classical state to a state ρ is given by
χ∗ =

∑
~k
~|k〉 ~〈k|ρ ~|k〉 ~〈k|, where { ~|k〉} forms the eigenbasis of χ∗. Identifying { ~|k〉} with

{|i〉} again leads to
χ∗ =

∑
i

|i〉 〈i| ρ |i〉 〈i| =
∑
i

ρii |i〉 〈i| . (5.26)

Therefore, σ∗ = χ∗, and (global) quantum discord and relative entropy of entanglement
coincide in the single-excitation subspace.

Bipartite Versions

Next, we consider the bipartite versions. Since Eq. (5.15) for quantum discord involves
an optimization of the measurement basis, the optimization parameters in principle grow
with 2nB , where nB denotes the number of sites in subsystem B. For this reason, we
fix subsystem B to contain only one site. This restriction enables us to write projection
operators as

ΠB
1 = 1A ⊗

(
cos2(θ) e−iφ sin(θ) cos(θ)

eiφ sin(θ) cos(θ) sin2(θ)

)
(5.27)

and

ΠB
2 = 1A ⊗

(
sin2(θ) − e−iφ sin(θ) cos(θ)

− eiφ sin(θ) cos(θ) cos2(θ)

)
, (5.28)

where we have chosen the computational basis of subsystem B to be(
1

0

)
= |g〉 and

(
0

1

)
= |e〉 . (5.29)

To proceed, we note that the formula for quantum discord (5.15) can be written more
explicitly as

D(ρAB) = S(ρB)− S(ρAB) + min{ΠB
j }[p1S(ρA|Π

B
1 ) + p2S(ρA|Π

B
2 )]. (5.30)

Moreover, Brádler et al. (2010) derived a formula to calculate the bipartite relative entropy
of entanglement

ER(ρAB) = S(∆(ρAB))− S(ρAB), (5.31)
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5.2 The Single-Excitation Subspace

where ∆(ρAB) = p0 |0〉 〈0|+ρAe ⊗|g〉 〈g|
B + |g〉 〈g|A⊗ρBe and p0 is the population of the

ground state and the subscript e denotes the projection into single-excitation subspace.
This formula is derived under the assumption that the dynamics never introduce any co-
herences between the zero- and single-excitation subspaces. This is the case here, since
the unitary evolution is restricted to the single-excitation subspace. Subtracting Eq. (5.30)
from Eq. (5.31), we get

ER −D = S(∆)− S(ρB)−min{ΠB
j }[p1S(ρA|Π

B
1 )− p2S(ρA|Π

B
2 )]. (5.32)

It turns out that this expression is independent of the phase angle φ. This is reasonable,
since φ only appears in the coherence between the ground and excited state. Moreover,
the last term is minimal for θ = nπ

2
(cf. Appendix A.4). This means that the optimal

measurement operators are projectors onto the ground and excited states of subsystem B.
For the sake of simplicity, we restrict subsystem A to consist of only two sites. This is
enough to quantify the quantum correlations between two entry sites and the trapping site.
By specifying the basis for the reduced bipartite system (here e.g. A=1,2 and B=3),

1

0

0

0

 = |g〉1 |g〉2 |g〉3 ,


0

1

0

0

 = |e〉1 |g〉2 |g〉3 , (5.33)


0

0

1

0

 = |g〉1 |e〉2 |g〉3 ,


0

0

0

1

 = |g〉1 |g〉2 |e〉3 , (5.34)

we can give explicit expressions for the various matrices involved:

∆ =


1− (ραα + ρββ + ργγ) 0 0 0

0 ραα ραβ 0

0 ρβα ρββ 0

0 0 0 ργγ

 , (5.35)

ρB =

(
1− ργγ 0

0 ργγ

)
, (5.36)
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ρA|Π
B
1 =

1

p1

1− (ραα + ρββ + ργγ) 0 0

0 ραα ραβ

0 ρβα ρββ

 , (5.37)

ρA|Π
B
2 =

1

p2

ργγ 0 0

0 0 0

0 0 0

 , (5.38)

where p1 = 1− ργγ and p2 = ργγ . The greek indices α and β denote the sites in A, while
γ stands for the site in B. To calculate the entropies, we note that
S(X) = −X log2(X) = −

∑
i

λi log2(λi), where {λi} are the eigenvalues of X, and de-

fine

λ1 = 1− (ραα + ρββ + ργγ) (5.39)

λ2/3 = Eigenvalues

(
ραα ραβ

ρβα ρββ

)
(5.40)

λ4 = ργγ. (5.41)

Therefore, S(∆) = −
∑

i λi log2(λi) and S(ρB) = −(1−ργγ) log2(1−ργγ)−λ4 log2(λ4).
Next, we consider the last two terms of Eq. (5.32),

p1S(ρA|Π
B
1 ) = −

3∑
i=1

λi log2(
λi
p1

) (5.42)

= −
3∑
i=1

λi log2(λi) + (λ1 + λ2 + λ3) log2(p1) (5.43)

= (1− ργγ) log2(1− ργγ)−
3∑
i=1

λi log2(λi) (5.44)

and

p2S(ρA|Π
B
2 ) = −ργγ log2(

ργγ
ργγ

) (5.45)

= −ργγ log2(1) (5.46)

= 0. (5.47)
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Plugging everything back into Eq. (5.32), we end up with

ER −D =−
4∑
i=1

λi log2(λi) + (1− ργγ) log2(1− ργγ) + λ4 log2(λ4) (5.48)

− (1− ργγ) log2(1− ργγ) +
3∑
i=1

λi log2(λi) = 0, (5.49)

and therefore ER(ρAB) = D(ρAB).

5.2.2 Conclusion

In conclusion, we found that the global versions of quantum discord and relative entropy
of entanglement agree in the single-excitation subspace because the separable states are
exactly the classical states in this context. Further, we proved that the bipartite versions
also match. Before, this was only suggested by numerical investigations by Brádler et al.

(2010). In the derivation of Eq. (5.31) from Brádler et al. (2010) and in the computation
of the matrices (5.37) and (5.38) the assumption that there are no coherences between
the zero- and single-excitation subspace was used. This could be the crucial point which
restricts the application of this proof. In contrast, the restriction in the number of sites (at
least for subsystem A) was just for convenience, and there is no problem in relaxing this
assumption. Since we have seen that entanglement is equivalent to coherence in the site
basis, we can now extend this equivalence also to quantum discord. This can also be seen
directly in the Eqs. (5.31) and (5.35). If all coherences vanish, then ρAB = ∆(ρAB), and
ER = 0 = D. However in Section , we will see that the logarithmic negativity does not
coincide with quantum discord.

It is worth mentioning that while the definition of the relative entropy of entanglement
was restricted to the zero- and single-excitation subspace and the resulting formula is
only valid in this case, the definition of quantum discord is general. But the restriction is
hidden in the fact that we fixed subsystem B to only consist of one site. Therefore, the
optimization is effectively restricted to the zero- and single-excitation subspace. Brádler
et al. (2010) calculated the relative entropy of entanglement also taking into account dou-
ble excitations and found that the entanglement decreases significantly if the state has
only a very small part that lies beyond the single excitation subspace. This effect cannot
be captured with our definition of quantum discord.
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5.3 Dynamics of Classical and Quantum

Correlations

In the last section we recognized that the relative entropy of entanglement and the quan-
tum discord coincide for our model of excitation transport in the single-excitation domain.
Further, we saw that we can omit the optimization procedure inherent in the computation
of quantum discord and relative entropy of entanglement. This insight allows us to study
the dynamics for a large set of parameters.

In the following, we consider the question if there is a relationship between the efficiency
and the occurrence of classical and quantum correlations. The quantum correlations are
quantified by the bipartite relative entropy of entanglement and the classical correlations
by the difference of the total correlations - measured by the mutual information - and the
quantum correlations. As already mentioned in the last section, we consider the situation
where subsystem A consists of the sites that are excited initially, A=1,2 or A=1,6, and
subsystem B consists of the trapping site, B=3 or B=4.

5.3.1 Superpositions of |1〉 and |2〉

We start with the states |best〉 and |worst〉 Eq. (4.5). Therefore, the system AB is defined
to consist of sites 1, 2 and 3. In Figs. 5.3 and 5.4, the time evolution of the correlations
is shown. The green, dashed line represents the total correlations, the blue solid line the
quantum correlations, and the red, dotted line the classical correlations. Each of the three
plots in the Figs. corresponds to a fixed dephasing rate, (a) corresponds to γ = 0.1 ps−1, (b)
to γ = 1 ps−1, and (c) to γ = 10 ps−1. Remarkably, even for dephasing with rate 1 ps−1, the
quantum correlations exceed the classical correlations. Comparing Figs. 5.3(a) and 5.4(a),
we notice that the correlations in the optimal case are a factor of approximately 5 higher
than in the pessimal case. But this is only holds for very low dephasing. While dephasing
leads to a decay of correlations for |best〉, almost the opposite is true for |worst〉. Here,
only the quantum correlations loose strength. On the other hand, classical correlations
become stronger. In fact, while the correlations loose structure with increasing dephasing,
the total correlations become more pronounced due to the classical correlations. Anyhow,
for those marginal initial states, with respect to efficiency for zero dephasing, we see high
efficiency goes hand in hand with stronger correlations. But the increase of the efficiency
for dephasing rates about 10 ps−1 cannot be understood by looking at the correlations.
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Figure 5.3: The green, dashed line represents the total correlations, the blue, solid line the quan-
tum correlations, and the red, dotted line the classical correlations.The initial state is |best〉 (cf.
(4.5)). Subsystem A consists of sites 1 and 2, subsystem B of site 3. Trapping is at site 3 with rate
5 ps−1.
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(b) γ = 1 ps−1
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Figure 5.4: The green, dashed line represents the total correlations, the blue line the quantum
correlations, and the red, pointed line the classical correlations. The initial state is |worst〉 (cf.
(4.5)). Subsystem A consists of sites 1 and 2, subsystem B of site 3. Trapping is at site 3 with rate
5 ps−1.
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5 Entanglement and Correlations

Figs. 5.5 and 5.6 show the dependence on the dephasing rate in more detail. Again,
in all cases quantum correlations decay with increasing dephasing. We will explain this
observation in a moment.

(a) Quantum Correlations. (b) Classical Correlations. (c) Total Correlations.

Figure 5.5: The initial state is |best〉 (cf. (4.5)). Trapping is at site 3 with rate 5 ps−1.

(a) Quantum Correlations. (b) Classical Correlations. (c) Total Correlations.

Figure 5.6: The initial state is |worst〉 (cf. (4.5)). Trapping is at site 3 with rate 5 ps−1.

In the last chapter, we found out that the appearance of quantum correlations in the single-
excitation subspace is closely related to the existence of coherences in the site basis.
Therefore, we try to explain the dynamics of quantum correlations with those of the co-
herences. In the present case, the contributing coherences between subsystem A and B
are ρ13 and ρ23. Thus, we define a measure of bipartite coherence by

CAB =
1

2

∑
i 6=j

|ρij|, (5.50)

where i labels sites in A and j labels sites in B.

If we compare the behavior of the quantum correlations in Figs. 5.3 and 5.4 with that of
Figs. 5.7(a) and 5.7(b), we recognize that C12,3 resembles the structure of the quantum
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correlations intriguingly. Still, we can not match the lines by rescaling with a constant
factor. But now we are in the position to explain the observed decay of quantum correla-
tions by the action of the Lindblad pure dephasing term that leads to an exponential decay
of the coherences. We note that in the coherence measure only the coherences between
the two subsystems A and B take part. Therefore, we cannot directly evoke a connection
between coherence in the initial condition and the appearance of quantum correlations,
since these are coherences inherent in a single subsystem.
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(a) The initial state is |best〉.
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(b) The initial state is |worst〉.

Figure 5.7: Plot of the coherence measure CAB (5.50). The blue, solid line represents γ =
0.1 ps−1, the green, dashed line γ = 1 ps−1, and the red, dotted line γ = 10 ps−1. The grey lines
represent the respective quantum correlations from Fig. 5.3. These are scaled by a factor of 1.75
in the right Figure. Subsystem A consists of sites 1 and 2, subsystem B of site 3. Trapping is at
site 3 with rate 5 ps−1.

Having discussed the origin of the quantum correlations, we proceed with the classical
correlations. It is known that a pure state cannot be correlated with another system. For
this reason, it is tempting to compare the total correlations with the purity of the subsys-
tems, which is defined by

P (ρ) = tr(ρ2), (5.51)

and ranges from 1 for pure states to 1/dim(ρ) for totally mixed states. For better compar-
ison we calculate 1−P (ρ), which is equivalent to a quantity called linear entropy. It turns
out that the purity of subsystem B is more informative in this case. If we compare Fig.
5.8 with the classical correlations in Figs. 5.3 and 5.4, we recognize a resemblance of
the shape, although there is a bit more structure in the purity measure. This resemblance
is especially good for low dephasing and short times. While the peaks do not agree in
magnitude, their location in time does quite well. Against my expectations, the correla-
tions disappear before the subsystem reaches a pure state. But strikingly, the behavior of
the classical correlations with increasing dephasing is captured by the purity. If the initial
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5 Entanglement and Correlations

state is |best〉 (Fig. 5.3), the classical correlations are very similar for γ = 0.1 ps−1 and γ
= 1 ps−1 and are smaller for γ = 10 ps−1. The same behavior can be seen in Fig. 5.8(a). If
the initial state is |worst〉 (Fig. 5.4), the coincidence of the first peaks, before t = 0.1 ps, in
Figs. 5.4(a) and 5.4(b), as well as the increase of the classical correlations with increasing
dephasing is reflected in Fig. 5.6. This is all the more surprising, since P (ρB) can be
written as function of only the population of the site that forms B.

0.01 0.10 1.00 10.00
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Time �1�ps�

1�
P�
ΡB
�

(a) The initial state is |best〉.
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Figure 5.8: Plot of 1 − P (ρB) (5.51). The blue, solid line represents γ = 0.1 ps−1, the green,
dashed line γ = 1 ps−1, and the red, dotted line γ = 10 ps−1. The grey lines represent the respective
classical correlations scaled by constant factors. Subsystem B consists of site 3. Trapping is at
site 3 with rate 5 ps−1.

5.3.2 Superpositions of |1〉 and |6〉

We continue with the optimal and pessimal superpositions of |1〉 and |6〉. This won’t
bring any new insights, but supports the findings of the preceding section.

Again, we see (Figs. 5.9 and 5.10) that especially the quantum correlations are more
pronounced for an initial state of |opt〉. Also the decay of quantum correlations is visible
in both cases. Different from the superpositions of |1〉 and |2〉, the strongest peak appears
after 100 fs. This is because sites 1 and 2 are coupled stronger to site 3 than sites 1 and 6
to site 4.

The connection between the quantum correlations and our coherence measure (5.50) is
not as distinct as before, but can nevertheless be observed (Fig. 5.11). The same is true
for the purity and the classical correlations (Figs. 5.12 and 5.13).
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Figure 5.9: The green, dashed line represents the total correlations, the blue line the quantum
correlations, and the red, pointed line the classical correlations. The initial state is |opt〉 (see Fig.
4.10(b)). Subsystem A consists of sites 1 and 6, subsystem B of site 4. Trapping is at site 4 with
rate 5 ps−1. The dropout in the classical correlations are an unknown artifact stemming from the
computation with Mathematica. Since the classical correlations are the difference of the total and
the quantum correlations, the missing values are uniquely defined.
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Figure 5.10: The green, dashed line represents the total correlations, the blue line the quantum
correlations, and the red, pointed line the classical correlations. The initial state is |pes〉 (cf. Fig.
4.10(b)). Subsystem A consists of sites 1 and 6, subsystem B of site 4. Trapping is at site 4 with
rate 5 ps−1.
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(b) The initial state is |pes〉.

Figure 5.11: Plot of the coherence measure CAB (5.50). The blue, solid line represents γ =
0.1 ps−1, the green, dashed line γ = 1 ps−1, and the red, dotted line γ = 10 ps−1. The gray lines
represent the corresponding quantum correlations. Subsystem A consists of sites 1 and 6, subsys-
tem B of site 4. Trapping is at site 4 with rate 5 ps−1.
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Figure 5.12: The colored lines represent 1−P (ρB), the gray lines the classical correlations scaled
by a factor of three. The initial state is |opt〉 (cf. Fig. 4.10(b)). Subsystem A consists of sites 1
and 6, subsystem B of site 4. Trapping is at site 4 with rate 5 ps−1.
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Figure 5.13: The colored lines represent 1−P (ρB), the gray lines the classical correlations scaled
by a factor of three. The initial state is |pes〉 (cf. Fig. 4.10(b)). Subsystem A consists of sites 1
and 6, subsystem B of site 4. Trapping is at site 4 with rate 5 ps−1.

(a) Quantum Correlations. (b) Classical Correlations. (c) Total Correlations.

Figure 5.14: The initial state is |opt〉 (cf. Fig. 4.10(b)). Subsystem A consists of sites 1 and 6,
subsystem B of site 4. Trapping is at site 4 with rate 5 ps−1.
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(a) Quantum Correlations. (b) Classical Correlations. (c) Total Correlations.

Figure 5.15: The initial state is |pes〉 (cf. Fig. 4.10(b)). Subsystem A consists of sites 1 and 6,
subsystem B of site 4. Trapping is at site 4 with rate 5 ps−1.

5.3.3 Conclusion

In this section, we compared the time evolution of quantum and classical correlations,
as well as their dependence of dephasing for the initial superpositions |best〉 (|opt〉) and
|worst〉 (|pes〉) defined in Sec. 4.2.1 (4.2.2). These are superpositions of the states |1〉 and
|2〉 (|6〉) which lead to highest (lowest) efficiency for zero dephasing. We have seen that
the correlations in the state arising from the high-efficiency initial condition exceed those
of the state arising from the low-efficiency condition. But the maximum of efficiency
around γ = 10 ps−1, shared by all considered states, is not reflected in the correlations. The
only hint could be the rise of classical correlations that occurs around γ = 10 ps−1 and t =
0.1 ps (Figs. 5.6(b) and 5.5(b)), but this is rather questionable. The striking result of this
section is the close link between the quantum correlations and the coherences between
the subsystems, and between the classical correlations and the purity of subsystem B.

5.4 Brief Glimpse Beyond Single Excitations

So far, we concentrated on the zero- and single-excitation subspace. This restriction is
usually justified by the argument of weak incoming sunlight. But this argument has some
flaws. Even if the irradiation is weak, it is nevertheless artificial to assume an initial
state of exactly one excitation, similar to a quantum mechanical Fock state Tiersch et al.

(2011). Moreover, the wave-like behavior observed in the experiments was under laser
excitation which is a highly-potent light source.
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In this section, we leave our main path. During this thesis we have mainly discussed
consequences of non-local superpositions between single excitations in the initial state.
Now, we compare the evolution of quantum discord and entanglement as measured by the
logarithmic negativity (Sec. 5.1.1) for the case of no initial coherences in the site basis
as well as with coherences. Thus, we won’t contribute new insights to answer our main
questions, but are able to investigate the following intriguing questions:

1. Does quantum discord only appear hand in hand with entanglement?

2. Is coherence in the initial state connected to greater correlations and entanglement?

3. Which role does the probability of higher excitations play?

5.4.1 Method

We take the simplest approach to include higher excitations. We neglect additional pro-
cesses like exciton-exciton scattering and hold on to the two-level system. Thus, we
remove the single-excitation restriction by replacing the ladder operators† (e.g. in Eq.
(3.6)) with

σ
+/−
i = 1⊗ · · · ⊗ 1⊗ σ̃+/−︸ ︷︷ ︸

ith place

⊗1⊗ · · · ⊗ 1, (5.52)

where 1 is the two-dimensional identity operator and σ̃+/− are the two-dimensional ladder
operators σ̃+ = |e〉 〈e| and σ̃− = |g〉 〈g|. This increases the number of coupled differential
equations from 7+1 to 27+1=256. But besides the dissipation and trapping process, the
number of excitations is conserved. In particular, the number of excitations does not
increase during the time evolution. Knowing this, we conclude that there will be no more
excitations in the system than initially excited. Therefore, we extract only the differential
equations of the subspaces given by the initial condition. In what follows, we consider
again two entry sites and end up with

(
8
0

)
+
(

8
1

)
+
(

8
2

)
= 1 + 8 + 28 = 37 equations.

5.4.2 Initial Condition

We consider two types of initial conditions. In each case, the initial state is completely
separable with respect to partitioning the system into subsystems consisting of one site.

†The system Hamiltonian HS (3.1) can also be rewritten in terms of ladder operators.

58



5.4 Brief Glimpse Beyond Single Excitations

The sites which are not entry sites are in the ground state, and the entry sites are in one of
the following states,

ρinit,c =
1

1 + α2
(|g〉 〈g|+ α |g〉 〈e|+ α |e〉 〈g|+ α2 |e〉 〈e|) (5.53)

or
ρinit,nc =

1

1 + α2
(|g〉 〈g|+ α2 |e〉 〈e|). (5.54)

The c respective nc stands for (non-) coherent. Indeed, Eq. (5.53) has the form of a
coherent state Zhang et al. (1990) for a two-level system. In both states the probability
to find one or two excitations in the system is scaled by the parameter α. For α > 1,
it is most probable to find the system in a double excited state, for α < 1, the ground
state is preferred. If α = 1, no excitation, one excitation and two excitations are equally
probable. We note that not only the probability of higher excitations is new, but also the
probability to have no excitation.

The initial state is then built-up by Kronecker products of ground state density matrices
and Eq. (5.53) or (5.54). For coherent states at sites 1 and 6 for example, the initial state
is

ρinit,c12 = ρinit,c ⊗ ρg ⊗ ρg ⊗ ρg ⊗ ρg ⊗ ρinit,c ⊗ ρg ⊗ ρg, (5.55)

where ρg = |g〉 〈g| denotes the ground state density matrix of a site.

5.4.3 Dynamics

Entry sites 1 and 6

We restrict the discussion to the situation where sites 1 and 6 are considered as the entry
sites and site 4 is connected to the trap. Figs. 5.16-5.20 show the evolution of quantum
discord, mutual information and logarithmic negativity for (non-) coherent initial condi-
tions, various α and various dephasing rates γ.

To answer the first question, if quantum discord appears only together with entanglement
as in the zero- and single-excitation subspaces, we just have to compare the Figs. 5.16
and 5.18 as well as Figs. 5.17 and 5.20. At first sight, we note that the range of non-zero
quantum discord is typically larger than that of non-zero logarithmic negativity. Remark-
ably, in the coherent case the logarithmic negativity exceeds quantum discord for α and
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Figure 5.16: Quantum discord (blue) and mutual information (green, dashed) for initial coherent
states at site 1 and site 6. Trapping is at site 4 with rate 5 ps−1.
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Figure 5.17: Quantum discord (blue) and mutual information (green, dashed) for initial non-
coherent states at site 1 and site 6. Trapping is at site 4 with rate 5 ps−1.
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γ equal to 0.1 and 1 (Figs. 5.16(a), 5.16(b), 5.16(d), 5.16(e), 5.18(a), 5.18(b), 5.18(d)
and 5.18(e)). Although we have introduced quantum discord as a more general measure
of quantum correlations than entanglement, we have to admit that there is no universal
ordering relation. Ali et al. (2010) found this for general two-qubit X states. In all other
cases quantum discord is greater than logarithmic negativity. Moreover, especially for γ
= 1 ps−1 the evolution of logarithmic negativity reminds of sudden death of entanglement
Yu and Eberly (2009) around t = 1 ps. In contrast, the evolution of quantum discord fol-
lows an asymptotic decay. In summary, the answer to the first question is no. The time
evolution of quantum discord and logarithmic negativity is distinct. Since this is also very
explicit for small α, not only the higher excitations but the probability of no excitation
could be responsible.
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Figure 5.18: Entanglement measured by logarithmic negativity for initial coherent states at site 1
and site 6. Trapping is at site 4 with rate 5 ps−1.

The answer of the second question is very surprising. Here, the non-coherent initial con-
dition surpasses the coherent one in terms of quantum discord for α equal to 0.1 and 1.
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Figure 5.19: Logarithmic negativity with (blue) and without (green, dashed) double excitations
for initial coherent states at site 1 and site 6. Trapping is at site 4 with rate 5 ps−1.
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5 Entanglement and Correlations

But even more staggering, for α = 10, quantum discord perfectly coincide for both initial
states (cf. Figs. 5.16 and 5.17). In the case of logarithmic negativity the agreement is
not perfect, but convincing. For α ≤ 1 we observe the expected behavior: The amount of
entanglement is greater for coherent initial states (cf. Figs. 5.18 and 5.20).
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Figure 5.20: Logarithmic negativity with (blue) and without (green, dashed) double excitations
for initial non-coherent states at site 1 and site 6. Trapping is at site 4 with rate 5 ps−1.

The third question which tackles the role of higher excitations cannot be entirely an-
swered. If we set the double-excitation part of the initial excitation to zero, the shape
of the quantum discord does not change. Only the size decreases by approximately 30%
for α = 1 and 50% for α = 10. For α = 0.1, the fraction of double-excitation is too
small to cause a significant difference. In contrast, the logarithmic negativity changes sig-
nificantly. This can be comprehended by comparing the blue and green, dashed lines in
Figs. 5.19 and 5.20. Other than quantum discord, logarithmic negativity typically grows
if we abandon the double excitations. Only for non-coherent initial states and α = 10,
double excitations lead to a greater value of logarithmic negativity. We conclude that
higher excitations leave the form of quantum discord unchanged, but lead to an increase
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5.4 Brief Glimpse Beyond Single Excitations

of magnitude. However, entanglement, as measured by the logarithmic negativity, is sig-
nificantly affected by higher excitations. In most cases, the addition of higher excitations
causes a decrease of the logarithmic negativity.

There are two more points standing out if we look at quantum discord and mutual infor-
mation (Figs. 5.16 and 5.17). First, except for α = 0.1, we observe a non-zero long-time
limit of the mutual information. This is because the model of the reaction center is just
another two-level system which is not able to absorb two excitations completely. Thus,
the reaction center should be modeled as a n+1-level‡ system or alternatively as a system
of n two-level systems.

The second point is the coincidence of quantum discord and mutual information in the
case of non-coherent initial conditions and α = 0.1. From the last chapter we know
this means that all correlations are quantum. If we remember that we have a completely
classical initial state, this is very surprising. It has to be connected with the leading
probability of zero excitations, but a comprehensible explanation is missing.

In addition, another remark is appropriate. In the foregoing section, we concluded that
quantum discord and entanglement is equivalent in the zero- and single-excitation sub-
space. But this is not true if we quantify entanglement with the logarithmic negativity.
Therefore, it would be interesting to repeat the argumentation of this section with the
relative entropy of entanglement.

5.4.4 Conclusion

In this section, we included the possibility of double as well as of zero excitations. We
saw that the behavior of logarithmic negativity and quantum discord is different. In gen-
eral, quantum discord is present longer than logarithmic negativity and hence more robust
against dephasing. Also, the existence of coherences in the initial state have distinct
effects. Coherence-free initial conditions lead to higher discord but lower logarithmic
negativity in many cases. The same distinct behavior was observed when we investigated
the effect of double excitations. While logarithmic negativity typically drops dramati-
cally when adding a small probability of double excitations, quantum discord, in contrast,
increases a little, but perfectly keeps its general form.

‡n denotes the number of initial excitations.
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6
Summary and Outlook

In this thesis, we investigated the excitation transfer in the Fenna-Matthews-Olson (FMO)
complex, which acts as a wire to connect the light-harvesting antenna with the reac-
tion center. We used a simple model of coupled two-level systems, which represent the
excitation-carrying pigments (sites), completed by Lindblad terms to include the non-
unitary processes of dephasing, exciton recombination and the irreversible transfer to the
reaction center (trapping). Since usually it is assumed that the probability of two excita-
tions within one complex is low, we restricted ourselves mainly to the zero- and single-
excitation subspaces. We start the summary by taking up the main questions formulated
in the introduction:

Can quantum superpositions of localized initial excitations affect the transport efficiency,

and is this connected to the appearance of quantum correlations between the entry and

exit sites?

We approved the first question in Chapter 4 by investigating essentially three different
scenarios:

1. Superposition of localized excitations at sites 1 and 2 and trapping at site 3 (Fig.
6.1(a)),

2. superposition of localized excitations at sites 1 and 2 and trapping at site 4 (Fig.
6.1(b)),

3. superposition of localized excitations at sites 1 and 6 and trapping at site 4 (Fig.
6.1(c)),
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where the initial state can be written as

|ψinit〉 = cos(θ) |First Entry Site〉+ e−iφ sin(θ) |Second Entry Site〉 . (6.1)
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Figure 6.1: Illustration of the three main excitation transfer scenarios investigated in this thesis.

In all scenarios, we identified superpositions that lead to highest and lowest efficiency
for zero dephasing. While other authors emphasized the positive role of dephasing for
the efficiency, we conclude that the most efficient transfer is realized without dephasing
and with optimized initial superpositions. In this case the quantum nature is optimally
exhausted. Moreover, the efficiency turned out to be quite robust against pure dephasing.
Especially if the trapping process takes place at site 4. Additionally, we saw that trapping
at site 4 is in most cases beneficial and motivated this by identifying its distinguished
connectivity, a quantity, we defined as the sum of the absolute values of the couplings
to a specific site. If we assume for a moment that nature optimized the protein scaffold,
in which the pigments are embedded, to effectively cool the system in order to prevent
dephasing, then we identified a mechanism that could protect the reaction center from
overload: For very low dephasing it is possible to modulate the efficiency from 10 % to
almost 100 % (Fig. 4.7) by only changing the phase angle φ of the initial superposition.

The second question, concerning the effect of quantum correlations, is not easy to an-
swer. Indeed, we found that the dynamics initiated by superpositions leading to highest
efficiency give rise to more quantum correlations than the ones initiated by superpositions
leading to lowest efficiency. But since we only investigated the marginal cases∗, we can-
not draw a general conclusion. However, our investigations revealed some other important
∗The ones which lead to highest (lowest) efficiency without dephasing.
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6 Summary and Outlook

insights. We have proven that in the zero- and single-excitation subspaces quantum dis-
cord and the bipartite version of relative entropy of entanglement coincide, a result that
was only shown numerically before. For this proof, the assumption was made that there
are no coherences between the zero- and single-excitation subspaces. This is true for the
dynamics within our model because the only process that connects the two subspaces is an
incoherent recombination process equivalent to spontaneous emission. We also showed
the coincidence of the global version of quantum discord, introduced by Modi et al. (2010)
and the relative entropy of entanglement in the single-excitation subspace. Therefore, we
extended the known equivalence between coherence in the site basis and entanglement to
quantum discord. This strengthens the conjecture that in the (zero- and) single-excitation
subspace all non-classical features are captured within the coherences of the site basis.
Moreover, we recognized that the main dynamical features of the quantum correlations
are captured by an easy coherence measure. This turned out to be especially fruitful in the
first scenario above. In addition, a similar connection between the classical correlations
and the purity of one subsystem’s density matrix was identified.

In the last section we left the single-excitation subspace and investigated the effect of a
new type of initial condition (Sec. 5.4.2) on the dynamics of quantum discord and entan-
glement as measured by the logarithmic negativity. We found out that quantum discord
is typically more robust against dephasing. Also, coherence in the initial condition has
different effects on the two measures of quantum correlations. Finally, we pointed out
that a small probability of double excitations leads to a drop of the logarithmic negativ-
ity together with some structural changes. In contrast, quantum discord even increases
without any change in the shape.

As already mentioned in the introduction, the results obtained here should be confirmed in
more realistic models. Although the implementation of non-Markovian effects should not
change the qualitative picture as shown by Chin et al. (2010), it should lead to a delayed
decay of coherences and thus also of quantum correlations. Furthermore, our investiga-
tions were based on the couplings and site energies of Adolphs and Renger (2006) and
could be repeated with values extracted directly from experiments as soon as they are
available. Also the 8th pigment could be included.

It would be interesting to see the effects of non-local superpositions of initial conditions
on excitation transport also in experiments. This could be achieved by two different ap-
proaches. Firstly, experiments in different physical realizations of the transport system
like systems of super-conducting qubits Mostame et al. (2011), optical cavities Caruso
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et al. (2011) and ultracold Rydberg atoms Blumen et al. (2007); Weidemüller (2009);
Weimer et al. (2010) and ions Barreiro et al. (2011). Here, the experimentalist has much
more influence on the specific parameters and even the environmental interaction can be
modeled. Secondly, experiments with the FMO complex using optimal control theory
to tailor special-shaped laser pulses that create the desired initial states Brüggemann and
May (2004); Brüggemann and Pullerits (2007); Caruso et al. (2011).

For the discussion of the role of entanglement and quantum correlations it is vital to per-
form realistic calculations in the full Hilbert space of arbitrarily many excitations. This
is because if we consider a distance-based measure of entanglement† like the relative
entropy of entanglement, a state that has an arbitrarily small fraction of higher excita-
tions could be far closer to the actual state than the state that is completely confined to
the single-excitation subspace Brádler et al. (2010). But the complications thereby are
twofold: On the one hand of course of the Hilbert space enlarges. Here, we had seven
singly-excited states plus one state that represents the reaction center (plus one ground
state (cf. Appendix A.1)). Therefore, the dimension of our restricted Hilbert space is 8
(9). Without the restriction, we end up with a dimension of at least 27. On the other hand,
additional processes have to be included. The most important one is exciton-exciton an-
nihilation. To implement this effect, a three-state model is appropriate which blows up
the dimension even more May and Kühn (2011).

†Or in principle also more general quantum correlations as well.
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A.1 The FMO Hamiltonian

H =



215 −104.1 5.1 −4.3 4.7 −15.1 −7.8 0

−104.1 220 32.6 7.1 5.4 8.3 0.8 0

5.1 32.6 0 −46.8 1 −8.1 5.1 0

−4.3 7.1 −46.8 125 −70.7 −14.7 −61.5 0

4.7 5.4 1 −70.7 450 89.7 −2.5 0

−15.1 8.3 −8.1 −14.7 89.7 330 32.7 0

−7.8 0.8 5.1 −61.5 −2.5 32.7 280 0

0 0 0 0 0 0 0 0


(A.1)

The Hamiltonian is taken from Adolphs and Renger (2006) and is used exhaustively in
the community. The site energies and couplings are obtained by electrostatic calcula-
tions. The resulting optical spectra are in good agreement with experiments. The matrix
elements are given in spectroscopic units (cm−1). The diagonal elements (site energies)
are shifted by 12230. In this units, ~ = 5.3 ps

cm . Therefore, the conversion to rates is
achieved through a division by ~. We have extended the Hamiltonian by one dimension
to include the reaction center. The ground state (no excitation) is not included explicitly.
For this reason, the von-Neumann condition tr(ρ) = 1 is not fulfilled. We equivalently
use the condition ρ00 = 1− tr(ρ), where ρ00 is the ground state population.
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A.2 Note on the Validity of the Pure Dephasing

Model

In order to know how far we can go with our very simple approach to couple the system
to the environment, it would be desirable to compare it with a more sophisticated one.

Mülken et al. (2010) address the survival probability of an excitation on a dimer with trap-
ping at one site within two different frameworks. The former is a Liouville-von-Neumann
equation, which is closely related to the one we use. The ladder uses the Caldeira-Leggett
model Caldeira and Leggett (1983) to describe the dimer-bath coupling and bath. The time
evolution is then obtained by the numerically exact path integral Monte Carlo (PIMC)
technique Egger and Mak (1994) which allows to see in which parameter regime the pure
dephasing QME is appropriate and in which it fails.

The Lindblad term in Mülken et al. (2010) reads

L(ρ) = −2λ
∑
j

(ρ− 〈j| ρ |j〉)Lj, (A.2)

where Lj are the Lindblad operators which are given by Lj = |j〉 〈j|. Comparing this
to the dephasing term (3.6), we see that they coincide for γ = λ. The investigations
show a perfect agreement of the Liouville-von-Neumann equation and PIMC at least up
to γ = π/4 for site energies and couplings fixed at 1. Unfortunately, the next higher rate
considered is γ = 10π which deviates quite a lot. Nevertheless, since the ratio of the γ and
the couplings matter, and the smallest coupling in the main transport pathways (see fig.
4.3) is on the order of 1 ps−1, we can at least assume that the model is valid for dephasing
rates up to γ = 1 ps−1. However, this is no justification for the model in order to describe
the excitation transport in the FMO complex, since we do not know, if the system bath
interaction in this case can be described within the model of Caldeira and Leggett.
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A.3 Quantum Zeno Effect

Sudarshan (1977) pointed out that an unstable particle that is prepared in a specific state
will stay in this state, if the particle is monitored continuously. In more general terms
one can say that the time evolution of a quantum system can be stopped, if it is measured
fast enough. This effect, known as Quantum Zeno Effect, is discussed exhaustively in
the literature (e.g. Joos (2003)). In the context of our work, however, it is important to
note that a recurring measurement operation can be identified with the action of the pure
dephasing Lindbladoperator. Based on Cresser et al. (2006), this will be shown in the
following.

A.3.1 Pure Dephasing as a Measurement

Let the Ai be projective measurement operators. The density matrix ρ immediately after
a measurement has the form

ρ(t)→ ρ(t+ ε) =
∑
i

Aiρ(t)A†i . (A.3)

If the evolution is not perturbed by a measurement, the density matrix will be

ρ(t)→ ρ(t+ ε) = ρ(t)− i

~
[H, ρ(t)]ε. (A.4)

The average evolution is then given by the weighted sum

ρ(t)→ ρ(t+ ε) = (1− γ)ρ(t)− i

~
[H, ρ(t)]ε+ γ

∑
i

Aiρ(t)A†i , (A.5)

where we have taken only terms linear in ε and γ is the average rate at which the mea-
surement is performed. In the limit ε→ 0, we end up with a QME in Lindblad form

∂ρ

∂t
= − i

~
[H, ρ] + γ(

∑
i

Aiρ(t)A†i − ρ) (A.6)

Next, we specify the Ai to be projectors on the state |i〉

Ai = A†i = |i〉 〈i| , (A.7)
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and insert them into the QME (A.6)

∂ρ

∂t
= − i

~
[H, ρ] + γ(

∑
i

ρii |i〉 〈i| − ρ). (A.8)

If we compare the last term with the pure dephasing Lindbladoperator (3.5)

Ldeph(ρ) = γ
∑
i

[AiρA
†
i −

1

2
{AiA†i , ρ}] (A.9)

= γ
∑
i

[ρii |i〉 〈i| − ρ |i〉 〈i|] (A.10)

= γ(
∑
i

ρii |i〉 〈i| − ρ
∑
i

|i〉 〈i|) (A.11)

= γ(
∑
i

ρii |i〉 〈i| − ρ), (A.12)

we see that the effect of pure dephasing can be interpreted as a measurement with rate
γ.
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A.4 Optimal Basis for Projective Measurement

We define
f(θ, φ) = p1(θ)S(ρA|ΠB

1
(θ, φ))− p2(θ)S(ρA|ΠB

2
(θ, φ)), (A.13)

where the angles φ and θ are hidden in the projective measurement operators ΠB
i (θ, φ)

and the normalization factors pi(θ). The φ-dependence vanishes because we assume no
coherences between the zero- and single-excitation subspaces. Then f(θ, φ) = f(θ). The
position, but not the value, of the minima of f(θ) are independent of the time point at
which the density matrix is evaluated and independent of the dephasing rate. An exem-
plary plot, with A=1,2, B=3, t=0.1 and γ=0 is shown in fig. A.1. The edges at θ = nπ

are numerical artifacts because 0 · S(0) appears. If this is correctly interpreted as zero,
all minima coincide, and θ∗ = nπ

2
. Therefore, the optimal basis leads to a projective

measurement onto the ground and excited state of subsystem B.
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Figure A.1: The minimum of the function f(θ) appears in the definition of Quantum Discord.
The locations of the minima are at θ∗ = nπ

2 .

79



B
Lists

B.1 List of Figures

2.1 (Left) Top-view of the Fenna-Matthews-Olson (FMO) protein trimer from
green sulfur bacterium Prosthecochloris aestuarii. The protein is depicted
in yellow, and the bacteriochlorophyll (BChl) molecules are in green.
(Right) The FMO complex is located between the photosynthetic antenna
complex (chlorosome) and the reaction center. The Figure is taken from
Cheng and Fleming (2009). . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Distribution of the pigments within a single monomer. Pigments 1 and 6
(and 8) are assumed to be close to the antenna complex, whereas pigments
3 and 4 are located near the RC. The Figure has been created with PyMOL. 15

3.1 Illustration of the coherent and incoherent excitation transport through the
FMO complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Evolution of the populations ρii under the influence of pure dephasing (γ
= 1 ps−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Evolution of the populations under the influence of pure dephasing (γ =
1 ps−1) and local trapping at site 3 (κ3 = 1 ps−1). The increasing green
line is the reaction center population. . . . . . . . . . . . . . . . . . . . . 23

4.1 Efficiency as a function of dephasing and the rate of trapping at site 3.
The initial state is an excitation at site 1. The white dot in the left figure
indicates efficiency above 90 %. . . . . . . . . . . . . . . . . . . . . . . 28

80



B.1 List of Figures

4.2 Efficiency as a function of dephasing and trapping at site 3 with a rate of
5 ps−1. The blue lines correspond to an initial excitation at site 1, while
the green, dashed lines denote an initial excitation at site 6. . . . . . . . . 29

4.3 The FMO Hamiltonian with main transfer paths given by the magnitude
of the couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Efficiency as a function of dephasing for various initial phases between
|1〉 and |6〉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Illustration of the topology of the FMO network when only the strongest
couplings are considered. The local dephasing at site 3 due to the trapping
process is indicated by the wiggly lines. . . . . . . . . . . . . . . . . . . 31

4.6 Efficiency for initial superpositions of site 1 and site 2. Trapping at site 3
with rate 5 ps−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Efficiency as a function of dephasing. The blue line represents starting in
|best〉, the green, dashed line in |worst〉. Trapping at site 3 with rate 5 ps−1. 33

4.8 Reaction center population as a function of time for different dephasing
rates (blue solid: 0, green dashed : 0.1, red dotted: 1, black dashed:
10 ps−1). Trapping at site 3 with rate 5 ps−1. . . . . . . . . . . . . . . . . 33

4.9 Efficiency as a function of trapping rates at site 3 and site 4. The dephas-
ing is set to be zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.10 Efficiency for trapping at site 4 with rate 5 ps−1. . . . . . . . . . . . . . . 36

4.11 Efficiency for trapping at site 4 with rate 5 ps−1. Dephasing is set to zero. 36

5.1 Quantum discord for two qubit Werner states. . . . . . . . . . . . . . . . 44

5.2 Quantum discord for two-qubit Werner states projected on zero- and single-
excitation subspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 The green, dashed line represents the total correlations, the blue, solid
line the quantum correlations, and the red, dotted line the classical corre-
lations.The initial state is |best〉 (cf. (4.5)). Subsystem A consists of sites
1 and 2, subsystem B of site 3. Trapping is at site 3 with rate 5 ps−1. . . . 51

5.4 The green, dashed line represents the total correlations, the blue line the
quantum correlations, and the red, pointed line the classical correlations.
The initial state is |worst〉 (cf. (4.5)). Subsystem A consists of sites 1 and
2, subsystem B of site 3. Trapping is at site 3 with rate 5 ps−1. . . . . . . 51

5.5 The initial state is |best〉 (cf. (4.5)). Trapping is at site 3 with rate 5 ps−1. . 52

5.6 The initial state is |worst〉 (cf. (4.5)). Trapping is at site 3 with rate 5 ps−1. 52

81



B Lists

5.7 Plot of the coherence measure CAB (5.50). The blue, solid line represents
γ = 0.1 ps−1, the green, dashed line γ = 1 ps−1, and the red, dotted line
γ = 10 ps−1. The grey lines represent the respective quantum correlations
from Fig. 5.3. These are scaled by a factor of 1.75 in the right Figure.
Subsystem A consists of sites 1 and 2, subsystem B of site 3. Trapping is
at site 3 with rate 5 ps−1. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Plot of 1− P (ρB) (5.51). The blue, solid line represents γ = 0.1 ps−1, the
green, dashed line γ = 1 ps−1, and the red, dotted line γ = 10 ps−1. The
grey lines represent the respective classical correlations scaled by constant
factors. SubsystemB consists of site 3. Trapping is at site 3 with rate 5 ps−1. 54

5.9 The green, dashed line represents the total correlations, the blue line the
quantum correlations, and the red, pointed line the classical correlations.
The initial state is |opt〉 (see Fig. 4.10(b)). Subsystem A consists of sites
1 and 6, subsystem B of site 4. Trapping is at site 4 with rate 5 ps−1. The
dropout in the classical correlations are an unknown artifact stemming
from the computation with Mathematica. Since the classical correlations
are the difference of the total and the quantum correlations, the missing
values are uniquely defined. . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.10 The green, dashed line represents the total correlations, the blue line the
quantum correlations, and the red, pointed line the classical correlations.
The initial state is |pes〉 (cf. Fig. 4.10(b)). Subsystem A consists of sites
1 and 6, subsystem B of site 4. Trapping is at site 4 with rate 5 ps−1. . . . 55

5.11 Plot of the coherence measure CAB (5.50). The blue, solid line represents
γ = 0.1 ps−1, the green, dashed line γ = 1 ps−1, and the red, dotted line γ =
10 ps−1. The gray lines represent the corresponding quantum correlations.
Subsystem A consists of sites 1 and 6, subsystem B of site 4. Trapping is
at site 4 with rate 5 ps−1. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.12 The colored lines represent 1−P (ρB), the gray lines the classical correla-
tions scaled by a factor of three. The initial state is |opt〉 (cf. Fig. 4.10(b)).
Subsystem A consists of sites 1 and 6, subsystem B of site 4. Trapping is
at site 4 with rate 5 ps−1. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.13 The colored lines represent 1 − P (ρB), the gray lines the classical cor-
relations scaled by a factor of three. The initial state is |pes〉 (cf. Fig.
4.10(b)). Subsystem A consists of sites 1 and 6, subsystem B of site 4.
Trapping is at site 4 with rate 5 ps−1. . . . . . . . . . . . . . . . . . . . . 56

82



B.1 List of Figures

5.14 The initial state is |opt〉 (cf. Fig. 4.10(b)). Subsystem A consists of sites
1 and 6, subsystem B of site 4. Trapping is at site 4 with rate 5 ps−1. . . . 56

5.15 The initial state is |pes〉 (cf. Fig. 4.10(b)). Subsystem A consists of sites
1 and 6, subsystem B of site 4. Trapping is at site 4 with rate 5 ps−1. . . . 57

5.16 Quantum discord (blue) and mutual information (green, dashed) for initial
coherent states at site 1 and site 6. Trapping is at site 4 with rate 5 ps−1. . 60

5.17 Quantum discord (blue) and mutual information (green, dashed) for initial
non-coherent states at site 1 and site 6. Trapping is at site 4 with rate 5 ps−1. 61

5.18 Entanglement measured by logarithmic negativity for initial coherent states
at site 1 and site 6. Trapping is at site 4 with rate 5 ps−1. . . . . . . . . . . 62

5.19 Logarithmic negativity with (blue) and without (green, dashed) double
excitations for initial coherent states at site 1 and site 6. Trapping is at site
4 with rate 5 ps−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.20 Logarithmic negativity with (blue) and without (green, dashed) double
excitations for initial non-coherent states at site 1 and site 6. Trapping is
at site 4 with rate 5 ps−1. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Illustration of the three main excitation transfer scenarios investigated in
this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1 The minimum of the function f(θ) appears in the definition of Quantum
Discord. The locations of the minima are at θ∗ = nπ

2
. . . . . . . . . . . . 79

83



B Lists

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 28.09.2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84


	Introduction
	The Fenna-Matthews-Olson Complex
	Structure
	Transport Pathways and Quantum Effects
	The Model
	Regimes of Excitation Transport
	The Liouville-von-Neumann equation
	Haken-Strobl-Reineker Model and Pure Dephasing
	Trapping and Exciton Recombination

	Conclusion


	Efficiency
	Definition
	Role of Trapping and Initial Superposition
	Trapping at Site Three
	Trapping at Site Four

	Conclusion

	Entanglement and Correlations
	Definitions
	Entanglement
	Quantum Discord

	The Single-Excitation Subspace
	Equivalence of Quantum Discord and Relative Entropy of Entanglement
	Conclusion

	Dynamics of Classical and Quantum Correlations
	Superpositions of | 1 > and | 2 >
	Superpositions of | 1 > and | 6 >
	Conclusion

	Brief Glimpse Beyond Single Excitations
	Method
	Initial Condition
	Dynamics
	Conclusion


	Summary and Outlook

	Bibliography
	Appendix
	The FMO Hamiltonian
	Note on the Validity of the Pure Dephasing Model
	Quantum Zeno Effect
	Pure Dephasing as a Measurement

	Optimal Basis for Projective Measurement

	Lists
	List of Figures


