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The gravitational-wave (GW) sky may include nearby pointlike sources as well as astrophysical
and cosmological stochastic backgrounds. Since the relative strength and angular distribution of the
many possible sources of GWs are not well constrained, searches for GW signals must be performed
in a model-independent way. To that end we perform two directional searches for persistent GWs
using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary

extended sources.

The latter result is the first of its kind. Finding no evidence to support the

detection of GWs, we present 90% confidence level (CL) upper-limit maps of GW strain power

with typical values between 2 — 20 x 107°" strain?Hz ™"

and 5 — 35 x 107 strain?Hz 'sr~' for

pointlike and extended sources respectively. The limits on pointlike sources constitute a factor of

30 improvement over the previous best limits.

We also set 90% CL limits on the narrow-band

root-mean-square GW strain from interesting targets including Sco X-1, SN1987A and the Galactic
Center as low as ~ 7 x 10~ 2° in the most sensitive frequency range near 160 Hz. These limits are the
most constraining to date and constitute a factor of 5 improvement over the previous best limits.

I. INTRODUCTION

One of the most ambitious goals of gravitational-wave
(GW) astronomy is to measure the stochastic cosmo-
logical gravitational-wave background (CGB), which can
arise through a variety of mechanisms including amph—
fication of vacuum fluctuations following mﬂatlon 1,
phase transitions in the early universe % , cosmlc
strings [4, 5] and pre-Big Bang models [d, The CGB
may be masked by an astrophysical gravitational-wave
background (AGB), interesting in its own right, which
can arise from the superposition of unresolved sources
such as core-collapse supernovae , neutron-star ex-
citations ﬂE . |, binary mergers ], persistent emis-
sion from neutron stars and compact objects
around supermassive black holes ,

We present the results of two analyses using data from
the LIGO S5 science run: a radiometer analysis opti-
mized for pointlike sources and a spherical-harmonic de-
composition analysis, which allows for arbitrary angular
distributions. This work presents the first measurement
of the GW sky in a framework consistent with an arbi-
trary extended source.

aElectronic address: ethrane@physics.umn.edu

II. LIGO DETECTORS AND THE S5 SCIENCE
RUN

We analyze data from LIGO’s 4km and 2km detec-
tors (H1 and H2) in Hanford, WA and the 4km detec-
tor (L1) in Livingston Parish, LA during the S5 science
run, which took place between Nov. 5, 2005 and Sep. 30,
2007. During S5, both H1 and L1 reached a strain sen-
sitivity of 3 x 10723 strain Hz~ /2 in the most sensitive
region between 100 — 200 Hz ﬂﬁ] and collected 331 days
of coincident H1L1 and H2L1 data. S5 saw milestones in
GW astronomy including limits on the emission of GWs
from the Crab pulsar that surpass those inferred from the
Crab’s spindown m], as well as limits on the isotropic
CGB that surpass indirect limits from Big Bang nucle-
osynthesis and the cosmic microwave background @
This work builds on @ .

IIT. METHODOLOGY

Following , ] we present a framework for analyz-
ing the angular distribution of GWs. We assume that the
GW signal is stationary and unpolarized, but not neces-
sarily isotropic. It follows that the GW energy density
Qaw(f), can be expressed in terms of the GW power
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spectrum, P(f

272 . «
_ﬁfS/SZdQP(f,Q). (1)

Here f is frequency, Q is sky location, p. is the criti-
cal density of the universe and Hy is Hubble’s constant.
We further assume that P(f,€2) can be factored (in our
analysis band) into an angular power spectrum, P(Q),
and a spectral shape, H(f) = (f/fo)?, parameterized by
the spectral index 8 and reference frequency fy. We set
fo = 100Hz to be in the sensitive range of the LIGO
interferometers. .

Our goal is to measure P(£2) for two power-law signal
models. In the cosmological model, 3 = —3 (Qaw(f) =
const), which is predicted, e.g., for the amplification of
vacuum fluctuations following inflation (see [23] and ref-
erences therein). In the astrophysical model, 8§ = 0
(H(f) = const), which emphasizes the strain sensitivity
of the LIGO detectors.

We estimate P(Q) two ways. The radiometer algo-
rithm ﬂ2_1|, 24, @] assumes the signal is a point source
characterized by a single direction Qo and amplitude,

n(o):
P(Q) = 77(@0)52@7@0)- (2)

It is applicable to a GW sky dominated by a limited
number of widely separated point sources. As the number
of point sources is increased, however, the interferometer
beam pattern will cause the signals to interfere and partly
cancel. Thus, radiometer maps do not apply to extended
sources. Since pointlike signals are expected to arise from
astrophysical sources, we use f = 0 for the radiometer
analysis.

The spherical-harmonic decomposition (SHD) algo-
rithm is used for both § = —3 (cosmological) and § = 0
(astrophysical) sources. It allows for the possibility of an
extended source with an arbitrary angular distribution,
characterized by spherical-harmonic coefficients P;,, such
that

P = PimYim (). (3)
Im

The series is cut off at lyax, allowing for angular scale
~ 27 [linax. The flexibility of the spherical-harmonic al-
gorithm comes at the price of somewhat diminished sen-
sitivity to point sources, and thus the two algorithms are
complementary.

We choose Imax 50 as to minimize the sky average of
the product of o(£2) and A, where ({2) is the uncertainty
associated with P () and A is the typical angular area
of a resolved patch of sky ﬂﬁ] Since A = 47 /Nindep X
1/(Imax+1)? (where Nipqep is the number of independent
parameters), this procedure amounts to choosing lyax to
maximize the sensitivity obtained by integrating over the
typical search aperture (angular resolution). We obtain
Imax = 7 and 12 for § = —3 and S = 0, respectively.

Since the search aperture becomes smaller at the higher
frequencies emphasized by 5 = 0, lj,ax is larger for 5 = 0
than for f = —3.

Both algorithms can be framed in terms of a “dirty
map”, X,, which represents the signal convolved the
Fisher matrix, I, :

e RToRTIC @

Sy W)
tw = S g e

Here both the Greek indices p and v take on values of
Im for the SHD algorithm and €2 for the radiometer al-
gorithm, for which we use the pixel basis. The two bases
are related using spherical-harmonic basis functions:

Xo=  XimYim(Q). (6)
Im

C(f,t), meanwhile, is the cross spectral density gener-
ated from the H1L1 or H2L1 pairs. Pi(f,t) and Py (f,t)
are the individual power spectral densities, and 7, (f,t) is
the angular decomposition of the overlap reduction func-
tion (£, f,t), which characterizes the orientations and
frequency response of the detectors ﬂﬂ]

Yu(fit) = /52 de(Q,f, t) e#(()) (7)
Y ft) = %F{‘(Q, 1) F{(Q, t)ei2m - (BFm)/e (g)

Here F{(),t) characterizes the detector response of de-
tector I to a GW with polarization A, e, (Q) is a basis
function, c¢ is the speed of light and Az = &1 — 25 is
the difference between the interferometer locations. A de-
tailed discussion of these quantities can be found in @]

In [22] it was shown that the maximum-likelihood es-
timators of GW power are given by P = I'"'X. The
inversion of I' is complicated by singular eigenvalues asso-
ciated with modes to which the Hanford-Livingston (HL)
detector network is insensitive. This singularity can be
handled two ways. The radiometer algorithm assumes
the signal is pointlike, implying that correlations between
neighboring pixels can be ignored. Consequently, we can
replace I~ with (Pgg) ™" to estimate the point source

amplitude 7(Q) (see Eq. B). (We note that pointlike
sources create signatures in our sky maps that typically
span several degrees or more; see [21].)

The SHD algorithm, on the other hand, targets ex-
tended sources, so the full Fisher matrix must be taken
into account. We regularize I' by removing a fraction,
F, of the modes associated with the smallest eigenval-
ues, to which the HL network is relatively insensitive. F
is known as the regularization cutoff. By removing some
modes from the Fisher matrix, we obtain a regularized
inverse Fisher matrix, 1"1}1, thereby introducing a bias,



the implications of which are discussed below. For now,
we note that the bias depends on the angular distribution
of the signal.

We thereby obtain the estimators

—1

Mg, = (me) X 9)
ﬁlm = Z(Pgl)lm,l’m’Xl’m’a (10)
U'm/’

with uncertainties

o = (Tgq) '/ (11)
s _ 1/2
o = (O imam] - (12)

We refer to 75Q =D m ﬁlelm(Q) as the “clean map”
and 7y as the “radiometer map.”  We mnote that

7, has umits of strain?Hz~' whereas Pg, has units of
strain?Hz ~'sr—1.

In choosing F one must balance the competing de-
mands of reconstruction accuracy (sensitivity to the
modes that are kept) with the bias associated with the
modes that are removed. In practice, we do not know the
bias associated with F since it depends on the unknown
signal distribution P(€2). Therefore, we choose a value of
F that tends to produce reliably reconstructed maps with
minimal bias for simulated signals. Following @], we use
F = 1/3, which was shown to be a robust regularization
cutoff for simulated signals including maps characterized
by one or more point sources, dipoles, monopoles and an
extended source clustered in the galactic plane (see [22]).

In the case of the SHD algorithm, we construct an
additional statistic (see [22]),

C) = 21;_’_1 Z {|751m|2 - (ngl)lm,lm} ; (13)

m

which describes the angular scale of the clean map. The
subtracted second term makes the estimator unbiased so
that (C;) = 0 when no signal is present. The expected
noise distribution of Cj is highly non-Gaussian for small
values of [, and so the upper limits presented below are
calculated numerically. The C; are analogous to similar
quantities defined in the context of temperature fluctua-
tions of the cosmic microwave background (see, e.g., [24]).

The analysis was performed using the S5 stochastic
analysis pipeline. This pipeline has been tested with
hardware and software injections, and the successful re-
covery of isotropic hardware injections is documented
in ﬂﬁ]l The recovery of anisotropic software injections
is demonstrated in E’E] We parse time series into 60s,
Hann-windowed, 50%-overlapping segments, which are
coarse-grained to achieve 0.25Hz resolution. We ap-
ply a stationarity cut described in ], which rejects
~ 3% of the cross-correlated segments. We also mask
frequency bins associated with instrumental lines (e.g.,
harmonics of the 60 Hz mains power, calibration lines
and suspension-wire resonances) as well as injected, sim-
ulated pulsar signals. For 8 = —3, 0 we include frequency

bins up to 200,500 Hz, so that o(Q) is within < 2% of
the minimum possible value. Thirty-three frequency bins
are masked, corresponding to 2% of the frequency bins
between 40 — 500 Hz used in the broadband analyses.
For additional details about the S5 stochastic pipeline,
see [20].

IV. SIGNIFICANCE AND UPPER LIMIT
CALCULATIONS

In order to determine if there is a statistically signif-
icant GW signature, we are primarily interested in the
significance of outliers—the highest signal-to-noise ratio
(SNR) frequency bin or sky-map pixel. It is therefore
necessary to calculate the expected noise probability dis-
tribution of the maximum SNR given many independent
trials (when considering maximum SNR in a spectral
band) and given many dependent trials (when considering
maximum SNR for a sky map).

For N independent frequency bins, the probability
density function, m(pmax), of maximum SNR, pmax, iS
given by

7 (Pmax) X [1 + erf (pmax/\/i)} A e Pinax/2 (14)

Here we have assumed that the stochastic point esti-
mate is Gaussian distributed. The Gaussianity of Pg and
fgy, calculated by summing over many O(500K) indepen-
dent segments, is expected to arise due to the central
limit theorem [27]. Additionally, we find the Gaussian-
noise hypothesis to be consistent with time-slide studies,
wherein we perform the cross-correlation analysis with
an unphysical time-shift in order to wash out astrophys-
ical signals and thereby obtain different realizations of
detector noise.

The distribution of maximum SNR for a sky map is
more subtle due to the non-zero covariances that exist
between different pixels (or patches) on the sky. For
this case, we calculate 7(pmax) numerically, by simu-
lating many realizations of dirty maps that have ex-
pected covariances described by the Fisher matrix I'. Fig-
ure [Tl shows the numerically determined 7(pmax) for the
B = —3 clean map generated with Gaussian noise.

The likelihood function for P(2) at each point in the
sky can be be described as a normal distribution with
mean Py and a variance (U;zph)2. In the case of the SHD
algorithm, regularization introduces a signal-dependent
bias. Without knowing the true distribution of P(£2), it
is impossible to know the bias exactly, but it is possible
to set a conservative upper limit by assuming that on av-
erage the modes removed through regularization contain
no more GW power than the modes that are kept.

To implement this assumption, we calculate Py, with
a regularization scheme that sets eigenvalues of removed
modes to zero, whereas alsslh is conservatively calculated
using a regularization scheme that sets eigenvalues of
removed modes to the average eigenvalue of the kept
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FIG. 1: Numerically calculated distribution of the maximum
SNR for 8 = —3 clean maps created from Gaussian noise.

modes. This has the effect of widening the likelihood
function at each sky location. The upper limits become
on average 25% larger than they would be if we had calcu-

lated aiglh using the same regularization scheme as Py,,.

Following the same procedure as in M], we marginal-
ize over the H1, H2, and L1 calibration uncertainties,
which were measured to be 10%, 10%, and 13%, re-
spectively [28] [38] The posterior distribution is obtained
by multiplying the marginalized likelihood function by a
prior, which we take to be flat above P(Q) > 0 [39]. The
Bayesian upper limits are then determined by integrat-
ing the posterior out to the value of P(£2) which includes
90% of the total area under the distribution. The calcu-
lation of upper limits on 7, is analogous except we need
not take into account the effects of regularization.

V. RESULTS

Sky maps: Figure 2] presents sky map results for the
different analyses: SHD algorithm with 8 = —3 (left),
SHD with S = 0 (center), and radiometer with § = 0
(right). The top row contains SNR maps. The maximum
SNR values are 3.1 (with significance p = 25%), 3.1 (with
p =56%), and 3.2 (with p = 53%) respectively. These p-
values take into account the number of search directions
and covariances between different sky patches (see [V]).
Observing no evidence of GWs, we set upper limits on
GW power as a function of direction. The 90% confidence
level (CL) upper limit maps are given in the bottom row.
For the SHD method with 8 = —3, the limits are between
5—31 x 10~4 strain?Hz~'sr—'; for SHD with $ = 0, the
limits are between 6 — 35 x 10~4% strain?Hz~!sr~!; and
for the radiometer with 5 = 0, the limits are between
2 — 20 x 10759 strain?Hz 1.

The strain power limits can also be expressed in terms

of the GW energy flux per unit frequency ﬂ2_1|]
N i [ A S
=S (L) 7

318 1042ﬂ) /
( U amzs/) \ 100z

(15)

>B+2 Pe- (16)

(Radiometer energy flux is obtained by replacing
’ﬁﬁ with 7g.)  The corresponding values are 2 —
10 x 1075(f/100Hz) tergem2s ™ 'Hz 'sr™! and 2 —
11 x 107%(f/100 Hz)? erg cm~2s1Hz'sr~! for the SHD
method, and 6 — 60 x 10~%(f/100 Hz)? ergcm~2s~'Hz !
for the radiometer. The radiometer map constitutes a
factor of ~ 30 improvement over the previous best strain
power limits [21].

When comparing the SHD analysis with 8 = 0 and the
radiometer upper limits obtained using the same spec-
trum, it is important to note that these maps have differ-
ent units. The radiometer map has units of strain?Hz !
because the radiometer analysis effectively integrates the
power from a GW point source over solid angle. The SHD
maps, on the other hand, have units of strain?Hz 'sr—!.
If we scale the SHD limit maps by the typical diffraction
limited resolution (A ~ 0.1sr), then the limits are more
comparable. The radiometer algorithm limits are lower
(by a factor of < 2) because it requires a stronger as-
sumption about the signal model (a single point source),
whereas the SHD algorithm is model-independent.

Figure [3] show 90% CL upper limits on the C;. Since
the Py, have units of strain power (strain?Hz~tsr~!), the
C; have the somewhat unusual units of strain*Hz~2sr—2.

Targeted searches: Sco X-1 is a nearby (2.8kpc) low-
mass X-ray binary likely to include a neutron star spun
up through accretion. Its spin frequency is unknown. It
has been suggested that this accretion torque is balanced
by GW emission m] The Doppler line broadening due
to the orbital motion is smaller than the chosen §f =
0.25 Hz bin width for frequencies below ~ 930 Hz [30].
At higher frequencies, the signal is certain to span two
bins. We determine the maximum value of SNR in the di-
rection of Sco X-1 to be 3.6 at f = 1770.50 Hz, which has
a significance of p = 73% given the O(7000) independent
frequency bins. Thus in Fig. M (first panel) we present
limits on root-mean-square (RMS) strain, hrums(f, ),
as a function of frequency in the direction of Sco X-1
(RA, dec) = (16.3 hr, 15.6°). These limits improve on the
previous best limits by a factor of ~ 5 ] RMS strain
is related to narrow-band GW power via

R . 1/2
s (1.0) = [n(£.206f] (17)
and is better suited for comparison with searches for pe-
riodic GWs, which typically constrain the peak strain
amplitude, hg, marginalized over neutron star parame-
ters ¢ and 1 (see, e.g., [31]). Our limits on hrus are
for a circularly polarized signal from a pulsar whose spin
axis is aligned with the line of sight. Marginalizing over
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FIG. 2: Top row: Signal-to-noise ratio maps for the three different analyses described in this paper: SHD clean map for g = —3

(left), SHD clean map for g =

0 (center), and radiometer for f = 0 (right). All three SNR maps are consistent with detector

noise. The p-values associated with each map’s maximum SNR are (from left to right) p = 25%, p = 56%, p = 53%. Bottom

row: The corresponding 90% CL upper limit maps on strain power in units of strain?Hz ™ 'sr

units of strain?Hz ! for the radiometer algorithm.

FIG. 3: Upper limits on C; at 90% CL vs [ for the SHD analyses for 8 =

with detector noise.

¢ and 9 and converting from RMS to peak amplitude
causes the limits to change by a sky-dependent factor of
~ 2.3 @] We note that these limits are on the RMS
strain in each bin as opposed to the total RMS strain
from Sco X-1, which might span as many as two bins.
The frequency axis refers to the observed GW frequency
as opposed to the intrinsic GW frequency.

We also look for statistically significant outliers
associated with the Galactic Center (RA,dec) =
(17.8 hr, —29°) and SN1987A (RA,dec) = (5.6 hr, —69°).
The maximum SNR values are 3.5 at f = 203.25 Hz with

= 85% and 4.3 at 1367.25Hz with p = 7%, respec-
tively. Limits on RMS strain are given in the right panel
of Fig. @

VI. CONCLUSIONS

We performed two directional analyses for persis-
tent GWs: the radiometer analysis, which is optimized
for point sources, and the complementary spherical-
harmonic decomposition (SHD) algorithm, which allows
for arbitrary extended sources. Neither analysis finds evi-
dence of GWs. Thus we present upper-limit maps of GW
power and also limits on the RMS strain from Sco X-1,
the Galactic Center and SN1987A. The radiometer map
limits improve on the previous best limits ﬂz_ll] by a fac-
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3 (left) and 8 = 0 (right). The C; are consistent

tor of 30 in strain power, and limits on RMS strain from
Sco X-1 constitute a factor of 5 improvement in strain
over the previous best limits ﬂz_ll] The SHD clean maps
represent the first effort to look for anisotropic extended
sources of GWs.

With the ongoing construction of second-generation
GW interferometers, we are poised to enter a new era
in GW astronomy. Advanced detectors [33136] are ex-
pected to achieve strain sensitivities approximately 10
times lower than initial LIGO, and advances in seismic
isolation are expected to extend the frequency band down
from 40 Hz to 10 Hz m] By adding additional detec-
tors to our network, we expect to reduce degeneracies in
the Fisher matrix and improve angular resolution. These
improvements will allow advanced detector networks to
probe plausible models of astrophysical stochastic fore-
grounds and some cosmological models such as cosmic
strings.
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