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Introduction 

GENERAL-RELATIVISTIC KINETIC THEORy 

( i ) 
OF GASES 

The relativistic kinetic theory of gases, which will be presented in the 

following lectures, is of interest for a number of reasons: It offers a sim 

pIe, microscopic model for matter in bulk 'which is sufficiently general to 

provide a oasis for hydrodynamics and thermodynamics of simple and multi­

component systems. Definite conservation laws, balance equations, equations 

of state, transport and reactions can be derived from it, and if cross from 

a microscopic scattering theory are fed in, kinetic theory gives transport and 

reaction coefficients. As in the non-relativistic theory, the arbitrariness of 

the constitutive equations and the indefiniteness of the transport coefficients 

inherent in the phenomenological continuum approach are overcome by the ki­

netic theory. 

Moreaver, kinetic theory provides a description of gases under conditions 

where fluid dynamics does not apply, e. g., when collisions are rare and the 

mean free path is large. 

This work was supported in part by NSF - grant GP 20033 
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Applied to macroscopic particles like stars or galaxies, kinetic theo­

ry offers a method of treating systems or the sustem of galaxies, the 

"gas" of cosmology. 

Another asset of relativistic kinetic theory is its uniform treatment 

of gases consisting of particles with positive mass and those having zero 

mass particles; its application to photons gives the cosmologically and 

astrophysically important theory of the transport of radiation. 

Specific applications of relati vistic ki~ tic theory to astrophysical pro­

blems which illustrate the usefulness of this theory will be mentioned later. 

Although the domains of applicability of fluid dynamics and kinetic theo­

ry overlap, neither of them contains the other one. Nevertheless, kinetic 

theory may be considered as the more fundamental of the two theories, sin 

ce within it one can derive from simple microscopic laws and plausible sta­

tistical assumptions and approximation methods the general forms of all the 

laws which are postulated in fluid dynamics; only the numerical values .of 

(e. g.) transport coefficients have to be changed on leaving the domain of va­

lidity of kinetic theory. 

Ideally, one would like to derive both kinetic theory and fluid dynamics 

from statistical mechanics; at the relativistic level, this has not yet been 

achieved. Therefore, we have to introduce the basic concepts and laws of 

kinetic theory on the basis of plausibility considerations as did Boltzmann. 

There are many unsolved problems in relativistic kinetic theory, questions 

concerning the foundations, the mathematical structure, and specific physical 

applications. We shall refer to some of them in the following lectures. 
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Several systematic expositions of relativistic kinetic theory exist 

which naturally have much in common with the following lectures, in 

particular those by N. A. Chernikov (1963,1964), C. MarIe (1969), J. Ehlers 

and R. K. Sachs (1968), and J. Ehlers (1969). The elementary aspects of 

the special-relativistic theory which precede the Boltzmann equation (or 

sidestep it) are contained in the well-known book by J. L. Synge (1957) who­

se geometrical spirit has strongly influended the present lectures. (More 

specific references will be given at appropriate places in the lectures.) 

In order to free equations of inessential factors, we shall use the 

following convention regarding physival dimensions and units: We put 

c = 8 Tt G = 1i = 1, 

where c is the speed of light in vacuo, G Newton's constant of gravitation, 

h the quantum of angular momentum, and k Boltzmann's constant. All 

physical quantities are then measured by pure numbers. 
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1. Assumptions on spacetime. Notation 

Let X denote spacetime which we assume to be a real, four-dime~ 

sional, connected, differentiable Hausdorff manifold. In addition, we as­

sume X to be oriented, and take always oriented local coordinate sy­

stems (xa ), a = 1, ... ,4. 

The tangent space to X 

Natural, dual bases in 

at p 

T and 
p 

is denoted as T (x); its dual, T"'(X). 
d PaP 

T4t are (--) and (dx ), respectively. 
p dXa 

X carries a normal hyperbolic metric whose signature we take as 

+ 2. The metric tensor or gravitational potential is written gab' the Rie­

mannian connection is r~c' and the Riemann! curvature tensor is R~Cd' 

The Ricci tensor is given by Rab: = RC b' and the Einstein tensor by 
1 ac 

Gab: = Rab - 2 Rgab, where R: Ra
a· The sign of the curvature ten-

sors is fixed by the Ricci identity. 

d 
= vdR abc' 

We assume that X is time-oriented with respect to gab' so that it is 

meaningful to distinguish between future directed and past directed timelike 
( 1 ) 

and lightlike vectors, respecti vHy 

An orthonorlaal basis (e.) of T is always chosen to be oriented 
J p 

and such that e 4 is future -directed. 

(1) 
An example of a pair (X, g b) which is not time-orientable is given in 
appendix I of Ehlers (1969).a 
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A coordinate- system (xa) is said to be inertial at p, p ~ X, if 

r:c Ip = 0 and (?xalp ) is orthonorlaal. -

The physical interpretation of general relativity theory is largely b~ 

sEld on the correspondence principle that physical laws in the presence 

of gravitation retain their special relativistic form at p if expressed 

with respect to coordinates which are inertial at p. This guiding pri!!. 

ciple is not unambigious, however. 

The assumption that spaceti me is oriented is not necessary for kin~ 

tic theory; it is made here only for convenience. Without this assumption 

several quantities appearing in kinetic theory would have to be defined with 

respect to oriented domains of X, and it would have to be shown that a 

change of orientation preserves all relevant equations. This can be done. 

The assumption that spacetime is time-oriented is also not necessary 

for those pArts of kinetic theory which are independent of the Boltzmann 

equation. Without it, some quantities would have to be defined relative to 

time oriented domains of X, and the relevant equations would have to 

be shown to be insensitive to changes of the time orientation; that can 

easily be done. The Boltzmann eqllation, however, can only be formula..! 

ed in a time-oriented spacetime, and its form is not preserved under a 

change of that orientation. The reason is that the occupation numbers of 

initial and final states enter the collision integral in a non- symmetrical 

manner, as will be seen later and as is known from ordinary kinetic 

theory. The arrow of time built into the Boltzmann equation shows up 

particularly clearly in the Htheorem, to be derived later. 



- :W8 -

.Ehlers 

2. Some facts about differential forms and integration (1 ) 

Kinetic theory deals with various kinds of averages which are expre~ 

sed as integrals. The domain of integration is sometimes a hypersurf~ 

ce in X, sometimes a specetime region, sometimes a hypersurface or 

a region in phase space (to be defined below). The appropriate tools for 

forming such integrals-volume elements, hypersurface elements etc. -

are differential forms. We assume that the elements of the theory of 

differential forms on manifolds are known, and collect here a number 

of facts which we need later. 

On an n-dimensional manifold N, the differential form fields can be 

expressed, with respect to local coordinates, as sums of homogeneous 

forms like UI = J. \II dxai ' .. a" where the components \II 
I r! I at' .. a r ' I at' .. al' 

are real functions and 

are exterior products of the coordinate differentials. With respect to the 

operations of addition, multiplication with real numbers and exterior mil.!. 

tiplication the form fields from an associative algebra. The exterior 

differentiation operator d maps this algebra into itself. 

An r-form r can be contracted, like any covariant tensor, with avec 

tor A; the result is a (r - l}-form cP= A·U/ with components I.D = 
I I I a1 · .. ar 

= A at \II . A coordinate-independent definition of this operation 
I at a, ... a~ 

( t ) See the "references"about mathematical tools" in the bibliography at 
the end of these lecture notes. 
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is contained in the following assertion: 

For any system of r-1 vectors A2,···, A r' we have 

For a fixed vector A the mapping 0/-+ A· f of the algebra of 

forms into itself in an antiderivation, i. e., it is linear and satisfies the 

product rule 

Moreover, 

0. 

A trivial, but useful consequence of the definitions is the 

Lemma 1. If n is a nonzero n-form at some point p of N, then the 

map L-"L·.n. = : W is a vector space isomorphism of T (N) onto 
p 

the space of (n-l) -forms at p. 

This lemma immediately leads to 

Lemma 2. If.n. is an n-form at p, n f 0, and LET (N), 
p 

L f 0, 

then the most general (n -1) -form W at p such that t\){A l' ... , An _ 1) f ° 
whenever (L, A , ... , A ) is linearly independent, is given by to\) = a vCt 

1 n-1 
where a f 0. 

Corollary. If fA) has the property stated in Lemma 2, then L . "" = 0, 
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and w (AI' .... , An_I) 

dent. 

o whenever (L, AI' .... ,An_I) is linearly depe~ 

Lemma 2 and its corollary should be visualized by considering n 
and w as volume-functions for n- dimensional and (n-l)- dimensional 

parallelotope s, respectively. 

Another useful fact needed later the proof of which is left as an ex-

ercise is 

Lemma 3. If n is an n-form field on N, L a vector field and f a 

function, then 

df " (L • n ) L (f) n. (1) 

We here recall that a vector is (identified with) a linear differential 

operator acting on functions: L(f) = La f, 
a 

Finally we recall the fundamental theorem (of Stokes): 

If M is an oriented, compact, m- dimensional subma.nifold-with - boun .. 

dary ~M of an n-manifold N, and 'f is a (smooth) (m-l}-form field of 

N defined on M, then 

(2) 

The assumption that M is compact can be omitted provided if 
decreases to zero sufficiently strongly at infinity of M; also, dM may 

be allowed to have "corners". 



- 311 -

Ehlers 

3. Volume elements in spacetime 

Under the assumptions about spacetime stated in section 1 the ex-

pression 

(3) 

where g:= det(gab) and y-:g >0, is a nonvcinishing4-form such that 

'? (e 1,e2,e3,e4) = 1 for any orthonormal basis (e j ); it is the volume 

element of spacetime. 

Let A be a vector field on X and D a 4 -dimensional, oriented) 

compact submanifold-with-boundary of X - henceforth called a region. Then, 

according to (2), 

Id(AO"1) = SAO "l (4) 

D '() D 

The integrand on the left can be rewritten as 

d(Ao,) 

and that on the right as 

A 0 fJ) A a 6.:' (5': = -.!. fT) dxbcd (5) 
( a' a 6 (abed ' 

where 
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~ abcd '7 [abcd] , (1234 (6) 

are the components of "I . 
~ are the components of the (vectorial) hypersurface element in 

a 
X; the latter is a vector-valued 3-form. 

With this notation, (4) goes over into 

Er, a 
(7) 

D 

the familiar metric-dependent version of Gauss's theorem in Rieman­

nian space. 

We shall heneeforth use the term hypersurface for "oriented hyper­

surface". 

Since each tangent space T of X is itself a (flat, oriented) 
q 

pseudoriemannian space, it has its own volume element 

..,... ,r:r;"d 1234 
I&. V -g P . (8) 

g is to be evaluated at q with respect to coordinates (x a), and the 

p a from p" p a :f a. define an oriented coordinate - system on T 
~X q 

Physically important hypersurfaces of T are the mass - shells for 
q 

masses m? O. The mass- shell P (q) con sists of all future directed 
m 

(4 momentum) vectors p at q which belong to (proper) mass m; 

p 2 " - m 2. An oriented coordinate- system on P (q) is defined as follows. 
dm _ 

Take coordinates on X around q such that --~, v- 1,2, 3, are space-
;;)X 
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like and S X4 is future- directed and timelike at q. Then the restric­

tions of the natural coordinates p" to P (q) form an oriented co­
m 

ordinate- system on P (q), and p 4 ( > 0) is determined by 
m 

cab 2 
gab(x )p p = - m . (9) 

Po (q) is the future light cone of q. 

In order to obtain a scalar volume element on P (q), consider 
m 

the T -analogue of (5), 
q 

1 bcd 
La:= 6'(abciP . (10) 

Its restriction to P (q) has values proportional to the normal of P (q), m m 
hence there exists a 3 -form 1T such that 

m 

(11) 

since is a normal of P 
Pa m Setting a 4 in (10) and (11) gives 

explicit ely 

The same volume element is formally obtained from 

(2 2 
It = 2 H(p) d(p + m ) 1t. 

m 

(12) 

(13) 
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in which H is the Heaviside function of p 4 and J is the Dirac 

distribution. 

For m> 0, m 1t: is the induced Riemannian volume element of 
m 

P (q) as a hypersurface of T . 
m q 

In inertial coordinates at q, we have the familiar expression 

where E 

obtain 

1(m 

or also 

1'( 
m 

~3 
E 

(14) 

4 
P is the energy. Taking polar coordinates in p-space we 

V 2 2' 
m +p 

2' 
m 

(15) 

(16) 

The consideration which led to the volume element TCo on the tan -

gent null cone P (q) can be generalized to the actual null cone of 
o 

q in X. We leave it as an exercise to the reader to verify 

Lemma 4. Let N~ be the past null cone of q, and let u be a 
q q 

future-directed timelike unit vector at q. A normal k of W is ob-
a q 

tained by drawing null geodesics through q, choosing tangent vectors k 

to them such that, at q, k.u = 1, and parallely propagating these 
q a dxa 

k's along the null geodesics. Also, put v = 0 at q, and put k = dv' 
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dfl 
q 

rays 

through q into that 3-space through q which is orthogonal to u, 
q 

and call D the distance from apparent size of an arbitrary point 

r E J from q, as measured by an observer at q with 4-velocity u . 
q q 

Then 

\ 17) 

so that D2d n 1\ dv is a natural scalar volume element on N. 
q q 

( i ) 
4. Basic assumptions about a relativistic gas. Geometry of phase space. 

The history of a system of many (classical) particles of negligible size 

is represented in relativity theory as a complex of timelike or lightlike 

wordlines. The particles may be thought of as being macroscopic ( stars, 

galaxies) or microscopic (molecules, atoms, ions, nuclei, photons, ... ), 

and they may be interacting through long- range and/or short range forces. 

Without attempting to give a detailed description of the dynamics of 

such a general system, we lay down a special, simple model for some 

systems which we call gases. In these systems, the particles are assumed 

to move like test particles in a mean gravitational field gab and elec-

( i) The geometric treatment given in this section follows essentially 
that of Bichteler (1965). See also Chernikov (1963), Lindquist (1966) 
(Appendix), and Marie (1969). 
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tromagnetic field F ab' except during encounters due to short range in­

teractions which are idealised as pOint collisions. (I. e. ,the range of 

these interactions must be much smaller than the mean free path. ) 

The mean fields may be external fields - we then speak of a test gas 

- or may be collectively generated by the gas p8rticles themselves, in 

which case we have a selfgr2vitating gas (or a Vlasov plasma). 

We proceed to formalize this qualitative picture of a gas. 

A particle of mass m (~O) and charge e has a worldline 

xa(v) which obeys the Lorentz-Einstein equations of motion 

a 
p, 

Dpa a b 
= e F bP , dv 

(18) 

if radiation reaction is neglected. The parameter v is so chosen that 

the tangent vector pa is the (future-directed) 4-momentum. If m > 0, 

m v is proper time. ~v denotes, here and in the sequel, the abso­

lute derivative along the world line, 

pac Dpa dar b 
cis = cis + bcP P . (19) 

If a particle participates in a collision at x E X, its world line may 

have a corner at x, or the world line may end or begin at x, if the 

particle is annihilated or created in the collision. 

In the case of many particles the spacetime figure of a gas is a com­

plicated network of curves, since several trajestories with different direc 

tions can pass through the same event, and the trajectories through near­

by events can have quite dilferent directions, 
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A simplification of the geometrical representation is achieved, as 

in nonrelativistic kinetic theory, by introducing a phase space. Since 

in relativity no preferred space sections t = const. exist, the relati­

vistic phase space cannot be defined in strict analogy to the ordinary 

(1, p) phase space (of one particle), but will correspond to the (;t, t, p, E) -

~space. We define the (relativistic) one particle phase space for parti­

cles of arbitrary mass m to be the manifold 

M: = { (x, p): x E X, P (Tx(X), P~ 0, p future directed.} (20) 

This set is indeed a 8-dimensional manifold, if we agree to take as 

local coordinates (xa, pal, where (xa) is a coordinate-system on X 

and pa are the corresponding natural vector components. 

M is, in fact, a manifold with boundary, the boundary dM being the 
2 

set of states (x, p) having mass zero, p = O. 

M is a fiber bundle with base X. The fiber at x is the set 

of non-spacelike, future-directed vectors at x, i. e., the 4-momentum 

space at x. (If all vectors had been admitted, M would be the tangent 

bundle T(X) over spacetime.) 

M is obviously oriented, the (x a, p a)_ systems being oriented coor­

dinate-systems. 

The equations of motion (18), (19) define on M a vector field 

a~ aarabcd 
L = P d X " + (e F bP -, bcP P ) d pI. (21) 
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called the Liouville vector (or operator). The oriented integral curves 

(xa(v), pa(v)) form a congruence in M, the phase flow generated by 

L. Physically, the phase flow represents the set of all test particle mo­

tions which are possible in the combined gravitational and electromagne­

tic fields occuring in L. 

The rest mass m as given by equation (9) is a scalar function on 

M. It is constant on each phase orbit, 

L(m) o. (22) 

Hence the restriction L of L to the hyper surface M of M 
m m 

defined by m = const. is tangent to M . We note that 
m 

M = Up (x). 
m xeX m 

(23) 

M , with its Liouville vector L and its phase flow, is the phase 
m m 

space for particles of fixed mass m; it is seven-dimensional and 
- t 

corresponds to the Newtonian (1; t,p) -space. ( ) It is also a fiber 

( 1) In classical mechanics, this space is sometimes called "augmen­
ted phase space". See e. g. Liboff (1969). p.16. 
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bandle with base X, the fiber over x now being 

shell at x. 

P (x), the mass­
m 

M , being the boundary of t~ oriented submanifold of M given 

by P f1~ _ m 2, is also orientable. We orient it by choosing a coordina-
a a 

te system (x ,p) on 
4 

M such that p 4P < 0 whenever pEP (x), 
m 

and then take (xa, p'l1 ) as an oriented coordinate-system on M . 
m 

then have 

We 

L = pa ~ + (e F" pb ,.,V pbpc) 'j (24) 
m dXa. b - I bc <JP" 

We know from ordinary statistical mechanics the usefulness of a mea 

sure on phase space which is invariant under canonical transformations 

and, in particular, under the phase now. 

Let us conseder, therefore, the coordinate-independent 8 form 

n : = ~ "1" = _ g dx 1234 A dp 1234 

on M (formed by means of (3) and (8)) and the 7 - form 

on M . Obviously, at each Doint. 
m 

...:.Ld 1234" d 123 
Ip41 x p 

0, n I 
m 

o. 

(25) 

(26) 

(27) 
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(28) 

To see whether n is invariant with respect to the phase flow we com­

pute £L!L , the Lie derivative of n with respect to L. Because of 

the identity ( ~ ) 

iLn. = d(L·..n) + L·d.n. 

and d.n. = 0, we get tL n = d W, if we put 

a 1 a d ra d e bcd 
"" : = L' n = p era" Tt + 6" ~ abcd( eF dP - deP p )dp "1- (29) 

The differential of this 7 - form vanishes. This is reall.y verified by using 

inertial coordinates at some (arbitrary) event x. 

Hence, 

( .. ) See, e. g. Hicks (1965), p. 94. 
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dl.l) 0; (30) 

i. e., n is invariant under the phase flow (Liouville's theorem). 

The t - form W which arose here rather naturally as a tool will 

be seen in the next section to be important in itself; let us note some 

of its properties. From its definition (29) and from iL W = d(L' W)+ 

+ L(dw) 

we infer: 

L' ~ 0, o. (31) 

These properties express that '" induces a nonzero 7 form on the 

quotient manifold MIL; W can be consedered as a measure on tre 7-

=.:m=.:an=i.::.;fo:..::l..:;d_o"--f,--,,,p_h.=cas=..e,,-,o-,-r....:.b-=..it:..=..;s. Indeed, if we int roduce on M comoving local 

coordinates ~A with respect to L, i. e., such that L = SII ' then 
} r-t ~,. 'eA . "." (31) means that I.U = f';if""WA('l> , ... ~ )d;> ,whIch IS a form 

on MIL. If ~ is a tube of phase orbits and !: a cross section of 

'l, J W measures, loosely speaking, the "number" of orbits contaiR 
E 

ed in 1 it is independent of the cross section. 

The preceding consliderations can be carried over straightforwardly 

from M, L, to M ,L (exercise); one obtains 
m m 

W :=L'n. =pa 6"" A1t + 
m m m a m 

1 IY) ). b rl b c ,.." 21 p,1 P"f"''' (F bP -, bcP P )dp 1\'9 (32) 
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L'CV = 0 
m m 

5. Distribution function, collision density, Liou ville's eguation 

(33) 

An individual gas-history - a particular complex of world-lines -

is too complicated to be useful; we are interested only in the typi~al, 

average properties of gases. Therefore, we imagine a large collection 

of microscopically different, but macroscopically indistinguishable gas 

histories, a Gibbs-ensemble of gases. The average properties of such 

an ensemble are the subject of kinetic theory. (The averaging may have 

the additional merit that it disposes of certain all-too-classical features 

of our gas model like sharply defined worldlines and collision events; 

the average properties may well provide an appro&.imate macroscopic 

description of a gas whose particles obey quantum laws. ( , ) 

Consider, then, a gas consisting of particles of different species. 

Concentrate on one component the particles of which have mpss m and 

charge e. A definite microstate, or history, of Ue gas can be represen~ 

ed, as far as the specified component is concerned, as a collection of 

( 1 \ Nonrelativistically the Boltzmann equation, e. g., can be "derived" 
from classical as well as from quantum mechanics; see Kadanoff 
and Baym (1962): Lowry (1970). 
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M , the states occupied by particles 
m 

between collisions. (We do not assign phase-orbits to particles dur-

ing collisions; hence there are no particle orbits in 

to tre phase flow. ) 

M transverse 
m 

M can be fully charac­
m 

The distribution of occupied states in 

terized by the functional 2: --+Nm [ 2:] which assigns to any co~ 

pact hypersurface 1: the number of occupied orbit segments intersec­

ting it. By a hypersurface in M we mean here and henceforth an 
m 

oriented, 6 -dimensional submanilbld with boundary of M . The inter m -
section of an orbit k with I: is counted positively (negatively) if, 

at the event of intersection, the vector basis (Lm, AI' ... ,A6) has the 

same (opposite) orientation as the basis of an oriented coordinate system 

of Mm' Lm being the tangent to k and (AI"'" A6) an oriented ba 

sis tangent to ~ . 

If D is any region in M m' then N m [ d D] is the number of 

collisions in D, if creations are counted positively, and annihilations 

negatively. 

For a macrostete, let Nm[X]be the ensemble average of 

Since Nm[X] is a kind of flux through L of a fictitious fluid 

N . 
m 

steeaming 

in M with velocity L , we expect it to be expressible 
m m 

as an integral. 

WEI thus need a volume element for hypersurfaces in M . 
m 

It is natural to ask whether there exists a 6 - form on M 
m 

which 

could serve as such a volume element. From the meaning of N 
m 

it is 

clear that this form would have to assign a nonzero volume to any hype.!: 

su rface -element not tangent to L , since there could be a flux through 
m 
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it. Using the fact that n is a non-vanishing 7-form on M 
m m 

(see eq. (27)) and remembering lemma 2, we infer that such a 

6-form must coincide with W as defined in (32), except for a non 
m -

vanishing factor. Because of Liouville's theorem, eq. (33), it is ad-

visable to choose this factor to be constant on phase orbits in order 

that the 6 -form is L -invariant ( 0" d(f W ) " df /\ c.J "df 1\ (L • 
m m m m 

n )" L (f) n ~ L (f)" 0 ; we have used (1)). Hence, iN m m -"'In --...,,- m m 
reoommends itself as an almost unique candidate for the required me-

asure. 

A hypersurface 2: in M whose projection into X is a space-
m 

like hypersurface corresponds to a region of an "inttantaneous" ordin~ 

ry (it,p)-phase space. On such a L: (and, more generally, on any I:; 
whose projection into 

to its first part, 

m 

X is a hypersurface), W from eq. (32) reduces 
m 

a 
p t5"'a A ~ . (34) 

If we choose at some point x with (x, p) E l: an inertial coordinate sy-

stem such that is, at x, normal to r ' (34) gives, at x, 

(35) 

which is, except for the (conventional) sign, the ordinary. phase volume 

element of an observer at x with 4 velocity ::x~ . Therefore, Wm 
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is the appropriate 6-form we have been looking for .. 

We return to our study of M . According to its physical mea!! 
m 

ing, we make the following smoothness assumptions about 

about a macrostate of a gas: 

N , i. e. 
m 

D1) On any fixed hypersurface l: C Mm there exists a continuous, 

nonnegative density function f~ such that for all compact parts l:'c:E 

J fE 
r' 

W 
m 

(36) 

D2) Every point (x, p) , Mm has a neighbourhood U such that for 

every region D cue M 
m 

I Nm [Cl oJ ~ A J n m 

D 
for seme constant A dppending on U. 

(37) 

Dl asserts that on any fixed hypersurface ~ the measure defined by 

the expectation value of the number of occupied states contained in parts 

~I of l: has a continuous derivative, or density function fE 

with respect to the geometrical measure c.J. 
m 

Equation (35) shows that f E (x, p) equals, 

se worldline intersects the projection of !; into X 

for any observer who -

orthogonally at x, 

the ordinary density of states in his infinitesimal, ordinary (1.-P) phase 

space. 

D2 asserts that the expectation value of the number of collisions in 
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D is at most of the order of the n volume of D; this assum 
m 

ption excludes, e. g., the possibility of having all (or particularly 

many) collisions occuring on one hypersurface of X. 

The two assumptions D1 and D2 imply theexistence of an in­

variant, i. e., hypersurface or observer-independent (one particle) 
( 1 ) 

distribution function f on M such that for any hyper surface 
m m 

N 
m J fm (A)m; (38) 

E 
To prove (38), we have to show that if a point ~ E M is 

contained in two hypersurfaces 2:1 and ~2' then fI:l($~=ft2. (~) 
For that, consider a tube ~ of phase-orbits having 'S on its boun 

dary. Then l.: f'\ 17 , L f1 J are two cross sections of ~ . With~ 
t J '1. 

out loss of generality we assume that these two cross sections to -

gether with the part I\.. of the cylindrical buundary ~ j which lies 

between 2:1('\~]: and ~'Ll"\dj form the boundary 'dD of an orien­

table, compact region D of M . Since no phase orbits can inter -
m 

sect A we have Nm [dD 1 Nm[~1"'1] Nm[l:1.,,1]. Because of 

\ 1) The preceding introduction of f is a generalised and "rigori-
sed" version of that given in S!J(ge (1957), p.12 14. 
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D1 and with the mean value theorem for integrals this can be re-

written as N [dD] = fop ($) I w - f~ (~) J W , where ~. € L:'. ""g, 
m ~1 11:;.":1 m ~1 t t.n)m ~ 'I. 

But we know from Liouville's theorem that the two integrals on the 

right-hand side are equal. Hence, using 

~ A J n ( IIlJ ) -1. If one now lets 
J) m 1:",'.} m ~ 

also D2, I fE1 (~1) - f1;1. (~2.) \ 

~ shrink towards the or-

bit !Jassing through S , the right-hand side tends to zero since the 

numerator is "one order smaller" than the denominator. Also, ~i.--' g, 
Consequently, f~ (~) = f~ (s). We call the common value f (S), 

~f ~~ m 
in order to emphasize that f is defmed on 1\1 • 

m m 
It is easy to verify that our orientation and sign conventions im-

ply 

f ) o. 
m 

(39) 

It is techilically desirable and physically not harmful to require 

also 

D3) fm is continuously differentiable on Mm. 

Having obtained a phase space density f which measures the 
m 

average density of occupied states, we obtain straightforwardly a 

collision density in M . The average number of collisions in 
m 

the 

region D eM, i. e., the difference between creations and annihi­
m 

lations of particles of the specified kind in D, is given by N [dD] 
= "\ f f W ' J d(f w ) = J df A LV = DI df ,,7L ,W ) 

C1D m mOm m D m m m m m 
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=ID L (f ) n. . m m m 
We have used equations (38), (2), (33), (32), and (1). Hence 

a j} f ). b r). b c d f"", 
Lm (fm) = p ;} x":. + (e F bP - , bcP P ) e)P>" (40) 

is the collision density in M with respect to.n (in the sense 
m m 

defined above). 

Note that if 
a a 

(x (v),p (v)) is the phase orbit passing through 

(x, p) for v = 0, then the expression (40), evaluated at (x, p, ), 
d 

equals (Tv fm (x(v), p(v)))v=O' a fact that is often useful. 

The preceding considerations prove the following theorem. The 

distribution function f of a component of a (possibly heterogeneous) 
m 

gas satisfies Liouville's equation 

L (f) 0 
m m 

(41) 

in a region D C M if and only if there is detailed balancing every 
m 

where in D, i. e., if the average number of creations of particles of 

that component equals everywhere in D the average number of annihi­
( i ) 

lations . 

( 1.) Note that, in our terminology, even an elastic collision involves 
two annihilations and two creations. 
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( i ) 
Corollary 1.. If the particles of a particular species do not pa!:, 

ticipate in any collisions in D, then the corresponding distribution 

function satisfies, in D, equation (41). 

Corollary 2. If the assumptions of the theorem hold, then 

D, an integral of the motion defined by (18). 

f is, in 
m 

As an application of the invariance (observer-independence) of 

the distribution function, let us consider a radiation field as a pho­

ton gas with distribution function fr . Relative to an observer with 

4-velocity ua, it is customary to define a specific intensity I~ of 

the radiation field, as the limit of the radio "(energy of photons with 

frequency in d oJ and direction in solid angle d n passing in time dt 

" normally through an area dA/ (doJ dndtdA). It is related (exercise) 

to fr by 

(42) 

Since V 2 rr ) -1 J u aP a I ' the observer-independence of f r im 

( 1) For geodesic motion (e = 0), this assertion has first been stated 
by Walker (1936). 
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plies that of 1-.,) / '\)~, a fact that is important, e. g., in cosmology; 

its direct, kinematical proof is somewhat cumbersome. 

If the photons are emitted by a source S (galaxy, e. g.) and do 

not interact with matter on their journey to the observer 0, Liou­

ville's equation (41) for fr and (42) give the important relation 

Iv s 
( I + Z )~ (43) 

between Iv ' "measured" near the source by a fictitious comoving 
5 

observer, and I" ' the intensity actually measured by O. z is the 
o 

usual redshift of S relative to O. (43) is basic for the derivation of 

observable relations in cosmology. Notice that the derivation just 

sketched holds in any spacetime, not only in the standard Robertson­

Walker universes. 

If one assumes that the famous 3° K "fireball" radiation was 

emitted thermally from the recombination hyper surface (T~' 3500 0 ) 

in the early universe, one obtains from (43) the predicted intensity 

distribution in each direction in an arbitrary model universe, provided 
( t ) 

one can compute z from the null geodesics. 

This idea was used by R. K. Sachs and A. M. Wolfe (1967) to estimate the 

influence of material "lumps" on the radiation, and similar applications 

have been made more recently. The same method has been employed by 

W. L. Ames and K. S. Thorne (1968) to determine the optical appearance 

( 1) 
It is also assumed that no scattering occurred between emission and 
absorption. 
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of a collapsing star to a distant observer. Several other applica­

tions of (41) have been made, particularly in cosmology and stel­

lar dynamics. 

6. Macroscopic fluid variables, balance equations, conservation laws. 

Let us rewrite (38) for a hypersurfa(;e E whose projection in­

to X is a hypersurface G. We obtain, using (34), 

J f). { f rJTtm } 

G Kx 

N [L] 
m 

(44) 

K is that part of the mass shell P (x) which is contained in L 
x In particular, the integral 15"a m { Jfmpa 1tm } gives the 

average total number of particles 1f the species considered whose world 

lines intersect G. Here we have used the convention, to be maintained 

throughout the remainder, that J~. .. denotes an integral over the 

whole mass-shell P (x). Therefore, the spacetime vector field 
m 

a J a N (x): = f p rc 
m m m 

(45) 

is the particle 4-current density of the respective species. It is always 

timelike and future-directed under our assumptions. (If we would permit 

to be a distribution, N a could be lightlike in one particular case: 
m m 

m = D, and theOre is no 4-momentum dispersion at any event). 



Similarly, 

is the electric 

In analogy 

a 
J : e N 

m 

- :1:l2 -

a 

4 - current density of the 

with (45) we define 

T ab(x) f a bf 
m PPm 
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(46) 

species considered. 

T(m (47) 

as the kinetic stress energy momentum or matter tensor of the 

species. (If is possible to define a 4-momentum flux through a 

hypersurface G C X and to show that (47) is the corresponding 

4-momentum flux density, but this has no further use and is there­

fore not treated in detail here. ) 

We have assumed here, and will do so throughout these lectures, 

that f vanishes at infinity on P (x) so that integrals like (45), (47) 
m m 

exist. (Sufficient for this is exponential boundedness on P (x), as de­
m 

fined at the end of section 8.) 

Excluding the trivial case where vanishes on P (x) (and the 
m m 

singular distribution mentioned below (45)) we infer from (47) 
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Lemma 5. If va is not spacelike and va f 0, then 

a b> T bV v O. ma 
(48) 

( i ) 
This lemma and a theorem due to J. L. Synge imply 

(t) 
Lemma 6. Any kinetic stress energy momentum tensor is normal , 

i. e., admits a decomposition 

with 

ab 
T 

m 

a 
u u 

a 

a b ab jU u + P 

- 1, 

(49) 

O. (50) 

a 
u can and will be chosen future-directed, and then (49) is unique. 

The physical meaning of N a, T ab for a local observer in 
m m 

terms of 13-dimensional" quantities is obtained by evaluating (45) and 

( 1) See Synge (1956), p.292. 

( 2.) See Lichnerowicz (1955). 
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(47) in an inertial coordinate system at x. We obtain, for an 

arbitrary observer at x: 

N 4 is the number density 
m 

-N '. = N). ~ = N4 <_v~m) m m d xl m /X is the particle flux density, 

T 44 = N 4 < E >1Tf\,) is the energy density, 
m m X 

(51) 

).4 ~ 4 (m) 
T 30: = N < p I. is the momentum density, 

m OIX m X 
T 

m - T ). ~ ';\ 4 ';) 4 < -. .. {m\ rr! ~ aI ~xl4 = Nm p ® v 'X is the kinetic T 
m 

pressure tensor. 

Here V. E (= p \ and p are the 3 - velocity, energy, and 

3-momentum, and ( ),"") denotes the conditional expectation value 
X 

at x, evaluated by means of the probability distribution defined by 

f with respect to the chosen inertial system. 
m 

We also define mean kinetic pressure p by (tr : = trace) 

1 - ~3 Nm
4 <"Po"v '\ x(m) p : = 3 tr Tm / 

and recognize the classical Bernoulli formula. 

The rest mass density is p: = m N~. Writing 

energy density in (51)3' we formulate 

(52) 

for the 

Lemma 7. For any observer and any distribution f , the inequa­
m 
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lities 

hold. 

Most of these inequalities are obvious from (51), (52), and E = 
m 

(1 _ Vi ) Vl ' P = E ~; the only nontrivial inequality is the 

third one, due to A. H. Taub (1948). It follows by considering 

2 t 2 ! 
(1 - v fi and (1 - v ). as elements of the Hilbert space 

"p'I.(P , f dpl2\ and applying Schwartz's inequality to them. 
(J.. m m 

Equations (51) and (52) imply the well-known relations: 

If p« p , then fA' ~ f+ ~ p (nonrel. monatomic gas), 

If p» f ' then r ~ 3p (ultrarel. gas), (54) 

If m = 0, then r = 3 P (photon or neutrino gas). 

In order to obtain balance equations for various macroscopic 

fluid variables we observe that these latter quantities are moments 

of the distribution function in 4-momentum space, given by 

J at a\ a. p p ... p fm 11m' The Oth moment is, at least for m > 0, 

essentially the trace of the matter tensor. Indeed. (47), (51), and 

(52) give 

r -3p. (55) 
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The 1st moment is the particle current density N a, and the 
m 

2nd moment is the matter tensor. We would like to evaluate the 

divergence of the r~th order moment. We first establish 

Lemma 8. If g is a C1 -function on M , then 
m 

JL (g) 1l . 
m m 

To prove this, take an arbitrary region D C X, and let 

(56) 

'S : = { (x, p) : x E. D, P E Pm (x)} be the cylindrical region of 

M lying over D. Then, as in the derivation of the collision densi­

ty r:bove eq. (40), rg w = r L (g) n . We transform both 
;}/' m (~m m 

these integrals into integrals over D: 

J"g Wm = f G'a { f pag 7tm } =[~ ( J pa g nm) 

dD dD 
; aJ 

(Use (34) and (7)) 

f Lm (g)!l m = Ji~JLm(g) 'Ttm}, from (26). 

"'" D D 
Since D is arbitrary, (56) follows. 
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Next, we generalize this to obtain an "equation of transfer". 

( 1 ) 
Lemma 9. If f is an arbitrary distribution function on 

m 
M , then (for r ~ 2) 

m 

L (f)'TC + 
m m m 

to 

, Fa). b J a1 ·· b a" f + ~ e p ... p ... p m TCm· 
}.: t 

(57) 

( The integrand in the sum is. to be understood such that b replaces 

a). in the sequence a2 ... ar .) 

Proof: Take an arbitrary tensor field v ... which satisfies 
at ... a .. 

v = 0 at 
a 2: ... a .. ; b 

. a~ ~ somearbltrary event xO' Put p ... p Y .•• 
at 

f = g, and 
:: a .. m 

apply lemma 8, to obtain at xO: 

Evaluate Lm {. .. ) at Xo by taking the phase-orbit through Xo 

( i) Tauber - Weinberg ( 1961) 

and 
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differentiate C .. ) with respect to the parameter at xo' getting 

~()_ ~(a'1. a,.) L C .. ) d ... - v d P ... p f 
m v a1 ... a.. v m 

= v ( at a" (f) F a\ b ar f ) a ..... at' p ... P L m m + e bP ... p m + ... , 

where we have used (18). Insertion into (58) and "dividing" by 

v ... gives (57). 

(Generalizations of Lemma 9 have been given by Ph. M. Quan 

(1966) and C. Marle (1969), but they do not seem to have found 

applications yet.) 

Applying (56) (with g = f ) and (57) (with r 2) and u-
rn 

sing the definitions (45), (46), and (47) we obtain 

N a·a = J L (f ) 11 (59) 
m' m m m 

and 

(60) 

Equation (59) is the balance equation for particles of the 

species considered; since L (f ) has been shown to be the col­
m m 

lision density in phase space, tile right-hand side of (59) is the 
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(spacetime) production density of these particles. 

Equation (60) is the 4-momentum balance equation for the gi­

ven species; the vectors on the right-hand side represent the elec­

tromagnetic and the collisional 4-force densities acting on the col"!!. 

ponent of the gas with distribution function f . An example for the 
m 

latter is the force exerted on an electron gas by photons due to Comp­

ton scattering. 

So far, we always concentrated on one component of a gas which 

may contain other kinds of particles as well; all our equations are 

valid for any component of a mixture. 

Let us now first specialize to the case of a monocomponent, or 

simple gas consisting of particles all having (proper) mass m and 

charge e. Then, assuming conservation of particles in collisions (59) 

gives the conservation law 

N a 
m ;a SL(f)'t( 0 

m m m 

a 
which, of course, implies also charge conservation, J ;a o. 
Assuming also 4-momentum conservation during collisions, (60) re -

sults in 

T ab 
m ;b 

o. (62) 
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These equations give on the one hand the macroscopic conserva 

tion laws basic to fluid mechanics, and they impose restrictions on 

the evolution of f ,required by the microscopic conservation laws. 
m 

For a simple gas, there are two sensible ways to define the 

mean 4-velocity. One can either use the fact that the particle cur­

rent vector N a is- timelike and put 
m 

N a 
m 

a a a 
n uk ' uk uka = -1, uk future-directed, 

or one can use the normality of the matter tensor 

the ua of Lemma 6, i. e., require 

T ab 
m 

(63) 

and use 

0, 
a a 

uDuDa = -1, uD future-directed (64) 

a ( 1 ) 
uk is called tre kinematic mean velocity. An observer travell-

ing with uk a is characterized by the property that in his local iner­

tial frames there is no particle flux density (see (51) 2); n from 

(63) is the proper particle number density. 
a ( ( ) 

uD is called the dynamic mean 4-velocity. An observer travellr 

( i) The distinction and terminology is due to J. L. Synge'; see Synge (1960) 
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ing with it will measure no momentum density, and this characte­

rizes uD a (see (51)/ The energy density f in (49) is the 

minimum of the energy densities measured by all possible observers; 

this property also characterize s uD a (exercise). 

The two mean velocities uk a and aD a are in general distinct, 

their equality characterizes (by definition) adiabatic processes. They 

are physically characterized by the existence of an observer ua who 

finds neither a Jll. rticle flux nor an energy flux in his local inertial 

systems. The necessary and sl~t'ficient condition for that is that 

N [aT b] N c = 0, a very complicated restriction on the distri-
m m c m 

bution function. 

If one chooses ...!!!!Lmean 4-velocity 
a 

u , one can decompose the 

matter tensor uniquely according to the scheme (Eckart 1940): 

T 
ab r- a b + 2 

(a b) 
hab + 'T(..ab, (65) u u u q + P m 

where 

ha 
b 

$a. a 
b + u ub (66) 

projects T (X) onto the 3 - space orthogonal to 
a 

and where u , 
x 
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a 

- 342 -

o. 

Ehlers 

(67) 

U. is the mean energy density, qa the mean energy flux densi-
J ab 

ty, p the mean kinetic pressure and rc; the shear pressure 

tensor relative to ua, These quantities change with ua. If 
a 

u = 

then 

property that 

a 
q 

a 
q 

0, Adiabatic processes are characterized by the 
a a ~ o for u = uk . If, in addition, Tt = 0, the 

gas behaves, in the process considered, as an ideal gas. We shall 

extend these mechanical considerations later on to the regime of ther 

modynamics. 

Consider next a multicomponent gas. We distinguish the particle 

species by indices A, B, ' , ,; particles of species A have mass m A' 

charge e A' and (if we have microscopic particles) further characte­

ristics like baryon number b A etc, Each species has its phase space 

which we denote by M A (instead of M ), and its Liouville opera-
mA a a 

tor LA; its distribution function fA' current densities N A' J A' 

and its matter tensor TA ab, and the quantities which we have defined 

in terms of these, like u~ A. , 
Requiring again 4-momentum conservation, we have instead of (62) 

T ab = Fa Jb 
k;b b' 

(68) 
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k 

- 343 -

LT~b 
A 

Ehlers 

(69) 

is the total kinetic stress energy momentum tensor of the mix­

ture, and 

Ja: = LJA
a 

A 

is the total electric 4-current density. Moreover, 

(70) 

(71) 

The indlVidual particles will in general not be conserved during 

collisions, but certain combinations of the NA a will have vanish­

ing divergence. For example, if we define the baryon current density 

(72) 

and assume conservation of baryon number during collisions, we obtain 

o (73) 
;a 



- :344 -

Ehlers 

and 

(74) 

Similarly, we will have 

(75) 

and 

(76) 

Thus, we obtain macroscopic conservation laws for a mixture and 

corresponding integral conditions for the distribution functions. 

Resonable mean 4-velocities for a mixture are the dynamic 

mean 4-velocity ua defined as in (64), with Tab replaced 
ab D m 

by Tk ' 

the barycentric mean velocity, defined by 

(77) 

and the baryonic mean 4-velocity, defined by 

(78) 
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provided Ba is timelike, as it is for "ordinary"matter. 

With any choice of mean 4-velocity, one can decompose Tk ab 

according to (65), obtaining r' p etc. for a mixture. Which 4-

velocity is the most useful one depends on the circumstances; a 

careful investigation is not known to the author. 

7. The selfconsistent Einstein-Maxwell-Liouville equations (t ) 

Consider a collisionless mixture of particles, so that (41) 

holds for each component, and consequently (71), (74), (76) are 

trivially satisfied. Then, we have the macroscopic conservation 

laws (73), (75) and the (generalized) Poynting equation (68). It is, 

therefore, permissible to assume that gab' F ab are the mean fields 

produced by the gas, i. e., to require that they satisfy the Einstein­

Maxwell field equations: 

ab /\. ab 
G + g 

F 
[ab, c] 0, 

TK
ab + T ab 

M ' 
(79) 

( 1) Compare with Tauber-Weinberg (1961) who apparently first advocated 
these equations. 
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T ab 
M 
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(80) 

is the Maxwell stress energy momentum tensor. Indeed, (80) and 
. ab _ a ,b 

(79)2 Imply Tl\T 'b - - F b" and if this is combined with 

(68), there results' (T ab + Tab) = 0, as required by (79). 
k M;b 

Hence, the equations (79) together with the Liouville equations 

(81) 

seem to provide a closed, consistent system of dynamical equations 

for a gravitating plasma (in the Vlasov approximation). 

For neutral particles, (79)1 (with T Mab = 0) and (81) give 

a relativistic version of the equations of stellar dynamics (for col 

lisionless systems). 

It is natural to pose the Cauchy initial value problem for the 

system (79), (81). Formally, there seems to be no obstacle to sol~ 

ing it in the usual way by separating initial constraints from evoluti­

ona equations, the former being propagated off the initial hypersurf~ 

ce in consequence of the evolution equations, which in turn can be 



- 347 -

Ehlers 

solved for the highest derivatives off the initial hypersurface, provid­

ed that is not characteristic. A careful elaboration for the present 

system (79), (81) does not seem to have been performed, however. (1) 

Examples of sulutions to the equations (79)1 (with TM
ab = 0 ), 

(81) are known, see E. D. Fackerell (1966), 1968), J. Ehlers, P. Geren 

and R. K. Sachs (1868), R. Hakim (1968), R. Berezdivin and R. K. Sachs 
( t ) 

(1970); see also Misner (1968), Stewart (1969), Matzner (1969). 

Solutions with electromagnetic fields do not seem to be known at pre­

sent (Problem). 

8. The Boltzmann eguation 

Consider again a multi component gas with particle species A, B, ... 

If collisions occur, then the phase space density of all collisions in 

which particles of type A participate, LA (fA)' will be a sum (or in­

tegral) of various contributions due to different kinds of collisions, e. g. , 

elastic and inelastic binary collisions, absorptions and emissions. 

( 1) For a series of papers on the stability theory of static, spheri­
cally symmetric solutions of (79), (81) (for Fab = 0), see J. R. Ipser 
and K. S. Thorne, Ap. J. 154, 251 (1968), and subsequent papers by 
Ipse r in the same Journal. 

( 1) (Note added in proof) Meanwhile, the problem has been solved by 
Y. Choquet-Bruhat; see Journ. Math. Phys., 1970, and another 
forthcoming paper. 
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Let the symbol 

( x;PP A' PB' ... (82) 

stand for a collisions in which particles of types A, B, . .. with 

respective 4-momenta p A' PB' . . . collide at x E. X and produce 

particles C,... with PC""; the numbers of incoming and out­

going particles may be arbitrary. (If, e. g., A = B, one has to 

write p A' PA instead of p A' P A; this is tacitly assumed here and 

in the sequel.) 

The set of all collisions (82) of a particular type, with x € X, 

P A € P A (x), . .. is again a bundle over X, the collision bundle. It 

carries a measure, viz., '? 1\ 1tA A 1TB 1\ ... A 1tC A ... 

Augmenting our former smoothness assumption D2 concerning the 

probability distribution of collisions we make the hypothesis: 

C 1) In any macrostate of a gas, the average number of collisions 

(82) in a compact region U of the collision bundle is 

J V (x; P A' PB" .. -PC' ... ;) S (Ap) ,?AnA A 1'CB· .. A 'fCC' .. (83) 
U i 

where V is a nonnegative (ordinary, measurable) function. ( ) (In order 

to avoid ambiguities in the definition of V, U must be such that 4-momen 

tum ranges K A (x), KB(x), ... of indistinguishable incoming or outgOing parti­

cles 

( i) Because of the S-factor in (83) the physically important domain of 

definition of V is (X; p A' PB'" . -PC'" .) : Ap = 0 
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( A = B = ... ) do not overlap. 

In (83), J is the Dirac distribution (on R\ and 

(84) 

is the 4-momentum difference between "in" and "out" states. The 

J -factor in (83) expresses that collisions (82) occur only if they 

conserve 4-momentum. 

It then follows that the distribution functions fA' fB' . . . of 

a gas satisfy equations of the form 

In this "collision balance" the sum is to be taken over all kinds of 

collisions in which A-particles participate, either as incoming or 

as outgoing collision partners. The integral goes over the mass -

shells of all colliding particles except the one whose state occurs 

on the left-hand side of (85). r~ is a numerical factor depending 

on the type of collision and on whether the state p A on the left­

hand side of (85) is an "in" or an "out" state; it is defined thus: 

r~ >0 «0) if A is an "out" ("in") state, and 
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Ir~ I = 

-1 
n A ( n A ! nB ! ... nC !) ,where n A' nB, . .. are the 

numbers of (indistinguishable) particles of types A, B, . .. ente£ 

ing or leaving the V-collision, and n A refer to the number of 

particles to which the left-hand state in (85) belongs. 

(If h 11" ( I ~ .. I ) we ave a co lSlon p A' P A "-7 P A' PB' PB 

with A f B and PAis the state occuring on the 1eft-

hand side of (85), then r~ = -2 ( 2! 1! 2! )-1= + .) This 

factor is necessary in order that the various collisions involving 

identical in (or out) particles are not counted several times in 

the balance (85). 

The equations (85) are useless as long as the dependences of 

the functions V on the state of the gas are not specified. ( ') It 

is clear from nonrelativistic statistical mechanics that in a rigo­

rous many-particle theory V will depend, not only on the one-par­

ticle distribution functions fA' fB' ... , but also ( at least) on pair 

( 1 ) 
See, e. g., Liboff (1969). 
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correlations gAB (x, p A;x! pj/ No attempt will be made here to 

cope with these difficulties which pose important and interesting 

problems. Rather, I shall write down a IIreasonable Ansatzll (as 

people say); then I shall make some remarks about the IIphilo­

sophy II which is used to motivate that Ansatz; then modify it so 

as to account for the non-classical symmetry character of Bosons 

and Fermions; and then simply proceed on the basis of the result­

ing (generalized) Boltzmann equation. 

Consider the hypothesis 

C2) V(x;p A' PB' .. ~ PC' ... ) " fA (x, p A) fB(x, PB)" . R(p A' PB' .-:t' PC' .. ) 

(85) 

. h' h th f t f f t th II· II ttl In w IC e ac ors A' . .. re er 0 e In s a es on y. 

(C 2) is suggested by the assumptions that 

(a) particles which are about to collide have uncorrelated momenta, 

(b) the ranges of the coll.isional interactions are small in compari­

son with the scale on which the fA'S change appreciably with x, 

(c) collisions take place in spacetime regions so small that the mean 

differential gravitational field Ra bcd (geodesic deviation etc. !) and 

the mean electromagnetic field F ab do not affect their frequency 
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appreciably. 

(d) the presence of particles not participating directly in a col­

lision does not affect the probability of occurence of that colli-

sioll. 

These assumptions, which essentially express that the gas 

is dilute ((d) and, for a gravitating gas, (c)), not too inhom~ 

geneous in spacetime (b) ), and in a state of high randomness 

( (a) ), indicate the range of validity of the "Boltzmann collision 

hypothesis" C2; each of them poses a problem of justification and 

indicates desirable generalizations. If, e. g. , 
( t ) 

(c) were not true, then R might be expected to depend on 

the principal directions and eigenvalues of R abcd and Fab. 

In order to support the assumption C2 further and to relate 

it to scattering theory, let us consider a collision (p A' p~ PC' ... ) 

with two incident and q emerging particles, and let us consider 

Compare Marle (1969), p. 88. 
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those collisions for which the momenta are contained in small ranges 

K A CPA (x) etc. 

According to (83) and (86), the number of those collisions 

per unit spacetime volume is 

(87) 

Regarding the K A -particles as a beam which hits the KB -parti­

cles forming the target, we recognize that the number densities of 

projectiles and target particles, relative to any inertial frame with 

4-velocity u, are given by (see (44) ) 

whereas the relative velocity of these particles is 

I (u.p A) PB - (u'PB) PAl 
(u'p A) (u'PB) 

(88) 
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Hence, we can rewrite (87) as 

(89) 

where 

(90) 

Equation (89) is recognized as the standard definition of the dif­

ferential scattering cross section dQu for scattering of p A' PB­

particles into the ranges K, .. , relative to the u-frame, and e-
c 

quation (90) is indeed the correct expression far that cross sect-

ion which can be derived 

0(.) in the non relativistic limit either from classical or from quantum 

mechanics, and 
( £) !) in the relativistic domain from quantum scattering theory. 

( t) 
See, e. g., Brenig and Haag (1959) 
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In this case R is simply related to the 
( 1 ) 

S operator .) 

( In the relativistic case, a classical derivation is not availa-

ble, since there is no well developed theory of interacting particles. ) 

In a certain sense, we have now justified (85), since under the 

assumtions stated above the A- and B-particles in the gas should 

behave as if they were members of beams in a collision experiment. 

One correction, or generalization, of (85) shall now be made. If 

the particles are atomic or sUb-atomic, then assumption (d) is defi­

nitely wrong. In the case of Fermions, the presence of particles in 

the final states decreases, because of the Pauli principle, the collision 

probability, whereas for Bosons it enhances that probability (stimu­

lated emission and scattering). This is incorporated by writing, in-

stead of (86), 

(91) 

( 1 ) 
See,e. g., Brenig and Haag (1959) 
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Here and in the sequel the upper sign refers to Bosons, the lower 

one to Fermions. 

is the volume of a phase-cell which corresponds asymptotically to 
( 1 ) 

a non-degenerate p-eigenstate of a free (quantum) particle of spin 

degeneracy rC' Hence, sCfC(x, PC) equals approximately the average 

occupation number of simple one-particle pc-eigenstates localised near 

x. (In the "classical limit" fC«s~l, (91) reduces, of course, to 

(86). 

A "pseudoproof" of (91) can be given within the Fock-space for­
( t ) 

malism, but that will not be reproduced here . 

One simplification is possible and useful in (90). 

If u = A p A + fPB - and these frames include the center - of - mass 

frame of the collision as well as the rest frames of the incoming particles-

( 1 ) Weyl (1911), Peierls (1936) 

( \) 
See Bichteler (1965), Ehlers and Sachs (1968), Ehlers (1969). 
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of u, whence the corresponding expression 

dQ (92) 

is often called "the" (relativistic) cross section. 

We have now suppressed the arguments KC"'" considering dQ 

henceforth as a(3q - 4) - form, where q is the number of final sta­

tes and we imagine that ~ ' .. ) has been "absorbed" into four of the 

differentials T(C 1\ ... : (If q = 1, dQ is a ~- "function": 

J(l 2 2 2 
dQ = ~(-PA'PB) 2 [mA+mB-mC ] - (Pi PB)) G"a is the ab-

sorption cross section.) 

Inserting (91) into (85) we obtain the generalized Boltzmann 

equation 

where we have simplified the notation in an obvious way. In particu­

lar, in (93) and henceforth, 

(94) 
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former r~.) 

E:hlers 

( rR 
equals the 

l\ 

The equation (93) has first been formulated in special relati-

vity for a classical (i. e., Boltzmannian) gas with elastic binary in­

teractions by Lichnerowicz and Marrot (1940); for other treatments 

and generalisations see Tauber-Weinberg (19CiO, Israel (1963), 

Bichteler: (965) and the papers mentioned in the introduction. 

Henceforth we shall require the Boltzmann equation (93) to 

hold for the distribution functions of any gas. (Other "reasonable" 

alternati ves for V which lead to different kinetic equations are po~. 

sible, but will not be discussed in these lectures.) 

One important symmetry needs to be mentioned. If the microsco­

pic collision law (S-matrix) is invariant with respect to the total re­

flection, PT, then the collision "matrix" R:: is invariant with res­
( , ) 

pect to an interchange of incoming and outgoing states : 

(" ) 
See Brenig and Haag (1959). 
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RC .. . 
AB .. . 

RAB .. . 
C .. . 

(95) 

We also add that, for Fermions, it is necessary that 

(96) 

due to the exclusion principle. 

The conservation law (71) is satisfied by (93), because of thEl 

~ (~p) - factor. Other conservation laws like (74) can and have 

to be incorporated by similar restrictions on the R-functions; this 

will be assumed in the sequel. 

It is now clear that we can generalize the selfconsistent field 

equations of section 7 so as to take into account collisions; we just 

have to replace equation (81) by (93). The remarks about the Cauchy 

problem made in section 7 still hold; a rigorous analysis for the system 

(79), (93) has not been performed, however. 

In a given spacetime X (with a metric of class C2), i. e., for 

a test gas, Bichteler (1967) has solved the (local) Cauchy problem 
( t ) 

for (93). Besides existence and uniqueness of exponentially bounded , 

( t ) 
on the mass-shell, i. e., I fA (x, p) I~b(x) 

depending continuously on x. 

~(x)pa. 
e J& ,with band Ja 
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nonnegative, continuous and a. e. differentiable solutions for given 

initial distributions of the same type, Bichteler has established 

the continuous dependence of the solution on the initial distribu­

tions, the metric, and the cross section (i, e., R::). He assumes 

throughout that the total cross sections f dQ are 
(all final states) 

bounded. (This last aSBumption, though perhaps valid for strong in­

teractions. ( , ), does not seem to hold, e. g., in the case of weak 

interactions. ( t) Bichteler obtained his results by applying Banach's 

fixed point theorem to an operator given naturally by means of (93). 

defined on a suitably chosen complete metric space of exponentially 

bounded distribution functions. As Bichteler pointed out, his results 

lend some credibility to the (formal) Chapman-Enskog approxima­

tion which will briefly be discussed later. 

( i) See Eden (1966) 

( t.) See Bahcall (1964) 
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9. The second law of thermodynamics (H-theorem). 

We define the entropy current density of a gas to be the 

4-vector field 

with sA clefined as before (below (91) ). 

(97) 

The expression (97) can, in a sense, be derived from an in­

formation-theoretic point of view as indicated in Ehlers (1969). In 

the classical limit sA fA.-.. 0 it reduces to 

sa = L { f pafAlog (s AfA) TCA - N~ }, 

A 

(98) 

and one recognizes in the first term of S4 the Boltzmann entropy 

density. Generally, _Sau is to be interpreted as the entropy densi-
a 

ty relative to an observer with 4 - velocity u a. 

U sing Lemma 8 one obtains 

sa; a = ~ f LA (fA) log( (sAfA)-b) rcA' (99) 

i\ 

inserting LA (fA) from the Boltzmann equation (93) and assuming the 
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PT - symmetry (95) for all collisions involvee one gets a 

sum of terms; one from each kind of collision and its inverse, 

of the form 

where we have again used the notation (94). Each such integral 

is nonnegative, since its integrahd has the form 

a 
( log b) (a - b). Hence, 

~o. (101) 
; a 

This is the relativistic form of Boltzmann's H-theorem ( Tauber-

Weinberg (1961), Ehlers (1961), Chernikov (1963), which expresses 

locally the content of the second law of thermodynamics in the 

framework of kinetic theory. 

(101) implies that the flux of Sa through any closed hyper­

surface in X is nonnegative. Hence, for an adiabatically enclosed 
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or isolated gaseous body the total entropy 

S[~] : (102) 

evaluated on a spacelike cross section of the world tube of the bo-

dy, never decreases towards the future. (Notice that in the classical 

limit (93), srI] consists of the total number of particles and the 

Boltzmann contribution. If the total particle number is not constant, 

the Boltzmann S-term alone does not necessarily increase. ) 

Notice that (101) does not follow from (93) if the collisions are 

due to PT - violating interactions. 

If (95) does hold, and if collisions occur frequently in a gas, then 

the competition between collisions of a certain kind and their inverses 

suggests the tendency of the gas to evolve in such a way that the diffe-

rence in the integrand of ( 100) 

the entropy production density 

te'lds towards zero, so that ultimately 

Sa vanishes and the Liouville equa-
;a 

tions (41) holds, orovided there are no disturbing external influences. 

Unfortunately, precise theorems supporting this physical expectation are 

so far missing in relativistic kinetic theory; even at the nonrelati vistic 

level little is known. (For a brief discussion see, e. g., Uhlenbeek and 

Ford (1963), p. 31.) Any result in this direction would be of interest. It 

would also be of some interest to know whether in situations of gravita­

tional collapse S may increase toward>: infinity, 
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10) Stationary states, equilibrium, and thermostatics 

A gas given by gab' Eab, fA is said to be in a stationary 

state in a region D c: X if there exists, in D, a one-dimen 

sional local group G of fixed-point free local isometries with 

timelike orbits which leaves F ab and the fA invariant. In terms 

of the generating vector field ~a of G the last two conditions 

can be expressed as 

(103) 

(104) 

moreover , we then have Killing's equation 

r =0 
?( a;b) 

The last two equations imply 

a Tab and similar statements for N 
A' A 

lows further that 

(105) 

(106) 

etc, Because of (105) it fol 
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0, (107) 

i. e .• the entropy production is constant on the G-orbits. 

Let us assume now that an adiabatically isolated gas is 111 

a stationary state in D, and that the boundary of the world tube 

'} of the gas is . G-invariant; ~ C D. Let ~ be a space like 

cross section of ~ and a E G. Then a( E) is again such a 

cross section, and because of the assumed stationarity S [a( E )] = 

= S rr]. Applying Gauss's theorem to the part of!J between E 
and a( L), using the adiabatic condition along the wall'dj- , and 

taking account of (101) we obtain in '} 

Sa 
O. ;a (108) 

This conclusion, combined with the expectation described at the end 

of the previous section, leads us to define: 

A gas .. is in local equilibrium at x E X if, at x, Sa ~a = O. 
a 

The formula (100) for a summand of S;a shows the validity 

of the first part of the 

theoreme. If the collision functions R'" of a gas are all strictly 

positive almost everywhere (w. r. t. the measure a(.t:)p) 1tA 1\ . .. ) 

and continuous, then the gas is in local equilibrium at x if and 
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only if at x 

AB 
f f ... fC ... 

whenever ~ p = 0, for all types of collisIons which occur; or, 

equivalently, if and only if for each particle species. on P A (x) 

there holds 

o. 

(109) 

(110) 

The second part of this theorem follows from the first part by 

means of equations (93) and (99). 

The restriction R:: > 0 is not unsatisfactory from the physical 

point of view, since the R - functions are usually analytic functions of 

the momentum variables on the "collision fiber" Ap = 0, and hence 

they vanish only on sets of measure zero. 

The problem of finding the general continuous solutions ( fA' ... ) 

of (109) has been solved for binary elastic collisions between Boltz­

mann particles, where (l09) reduces to 

fl fl 
A 13 

whenever P + P = pI + pI 
A B A B· 

(111) 
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In this case, the general solution is given by 

(112) 

and a similar formula for fB and with Ja the same for both spe­

cies. (Chernikov (1964), MarIe (1969) and, in the case where the 
1 

fA'S are assumed C, Bichteler (1965), Boyer (1965). The nicest 

proof is that of MarIe, the shortest that of Bichteler.) 

If we consider elastic binary collisions between Bosons or Fermions 

( or a mixture ) and assume that all factors in 

(113) 

are positive on their mass-shells, we may divide by fAfBf~f~ and 

obtain for __ I_f - :±: 1 etc. the same relation as for Boltzmann par­
sA A 

ticles, so that we obtain 

a _()( (x) - B (x)p 
A Ja -

e + (114) 

Whereas it is easy to deduce from (111) that f AfB f 0 everywhere 

provided that holds for some pair p A f PB' this does not seem so 
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obvious in the case (113). Nevertheless I shall accept (114) as 

the general form of an equilibrium distribution at an event x 

for parjicles participating in some kind of .binary elastic collision. 

If particles in a gas undergo not only b-inary elastic collisions, 

but in addition other kinds of reactions, then (114) and (109) show 

that the OCA must obey 

Oi A + O(B + ... (115) 

for all permissible collisions A + B + ... ~ C + 

With (114) and (115) we have obtained the general local equili­

brium distributions (fA' fB, ... ). 

Since the fA'S have to vanish at infinity on the mass-shells, ,a(x) 

must be a future-directed timelike vector. We put 

(116) 

It is a straightforward matter to obtain from (114) the quantities 
a ab a a a 

NA , TA , SA' nA, rA' PA' uK,uD defined in eqs. (45), (47),(97), 

(63), (64), (49), (52), respectively. Working in the rest frame of ua 

one gets 

(115) 
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(116) 

Tab = a b ab 
A (fA + p A) u u + p A g , ( 117) 

with the scalars (we omit temporarily the index A) n, f' p, s 

r s --­
- 2 rc'l. 

m 

by 

( 118) 

( 119) 

( 120) 

These functions and further thermostatic relations obtained from 

them have been studied extensively; see, e;g., Landsberg and Du!:. 

ning-Davies (1965) and the references given there. 

The thermostatic meaning of the two parameters oc..! is reco­

gnized thus: observe that 

00 

s = - Otn + !r+2~1 f log( 1+ ecJ.-/E) f E2_ m 2' E dE. 

m 
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Transform the last term by partial integration and get, with (120), 

s = - (122) 

Use (120) and compute, again integrating by parts, 

dp = } dO( (123) 

(122) and (123) give 

-1 -1 
d r = ! ds + c:J., dn ( 124) 

Now, r (s, n) is a thermostatic pot~tial, and df = T ds + fdn, 

where T is the temperature and fA'iS the chemical potential 

(per particle). Hence we conclude 

-1 T , 

(125) can now be rewritten in terms of the fA's and reveals 

itself as the law of mass action. 

( 125) 

For the thermodynamics of mixtures see Ehlers (1969), and 

for applications of the preceding theory to cosmology see Ehlers 
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and Sachs (1968). 

Let us now investigate which restrictions are imposed on 

the parameters 04., J and on the mean velocity u a by the requi­

rement that there is global equilibrium, i. e., that there is local 

equilibrium at each event of a region D C X. According to the 

theorem above, the functions (114) must then obey Lionville IS 

equation; i. e. LA ( O(A + }apa) = 0 in D. This equation is ea­

sily evaluated (see, e. g., Ehlers (1969) and leads to the 

theorem. Global equilibrium requires that 

(a) J a is a conformal Killing vector and, if at least one comp~ 

nent of the gas consists of particles with positive rest masses, a 

Killing vector, and 

(b) 
b 

the electric field strength E: = F u is related to T and 
a ab 

0( by 

T dot = e E. (126) 

For a gas containing (also) ordinary particles (m> 0), equilibrium 

requires a stationary spacetime. Defining in such a spacetime a 

scalar gravitation;]] potential IT in terms of the Killingvector 

ra. a by e 2U = 't:' 2 ~ = T oj -~ we obtain Tolman IS law 

U 
e 

T 
o 

T 
(127) 
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.... 
and if E = 0, then Ol = const., so that r depends on the p~ 

tential like the temperature. (For the general evaluation of (126) 

see Ehlers (1959).) 

It is possible to characterize the global equilibrium solutions 

in a given, stationary spacetime by means of a variational princi­

Ele in which S is maximised under certain constraints, see MarIe 

(1969) pp.107. For examples of equilibrium solutions, see Cherni-

kov (1964). 

By means of (42) and (114) it can be verified that Planck's 

distribution law results for rr = 2, OCr= 0, as it should be; OJ.t ° 
results from the relations (115), since there are always some pre­

cesses which change the photon number but not the numbers of the 

other particles involved (ex.: e-e collisions). 

A gas is said to be nondegenerate if the + I-term can be ne­

glected without serious error, so that (112) holds. Otherwise, it 

is called degenerate. 

One consequence of the last theorem is that a gas with m> ° 
cannot maintain an equilibrium distribution if it expands isotropical­

~ in contrast to an (m = OJ-gas (photons, nel1ltrinos). A physical re~ 

son for this deviation from the nonrelativistic behaviour of a (m 0) 

gas will be given in the last section. 
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Since the thermostatic functions of a relativistic gas are ex­

plicitely known (cf. eqs. (118)-(121) ) one can compute, e. g., the 

velocity of sound in such a gas, and one can check the validi­

ty of Weyl's condition for shock waves. For a Boltzmann gas 

with m 0 this has been done in detail by Synge (1957), with the 

result that the sound velocity increases monotonically with the 

temperature and approaches the limit 
c 

{3' as T.--. 00 

(the value for a photon gas); shock speeds are always less than 

c. Shock waves in a gas of Fermions or Bosons have been in­

vestigate by israel (1960). 

11. Irreversible processes in small deviations from equilibrium; 

hydrodynamics. 

Whereas the equilibrium solutions of the Boltzmann equation 

can be written down exactly, there is not much hope to find rigo­

rous solutions describing irreversible (Sa > 0) processes-in fact 
;a 

no such (relativistic) solution is known at present. In physics, however, 

one is mostly interest in non-equilibrium situations. Therefore, 

in order to proceed one has to resort to approximations. We shall 

briefly describe such approximation methods in this sectivil, and 

refer to research papers for details. Our main goal here will be 

to indicate how one may obtain from kinetic theory a complete sy­

stem of equations for thermo-hydrodynamics which is sufficiently 
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general to include heterogeneous systems in which transport pro­

cesses and reactions take place, by applying suitable approxima -

tions to the Boltzmann equation. Partly our exposition will be a 

program rather than the exposition of a completed theory. For 

simplicity I shall consider here only neutral fluids, thus in the se 

" Ja a " quel e A = = F b = 0 . Also, we shall only consider proces -

ses close to equilibrium, whicl: will (for most of the sequel) mean 

states which are infinitesimal perturbations (first order variations) 

away from local equilibrium. 

Two distributions fA' ~ will describe nearly the same ma-

crostate of a gas if their moments in p-space are everywhere near 

ly equal. This will be the case if fA = fA (1 + f ~"') provided ~A 
is a. e. bounded on !'vIA and the numerical "perturbation" para­

meter Eo is small. With this motivation, we shall now consider a 

one-parameter family fA ( £) of states which is, for € = 0, in 

local equilibrium, i. e., is such that for € = 0 the f 's have the 
A 

form (114), with unspecified spacetime fields Oi A' ,a' and we 

dfA I h 11 d t b f l th ' t' Notl'ce that the "10 s a eno e y A e varla lOns --~ ~ =0. 

a lJa 
cal equilibrium functions" O(A' J = T are independent of £. 

For "small" E , the moments computed by ,means of the "pertur~ 

ed distribution functions" fA(O) + E. fl will be considered to be the 
A 

macroscopic variables describing a "state close to equilibrium". 
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It is clear that the perturbed macroscip variables will satisfy 

the conservation laws 

0, (128) 

and similar ones, if we impose additional "scalar" conservation 

laws like b-conservation. Also, we shall have the "Clausius ine­

quality" 

~: = ( 129) 

Again we can write the decomposition (65) for the total, perturbed 
ab . I I a a I ab 

tensor T , wIth f = rIO) + £f ,p = p(O) + Eo p, q = € (q ) • 1C = 

= E ( rcab) I, because of (117) for £ = o. 
Similarly, 

( 130) 

and 

a a a 
S =~u +'6. ( 131) 
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with n A = n A (0) + f nA, i/ f. (i }\a)', ~ = ~O) + £~', ~/ = 

E(~a)" from (115) and (116) for £=0. 

It is a straightforward matter to derive from (128) the e­

nergy balance eguation 

where the kinematical quantities {7, O"ab' U a' Wab are defined 

by 

1 -& . u =W +<S" +- h -uu 
a;b ab ab 3 ab a b' 

cr}=w =3" 
ab (ab) [ab] 

a 
6" = 0 

a 

(133) 

and are interpreted as the rate of rotation (Wab), rate of shear 

( crab)' rate of expansion (-&), and 4 -acceleration (u a) of the 

flow given by ua (see, e. g., Ehlers (1961), Synge (UJ60) ). 

Here and henceforth we write 

)' : ) ; 
;a 

a 
u . 

Also, one obtains the momentum balance equation 

( 134) 
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(r+p) u + hb (q + p +T(c ) + (Co\) + t3' ) qb+ -.! ~q = 0 (135) 
a a b • b b;c ab ab 3 a 

(hab has been defined in (6"6).) 

Let us now assume that there are Q conserved scalar quan­

tities. like b. which we call cq A' where 1 ~ q ~ Q ~ Nand 

where N is the number of species A of particles; the c qA 

are given. constant "gharges". Then the reactions in the system 

are restricted by 

(136) 

We assume the Q "vectors" (c •...• c N) to be linearly inde-
qt q 

pendent. and denote by (I' ••.•• 1' N)' l~p~R: = N - Q a 
Pt (") p 

basis in the orthogonal space. The vectors (1', •... I' N) of the 

latter can be interpreted as (chemical or nuclear. e. g.) reaction 

coefficients. as is seen from the equations 

Na = ~v I' 
A;a L p pA 

(137) 

P 

which express the general solution of (136) in terms of the con­

stants rpA and the reaction rates vp' giving the spacetime den­

sities of reactions of type p. 

From (130). (137) we obtain the particle balance equations 

(t) I;e .• LCqA rpA 0 for l"q~Q. l~p~R. 

A 
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(138) 

Similarly, we rewrite (129), using (131), as 

~ + :S{}' + -'ja 'a = ~~o. , (139) 

To proceed further we vary the expression (97) for the entro­

py current density Sa; because of 

hog(.l. ± 1)-1 
sf 

and (114) we obtain 

T \\' (r- IF-AnA) 
A 

and 

at a' ~ "" .a' 
T ~ = (q - £..fA lA ), 

A 

where the fA are the chemical potentials defined in (125). 

If we combine (140) with the thermostatic Gibbs relation 

( 140) 

(141) 

( 142) 
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which results from (124) by summing over the species A, 

and which holds for the unperturbed equilibrium functions (on 

the manifold f s, nj , .•• ,n A)} of equilibrium states), we get 

the rather remarkable 

Lemma 10. The perturbed 

satisfy 

thermodynamic variables f' s, n A 

where F is the thermostatic potential of the system (as detel 

mined from the exact equilibrium relations of section 10), 

( 143) 

It is, therefore, "reasonable" to use, for near-equilibrium 

processes, the ordinary Gibbs equation of state for the perturb­

ed variables, neglecting the error term in (143), as we shall 

henceforth. 

Also, we rewrite (141) for the perturbed variables: 

( 144) 

We also recall that, from (122), the thermostatic pressure 

Po associated with the perturbed state is 

Po Ts -f+ 2:fA nA; (145) 

A 
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there is no reason why p should equal the total kinetic pressu­
o 

re p in (65). 

We are now ready to derive an explicit expression for the 

entropy production density, ~, in terms of appropriate thermody­

namic and hydrodynamic quantities. Compute ~ from (142) for 

the perturbed state, which is permissible because of Lemma 10; 

insert f from (132), n A from (138), and rearrange terms, 

using (445), (144) and the definition 

( 146) 

for the volume viscosity 1C , to obtain the entropy inequality, 

- T~ = 1'Cab e-ab +'Jt~-+~a_ 4fA i~] [ (log T), a + Ua ] + 

( 147) 

+LiAa ( rA,a + fAUa) +~Ivp2:fArAp} ~ O. 

A P A 

This expression has the usual form known from ordinary irre­

versible thermodynamics (see, e. g., de Groot and Mazur (1962) ); 

in relativity, it has also been worked Qut on the basis of pheno­

menological assumptions by several authors (see, e. g. Stiickel­

berg and Wanders (1953), Kluitenberg, de Groot and Mazur (1953), 

Kluitenbelfg and de Groot (1954), (1955). 
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We wanted to show that (147) and the previous formulae 

follow, in the sense we have specified, from kinetic theory, 

just as in the non-relativistic case; this does not seem to have 

been pointed out before with the generality we have retained he­

re, The crucial fact is tliat equations (143) and (144) follow 

from the kinetic expression (97) for the entropy current, 

The expression - T~ as given by (147) is bilinear in 

"fluxes" ')tab,1("" and "forces" <;rab, -e-"" , 
We have shown earlier that the "fluxes" vanish at an event x if 

there is local equilibrium at x, and that the IIforces" vanish in 

a region if there is (global) equilibrium in that region, Hence, 

one is driven to conjecture that, in a near-equilibrium process, the 

fluxes (which are "caused" by the forces) depend linearly and ho­

mogeneously on the forces, with coefficients depending on the ther­

mostatic variables s, n A' This assertion is indeed used as an as­

sumption in phenomenological approaches, and leads to (more or 

less) well-known relativistic linear transport and reaction eguations 

for the shear viscosity 1'Cab' the volume viscosity 1t, the heat 

flow wa: = q a ~ fA i ~ , the diffusion currents i A a, and the 

reaction rates v, The corresponding matrix which transforms 
p ----

( 0ab'.{t",,) into (1'tab, TC",,) must be positive-semi-defini-

te because of (147), If one requires, as is natural for a fluid, 

that this matrix is invariant with respect to rotations ( in the 3-
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tangent-space orthogonal to ua), the matrix reduces; and one 

obtains a further simplification by assuming Onsager-Casimir 

symmetry. All this follows strictly the standard theory. 

However, we should not make these assumptions, but de-

ri ve them from kinetic theory. This has not yet been done in 

the generality maintained here, but it will undoubtedly be done 

soon ( 1). Such a derivation will supposedly) give not only the 

form of the transport and reaction equations, but will also pro­

vide formulae for the transport and reaction coefficients in terms 

of thermostatic variables and cross sections. 

Two classical methods for doing this offer themselves; the 

Chapman Enskog method, and the Grad method of moments. 

Both these methods have, in fact, been adapted to relativity; the 

former by Israel (1963) and, in a mathematically more com-

plete form, by MarIe (1969). (Israel, however, gives more de­

tailed results, particularly for a special type of "Maxwellian" 

gas.) The method of moments has been taken over into relativi-

ty by Chernikov (1964) and in a more geometrical (and also 

analytically more powerful) manner by MarIe (see Marle (1966), 

(1969) ) and, independently, by Anderson and Stewart (see Stewart 

(1969), Anderson (1970). Mathematically, MarIe's tre.atment is the 

most complete one as regards the discussion of the "relativistic 

Hermite-Grad polynomials", whereas Anderson and Stewart have 

(') (Note added in proof) See a forthcoming paper by J. M. Stewart, 
to appear in Lecture Notes in Physics, Springer- Verlag. 
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gone further towards physical applications (transport coefficients 

from cross sections.) In all of this work, the gas is a simple 

Boltzmannian one; in that case, both methods give the transport 

equations for T( b' 1C and q expected on the basis of (147). In 
a a 

particular. Israel (1963) and Anderson and Stewart (1969,1970) 

both emphasized that a relativistic gas has (in general) a posi-

tive bulk viscosity, in contrast to a non-relativistic gas. The bulk 

viscosity vanishes both in the nonrelati vistic (T- 0 ) and in the 

ultrarelativistic (T-OOI limit. This result "explains" the differe~ 

ce between m = D)-gases and (m> D)-gases with respect to proper­

ty a) ot the theorem in section 10: A gas of the latter type behaves 

irreversibly if expanding isotropic ally, because of the term 1'(-& 
in (147); a photon gas, however, behaves reversibly, since Ta =0 

a 
implies that 1t = 0 always. 

For more details concerning the transition from kinetic theory 

to thermo-hydrodynamics within the framework of relativity we refer 

to Chernikov (1964), and to the papers cited above. 
a 

The roles of temperature T, entropy S (or s) and of the main 

theorems of thermodynamics are completely clear within the frame­

work of relativistic kinetic theory; there is no room for assumptions. 

(Of course, this changes if one wants to leave the domain of appli -

cability which we have delineated above.) In particular, integration 

of (129) over a section of a world tube of streamlines, bounded by 

two space like cross sections Land,"" , gives with the help of (131) 
i L....l 
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a 
w 

T 
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S[ 2:t] - S [L:J ~ J T- 1 
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a 
w <3" a ( 143) 

where./\. is that part of the boundary of the world tube which lies 

between ~ , and L: ,and where'" is assumed to be later than ~1 t ~2 
L . This inequality is a precise version of the somewhat vague 

ass;rtion ~ S ~ J ~ which has first been postulated in general 

relativistic thermodynamics by Tolman (1934). In a similar fashion 

one can derive other "global" thermodynamical laws for moving, fi­

nite systems enclosed in containers (timelike cylinders in X) from 

the basic differential relations discussed here; again, there is no 

ambiguity. (For another example of such a derivation, see Starusz 

kiewicz (1966).) 

Last - but not least - I would like to mention that the long-discu~ 

sed paradox concerning the acausal nature of temperature propagatlOn 

(mathematically: the parabolic character of the corresponding system 

of equations) has been resolved by the observation that the general, 

"anormal" solutions resulting from the method of moments obey hy -

perbolic equations with non- spacelike characteristics (Stewart 1969), 

and only the special, so-called "normal" solutions give rise to the p~ 

radox, which is, therefore, due to an inadequate approximation. 
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