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Chapter 1 
 
GENERAL INTRODUCTION AND OUTLINE 
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Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are 
the two most widely used imaging tools in cognitive neuroscience involving human 
subjects. Both techniques provide a non-invasive way to study brain activity related to 
mental functions. EEG is ideally suited to study brain activity with millisecond 
precision, but the spatial resolution at channel level is limited to roughly a cerebral lobe. 
FMRI on the other hand is an ideal method to investigate which regions are related to 
specific mental functions, but its temporal resolution is limited to seconds rather then 
milliseconds. Each method on its own therefore provides an incomplete picture of what 
happens in the brain. The promise of integrating EEG with fMRI has therefore always 
been to obtain excellent knowledge about both when (with EEG) and where (with 
fMRI) processes in the brain take place. 
Integrated analysis of both techniques assumes that the neural components of the two 
signals are related directly or indirectly. A potential direct link can be found in the 
notion that both signals are directly linked to perisynaptic activity. The EEG is thought 
to be generated through the summation of synchronous post-synaptic potentials on the 
apical dendrites of pyramidal neurons that are oriented perpendicular to the scalp. EEG 
therefore reflects incoming activity to these pyramidal neurons. Recent insights into the 
origins of the BOLD signal suggest that it is also closely related to the input that is 
received by a neuron, in that it is related to the pre-synaptic release of neurotransmitters, 
particularly glutamate (Friston, 2008). 
Although there is evidence for a direct link between EEG and BOLD activity, not all 
neural activity expressed in the BOLD signals will also be expressed in the EEG and 
vice versa. EEG as mentioned above is only sensitive for synchronous input to 
pyramidal neurons of a certain orientation that are close to the scalp. These restrictions 
do not affect the BOLD signal, and other types of neural activity might very well be 
expressed in the BOLD signal, without having a direct effect in the EEG. Also the 
other way around is conceivable. If the BOLD signal is indeed differentially related to 
different neurotransmitters, as has been suggested, it is possible that certain neural 
activity is not expressed in the BOLD signal. It has in fact been shown that not all 
activity observed with EEG also results in BOLD responses and vice versa (Im et al., 
2005; Liu et al., 1998; Schulz et al., 2004), which has led to the notion of fMRI blind 
MEG/EEG sources and MEG/EEG blind fMRI sources (Ritter and Villringer, 2006). 
An indirect relation between EEG and BOLD activity however is still possible, which 
can be investigated with an integrated analysis approach. For example activity in 
subcortical regions like the thalamus and the striatum activity is hard to detect directly 
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with EEG, but does directly influence activity in cortical regions that do produce 
measurable features in the EEG. Integrated analysis of fMRI and electrophysiological 
data can help us understand to which EEG features these subcortical regions are 
related.  
Simultaneously recorded EEG and fMRI is a relatively recently developed technique 
(see Herrmann and Debener, 2008, for a historical perspective). Before its development 
integrated analysis of both scalp level electrophysiological measures (EEG and 
magnetoencephalography; MEG) and hemodynamic measures (e.g. fMRI and positron 
emission tomography; PET), several studies combined the analysis of separately 
recorded EEG/MEG and PET/fMRI in the same subjects. Among the first attempts to 
combine both measures in such a way is the work of Heinze et al. (1994), who 
investigated the timing and localization of the earliest effects of spatial attention. The 
event related potential (ERP) revealed the attentional effect with a millisecond 
resolution, while dipole modelling of this effect yielded the same location as was 
revealed in the subtraction of both conditions in a PET session. Since then several 
studies used a similar approach using fMRI and EEG (Linden et al., 1999; Opitz et al., 
1999; Wibral et al., 2008) or MEG (Dale et al., 2000; Fujimaki et al., 2002; George et al., 
1995; Liu et al., 1998; Moradi et al., 2003; Phillips et al., 2002; Woldorff et al., 1999). 
The different measurement environments however can influence the nature of the 
responses. The noise from echo planar imaging has been shown to influence the 
auditory response in both MEG and EEG (Herrmann et al., 2000; Novitski et al., 2001; 
Novitski et al., 2003). If effects of mood or brain state are of interest, collecting both 
measurements simultaneously is also advisable. Sammer and colleagues (Sammer et al., 
2005) however reported that well known effects of various cognitive manipulations on 
EEG features can be replicated inside the scanner. 
Although the first report of simultaneously recorded EEG during echo planar imaging 
already dates back to 1993 (Ives et al., 1993), integrated analysis of simultaneously 
recorded EEG and fMRI data is of a more recent date. Its development is tightly related 
to advances in MR compatible hard-ware like EEG amplifiers and electrodes (Lemieux 
et al., 1997), and specialized software to deal with the artifacts generated in the EEG-
unfriendly environment of the MR scanner (Allen et al., 2000; Allen et al., 1998). See 
Laufs et al. (2008) for a review on these methodological issues. One of the first 
applications of simultaneously recorded EEG and fMRI was in the field of epilepsy, 
motivated by the requirement to localize the brain regions related to interictal 
epileptiform activity (see Laufs and Duncan, 2007, for a review). Simultaneous recording 
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of EEG and fMRI is essential here, since the occurrence of epileptiform activity is 
unpredictable, and hard if not impossible to control experimentally.  
The advantage of recording epileptiform activity is that this activity is so strong that 
single events are readily observed at scalp level. It is therefore also not surprising that 
most of the early research using concurrently recorded EEG and fMRI in a non-clinical 
setting focused on how changes in the blood oxygenation level dependent (BOLD) 
signal correlates to the posterior alpha rhythm. This rhythm is also readily detectable at 
scalp level, and is particularly pronounced at the back of the scalp when people are at 
rest with their eyes closed. Several studies have correlated fluctuations in power in this 
resting state alpha rhythm with the blood oxygenation level dependent (BOLD) signal 
and have all unequivocally found negative correlations between alpha and the BOLD 
signal in the cerebral cortex (Feige et al., 2005; Goldman et al., 2002; Laufs et al., 2003a; 
Moosmann et al., 2003). However, in different studies different sets of regions were 
found to correlate negatively with alpha power. Later research suggested that this 
relation is more complicated than it first seemed, and that it also depends on the relative 
contribution of other frequency bands to the total EEG spectrum (Goncalves et al., 
2006; Laufs et al., 2008). 
As mentioned in the beginning of this chapter, one reason for simultaneous recording 
of EEG and fMRI could be the requirement of having exactly the same conditions for 
both measurement modalities. If this is not vital, simultaneous recordings should only 
be undertaken if this yields valuable information that cannot be obtained from separate 
measurements. Besides investigating the BOLD correlates of EEG-defined spontaneous 
neural events like epilepsy, sleep spindles and alpha amplitude fluctuations, the 
usefulness of simultaneous recordings may lay in the ability to relate trial-by-trial 
fluctuations in EEG responses to trial-by-trial fluctuations in the fMRI BOLD signal. A 
first prerequisite for this is that variability over trials in the neural response is expressed 
in both the fMRI signal and an EEG feature (e.g. an event related potential or power 
change). Whether this is actually the case cannot be solved a-priori and is best addressed 
empirically by checking whether there is a trial-by-trial coupling of BOLD and EEG 
responses that can be related to what is known about the effects in both modalities 
separately. On a more theoretical ground, however, a plausible case can be made for the 
presence of meaningful trial-by-trial variation in brain processes. The brain is not a static 
‘noise’ free system. A more realistic view is that the brain is a dynamic system in which 
the internal state changes continuously, both due to internal interactions, and 
interactions with the outside world. This continuous change of brain states will 
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therefore most likely also influence its response to the same external input on a trial-by-
trial basis. If these fluctuations are reflected both in the EEG as well as in the fMRI 
signal, the trial-by-trial coupling between EEG and the fMRI might provide us with 
information on which brain regions are actually directly related to the task induced 
effects observed in the EEG. Since both brain regions and EEG features have been 
linked to specific cognitive operations these results can potentially change the 
interpretation of the EEG feature in question as well as the fMRI response in a 
particular region. Additionally, this technique could also help us to better understand the 
relation between the hemodynamic measures like the fMRI BOLD signal and 
electrophysiological signals in general, which is still poorly understood. 
A problem relating single trial EEG responses to the BOLD response lies in the 
observation that effects of experimental manipulations on EEG features like, the ERP  
or frequency specific power changes, are weak compared to the artifacts, noise and 
other background activity present in the EEG. Therefore, the signal is usually averaged 
over many repetitions of the same trial type in order to increase the signal to noise ratio. 
When we want to combine EEG with fMRI at single trial level averaging over trials can 
not be done. However increasing the strength of the signal of interest relative to 
artifacts, noise and non-interesting EEG signals by other means is very important. Two 
articles published almost simultaneously by Eichele et al. (2005) and Debener et al. 
(2005) demonstrated that it is possible to increase the relative strength of ERPs to 
obtain single trial estimates that yield interpretable correlations with the BOLD 
response. Eichele et al (2005) used a combination of independent component analysis 
(ICA) and wavelet denoising to get reliable single trial estimates of the P2, N2 and P3 
components in the ERP. They were able to show that trial-by-trial fluctuations of these 
three different ERP components correlated with the BOLD response in three different 
networks of brain regions. This illustrates the ability to differentiate the BOLD response 
in different regions based on their relation to different EEG features. 
While Eichele et al. (2005) only used the EEG sampled in between the acquired fMRI 
volumes, Debener et al. (2005) measured both modalities fully simultaneously, 
correcting for the EEG artifacts related to fMRI volume acquisition afterwards. Using 
ICA to denoise the EEG data, they were able to show that also under these conditions 
single trial ERPs can be reliably measured. They convincingly showed that the trial-by-
trial fluctuations in the amplitude of the Error Related Negativity (ERN), an ERP 
component that emerges after an error, correlates with the BOLD response in a region 
that also shows a BOLD activation after an error. Moreover, they showed that a dipole 
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seeded in this location is able to explain the observed scalp topography of the ERN very 
well, suggesting a close relation between the ERN and a task induced regional specific 
BOLD response.  
Besides EEG research that focuses on ERPs, the analysis of event related increases and 
decreases in frequency band specific power using EEG or MEG has become 
increasingly popular. In the context of simultaneous EEG-fMRI, research mainly 
focused on the relation between power fluctuations and the fMRI signal in resting state 
(Goldman et al., 2002; Goncalves et al., 2006; Laufs et al., 2006; Laufs et al., 2003a; 
Laufs et al., 2003b; Mantini et al., 2007; Moosmann et al., 2003; Scheeringa et al., 2008). 
Few studies however have addressed the relation between the fMRI signal and 
frequency specific power effects (Mizuhara et al., 2004; Sammer et al., 2007) in the EEG 
in experimental contexts.  
In this thesis I specifically investigate the relation between oscillatory EEG activity and 
regional specific changes in the BOLD signal, using simultaneously recorded EEG and 
fMRI. An important feature of event related power changes is that they can last for 
several seconds, while ERPs in general are short lived. Since BOLD signal changes can 
also last for many seconds, changes in oscillatory EEG activity might very well be 
closely related to the BOLD signal. Animal work has indeed suggested that power in 
electrophysiological measures are more closely related to the BOLD signal than changes 
in spiking rate (Logothetis et al., 2001; Niessing et al., 2005) , which are also more 
transient. In addition, recent studies suggest that the longer lasting ERPs are closely 
related to changes in EEG or MEG power (Mazaheri et al., 2009; van Dijk et al., 2010). 
 
Outline of the thesis  
 
In this thesis, I present data obtained during a resting state measurement (chapters 3 
and 6) as well as in experimental contexts (chapters 4 and 5). Together with a 
methodological chapter (chapter 2) and a general discussion (chapter 7) this thesis 
demonstrates how simultaneously recorded EEG and fMRI can successfully be applied 
in cognitive neuroscience to study the relation between frequency specific EEG power 
fluctuations and changes in the hemodynamic signal as measured with BOLD fMRI. 
Chapter 2 elaborates on the general issues regarding methods, design and interpretation 
that feature throughout the work in the other chapters. It provides further background 
to the methodological choices and interpretation of the data in the subsequent chapters. 
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Chapter 3 describes the BOLD correlates related to resting state fluctuations in frontal 
theta (3-7 Hz) power. Frontal theta oscillations are a prominent feature in the EEG that 
can be manipulated by cognitive tasks contexts, but can also be observed during resting 
conditions. Here we find that a well-known network from fMRI literature, the so called 
default mode network, is negatively correlated to resting state fluctuations in frontal 
theta power. 
Chapter 4 investigates how increases in frontal theta and in right posterior alpha (8-12 
Hz) EEG power during working memory maintenance are related to regionally specific 
changes in the fMRI signal. Trial-by-trial EEG/fMRI correlation reveals two separate 
networks that are closely related to these working memory induced power increases. 
Chapter 5 focuses on how effects in different frequency bands relate to the fMRI 
signal. Based on work in animals and earlier EEG/fMRI studies, power fluctuations in 
low frequencies are thought to correlate negatively with the fMRI signal, while 
fluctuations in higher frequencies, more specifically in the gamma band (roughly from 
30-100 Hz), are tightly positively coupled to the BOLD response. Here we use a visual 
task that is known to modulate power reliably in high as well as low frequencies. MEG 
source analysis revealed that these effects largely come from the same region in the 
visual cortex. This gives us the opportunity to study the relation of the fMRI signal 
across the entire frequency spectrum of the EEG, by correlating each the power for 
frequency with the BOLD signal from this region.  
In the chapters 3-5 we investigated whether and where the fMRI BOLD signal 
correlates with EEG power fluctuations. This strategy is suited for investigating whether 
frequency specific changes in EEG power are related to activations found in fMRI. In 
chapter 6 we adopted a novel approach by investigating whether the connectivity within 
an fMRI-defined resting state network, the visual network, and with regions outside the 
network is modulated as a function of EEG alpha power. In this chapter, we report a 
decreased connectivity within the visual system, and a less strong negative relation of the 
visual cortex with regions of the default mode network when alpha power is high. 
Chapter 7 summarizes the results from the previous chapters, and discusses more 
general issues that are raised by the collection of work presented in the previous 
chapters. In this chapter I also discuss some potential new lines of research that could 
benefit from using simultaneously recorded EEG and fMRI. 
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Chapter 2 
 
METHODS, DESIGN AND INFERENCE 
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This chapter elaborates on the methods, design and the interpretation of the data that 
are presented throughout this thesis. The chapter is not intended to give an exhaustive 
overview on the technical and methodological issues related to simultaneously recorded 
EEG and fMRI. A historical perspective on this subject can be found in Hermann and 
Debener (2008); a review on recent advances can be found in Laufs et al. (2008). The 
first part of this chapter presents a brief introduction to the different types of 
EEG/fMRI integration that can be distinguished. This will put the work presented in 
this thesis in a context. In the second part the considerations that formed the basis for 
the statistical designs are discussed. The third section discusses what inferences can be 
made from simultaneous recorded EEG/fMRI. The last part discusses independent 
component analysis (ICA) with a focus on its application in this thesis as a 
preprocessing tool for EEG data. 
 
Types of EEG-fMRI integration 
 
Several different strategies have been employed to analyze simultaneously recorded 
EEG and fMRI. In an article proposing a joint forward model for EEG and fMRI, 
Kilner et al. (2005) distinguish three approaches to fMRI integration: (I) integration 
through fusion of forward models prediction; (II) integration through constraints; and 
(III) integration through prediction. 
Integration through fusion attempts to model both the EEG features measured at the 
scalp level as well as the BOLD signal from the region generating that feature through a 
common (generative) forward model. Kilner et al. (2005) argue that activation as is 
expressed in the increased BOLD signal, is related to increased energy dissipation, 
decreased membrane constants, increased effective coupling among neural assemblies, 
and as a result a shift in the EEG spectral profile to higher frequencies. A more recent 
and more extensive approach using a Bayesian framework was presented by Daunizeau 
et al. (2007). 
Integration through constraints refers to the procedure in which information in one 
modality constrains the analysis in the other modality. In integrated EEG-fMRI analysis 
this usually refers to using the fMRI activation pattern as constraint or prior knowledge 
in the source estimate of the EEG (or MEG) data (Dale and Halgren, 2001; Phillips et 
al., 2002). In principle, this procedure does therefore not require simultaneously 
recorded EEG.  
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When EEG and fMRI are integrated through prediction, one modality (typically EEG) 
is used to predict the other (typically fMRI). Most studies using simultaneous EEG and 
fMRI have employed this strategy. Several of the studies employing this strategy have 
focused on finding the regions where BOLD correlates with fluctuations in ongoing 
EEG power (Goldman et al., 2002; Goncalves et al., 2006; Laufs et al., 2006; Laufs et 
al., 2003a; Mantini et al., 2007; Moosmann et al., 2003). The coupling of variations in 
single trial estimates of EEG features like ERPs to regional specific BOLD fluctuations 
also falls under integration through prediction. 
The work presented in this thesis largely qualifies as integration through prediction. The 
only exception is in chapter 3 where we show that one of the regions where the BOLD 
signal correlates with frontal theta power is also the likely source of frontal theta. This is 
an example of integration through constraints. In chapter 6 we use integration through 
prediction in a slightly different manner. Here we use EEG power to predict whether 
the interaction between regions measured with BOLD differs between periods with 
relatively high and low EEG power. 
 
Statistical design 
 
As mentioned above, most of the work presented in this thesis qualifies as integration 
through prediction. The most commonly used tool for achieving this is the general 
linear model framework (GLM). Since there is no task, and therefore no task regressors, 
the construction of the design matrix for the linear model in resting state studies is 
straightforward. Usually HRF-convolved normalized EEG power (or another EEG 
feature like epileptic activity) forms a regressor in the design matrix that further consists 
of nuisance regressors (e.g., movement parameters). At the group level the estimated 
beta-parameters for these regressors are then tested with for example a one-sample t-
test. In chapters 3 and 6 we used this approach. 
In a task context constructing the design matrix is more complex. Here the goal usually 
is to investigate which brain regions are related to a particular task related EEG feature 
(for example ERP amplitude or power increase or decrease). By using single trial 
estimates of this EEG feature in a regressor, researchers aim at detecting regions where 
the BOLD signal covaries with the strength of this feature, which can therefore be 
functionally related to the task evoked effect in this aspect of the EEG signal. However, 
in a task context the mere presence of an experimental task already poses a problem for 
the construction of the design matrix. Since both fMRI and EEG are dependent 
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variables any correlation between the two signals can be caused by the same task 
manipulation, and does not necessarily imply a more direct relation between the two 
measures. In the context of correlating trial-by-trial estimates of BOLD and EEG 
features, the mean task effect on both measures is therefore to be viewed as a potential 
confound (see figure 2.1 for an illustration). By simply inserting both task and EEG 
based regressors in the same design matrix the experimental paradigm introduces 
colinearity between the two types of regressors reflecting their mutual dependence on 
the task. This reduces the statistical power for detecting effects related to each individual 
regressor. This colinearity problem can be solved by constructing the EEG based 
regressors in such a way that they model only uniquely attributable variance in the 
BOLD signal (e.g. variance that cannot be explained by the regressors modelling the 
experimental paradigm). In this approach, the benefit of using the EEG features in the 
analysis of the fMRI data is explicitly accounted for by the EEG based regressors. 
 In figure 2.1 a scheme is depicted that shows how these EEG based regressors can be 
obtained for event related effects in EEG power. The basic idea is that for every single 
trial the EEG power response can be modelled by three uncorrelated components. The 
first component consists of the average response across all trials and the entire time 
interval of the trial (or trial segment). This is the overall mean effect of the task across 
the entire trial. It is the part that is typically modelled in fMRI studies by box-car 
regressors, and is therefore the part that causes the colinearity between EEG and task 
regressors if both are included in the design matrix of the linear model. The second 
component is the deviation in the average EEG power response from this idealized box 
car response at the different time points in the trial. This component can be obtained by 
subtracting the mean power during the trial from the average power time course. Note 
that this regressor strictly speaking does not necessitate the concurrent registration of 
EEG and fMRI, if the assumption that the average EEG response is the same across 
recording sessions and measuring environments holds. The third regressor can be 
obtained by subtracting the mean power response from each single trial power time-
course. This component captures the trial-by-trial variation in the EEG power response. 
Subsequently three uncorrelated types of regressors can be built from these three 
subcomponents, each modelling uniquely identifiable parts of variance in the BOLD  
response. The first types of regressors, consisting of standard box-car regressors, model  
the average effect, just like in conventional fMRI experiments. The second set of  
regressors inform about where the EEG power response actually deviates from this 
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Figure 2.1. Construction of regressors based on EEG power in a task context. Panel A 
schematically illustrates the colinearity problem when EEG power is used as a regressor in a task 
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context. Since EEG power and fMRI are modulated by the same experimental paradigm they 
will be correlated as a consequence. Regions that correlate with EEG power are therefore not 
necessarily related to the task related EEG power effect, since it can also be related to the 
experimental manipulation through a different route. To account for this task effect, task 
regressors can be included in the design. These task regressors are usually based on the 
assumption that the neural response is stable over the entire time period it models. They model 
the average neural response over the modeled time period within a trial and over trials (see also 
Panel B). Since we have the time course of the average EEG power response over trials, we 
actually have knowledge about the real time course of the EEG power related neural activity. By 
building a regressor from the average power response we can therefore model the average EEG 
power related neural response over trials. We therefore can include three types of regressors: (I) 
the conventional box-car regressors modeling the task; (II) regressors modeling the average 
power response over trials; and (III) regressors build from the single trial power responses. 
These regressors are however strongly interdependent, and therefore correlated. This will affect 
the beta estimates of all the regressors if they were entered in a GLM simultaneously. Therefore 
we uncorrelated the regressors in a hierarchical way, as is depicted in Panel B. By subtracting the 
overall mean power, depicted as a box-car, from the average power response, and the average 
power response from every single trial power estimate we can construct a set of uncorrelated 
regressors, as is depicted in panel C. This procedure as depicted here implements a Schmidt-
Gram orthogonalization on regressors that were not convolved with a hemodynamic response 
function for illustration purposes. In this thesis, we applied this procedure after convolution. The 
three orthogonalized types of regressors now model unique parts of the variance in the BOLD 
signal. The task regressors model the task as is done in conventional fMRI experiments. The 
orthogonalized average response models the additional information about the shape of the EEG 
power related activity, and the orthogonalized single trial response models the trial-by-trial 
deviation from the average power response. This last type therefore explicitly models the 
information that can be gained from recording EEG and fMRI simultaneously. Regions where 
the activity underlying the BOLD response is related to the EEG power response of interest 
should be related to all three types of regressors. 
 
idealized box-car response. The third type of regressor models the trial-by-trial deviation 
from this average power response, and therefore accounts for the part of the variance in 
the BOLD signal that can only be explained if EEG and BOLD are acquired by 
measuring both modalities simultaneously. The construction of these regressors can be 
achieved before convolution with the HRF by the subtraction scheme presented in 
figure 2.1, but can also be achieved after convolution by orthogonalizing the regressors 
hierarchically as is done in chapter 4 (Gram-Schmidt orthogonalization). 
In some circumstances it is preferable not to construct the second and third type of 
regressors separately. When ERPs and not EEG power are at the focus of interest it is 
usually not possible to construct the second type of regressors, since only one 
measurement for each trial (usually its amplitude) is available, with the possible 
exception of very slow evolving potentials that last up to several seconds. In addition,   
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Figure 2.2. The hemodynamic response acts as low pass function on underlying neural activity. 
Panel A shows the normalized modeled hemodynamic responses and its power spectra to 
different lengths underlying bursts of neural stimulation. The underlying neural stimulation is 
modeled as a stick function or box-car responses of different lengths. The power spectra indicate 
that for all stimulation lengths most power is found below 0.08 Hz, the same range as the so 
called resting state fluctuations which are depicted in figure B. This panel shows the average 
normalized power spectrum of over subject from right VI during an eyes open resting state 
section. This also demonstrates that all neural activity that is reflected in the BOLD signal is 
necessarily modulated at low frequencies. 
 
when the average EEG power response resembles a box-car regressor or when the trials 
are short it might not be worthwhile to make separate regressors. If the average 
response resembles the box–car model (high colinearity), the average regressor has little 
statistical power.  
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In the case of short trial lengths the same problem arises. The BOLD response is a 
temporally smoothed and indirect measure of the underlying neural activity. Due to the 
filter characteristics of the hemodynamic response, the HRF convolved average power 
time-course will always resemble the HRF convolved box-car response. The total length 
of the BOLD response including the undershoot, is estimated to be in the order of tens 
of seconds, although the greatest dynamic variability (strongest response) occurs during 
the first 10-12 seconds. These characteristics imply that the BOLD-response acts as a 
temporal low-pass filter for all the underlying neural activity that is reflected in it (see 
Fgure 2.2). Therefore also the box-car model, the regressors modelling deviations in the 
average response and the trial-by-trial regressors must be ‘filtered’ (and temporally 
displaced, another characteristic of the BOLD response) by a hemodynamic response 
function. Since the short trials, because of their short length, can only contain high 
frequency deviations from the overall average response, these deviations will be largely 
filtered out after convolution with the HRF.  
For these two reasons we did not construct regressors for the average power response 
in chapter 5. In this chapter the trials were relatively short (maximal 2.1 seconds), while 
the average power responses in the different frequency bands resembled a box-car 
model to a great extent. 
 
Inference 
 
Integration of EEG and fMRI as applied in this thesis has been restricted to 
correlational methods. As a consequence a causal relation between EEG and fMRI can 
not be directly inferred. Under some circumstances the case for a close and sometimes 
even causal relation between EEG power effects and the BOLD signal can be made. In 
the previous section of this chapter we showed how task related EEG power effects can 
be decomposed into several uncorrelated regressors that explain unique parts of 
variance in the BOLD signal. Regions where the task related EEG effect is related to 
the neural processes that give rise to the BOLD signal are expected to show a task effect 
in the BOLD signal that is similar to the effect present in the EEG (regressor I in figure 
2.1). In addition these regions are also expected to show a relation to the regressor 
modelling the deviation in the average response (regressor II) as well as trial-by-trial 
variation (regressor III). The signs of the effects also should match: a positive average 
BOLD response in a region should co-occur with a positive relation of the BOLD 
signal in that brain region with regressors II and III. If all these effects are observed for 
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a certain brain region there is strong evidence that there is neural activity in this region 
that is closely related to the task induced effect in the EEG. 
In chapter 4 this reasoning is applied to working memory related EEG power effects 
observed in the alpha and theta bands. We were able to find regions that showed this 
pattern, and that were therefore classified as being related to the working memory 
related EEG power effect. For both rhythms investigated, regions were observed that 
did not show the full expected pattern, but only a part of it. The reasoning explained 
above does not imply that there is no neural activity in these regions related to the EEG 
effect of interest. The previous section of this chapter explained that regressor II can 
lack statistical power if the average response resembles the box-car response to a great 
extent. In chapter 4 we therefore qualified regions that showed only a relation with 
regressors of types I and III as being related to the task related EEG power effects. 
Other deviations from the expected pattern implicate that there is less evidence for a 
strong link between the BOLD response in a certain region and task related EEG 
power effects. If only a relation of BOLD with trial-by-trial variations is observed for a 
region, this could be caused by the presence of two (or more) effects on the mean 
BOLD signal in opposite directions, but it could also be related to confounds in the 
trial-by-trial variation (e.g., other not fully unmixed EEG rhythms). Distinguishing 
between these two possibilities is in the context of the GLM as is it is used here is not 
possible.  
Resting state is inherently an uncontrolled state, since there is no good knowledge on 
the mental activities of the subject. Consequently, the inferences that can be made from 
observed resting state EEG-BOLD correlations cannot be as strong as in a task context. 
This however does not imply that the results are of little value.  In the last few years the 
number of resting state studies using fMRI alone has grown dramatically. These studies 
have identified several correlated networks each of which has been related to specific 
mental activities (Damoiseaux et al., 2006; Smith et al., 2009).  Also resting state EEG 
shows certain typical features like posterior alpha and medial frontal theta rhythms. 
Resting state coregistration of EEG and fMRI provides a relatively easy means to 
explore whether and where the observed fMRI resting state networks are related to 
fluctuations in EEG power (Mantini et al., 2007), and which brain regions are related to 
pre-specified brain rhythms. In this thesis we followed only the last strategy, since we 
had a good idea in which brain rhythms we were interested. In chapter 3 we investigated 
the BOLD correlates of resting state frontal theta power, while in chapter 6 we 
investigated the central posterior alpha rhythm. A recent study not included in this 
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thesis (Sadaghiani, 2010) followed the first approach since we were interested in the 
EEG correlates of two fMRI-defined brain networks. We were able to show that the so 
called 'salience network' and the 'dorsal attention system' show differential correlational 
patterns with alpha and beta power. The results of this study and the two studies in this 
thesis show that these exploratory studies can yield interpretable results that can be 
further investigated in a more hypothesis driven way in a task context. It is however not 
a certainty that regions where the BOLD signal is found to be related to a resting state 
fluctuation in EEG power are also related to task manipulation of the very same 
rhythm. FMRI research has shown that only parts of a network observed in resting state 
might show effects of task manipulations (Fox et al., 2006). 
A question that naturally arises from correlating EEG features with the BOLD signal, is 
whether the region(s) where BOLD is found to correlate with an EEG feature is also 
the source location of that feature. Since the results here are all based on correlations, a 
definitive answer cannot be given. Based on other converging evidence a good case can 
often be made whether one or more of the observed regions are also the likely source 
locations. A first idea can be obtained by comparing the scalp distribution of the EEG 
feature with the location of the effects observed with fMRI. Frontal regions are for 
instance very unlikely sources for posterior alpha rhythms, and can already be excluded 
on this basis. Further evidence can come from source analysis on the EEG features of 
interest, either on the same data, from other measurements, or from previously 
published work. If there is good concordance between regions obtained with source 
analysis and regions found through correlating EEG with the BOLD signal, this 
suggests that there is a direct relation between the EEG feature of interest and the 
BOLD signal. We most directly addressed this issue in chapter 5, in which we had good 
prior evidence from earlier MEG and fMRI research that the source location for the 
alpha, beta and gamma task effects was the same as for the activation observed with 
separately measured fMRI. This was also reaffirmed in our study by comparing the 
MEG source analysis of an experiment using an almost identical task with our observed 
fMRI effect. Moreover, we showed that there was significant correlation with trial-by-
trial variation and EEG and fMRI for all three frequency bands. This makes it very 
likely that processes that give rise to the observed EEG task effects in alpha, beta and 
gamma power are indeed also expressed in the BOLD signal recorded form the source 
location. In addition, in all other chapters regions were observed that are good 
candidates for being the source location of the EEG rhythms of interest. On the other 
hand, also regions that are very unlikely source locations were found to be related to 
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certain EEG power changes. The evidence provided in this thesis, however, suggests 
that the neural processes that give rise to scalp recorded EEG power fluctuations are 
also closely related to the BOLD signal. 
 
Independent Component Analysis 
 
Independent component analysis (ICA) is a technique that falls in the category blind 
source separation techniques, which implies that it can separate data into source signals 
even if little is known about the exact nature of the underlying sources. It is therefore a 
general tool that also has applications outside neuroscience. In neuroscience it has been 
applied both to fMRI (Beckmann and Smith, 2005; Calhoun et al., 2001; Damoiseaux et 
al., 2006) and electrophysiological data (Makeig et al., 2004; Makeig et al., 2002; Onton 
et al., 2005) separately, but also as a way to directly integrate both modalities 
(Moosmann et al., 2008). In this thesis ICA is used as a preprocessing tool to obtain 
better estimates of single trial EEG power effects. The procedure we followed is similar 
to the one proposed by Debener et al. (Debener et al., 2006; Debener et al., 2005) for 
denoising single trial ERPs. In this section we shortly discuss the basic principles of ICA 
(for an introduction into ICA, see Stone, 2004).  
The goal of independent component analysis is to uncover the underlying sources from 
a linear mixture of those sources represented in the recorded signals. In matrix notation 
this can be described as: 
 
    X = AS    (1) 
 
In which X is the m by n data matrix of rank n, S contains the m by n estimate of the 
maximally statistically independent sources and A is the n by n square matrix that mixes 
the underlying sources in the recorded data in X. 
 
What is actually solved by the various ICA algorithms is the inverse unmixing problem: 
 
    S=WX     (2) 
 
, where 
 
    W=A-1    (3) 
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The underlying assumptions of ICA are that the underlying sources are statistically 
independent, non-Gaussian, and mix linearly and, in the case of time series data like 
EEG also instantaneously, in the recorded signals. Two variables are statistically 
independent if one variable does not contain any information of the other variable. This 
is a stronger criterion than requiring that the sources are uncorrelated, since it also 
implies that all higher order correlations are zero. The formal mathematical definition is 
that two variables are statistically independent if and only if its joint power density 
function can exactly be reconstructed from the product of the two power density 
functions of the two variables separately: 
 
   pxy(x,y)= px(x)py(y)   (4) 
 
The problem is that it is impossible to test whether the sources underlying the recorded 
data are truly independent. The different algorithms therefore use different measures 
which under certain assumptions are good approximations for independence. Under 
ideal (e.g., noise free) circumstances, most algorithms will usually yield very similar 
results. 
One often used strategy is for instance to optimize non-Gaussianity of the underlying 
signal. This strategy is based on the central limit theorem that states that any mixture of 
random variables is more Gaussian than each of these variables themselves. All 
Gaussian variables are fully specified by their mean and variance and thus have the same 
value for all higher moments. The deviation of these moments from the value for a 
Gaussian variable can therefore be used as a parameter that can be optimized in the 
pursuit of the underlying sources. A good example is kurtosis, which basically is an 
index of the ‘peakiness’ of a variable's distribution. It turns out that many real world 
signals tend to have a peaky distribution, meaning that most observations are close to a 
certain value, while relatively few observations have values that are further removed 
from this value. In this thesis we use another implementation of ICA (extended 
infomax), which in stead of optimizing higher order moments like kurtosis works by 
maximizing the entropy of the source signals (Bell and Sejnowski, 1995; Lee et al., 
1999). This algorithm has been shown to work well for EEG data (Makeig et al., 2004a). 
ICA has shown to be a suitable technique for analyzing EEG data since it can be 
regarded as a linear mixture of brain activity coming from several distinct regions and 
artifacts. Due to the blending of the electrophysiological signals from different brain 
regions and artifactual sources at channel level, interesting signals can be ‘swamped’ by 
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Figure 2.3 Propagation of electrophysiological signals and artifacts to scalp recorded EEG (or 
MEG). Electrical brain activity (green) and artifacts (red) are assumed to mix linearly to the 
electrodes at scalp level. The signal recorded at each electrode therefore is a mixture of different 
brain signals and artifacts. In this thesis we are interested in correlating only activity from one 
specific brain source (e.g. the source generating medial frontal theta power) on trial-by-trial level. 
On channel level uninteresting brain sources or artifact will however heavily affect single trial 
estimates of the signal of interest. If the assumption holds that the source signal of interest is 
statistically independent from the other brain activity and artifacts, independent component 
analysis can be used to get an estimate of the source activity of interest that is largely free of 
other brain activity and artifacts. The figure is kindly provided by Christian Hesse.  
 
other more prominent brain activity or artifacts (see figure 2.3). By capturing the 
different brain rhythms and artifacts in different components ICA can uncover some of 
these interesting signals. This is of interest for simultaneously recorded EEG and FMRI 
since time point by time point or trial-by-trial estimates of features are heavily 
influenced by spurious electrophysiological activity and artifacts. Debener et al. (2005) 
demonstrated that ICA is able to remove or reduce the presence of these signals of no 
interest to a large extent by capturing the ERP of interest (the Error Related Negativity 
or ERN in this case) in one component, while ignoring the other components modelling 
non-interesting brain signals and artifacts. By using trial-by-trial variation in the 
amplitude of the ERN that was observed in one of the components, they were able to 
detect a region where the BOLD signal was related to the ERN.  
In this thesis we used ICA in a similar way to obtain 'clean' estimates of EEG power. 
While applying ICA we observed that not all non-interesting features present in the 
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EEG recorded inside the MR scanner are easily captured in single components. Both 
residual MR gradient artifacts as well as residual cardio-ballistic artifacts are usually 
distributed over several components. This is due to the fact that both processes do not 
have a stable topographical distribution over time. These artifacts are therefore not one-
dimensional and cannot be modelled as a single component. For the cardio-ballistic 
artifact this is related to the pulsating blood in the arteries that reaches the scalp under 
different electrodes at different moments. The residual MR gradient artifact is related to 
local disturbances (e.g. electrode movement) that affect electrodes differentially over 
time. However, despite these problems, we were still able to reliably separate the alpha 
and theta effects of interest from non-interesting signals and artifacts. 
In chapter 4 we were able to select a component that captured the alpha effect from 
ICA in broad band filtered data. In chapters 3 and 4 we applied a band-pass filter 
around the theta band before running ICA. This strategy proved to be more successful 
in separating the frontal theta rhythm from other (noise) signals present in the same 
frequency band than applying ICA on broad band filtered data. This is likely related to 
the fact that theta is not as dominant in the EEG as alpha power. Since the 
dimensionality of all the underlying sources in the EEG recorded inside the scanner 
most likely exceeds the number of channels, the less prominent features in the EEG are 
not adequately unmixed from other features. By band-pass filtering the data around the 
frequency band of interest we reduce the dimensionality of the data and thereby increase 
the salience of in this case frontal theta oscillations before applying ICA. This positive 
experience prompted us to use the same strategy in chapters 5 and 6. 
In chapter 5 band-pass filtering in combination with ICA dramatically increased the 
relative prominence of the gamma effect. However, we were not able to obtain a single 
component that modelled the posterior gamma increase here. The gamma increase was 
usually spread over a few components. Given the very strong presence of the gamma 
effects in these components, this is most likely not related to incomplete unmixing. The 
gamma effect seems to be present in multiple brain networks (e.g. the left and right 
visual cortices) and is strongly coherent between the different regions (see figure 2.4). 
As long as the phase difference between the gamma oscillations in the differed  
networks is not exactly 0 or 180 degrees the coherent activity cannot be captured in a 
one component, because of its multidimensional nature. In this situation ICA does not 
identify one component that captures the effect of interest, but a set of components that 
together span a subspace that captures the gamma effect. Since the axes of this subspace 
are not necessarily rotated such that they separate the different gamma rhythms coming 
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Figure 2.4. ICA source estimates of different unmixed components can be strongly coherent. 
The full captions can be found on page 29. 

Figure 2.5. MEG data showing alpha, beta and gamma effects in chapter 5 largely overlap. The 
full captions can be found on page 29. 
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Figure 2.4 (page 28, top). ICA source estimates of different unmixed components can be strongly 
coherent. Unmixing the source signal of interest in a single component is not always possible. 
The task used in chapter 5 induces a strong gamma power response. This response however is 
usually not captured in one single component but shows up in multiple components (usually 2 or 
3, maximally 5 in this chapter). This is related to the fact that this gamma band activity is present 
in multiple regions (e.g. left and right hemisphere). The gamma band activity generated in these 
regions is however very coherent. However, if the amplitude variation is not perfectly correlated 
and the phase lag not 0 or 180 degrees, the activity will be observed in multiple components. The 
data shown in this figure comes from a pilot subject performing the task described in chapter 5. 
Presented are the topographies and the time-frequency representations of power of two 
independent components that show a strong gamma increase. The bottom row shows the time-
frequency representation of the phase-locking value between the two components. This shows a 
very large increase in phase-locking in the same time-frequency range as the power increase. A 
clear separation in left and right hemisphere components as in this figure was however not 
observed for all subjects. In these cases a subspace of multiple components can be identified that 
accounts for the signal of interest. 
 
Figure 2.5 (page 28, bottom). MEG data showing alpha, beta and gamma effects in chapter 5 
largely overlap. The topographies in panel A and the source reconstructions in panel B suggest 
that the gamma is generated in a sub-part of the cortex spanned by the decrease in beta and alpha 
power. Beta power decrease on its turn seems to be generated-in a sub-part of the cortex that 
also shows an alpha power decrease. This pattern is schematically depicted in panel C. This 
pattern illustrates why the ICA unmixing weights estimated on gamma band filtered data will also 
capture the alpha and beta decrease but unmixing weights obtained from data filtered in the 
alpha and beta weights do not adequately capture the gamma effect. 
 

from the different regions, we back-projected the activity to channel level, and 
constructed our regressors from an average of the channels with the largest gamma 
effect.  
In chapter 5 we re-used the unmixing weights obtained from data that was band-pass 
filtered around the gamma frequency, by applying them to the unfiltered data. In this 
case the unmixing weights function as spatial filters that enhance activity in other 
frequency bands that project in the same way onto the electrodes as the underlying 
gamma sources. There are two main reasons why we did this. The first reason is that the 
gamma band is spared from the ballisto-cardiac artefact. This is of high dimensionality 
and would therefore influence the unmixing negatively. By first band-pass filtering we 
could fully remove this artifact before applying ICA. The second and most important 
reason is that prior MEG measures suggest that the gamma power increase is nested 
within a larger region showing alpha and beta power decreases (see figure 2.5). Since low 
frequency EEG rhythms and artifacts are several orders of magnitude larger in 
amplitude than the gamma band response, the gamma band effect is almost never 
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unmixed into its own component(s) when ICA is applied on unfiltered data. Therefore, 
applying unmixing weights estimated on low-pass filtered or unfiltered data results in 
more gamma band noise that is mixed into the signal from channels where the gamma 
band effect is weak or virtually absent. 
In this thesis we selected only the independent components that showed the power 
effects we were interested in. In conventional EEG research there would be a real 
danger in picking only the effects that suit the hypothesis best. The chance is great that 
the effect you observe then is largely based on a biased sampling of noise. There are two 
reasons why this is not a problem in this thesis. The first reason is that we do not select 
our components on the feature that we test for. What we finally test for is always the 
relation between EEG and BOLD, while we select our EEG components on EEG 
features only. Therefore, the selection of EEG components capturing a certain feature 
is independent from the relation this EEG feature has with the BOLD signal. Finding a 
significant relation between an EEG feature and the BOLD signal at group level implies 
that there is a systematic feature present in the selected components for the different 
subjects. The second reason is that in all cases we had very good prior knowledge about 
which features to select our components on. In chapters 3, 5 and 6 we used published 
data as prior knowledge to select our component of interest. In chapter 4 the prior 
knowledge consisted of effects observed in a separate recording session of the same 
subjects performing the same task outside the scanner, while we used MEG recordings 
using the same stimuli as prior knowledge in chapter 5. In all these chapters, we were 
able to show that the effects we observed in the components we picked were very 
similar to the effect we used as prior knowledge.  
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Chapter 3 
 
FRONTAL THETA EEG ACTIVITY CORRELATES NEGATIVELY WITH 
THE DEFAULT MODE NETWORK DURING RESTING STATE 
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ABSTRACT 
 
We used simultaneously recorded EEG and fMRI to investigate in which areas the 
BOLD-signal correlates with frontal theta power changes, while subjects were quietly 
lying resting in the scanner with their eyes open. To obtain a reliable estimate of frontal 
theta power we applied ICA on band-pass filtered (2-9 Hz) EEG data. For each subject 
we selected the component that best matched the mid-frontal scalp topography 
associated with the frontal theta rhythm. We applied a time-frequency analysis on this 
component and used the time course of the frequency bin with the highest overall 
power to form a regressor that modelled spontaneous fluctuations in frontal theta 
power. No significant positive BOLD correlations with this regressor were observed. 
Extensive negative correlations were observed in the areas that together form the 
default mode network. We conclude that frontal theta activity can be seen as an EEG 
index of default mode network activity. 
   
INTRODUCTION 
 
The simultaneous recording of EEG and fMRI signals has sharply increased in 
popularity over the last few years. While the initial efforts in this multimodal enterprise 
were aimed at solving technical problems stemming mainly from artifacts in the EEG 
generated in the MR environment (Allen et al., 2000; Allen et al., 1998; Bonmassar et al., 
1999; Bonmassar et al., 2002), subsequent research has explored the relationship 
between EEG and BOLD from various vantage points. For instance, quite some effort 
has been devoted to identifying BOLD correlates of epileptiform EEG activity 
(Aghakhani et al., 2004; Al-Asmi et al., 2003; Benar et al., 2006; Lemieux et al., 2001; 
Salek-Haddadi et al., 2006; Salek-Haddadi et al., 2002). More recently, simultaneous 
EEG/fMRI has been successfully applied to investigate cognitive phenomena such as 
performance monitoring (Debener et al., 2005) and sustained attention (Eichele et al., 
2005). Apart from epilepsy research most studies have focused on the BOLD correlates 
of ongoing oscillatory activity during resting state (i.e., recorded while the subject was 
quietly lying in the scanner, with no explicit task), focusing on the posterior alpha 
rhythm and, to a lesser extent, the beta rhythm (Feige et al., 2005; Goldman et al., 2002; 
Goncalves et al., 2006; Laufs et al., 2006; Laufs et al., 2003a; Laufs et al., 2003b; 
Moosmann et al., 2003). In these studies, the general idea has been that spontaneous 
fluctuations in the amplitude of a given oscillatory signal can be correlated with 
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spontaneous fluctuations in the BOLD signal. It has been suggested that such BOLD 
correlates are indicative of functionally connected brain structures that are related to the 
rhythmic neuronal activity observed in the EEG. 
Studies investigating the BOLD correlates of spontaneous fluctuations in alpha activity 
(Feige et al., 2005; Goldman et al., 2002; Goncalves et al., 2006; Laufs et al., 2006; Laufs 
et al., 2003a; Moosmann et al., 2003) have shown that the expected posterior visual 
regions and also other regions across the cortex are negatively correlated with posterior 
alpha fluctuations. Recent findings suggest that there is considerable individual variation 
in areas that are observed to correlate with the alpha fluctuations and that these can be 
linked to differences in the total power spectrum of an individual (Goncalves et al., 
2006; Laufs et al., 2006). Laufs et al. (2006) observed that negative alpha-BOLD 
correlations in posterior visual areas go together with relatively high theta power during 
alpha desynchronization, while relative high beta power during an entire session is 
related to negative alpha-BOLD correlations in regions thought to be related to 
attention in the parietal and frontal lobes. A few studies (Laufs et al., 2006; Laufs et al., 
2003b; Moosmann et al., 2003) have also reported BOLD correlates of beta activity. 
Where Moosmann et al. (2003) observed mainly negative beta-BOLD correlations, 
Laufs et al. (Laufs et al., 2003b) reported positive correlations in regions that show an 
overlap with the default mode network (Fox et al., 2005; Raichle et al., 2001). 
An interesting new avenue in the analysis of resting state data is to investigate which 
brain regions correlate with the oscillatory components associated with more specific 
cognitive operations. An example of such a component is the frontal theta rhythm, 
which is well known from both EEG and MEG literature. This component has a 
frequency range of roughly 3-8 Hz, and is most prominent over (midline) fronto-central 
electrodes. Frontal theta has been observed during various cognitive activities that 
require attention or short term memory (Burgess and Gruzelier, 1997; Inanaga, 1998; 
Laukka et al., 1995; Lazarev, 1998; Smith et al., 1999), and is often studied during mental 
arithmetic (Asada et al., 1999; Burgess and Gruzelier, 1997; Inanaga, 1998; Inouye et al., 
1994; Iramina et al., 1996; Ishihara and Yoshii, 1972; Ishii et al., 1999; Lazarev, 1998; 
Mizuki et al., 1980; Sasaki et al., 1996; Smith et al., 1999). More recently, frontal theta 
power has been found to increase with working memory load (Gevins et al., 1997; 
Jensen and Tesche, 2002; Krause et al., 2000; Onton et al., 2005), indicating a possible 
role of theta oscillations in working memory maintenance. Source modelling attempts 
have localized the frontal theta rhythm to the anterior cingulate or the medial frontal 
cortex (Asada et al., 1999; Gevins et al., 1997; Ishii et al., 1999; Onton et al., 2005). 
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Interestingly, Mizuhara et al. (2004) as well as Sammer et al. (Sammer et al., 2007; 
Sammer et al., 2005) demonstrated that frontal theta increases can be observed in the 
EEG acquired during fMRI. Both Sammer et al. (2007) and Mizuhara et al. (2004) 
report positive correlations between BOLD and theta in the insula, hippocampus, 
superior temporal cortex, cingulate cortex and frontal areas while subjects performed a 
mental arithmetic. Where Sammer et al. (2007) reported only positive correlations, 
Mizuhara et al. (2004) reported predominantly  negative correlations between frontal 
theta and BOLD in medial frontal, posterior cingulate, temporal and inferior parietal 
areas. 
The present study aims at delineating the BOLD correlates of spontaneous fluctuations 
in frontal theta power, in a simultaneous EEG/fMRI setting. Srinivasan et al. (2006) 
report that theta power is highest at frontal midline electrodes in resting state, indicating 
that the frontal theta rhythm is also detectable outside task conditions. Since most 
studies investigating the relation between oscillatory activity and the BOLD signal used 
the resting state paradigm, we decided to follow this line of research. To our knowledge 
this is also the first time the relationship between frontal theta and the BOLD signal is 
studied in conditions where subjects did not perform a task. To this end, we first 
identify the theta rhythm in the EEG during an eyes open, resting state recording 
session. Subsequently we correlate the theta power with the BOLD signal. Separation of 
the frontal theta rhythm from artifacts and other rhythms in the theta frequency range 
with different spatial distributions is accomplished by applying independent component 
analysis (ICA). Previous studies (Makeig et al., 2002; Onton et al., 2005) have 
demonstrated that ICA can successfully be applied to EEG data to separate frontal 
theta activity from other (oscillatory) activity. Debener et al. (2006; 2005) demonstrated 
that ICA can be applied to EEG data measured in the MRI scanner to obtain single trial 
measures of evoked potentials that can be successfully correlated with the BOLD signal. 
Similarly, by correlating power fluctuations of the frontal theta components obtained by 
ICA with the BOLD signal in resting state, we hope to gain some insight into the 
neuronal structures that are associated with the frontal theta rhythm in humans.  
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METHODS 
 
Subjects 
 
Twenty right handed volunteers (17 female, 3 male, age range: 18-28) participated in the 
study after giving written informed consent. None had a neurological impairment, 
experienced neurological trauma or had used neuroleptics. The subjects were paid a 
small fee for their participation.  
 
Design and procedure 
 
Subjects came to the F.C. Donders Centre one hour before the scanning session started. 
First the electrode cap was applied and an instruction for a working memory task was 
given. While in the scanner, the subjects first participated in a working memory 
experiment for approximately one hour, divided in three blocks. After this experiment a 
resting state measurement was carried out in which subjects were asked to watch a black 
fixation cross presented on a grey background for 10 minutes. At the end of the 
scanning sessions a T1 weighted anatomical MRI was acquired. This anatomical scan is 
not used in the analysis of the fMRI data presented in this paper. Between 
measurements there were small breaks of a few minutes. Subjects were also allowed to 
go outside the scanner during these breaks. Only the data from the resting state session 
is used in the analysis presented here. 
 
Electrophysiological recordings 
 
EEG was recorded at 29 scalp sites (Fp1, Fp2, F3, F4, C3, C4, P3,  P4, O1, O2, F7, F8, 
T7, T8, P7, P8, Fz, Cz, Pz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, TP10) with 
a MR compatible BrainAmp MR amplifier (Brainproducts, Munich, Germany) and an 
MR-compatible electrode cap equipped with carbon wired sintered Ag/AgCl electrodes 
(Easycap, Herrsching-Breitbrunn, Germany). The reference electrode was located at 
FCz. To record the vertical EOG one electrode was placed under the right eye. The 
ECG was measured by two dedicated electrodes attached to the electrode cap. One 
electrode was placed on the sternum; the other electrode was placed on the clavicle, near 
the shoulder. A 250-Hz hardware filter was placed between the electrode cap and the 
amplifier. The EEG was recorded with a 0.16 s time constant and a 100 Hz low pass-
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filter and continuously sampled at 5 kHz. Impedances were kept under 5 kΩ. All 
recordings were done with Brain Vision Recorder software (Brainproducts). 
 
 
Image acquisition 
 
MRI measurements were performed using a 1.5 T Sonata whole body scanner (Siemens, 
Erlangen, Germany). Functional images were acquired using a gradient echo EPI 
sequence (TR 2.34 s including 50 ms dead time; FOV=224 mm, TE = 30 ms, 33 slices, 
3.0 mm slice-thickness with 0.5 mm slice-gap; voxel-size 3.5 x 3.5 x 3.0 mm). 
  
MRI artifact removal 
 
The EEG data were corrected for gradient and pulse artifacts along the lines described 
by Allen et al. (2000; 1998) using Vision Analyzer (Brainproducts). A 20-volume, 
baseline corrected sliding average was used for the correction of the gradient artifacts. 
In order to achieve this, 10 extra volumes were recorded before and after the 10 
minutes of data used for analysis. After gradient correction the data were low-pass 
filtered at 100 Hz and down sampled to 500 Hz. The average pulse artifact was 
calculated based on a sliding average, time locked to the R-peak present in the bipolar 
derivation of the two ECG electrodes. This sliding average was scaled to an optimum 
least squares fit for each heart beat using the scaling option in Vision Analyzer before it 
was subtracted from the data. The data were subsequently rereferenced to a common 
average reference. The original reference channel was recomputed as FCz. 
 
Regressor construction 
 
Since we were specifically interested in frontal theta activity, and the recorded EEG is a 
mixture of artifacts and different theta sources, we applied infomax independent 
component analysis (ICA) (Bell and Sejnowski, 1995) on the entire 10 minutes of resting 
state data to obtain a ‘clean’ frontal theta estimate. 
For this analysis a weight change of 10-7 was used as a stop criterion with the maximum 
number of iterations being 512. This proved to be sufficient to obtain a stable solution 
for the data from all subjects. To remove the residual gradient artifacts and low 
frequency noise as much as possible before applying ICA, a 2-9 Hz band-pass filter was 
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applied to the data. ICA was carried out in the Fieldtrip toolbox for EEG/MEG-
analysis (FC Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; 
see http://www.ru.nl/fcdonders/fieldtrip), using the runica algorithm (Makeig et al., 
1997) implemented in EEGLAB version 5.03 (Delorme and Makeig, 2004). Both 
Fieldtrip and EEGLAB run under matlab (MathWorks, Natick, MA). 
For each subject, the component with a topography that showed a dipolar pattern that 
best matched the fronto-central scalp distribution of the clusters of theta components 
reported by Makeig et al. (2002) and Onton et al. (2005) was selected for further 
analysis. If more than one component with a fronto-central distribution was observed, 
the component accounting for the most variance was selected (4 subjects in total). A 
time-frequency analysis of power was applied on the time series of the selected 
component. For this we used a multi-taper approach (Mitra & Pesaran, 1999). Power 
was analyzed from 1.25 - 10 Hz in 1.25 Hz steps for every 100 ms. Multitapering was 
performed with 800 ms time smoothing and 2.5 Hz frequency smoothing. 
For each selected IC the time course of one frequency bin was used to form a regressor. 
This was done by selecting from the frequency bins centred on 3.75, 5 and 6.25 Hz the 
one with the maximal power. The maximum was based on the average power in these 
frequency bins over the 10 minute recording session. The entire time series for the 
selected frequency bin was extracted to form the basis for the regressor. First this time 
series was z-transformed. In order to remove artifacts, time points with a higher 
absolute z-score than 5 were set at zero. The high z-score of 5 was chosen because of 
the skewed distribution of values. The resulting time-series was again z-transformed 
before it was convolved with the canonical hemodynamic response function (HRF) 
implemented in SPM5 (Wellcome Department of Imaging Neuroscience, London, UK 
see: http://www.fil.ion.ucl.ac.uk/spm), resulting in an EEG-based regressor that 
models spontaneous fluctuations in frontal theta power (for a schematic representation 
of the regressor construction see figure 3.1).   
 
 
FMRI analysis 
 
Processing and analysis of the fMRI data were carried out in SPM5. The fMRI data was 
corrected for movements, corrected for differences in slice acquisition time, 
anatomically normalized to the canonical EPI template provided by SPM5 and 
smoothed with an isotropic Gaussian kernel (FWHM=10mm).  
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Figure 3.1. Schematic representation of the different steps in the construction of the regressor 
modelling fluctuations in frontal theta activity starting at the 2–9 Hz band-pass filtered data. This 
procedure is in more detail described in the Methods section. 
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A linear model was formed by the theta based regressor and the six movement 
regressors consisting of the realignment parameters provided by the realignment 
preprocessing step. At the group level, in a random effects analysis, the beta values 
associated with the theta regressor were tested against zero in a one sample t-test. We 
used a voxel-wise false discovery rate to correct for multiple non-independent 
comparisons (Benjamini and Hochberg, 1995; Genovese et al., 2002) at the 0.05 level. 
For the purpose of interpretation we only report clusters that contain >50 significant 
voxels. 
 
Dipole fitting 
 
We compared the brain regions that showed a theta-BOLD correlation with a source 
location associated with frontal theta based on the following dipole fitting approach. A 
single dipole was fitted to a grand average scalp topography using the Fieldtrip software. 
This grand average scalp topography was obtained by computing the average over the 
individual root-mean-square normalized topographies of the selected ICs mixing 
weights (see figure 3). As a head model, we used a standard realistic 3-compartment 
(brain/CSF, skull and skin) boundary element model (BEM) based on the MNI 
template brain (Oostenveld et al., 2001). In a first approximation the optimal location 
was found by fitting the dipole at each point of a grid with a resolution of 20 mm. 
Subsequently, the optimal grid coordinate was used as starting point for a more precise 
fit using a nonlinear search algorithm. 
With this unconstrained fit we obtained an optimal dipole location that is located 
outside the clusters that show a significant BOLD-theta correlation (see results). To 
compare this location with possible locations inside the nearest BOLD-theta cluster, 
two constrained dipole fits were done. For the first constrained fit, the nearest 
significant voxel was determined. The amplitude and orientation was fitted for a dipole 
that was fixed at this position. In the second constrained fit, the amplitude and 
orientation were first fitted separately for each local maximum in the nearest BOLD-
theta cluster. Subsequently, the optimal dipole localization that coincides with a local 
maximum in this BOLD-theta cluster was determined based on the residual variance. 
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RESULTS 
 
Independent Component Analysis 
 
The grand-average topography in figure 3.2a of the normalized mixing weights shows a 
clear frontal distribution that resembles the frontal theta component described by others 
(Makeig et al., 2002; Onton et al., 2005). In figure 2b the topographies of the selected 
component for each subject are depicted. Figure 2c shows the individual and grand-
average spectra of the selected components with a clear peak in the theta frequency 
range at 6.5 Hz. This spectrum is based on the Fourier analysis of 2 s long Hanning 
tapered segments, resulting in frequency bins of 0.5 Hz. Note that the time-frequency 
analysis used in the construction of the regressor is not based on this frequency analysis.  
 
FMRI analysis 
 
No significant positive correlations with fluctuations in theta power were observed. 
However, a considerable number of brain regions across the cortex and the cerebellum 
were negatively correlated with frontal theta oscillations (see figure 3.3). A list of 
negatively correlating regions can be found in table 3.1. This list of regions indicates that 
in addition to a medial frontal region there is a network of brain regions across the 
cortex and the cerebellum that correlates with the spontaneous frontal theta power 
fluctuations observed in resting state.  
 
Dipole fitting 
 
The dipole fitting procedure yielded an optimal dipole location in the anterior cingulate 
cortex, (residual variance: 2,34%; MNI coordinates: -3, 29, 18; see figures 3.4 and 3.5). 
This location is just outside the region where the BOLD signal correlates significantly 
with the theta regressor. The dipole location is approximately 12 mm from the nearest 
significant voxel in the medial prefrontal BOLD-theta cluster (MNI coordinates: -4, 40, 
24). A dipole restricted to this location results in a residual variance of 3.57%. The local 
maximum in the BOLD-theta cluster that explains the most variance of the EEG scalp 
topography was found at MNI coordinates -2, 56, 6 (residual variance 4.51%), which is 
29 mm from the overall optimal fit.  
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Figure 3.2. Grand-average scalp topography of root-mean-square normalized mixing weights of 
the selected independent components. B: Individual root-mean-square normalized scalp 
topographies of the selected independent component. C: Average (red) and individual power 
spectra of the time courses of the selected component. Individual spectra are normalized to the 
average power in the 2–9 Hz range. 

Figure 3.3. Significant negative correlations with frontal theta power rendered on a standard 
MNI brain (A) and in saggital, transversal and coronal slices (B). 
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Table 3.1. Brain regions showing significant negative correlations with frontal theta power. Only clusters 
larger than 50 voxels are listed. 

Brodmann 
area Anatomical structure 

Size 
(voxels) MNI coordinates t-value 

   x y z  

9/10/32/12 Medial prefrontal cortex 4274 -6 20 -14 6.95 

47/11 Left inferior frontal gyrus 879 -48 30 -14 6.28 

21 Left middle temporal gyrus 874 -62 -2 -24 5.83 

 Left cerebellum 601 -28 -88 -34 5.87 

39 Left inferior parietal lobule/angular gyrus 489 -42 -68 28 4.42 

47/11 Right inferior frontal gyrus 414 38 44 -18 7.41 

39 Right inferior parietal lobule/angular gyrus 363 46 -64 36 4.20 

 Right cerebellum 347 26 -90 -32 5.76 

21 Right middle temporal gyrus 96 70 -32 -8 4.08 

21 Right middle temporal gyrus 61 64 -16 -18 3.66 

31 Right precuneus/anterior cingulate cortex 52 2 -60 38 3.67 
 
 
 
DISCUSSION 
 
In the present study, we used simultaneously recorded EEG and fMRI to investigate the 
BOLD correlates of spontaneous frontal theta power changes, while subjects were 
quietly lying in the scanner without performing any task. No significant positive 
correlations between frontal theta power changes and the BOLD signal were observed. 
Instead, we observed significant negative correlations in medial frontal regions, 
precuneus/posterior cingulate cortex and bilaterally in the inferior frontal, inferior 
parietal and middle temporal cortices as well as the cerebellum. 
Together, these brain regions constitute the default mode network (DMN) as identified 
with PET and fMRI (Damoiseaux et al., 2006; Fox et al., 2005; Raichle et al., 2001; 
Shulman et al., 1997). This is an intrinsically correlated network of brain regions that is 
regularly observed to deactivate during attention-demanding cognitive tasks. Activation 
of this network has recently been linked to stimulus-independent thought, or in other 
words, mind-wandering (Mason et al., 2007). The presently observed negative 
correlation of frontal theta power with the DMN therefore suggests that frontal theta 
activity can be used as an index of DMN activity, at least in the resting state condition.  
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Figure 3.4. Dipole locations shown as dots on a saggital slice depicting the mid-frontal cluster of 
BOLD-theta correlations, for the optimal location (red), the nearest voxel showing a significant 
correlation with theta power (green), and the local maximum in the medial cluster with the 
lowest amount of unexplained variance (blue). 

Fig. 3.5. Scalp topographies of the modelled part of the grand-average scalp topography of the 
normalized mixing weights (A, C and E) and the corresponding difference between the model 
and the grand average (B, D and F). A and B: Dipole explaining maximal amount of variance; C 
and D: dipole located at the significant voxel closest to the dipole location explaining the most 
variance; E and F: dipole located at the local maximum in the medial frontal cluster that explains 
the most variance. For the scalp topography to which the dipoles were fitted we refer to figure 
3.2A 
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We envisage three possible accounts for the negative correlation between fluctuations in 
frontal theta and the BOLD signal in the DMN. The first possibility is that mid-frontal 
theta is not generated in any of the DMN regions. The negative correlations are 
observed in brain regions that respond with a BOLD-signal decrease to an increase in 
frontal theta originating from a region where no (significant) BOLD correlation was 
observed. In this case, the theta-generating process is different from activity in the 
DMN, although there is a systematic covariation between theta power fluctuations and 
the DMN. The second possibility is that one (or more) of the observed clusters, most 
likely the medial frontal region, is the source of mid-frontal theta. Because of the 
intrinsic correlations within the DMN, the other areas pertaining to this network also 
show a correlation with theta, although they do not by themselves generate theta-band 
activity. The third possibility is that the fluctuations in theta amplitude observed on the 
mid-frontal electrodes is a reflection of the fluctuations in theta present in all the 
clusters observed in this study. If this is the case, then theta-band activity is present 
throughout DMN, but the frontal theta source is the only part of the network that is 
readily detectable with scalp-recorded EEG. 
 
There is some evidence supporting the second and third possibilities rather than the 
first. The first line of evidence is that it has been shown that the medial frontal cortex 
(our major cluster) is a likely source of frontal theta activity. Source modelling attempts 
have located the source of frontal theta effects in medial frontal areas (Asada et al., 
1999; Gevins et al., 1997; Ishii et al., 1999; Onton et al., 2005). However, most of these 
attempts used equivalent dipole models and located the frontal theta in or near the 
anterior cingulate region, somewhat posterior and deeper than the observed medial 
frontal theta-BOLD cluster (Asada et al., 1999; Gevins et al., 1997; Onton et al., 2005). 
Also in our dipole modelling attempt the best fit was found for a dipole location in the 
anterior cingulate. However, for a dipole that is placed either at the nearest supra-
threshold voxel or at the local maximum in the medial frontal cluster that explains the 
most variance, the dipole fit was qualitatively similar to the unconstrained fit. 
Interestingly, Ishii et al. (1999) used a beamformer approach on MEG data to estimate 
the location of the theta source, and located it in a region that largely overlaps with the 
medial frontal fMRI cluster observed in this experiment. If the cluster is the source 
location of the frontal theta activity, the substantial size of this cluster suggests a 
distributed source for frontal theta. The discrepancy observed here between the 
unconstrained fit and the medial frontal BOLD-theta cluster may be explained by the 
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fact that equivalent dipole models tend to estimate the source location too deep when 
there is in reality a more superficial distributed source (De Munck et al., 1988). 
Another line of evidence suggests that amplitude increases in low frequency oscillations 
(e.g. delta, theta and alpha) are related to a decreased BOLD signal. Based on theoretical 
considerations, Kilner et al. (2005) suggest that higher energy dissipation, and therefore 
a higher BOLD-signal, is related to a relative shift in neuronal activity from lower to 
higher frequencies. This would result in, for instance, reduced delta and theta and 
increased beta and gamma amplitudes. A relative increase in theta oscillations could 
therefore lead to a decrease in the BOLD signal. Simultaneous recording of 
hemodynamic responses and intracortical electrophysiological responses in the visual 
cortex of cat (Niessing et al., 2005) and monkey (Logothetis et al., 2001; Shmuel et al., 
2006) corroborate this notion. In the cat, Niessing et al. (2005) reported negative 
correlations in between lower frequencies (delta and theta) and the hemodynamic 
responses, and strong positive correlations with gamma band activity during visual 
stimulation. Shmuel et al. (2006) found that the negative BOLD response in the monkey 
primary visual cortex during partial visual field stimulation is accompanied with 
decreased neural activity in the gamma range (30-130Hz). Logothetis et al. (2001) 
showed that increased gamma band activity during visual stimulation is tightly coupled 
to the positive BOLD response. In addition, Mizuhara et al. (2004) found 
predominantly negative relationships between BOLD and frontal theta activity during 
mental arithmetic. Although, they did not identify these areas as part of the DMN, the 
pattern is quite similar to that of the present study. In contrast to the latter results, as 
well as the present results, Sammer et al. (2007) report only positive correlations with 
theta power. Evidence that an increase in high frequency oscillatory activity results in a 
BOLD increase in the DMN is provided by Laufs et al. (2003b), who report a positive 
correlation between beta (17-23 Hz) amplitude and the BOLD signal in the DMN. The 
relationship between activity in cortical networks, oscillatory activity and hemodynamic 
measures in these cases can however be more complex than explained above and more 
comprehensive spectral EEG information may need to be correlated with hemodynamic 
measures (Laufs et al., 2006). 
More supporting evidence for a direct link between decreased DMN activity and 
increased frontal theta amplitude lies in the fact that both phenomena are observed in 
attention-demanding task conditions (for the DMN see Gusnard and Raichle, 2001; 
Raichle et al., 2001 for frontal theta activity see Burgess and Gruzelier, 1997; Inanaga, 
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1998; Ishihara and Yoshii, 1972; Laukka et al., 1995; Lazarev, 1998; Smith et al., 1999). 
It is, therefore, plausible that the inverse relationship also holds in these task conditions. 
Above we have presented evidence that suggests a direct link between decreased DMN 
activity and increased frontal theta amplitude. If this is indeed the case, a common 
functional interpretation is needed for both phenomena. Currently, the DMN is 
interpreted as a network of brain regions that is more active when one is not engaged in 
a cognitively demanding task, while the reverse holds when one is engaged in such tasks. 
A speculative hypothesis then is that the DMN operates in theta mode (which is 
reflected in the scalp EEG by an increase in frontal theta) when it becomes less active 
(i.e., during engagement in a task). This would not only explain the observed BOLD 
decreases during engagement in a task (Gusnard and Raichle, 2001; Raichle et al., 2001), 
but it would also explain why frontal theta power has been shown to increase in a wide 
range of cognitive tasks, such as mental arithmetic  (Asada et al., 1999; Burgess and 
Gruzelier, 1997; Inanaga, 1998; Inouye et al., 1994; Iramina et al., 1996; Ishihara and 
Yoshii, 1972; Ishii et al., 1999; Lazarev, 1998; Mizuki et al., 1980; Sasaki et al., 1996; 
Smith et al., 1999), error detection tasks (Luu et al., 2003; Luu et al., 2004), language 
comprehension tasks (Bastiaansen et al., 2002; Hald et al., 2006) and working memory 
tasks (Gevins et al., 1997; Jensen and Tesche, 2002; Krause et al., 2000; Onton et al., 
2005). However, although this suggestion would account for the observed pattern of 
theta power increases, it appears to contradict several previous functional interpretations 
that increased frontal theta oscillations reflect synchronous activity in brain regions that 
are involved in cognitively demanding tasks (Inanaga, 1998; Ishihara and Yoshii, 1972; 
Jensen and Tesche, 2002; Laukka et al., 1995; Onton et al., 2005; Smith et al., 1999). We 
feel that more experimental work is needed in order to differentiate between these two 
opposing possibilities. 
The present study has focused on fluctuations in frontal theta power during resting 
state. There are also many other brain regions that display oscillatory dynamics in the 
theta frequency range (for a review see Kahana et al., 2001). It is possible that theta-
band activity in different brain regions is associated with different types of neural and 
cognitive processes. In addition, the sign of the correlation between theta power and 
BOLD might differ between brain regions. For instance, in intracranial recordings in 
humans, Canolty et al. (2006) found a strong modulation of theta activity on gamma 
oscillations, but also reported a positive amplitude correlation between the two rhythms. 
Since gamma is demonstrated to correlate positively with BOLD (Logothetis et al., 
2001; Niessing et al., 2005), and theta seems to correlate negatively with BOLD 
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(Mizuhara et al., 2004; Niessing et al., 2005; present study), it is difficult to predict the 
sign of the correlation between BOLD and theta or gamma. This illustrates that more 
insight is needed in how different oscillatory signals from different brain regions relate 
to the hemodynamic measures obtained by fMRI and PET. This will be crucial for 
linking the knowledge about cognitive processes obtained with electrophysiological and 
hemodynamic research methods. 
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Chapter 4 
 
TRIAL-BY-TRIAL COUPLING BETWEEN EEG AND BOLD IDENTIFIES 
NETWORKS RELATED TO ALPHA AND THETA EEG POWER 
INCREASES DURING WORKING MEMORY MAINTENANCE 
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ABSTRACT 
 
PET and fMRI experiments have previously shown that several brain regions in the 
frontal and parietal lobe are involved in working memory maintenance. MEG and EEG 
experiments have shown parametric increases with load for oscillatory activity in 
posterior alpha and frontal theta power. In the current study we investigated whether 
the areas found with fMRI can be associated with these alpha and theta effects by 
measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed 
us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a 
regressor based on single trial alpha and theta power estimates. We observed a right 
posterior, parametric alpha power increase, which was functionally related to decreases 
in BOLD in the primary visual cortex and in the posterior part of the right middle 
temporal gyrus. We relate this finding to the inhibition of neuronal activity that may 
interfere with WM maintenance. An observed parametric increase in frontal theta power 
was correlated to a decrease in BOLD in regions that together form the default mode 
network.  We did not observe correlations between oscillatory EEG phenomena and 
BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous 
EEG-fMRI recordings can be successfully used to identify the emergence of functional 
networks in the brain during the execution of a cognitive task. 
  
INTRODUCTION 
 
Working memory (WM) has been one of the central themes in cognitive neuroscience 
research for the past decades. A considerable number of studies have either used 
hemodynamic (e.g. PET and FMRI) or electrophysiological recordings (e.g. MEG, 
EEG, intracranial recordings). PET and fMRI have been successful in linking different 
brain regions to task and modality specific WM processes (Cabeza and Nyberg, 2000; 
D'Esposito et al., 2000; Fletcher and Henson, 2001). Across modalities and tasks, dorso- 
and ventrolateral prefrontal and posterior parietal regions have been often linked to WM 
processes (Cabeza and Nyberg, 2000). In recent years, regions in the medial temporal 
lobe have also been implicated in WM, suggesting WM and long term memory share in 
part the same neural substrate (Cabeza et al., 2002; Petersson et al., 2006; Piekema et al., 
2006; Ranganath et al., 2005; Ranganath and D'Esposito, 2001). 
The high temporal resolution of EEG and MEG makes it possible to study WM-related 
processes at a millisecond time-scale. WM-related increases in oscillations observed in 
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the EEG or MEG have been reported in the theta band (Gevins et al., 1997; Krause et 
al., 2000; Onton et al., 2005), alpha band (Jensen et al., 2002; Jokisch and Jensen, 2007; 
Klimesch et al., 1999; Schack and Klimesch, 2002; Tuladhar et al., 2007) and gamma 
band (Jokisch and Jensen, 2007; Kaiser et al., 2003; Lutzenberger et al., 2002; Tallon-
Baudry et al., 1998). More specifically, parametric increases with WM load in the 
maintenance interval have been reported for posterior alpha (Jensen et al., 2002) and 
frontal theta power (Gevins et al., 1997; Jensen et al., 2002; Onton et al., 2005). 
Different functional roles have been proposed for these different frequency bands. 
Theta and gamma have been hypothesized to be a direct neural correlate of WM 
maintenance, possibly in cooperation with medial temporal structures (Jensen, 2006; 
Jensen and Lisman, 1998). Alpha power increases have been linked to active inhibition 
of neuronal activity that could otherwise disturb the WM process (Jokisch and Jensen, 
2007; Klimesch et al., 2007). Differential alpha power effects can be seen in upper and 
lower sub-bands (Klimesch, 1999). Decreases in power in the lower alpha band have 
been linked to higher task demands and attentional processing, whereas decreases in 
power in the upper alpha band reflects have been related to increased declarative 
memory performance. Klimesch et al. (1999) observed an increase during WM 
maintenance of character strings and they suggest that this is related to inhibition of 
memory activities that could otherwise disturb the WM process. 
Based on these previous findings the question arises whether the regions observed with 
PET and fMRI are also functionally related to the oscillatory phenomena as measured 
with MEG and EEG. To address this question, we simultaneously measured EEG and 
fMRI while subjects performed a modified verbal Sternberg WM task. By relating single 
trial estimates of WM related power increases to changes in the BOLD signal we hope 
to uncover which brain regions are functionally related to these WM induced power 
increases. Successful single trial coupling between EEG measures (ERPs) and the 
BOLD signal has been demonstrated by Eichele et al. (2005) and Debener et al. (2005). 
The relation between alpha power on the one hand and the BOLD signal on the other 
hand has been investigated in previous studies. Posterior alpha is most prominent 
during eyes closed alert wakefulness, and usually decreases with increased visual 
processing (Klimesch, 1999). We therefore expected posterior alpha to correlate with 
the BOLD signal regions involved in visual processing. Posterior alpha has indeed been 
found to correlate with posterior visual areas in eyes closed resting state conditions 
(Feige et al., 2005; Goldman et al., 2002; Moosmann et al., 2003). More recently Laufs et 
al. (2006) and Goncalves et al. (2006) showed that the observed networks that correlate 
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with alpha power might depend on the relative strengths of other frequency bands in 
the entire power spectrum. Meltzer et al. (2007) showed in separate EEG and FMRI 
sessions, that load dependent increases in alpha power during WM maintenance 
correlate negatively with the midline parietal-occipital cortex across subjects. 
Frontal theta is a prominent feature in the EEG that is reported to increase in tasks that 
require attention or WM. It is often studied during mental arithmetic (Inanaga, 1998; 
Inouye et al., 1994; Ishihara and Yoshii, 1972; Ishii et al., 1999; Lazarev, 1998; Mizuki et 
al., 1980; Sasaki et al., 1996; Smith et al., 1999), but more recently it has also been 
associated with WM maintenance (Gevins et al., 1997; Jensen, 2006; Jensen and Tesche, 
2002). Recently, two studies investigated the BOLD correlates of frontal theta activity 
during mental arithmetic (Mizuhara et al., 2004; Sammer et al., 2007). While Sammer et 
al. (2007) reported only positive correlations between BOLD and theta in the insula, 
medial temporal lobe, superior temporal cortex, cingulate cortex and various frontal 
regions. Mizuhara et al. (2004) reported predominantly negative correlations in medial 
frontal, posterior cingulate, temporal and inferior parietal regions. In a recent resting 
state experiment we only observed negative correlations with frontal theta power in a 
collection of regions that together form the default mode network (DMN; (Scheeringa 
et al., 2008). This negative correlation between frontal theta and DMN activity was also 
observed by Meltzer et al. (2007) across subjects in a WM task. 
Regions in which correlations between single trial EEG power measures and the BOLD 
signal are observed cannot be directly interpreted as being functionally related to the 
WM induced parametric power increases. The reason for this is that the relation 
between BOLD signal in a region, and single trial estimates of power could also be 
related only to task independent fluctuations in power. These task independent power 
fluctuations could be related to EEG activity coming from other sources than the one 
that shows a WM induced power change, that leak into the single trial estimates of 
power. Another potential source of task independent variation in power could lie in 
trial-by-trial coupling of task related regions with task unrelated regions, which has been 
observed between the motor cortices using fMRI (Fox et al., 2006). This task 
independent trial-by-trial coupling could possibly also be reflected in the trial-by-trial 
variation of EEG power components that do show an average effect of WM load. 
Therefore we argue here that regions functionally related to WM induced alpha and 
theta EEG power increases should show a BOLD response that is in line with the 
observed WM effects in these bands and also show a relation with the single trial 
variation in power.  
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METHODS 
 
Subjects 
 
Twenty right handed volunteers (16 female, 4 male, age range: 18-28) participated in the 
study. All subjects reported to be free of neurological or psychiatric impairment, 
experienced neurological trauma or from using neuroleptics. Subjects gave written 
informed consent prior to the measurements and all subjects were paid a small fee for 
their participation. 

  
Figure 4.1. Schematic representation of the modified Sternberg paradigm used in this study. The 
task is described in more details in the Methods section. 

 
Design and procedure 
 
Subjects performed a variant of the Sternberg WM task (see also figure 4.1). They had to 
remember a string of 0, 3, 5 or 7 consonants that was presented for 3 seconds. When 
less than 7 consonants were presented, filler symbols (# ’s) were added on the left and 
right side of the string in order to make the sensory input for the four conditions 
comparable. After a 7 second maintenance interval a probe was presented for 300 
milliseconds. All responses were made with the right hand. Subjects had to press a 
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button with the index finger if the probe matched one of the consonants in the memory 
set, or with their middle finger if the probe did not match. When no consonants were 
presented during the encoding phase (i.e., the baseline condition), the probe consisted 
of either an L or an R, requiring a right handed index or middle finger response 
respectively. We avoided the use of the letters L and the R in the other WM conditions. 
Subjects were instructed to make fast and accurate responses. The inter-trial interval 
varied between 7, 8 and 9 seconds. A fixation cross was presented during the 
maintenance interval and the ITI. During the trial, the letters and the fixation cross were 
presented in black on a gray background. After the button press the fixation cross 
turned green, indicating the subject was allowed to make eye blinks. One second before 
the start of the next trial the fixation cross turned black again. Subjects were instructed 
not to blink from this moment until they had pressed a button. 
All subjects participated in two experimental sessions. For both sessions, subjects read a 
written instruction before and after the application of the EEG electrodes. The first 
session took place in the EEG laboratory, the second session a few weeks later in the 
MR scanner where simultaneously EEG and fMRI were acquired. Each session 
consisted of three blocks with 72 trials each. Within each block, 18 trials of each WM 
condition were presented. Half of the trials in each condition required an index finger 
response (Match trials in Load 3, Load 5 and Load 7). For each WM load condition 
there were 18 trials in each block. One block took approximately 22 minutes. In the 
session inside the MR scanner, a 10 minute resting state measurement with simultaneous 
EEG and fMRI and a 10 minute anatomical MR scan were recorded after the three WM 
blocks. Prior to the start of each session subjects did a short practice block of eight 
trials, two for each WM condition. When necessary, subjects were allowed to do a 
second block of eight practice trials. The recording session in the EEG laboratory took 
approximately 1 hour and 10 minutes and the recording session in the MR scanner 
measurements took approximately 1 hour and 30 minutes. 
 
Behavioural data 
 
Repeated measures ANOVA’s were carried out on the reaction times and on the 
numbers of errors. Factors were WM load (four levels: Load 0, Load 3, Load 5, Load 7) 
and response (two levels, index finger/match and middle finger/mismatch). The main 
and interaction effects were tested. Where appropriate, the Greenhouse-Geisser 
correction for non-sphericity was applied.  
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Electrophysiological recordings 
 
EEG was recorded at 29 scalp sites (Fp1, Fp2, F3, F4, C3, C4, P3,  P4, O1, O2, F7, F8, 
T7, T8, P7, P8, Fz, Cz, Pz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, TP10) 
using an MR-compatible electrode cap equipped with carbon wired Ag/AgCl electrodes 
(Easycap, Herrsching-Breitbrunn, Germany). One additional electrode was placed under 
the right eye and vertical EOG was measured by calculating the bipolar derivation 
between Fp2 and this EOG channel, horizontal EOG was measured by calculating the 
bipolar derivation between F7 and F8. ECG was measured by two dedicated electrodes. 
One electrode was placed on the sternum and the other on the clavicle, near the 
shoulder. The ECG was calculated as the bipolar derivation between these two 
electrodes. A 250-Hz analogue hardware filter was placed between the electrode cap and 
the EEG amplifier (Brainproducts, Munich, Germany).  The EEG was recorded with a 
10 s time constant and a 100Hz low pass-filter and continuously sampled at 5 kHz. 
Impedances were kept under 5 kΩ. All recordings were done with Brain Vision 
Recorder software (Brainproducts). EEG recordings outside the scanner were 
performed in the same way as inside the scanner, except that the sampling rate was 500 
Hz. 
 
Image acquisition 
 
MRI measurements were performed using a 1.5 T Sonata whole-body scanner (Siemens, 
Erlangen, Germany). Functional images were acquired using a gradient echo EPI 
sequence (TR=2.34 s including 50 ms dead time, TE=30 ms, 33 slices, 3 mm thickness 
with 0.5 mm gap, FOV=224mm, resulting in an isotropic voxel-size 3.5 by 3.5 by 3.5 
mm) A 3D MPRAGE pulse sequence was used for the anatomical scan. 
 
Analysis of EEG data 
 
The EEG data recorded inside the MR scanner were corrected for gradient and pulse 
artifacts along the lines described by Allen et al. (2000; 1998) using Vision Analyzer 
(Brainproducts). The major residual scan artifact is determined by how many slices are 
acquired in one second. Measuring 33 slices in 2.29 s resulted in a main residual artifact 
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at 14.4 Hz and its higher harmonics, which spared the alpha (8-12 Hz) and theta (4-7 
Hz) frequency bands that we were primarily interested in. 
The data corrected for MR artifacts was subsequently low-pass filtered at 100Hz, 
downsampled to 500 Hz and re-referenced to a common average reference. The original 
reference electrode was recalculated as FCz, yielding a total of 30 EEG channels. In the 
subsequent step, residual eye blinks during the trial were corrected by applying the 
Gratton and Coles algorithm (Gratton et al., 1983). Subsequently, the trials were visually 
inspected for residual eye movements or other artifacts. Contaminated trials were 
subsequently excluded (9 % of the trials on average). 
Time-frequency analysis using a multi-taper approach ((Mitra and Pesaran, 1999) was 
carried out with the Fieldtrip toolbox for EEG/MEG-analysis (FC Donders Centre for 
Cognitive Neuroimaging, Nijmegen, The Netherlands; see 
http://www.ru.nl/fcdonders/fieldtrip) running under Matlab (MathWorks, Natick, 
MA).  The EEG power was analyzed from 1.25 - 20 Hz in 1.25 Hz steps for every 100 
ms. Multitapering was performed with a 800 ms time smoothing and 2.5 Hz frequency 
smoothing. Time-frequency analysis of higher frequency bands (up to 100 Hz) indicated 
no observable WM modulations of power. 
To reduce inter-subject variability and to normalize power changes across different 
frequency bands, power changes were calculated relative to a 0.5 s pre-trial baseline. The 
statistical significance of the WM load dependent power increases across the time 
frequency representations of these loads was evaluated by a cluster-based randomization 
procedure (Maris and Oostenveld, 2007). This test effectively controls the Type-1 error 
rate in a situation involving multiple comparisons. This procedure allows for the use of 
user defined test statistics tailored to the effect of interest within the framework of a 
cluster based randomization test. In our case we constructed a test statistic that reflected 
a parametric increase of power over WM loads. 
First, for every electrode-time-frequency point the slope of the regression line fitted 
through the power values of the four loads was calculated. Subsequently, a one tailed 
single sample t-test was performed on these slopes (giving uncorrected p-values). All 
data points that do not exceed a pre-set significance level (here 5%) are zeroed. Clusters 
of adjacent non-zero data points in electrode-time-frequency space are computed, and 
for each cluster a cluster-level test statistic is calculated by taking the sum of all the 
individual t-statistics within that cluster. This statistic was entered in the cluster-based 
randomization procedure. 
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For comparison with the region of interest analysis of the fMRI data (see below) we also 
performed pair-wise comparisons for the average alpha and theta power during WM 
maintenance of the selected independent component (see below). For each subject we 
first averaged the relative power across all time steps in the maintenance interval for the 
frequency bin used for the construction of the EEG-based regressors. Subsequently we 
log transformed the EEG power data to make its distribution more Gaussian. 
Since previous work showed the WM related alpha power increase is mainly observed in 
the upper alpha band, we performed an analysis for the alpha sub-bands for both 
channel level data, as well as for the selected alpha independent component (see below). 
For channel level data we chose channel O2, since the WM effect was maximal at this 
location. The alpha sub-bands were defined along the lines of (Klimesch et al., 1999). 
The individual alpha frequency (IAF) was determined by calculating the average power 
over all channels and over the 10 seconds spanning both the encoding and maintenance 
intervals. This 10 second window was subdivided in 5 segments of 2 seconds, resulting 
in a frequency resolution of 0.5 Hz. IAF was defined as the frequency with the largest 
power in the 8-12 Hz range. Subsequently the power was estimated for each load. For 
this, the middle 6 seconds of the retention interval were divided in 3 segments of 2 
seconds, discarding the first and last 0.5 seconds. The alpha sub-bands were defined 
relative to IAF as follows: the lower-1 alpha band ranged from IAF-4Hz to IAF-2Hz; 
the lower-2 alpha band ranged from IAF-2Hz to IAF; the upper band ranged from IAF 
to IAF+2Hz. The power values for each frequency were normalized by dividing the 
power estimates for each load by the average power over the four loads. For the 
statistical analysis, a linear trend was fitted through the power values of the four loads 
for each subject separately. An increase in power with load should result in a significant 
positive slope, which was tested in a single sample one-tailed t-test. The false discovery 
rate (Benjamini and Hochberg, 1995) was used as a correction for multiple comparisons 
(FDR=0.05).  
 Except for the correction for MR gradient and pulse artifacts, pre-processing 
and time-frequency analysis for the data outside the scanner was the same as for inside 
the scanner.  
 
Construction of EEG based alpha and theta regressors 
 
Figure 4.2 presents a flow-chart of the preprocessing steps involved in the construction 
of the EEG regressor. To get denoised trial-by-trial estimates of the observed increase 
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in alpha and theta power during the maintenance interval (see results) we applied 
infomax independent component analysis (ICA) (Bell and Sejnowski, 1995) as 
implemented in EEGLAB version 5.03 (Delorme and Makeig, 2004). To obtain a 
component that modelled the WM alpha effect we low pass filtered under 25 Hz before 
applying ICA. For three subjects a 6-17 Hz band-pass filter was applied because none of 
the independent components showed clear increased activity in the alpha band during 
the maintenance interval when the low-pass filter of was applied. Frontal theta activity is 
in general less pronounced than the alpha activity, and therefore less likely to be 
separated from other sources and artifacts. For the construction of the theta regressor 
we therefore applied a 2-9 Hz band-pass filter prior to applying ICA to reduce the 
presence of other sources and artifacts in the analyzed data. 
ICA was performed on the concatenated trials of all WM loads of all the three blocks. 
The trials started 2.5 seconds before onset of the encoding and ended 3 seconds after 
probe onset. A weight change of 10-7 was used as a stop criterion and the maximum 
number of iterations set at 512. 
The same multitaper technique with the same time and frequency smoothing as applied 
on the channel-level EEG time series was also applied on the independent component-
level time series. Subsequently the average time-frequency representation of power was 
calculated for each component for each WM load separately. For each subject one 
component for each frequency band was selected based on (i) the presence of an 
(parametric) average alpha or theta WM effect during the maintenance interval and (ii) a 
topography of the mixing weights that resembled the topography of the effects 
observed both inside and outside the scanner. In the situation where more than one 
component passed these criteria, we chose the component that explained the most 
variance in the channel level data (4 times for alpha, 2 times for theta). Significance of 
the alpha effect in the ICA data was assessed with the same cluster randomization 
technique as described above, except that only clustering in the time and frequency 
domains was used, since the selected component activity was a weighted mixture of all 
channels. 
For the alpha effect, the peak frequency in the 7.5-13.75 Hz range of the selected IC 
was determined by calculating the average power over time and WM loads for each 
frequency bin during WM maintenance. The frequency with the highest average alpha 
power was selected to represent the trial-by-trial variation in alpha power, since the 
multitaper approach already integrated the power over a 5 Hz frequency range for each 
frequency step. The same procedure was followed for the theta effect in the 3.75-7.5 Hz  
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Figure 4.2. Schematic representation of the construction of the regressor modelling trial-by-trial 
variation in alpha or theta power in the WM maintenance interval. In the example we selected an 
alpha component, but theta components were selected in the same way. For regressors modelling 
the average power response, the average power time was inserted in stead of the single trial 
power time courses. This procedure is described in more detail in the Methods section. 
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range. For both frequency bands the individual average power time courses and the 
single trial power time courses during the maintenance interval of the selected 
component constitute the basis for two regressors.To construct the first regressor, the 
power values across all trials and WM loads within one block of trials were first z-
transformed. For the trials that were excluded at the artifact rejection stage, the average 
power response of that WM load was used. The z-transformed single-trial power time 
series were then used to construct a time series that contained zeros outside the 
maintenance intervals. This time series was convolved with the canonical hemodynamic 
response function (HRF) from SPM5 (Wellcome Department of Imaging Neuroscience, 
London, UK; see http://www.fil.ion.ucl.ac.uk/spm) and resampled to obtain a single 
sample for every fMRI volume. This regressor was constructed for both the alpha and 
theta effect. Since these regressors reflect the variability of power across trials, they are 
termed TRLα and TRLθ. 
For the second regressor, the individual average power response across trials for each 
WM load was used instead of the single trial power time-courses. Z-transformation, 
convolution and re-sampling was carried out in exactly the same way as for the first 
regressor. This regressor models the individual subjects’ average alpha and theta 
response for each WM load and is therefore termed AVGα and AVGθ for alpha and 
theta respectively. 
 
FMRI model construction 
 
Preprocessing and analysis of the fMRI data was carried out in SPM5. The fMRI data 
was corrected for subject movement, corrected for differences in slice acquisition time, 
anatomically normalized to the canonical EPI template provided by SPM5 and 
smoothed with an isotropic Gaussian kernel of 10 mm full-width-at-half-maximum. 
For the standard analysis a general linear model was constructed. Box-car functions 
convolved with the canonical HRF were used to model the encoding, retrieval and inter-
trial intervals. Different functions were used for the different WM loads in the encoding 
and maintenance intervals. The retrieval interval was defined as the time between probe 
onset and the button press. The realignment parameters were added to control for 
movement related effects. Erroneous trials were modelled by separate regressors. The 
Load 3 versus Load 7 contrast was used to assess which regions were activated. An 
uncorrected voxel level threshold of 0.001 was used with a cluster level threshold of 
0.05 corrected for multiple comparisons. This analysis was complemented with a ROI 
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analysis over all the levels for the significant regions obtained in this contrast. Since the 
Load 3 versus Load 7 contrast already indicates a WM effect on BOLD, only repeated 
contrasts were computed (e.g. Load 0 vs. Load 3, Load 3 vs. Load 5 and Load 5 vs. 
Load 7) between the average regression coefficients (so called beta weights) related to 
the regressors of the four WM loads. 
In the first model that included EEG regressors (Model I) the box-car regressors 
modelling the maintenance interval were replaced by either TRLα or TRLθ. All the 
other stages of the trial were still modelled with HRF convolved box-car functions. The 
realignment parameters were again added to control for movement related effects. 
Second level single sample t-tests were used to test for regions showing a significant 
relation to TRLα and TRLθ. Significant clusters were identified as those clusters passing 
an uncorrected voxel level threshold of 0.001, and a corrected cluster-level threshold of 
0.05 (Gaussian random field correction).  
The explained variance in the TRLα/θ regressor Model I is a sum of variances that 
could also be related to (1) box-car regressors modelling the maintenance interval, (2) 
the average individual power time course for each WM load and (3) the trial-by-trial 
variation in power. A Gram-Schmidt orthogonalization procedure was followed (for 
similar use see (Eichele et al., 2005)) to obtain uncorrelated regressors that model these 
three sources of variance. The regressors included in the design matrix of Model II 
consists of (1) HRF convolved box-car functions for all the different stages of the trial, 
(2) the AVGα/θ regressors orthogonalized to these box-car regressors and (3) TRLα/θ 
regressors orthogonalized to both box car regressors and AVGα/θ regressors. The 
realignment parameters were also included. The clusters where the BOLD signal was 
found to be related to single trial alpha and theta estimates in Model I were used as the 
templates for regions of interest (ROI) analyses on which the analyses in Model II were 
based. All effects were tested on group level and based on the beta weights associated 
with the regressors introduced here. 
If a region was functionally related to the observed WM-induced theta or alpha 
increases, it should in theory show an effect when analyzed with all three orthogonalized 
sets of regressors. That is, the regions should show a parametric BOLD response (as 
analyzed by the box-car regressors) that is in line with the parametric increase in alpha 
or theta power. If we assume that the average deviation from the box-car response was 
reflected in the BOLD signal and there was variation in the strength of the response 
over trials that was also related to the BOLD signal, these regions should show a 
significant relation to the orthogonalized AVG and TRL regressors respectively. The 
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parametric WM effects for the ROIs were tested for a linear trend over loads, followed 
up with repeated contrasts between the levels to indicate where and how the pattern 
deviated from a linear increase with load. The significance of the relation between the 
ROIs and the orthogonalized AVGα/θ and orthogonalized TRLα/θ was then assessed 
by single sample two sided t-tests. If the BOLD response in a region is related to WM 
induced power increases, the sign of this relation should be consistent for the regressors 
modelling the three sources of variance. This means that a positive parametric BOLD 
effect observed in a region should go together with a positive relation between BOLD 
and the orthogonalized AVG and TRL regressor.  
In practice it was found that the orthogonalized AVG regressor can lack sensitivity and 
statistical power. Since the WM related alpha effect decreased during the maintenance 
interval, the AVGα also mostly models decreases, while the average theta response after 
convolution with the HRF does not deviate much from the HRF convolved box-cars. 
We therefore consider regions to be functionally related to the WM load-related alpha 
and theta power increases if they show a significant parametric BOLD modulation with 
WM load, as well as a significant relation with the orthogonalized TRLα/θ regressors. 
 
 
RESULTS 
 
Behavioural data 
 
Analysis of variance of the reaction time data reveal significant main effects for the 
factors Load (F(3,57)=48.14, p<0.001) and Response Finger (Match and Mismatch) 
(F(1,19)=18.40, p<0.001). A significant Load by Response Finger (F(3,57)=4.26, 
p<0.05) interaction effect is observed. 
The main effect of Load is related to an increase of reaction time with WM load. (linear 
contrast: (F1,19)=59.97, P<0.001) The main effect of Response finger is related to a 
faster response to match/index finger responses than to mismatch/middle finger 
responses. The Load by Response Finger interaction effect indicates that the difference 
is only present in the Load 3, Load 5 and Load 7 conditions. Simple main effects also 
indicate this (see figure 4.3A). The difference is not significant for Load 0 (t(19)= 0.78, 
not significant) but is significant for Load 3  (t(19)=4.58, p<0.001), Load 5 (t(19)=4.71, 
p<0.001) and Load 7 (t(19)=2.511, p<0.05). These results are in line with previous 
behavioural results on Sternberg WM tasks. 
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Figure 4.3B shows that the number of errors significantly increased with WM load 
(F(3,57)=17.36, p<0.001), and significantly more errors were made in the match than 
mismatch condition (F(1,19)=6.04, p<0.05). A significant linear trend is observed for 
the increase in the number of errors with load (F(1.19)= 31.68, p<0.001). Figure 3B 
suggests the difference in the number of errors between match and mismatch trials 
might have increased with load. However, the Load by Response interaction effect 
shows this effect is only marginally significant (F(3,57)=2.93, p=0.07). Simple main 
effects however reveal significantly more errors for Match trials in load 7 (t(19)=2.35, 
p<0.01), but not in the other load conditions (Load 0: t(19)=-0.57, not significant; Load 
3: t(19)=1.57, not significant; Load 5: t(19)=1.39, not significant). 

Figure 4.3. Results of the analysis of the behavioural data of the session inside the MR  canner. 
(A) Average reaction time for the different loads and response fingers. (B) Average number of 
errors for the different loads and response fingers. Error bars indicate the standard error. 
 
EEG data 
 
Figure 4.4 shows a parametric increase of alpha power with WM load during 
maintenance on right posterior electrodes for the data outside the scanner, for the data 
recorded inside the scanner and for the selected independent components from the data 
inside the scanner. The results displayed in first two columns of figure 4.4 indicate that 
inside and outside the MR scanner qualitatively the same parametric alpha increase was 
measured. Figures 4.4H and 4.4I illustrate a clear increase in the relative power during 
WM maintenance after ICA. This indicates that ICA separates the right posterior alpha 
effect from other components that contributed to this frequency band, and as a  
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Figure 4.4. Results of the EEG channel data measured inside and outside the scanner and the 
ICA data inside the scanner for the posterior alpha effect. Panels A–C show in a time frequency 
representation the t-value of the slope through the WM loads for each time frequency point. 
Bright colours indicate a significant positive slope and therefore a significant increase of power 
with WM load. Significant increases of alpha power with WM load were observed for the 
channel data measured outside (A) and inside the scanner (B) and for the selected IC (C). Panels 
D–F illustrate the topographical distributions of these effects. Panels D and E were calculated by 
dividing the power difference in the maintenance interval between Load 7 and 3 by the power in 
Load 3. Panel F was constructed from the average of the squared individual mixing weight 
normalized to the maximum. Panels G–I show the power time course at 10 Hz for the channel 
data outside (G) and inside (H) the scanner and the selected IC inside the scanner (I). The power 
is relative to a 500 ms pre-trial baseline. The increase in signal to noise gained by ICA is 
illustrated here by the increased relative power during the maintenance interval at 10 Hz in panel 
I compared to panel H. For the channel level data in panels A, B. G and H channel O2 is shown. 
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Figure 4.5. The effect of WM load on alpha power in the maintenance interval for the alpha sub-
bands. The frequency axis is relative to the individual alpha frequency (IAF). A and B show the 
relative power values from IAF−4 Hz until IAF+2 Hz for the four WM loads for channel O2 
and the selected alpha IC respectively. Similarly, panels C and D show the t-values for the single 
sample t-test applied on the slope through the four Loads for each frequency bin. Values above 
the dashed red line are significant after correction for multiple comparisons. 
 
consequence increases the signal to noise ratio. Pair-wise comparisons for the average 
alpha power during WM maintenance reveal significant differences between Load 3 and 
Load 0 and between Load 5 and Load 3, but not between Load 7 and Load 5 (see figure 
9I). The analysis for the different alpha sub-bands reveals, that both for channel level 
and the IC data, the increase of alpha power with load can mainly be attributed to the 
effect in the upper alpha band (see figure 4.5). The average individual alpha frequency is 
observed at 9.5 Hz (SD= 0.8 Hz). 
Figure 4.6 shows the results for the frontal theta effect in a similar way as figure 4 does 
for right posterior alpha. Also the frontal theta effect can be observed outside as well as 
inside the scanner. The topographies clearly show the mid-frontal distribution associated 
with frontal theta (see Makeig et al., 2002; Onton et al., 2005). Applying ICA again  
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Figure 4.6. Similar as figure. 4.4, but then for the frontal theta effect. Here ICA not only 
increased the relative power, but also the extent of the significant WM effect in panel C. 
 
increases the signal to noise ratio as expressed in a relative power increase. In this case 
ICA also leads to a better contrast between the four loads (see figure 4.6I). Pair-wise 
comparisons for the average theta power during WM maintenance reveal significant 
differences between Load 5 and Load 3 and between Load 7 and Load 5, but not 
between Load 3 and Load 0 (see figure 10I). 
For the EEG data recorded inside the scanner correlations were computed between 
reaction time and the average relative alpha and theta power during the maintenance 
interval for the selected independent component (see figure 4.7). This was done for each 
WM load separately. Significant (two sided) negative correlations between reaction time  



 66 

Figure 4.7. Correlations between reaction time and relative power across the maintenance 
interval for the four WM loads for the selected frequency bin of the selected IC for both right 
posterior alpha (A–D) and frontal theta (E–H). 
 
and alpha power in the maintenance interval are observed for Load 3, 5 and 7. For theta 
power no significant correlations with reaction time were observed. 
 
FMRI data 
 
Conventional fMRI analysis 
 
The Load 7 versus Load 3 contrast shows significant clusters of activity  in the right 
dorsolateral prefrontal cortex (DLPFC), medial frontal cortex, left inferior parietal 
lobule and a left lateralized cluster spanning the left ventrolateral frontal cortex, a part of 
Broca’s region and the insula (see table 4.1 and figure 4.8). At a higher voxel-level 
threshold (p=0.0001, uncorrected for multiple comparisons) this cluster splits in two 
clusters (results not shown) that are significant at cluster level (corrected for multiple 
comparisons). The first cluster is mainly located in Broca’s region (BA 44 and BA 45), 
but also stretched into to more dorsolateral areas (BA9 and BA 6). The second cluster is 
inferior to the first, mainly in the left insula. Negative effects are present in various 
regions in parietal, occipital cortices, left temporal and medial frontal regions. ROI 
analysis (see figure 4.8B) reveal that for all these regions activity is higher in the Load 0 
than in the Load 3 condition. From Load 3 to Load 7 a monotonic increase in activity 
with WM load is observed in all regions except the superior parietal cortex, although 
only the differences between Load 5 and 7 are significant. 
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Figure 4.8. Load dependent FMRI activity during working memory maintenance. (A) Rendering 
on a standard MNI brain of activated and deactivated clusters for the Load 7 versus Load 3 
contrast in the conventional fMRI analysis. Regions depicted here passed a 0.001 uncorrected 
voxel-level and a 0.05 family wise error corrected cluster-level threshold. Activations are in the 
red, deactivations in blue. (B) Average beta values for the activated regions in panel A for all the 
four WM loads. Error bars indicate the standard error. Broca: Broca's area; LI: left insula; right 
insula; MFC: medial frontal cortex; RDLPC: Right dorsolateral prefrontal cortex; LSPC: left 
superior parietal cortex; RI: right insula. Asterisks indicate a significant difference as tested with 
the repeated contrasts in the ROI analysis. *|t(19)|>2.093, p<0.05; **|t(19)|>2.861, p<0.01; 
***|t(19)|>3.883, p<0.001. 
 
Integrated EEG/fMRI analysis 
 
Alpha 
Table 4.2 lists the clusters where the BOLD signal show a significant negative relation 
with TRLα in model I, where the single trial alpha power time courses model the 
maintenance interval (figure 4.9A). No positive clusters are observed. The linear trend 
analysis for the ROIs in Model II (figures 4.9C-E) reveal significant decreases in BOLD 
signal with WM load for the right middle temporal gyrus (F(1,19)=43.59, p<0.001), 
primary visual cortex: (F(1,19)=22.03, p<0.001) left cerebellum (F(1,19)=33.79, 
p<0.001) left supramarginal gyrus (F(1,19)=20.11, p<0.001) right supramarginal gyrus 
(F(1,19)=34.92, p<0.001). No significant linear trend is observed for the right middle 
frontal gyrus: (F(1,19)=0.01, not significant). Pair-wise comparisons however reveal that 
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Table 4.1. Regions showing a significant WM modulation in the Load 7 versus Load 3 contrast. 

Brodmann area Anatomical structure 
Size 
(voxels) 

MNI 
coordinates 

t-
value 

 x y z  

Positive effects      

44/45/9/6 
Broca's region/left inferior 
frontal gyrus/Insula 3012 -48 18 28 6.71 

8/6 
Left superior medial frontal 
gyrus/pre-SMA 932 -2 20 50 5.78 

9/46 
Right dorsolateral prefrontal 
cortex 507 46 42 26 5.53 

 Right insula 250 34 24 -4 4.73 

7 Left superior parietal cortex 244 -48 -42 54 4.37 

Negative effects       

23/31/17/18/19/37/38/39
Various regions in parietal 
and occipital cortices 15841 8 -48 30 7.02 

9/10/32/12 Medial frontal cortex 3029 0 62 -4 5.61 

21 Left middle temporal gyrus 397 -60 2 -24 4.05 
 
only the primary visual cortex and the posterior part of the right middle temporal gyrus 
show a pattern of decreased activity that is in line with the pattern of increase in alpha 
power (figures 4.9 C and 4.9I). The cerebellum shows the same pattern for the lowest 
three loads, but shows a non significant increase in Load 7 compared to Load 5. Other 
regions show no significant load dependent decreases in activity beyond Load 3. ROI 
analysis for orthogonalized-AVGα regressor reveal significant negative correlations with 
the right middle temporal gyrus, primary visual cortex, and the left cerebellum (see 
figure 4.9D) For TRLα-orth the ROI analysis reveals that all regions show a significant 
negative correlation with this regressor (see figure 4.9F). In summary, the right middle 
temporal cortex and the primary visual cortex show both a parametric decrease with 
WM load that is in line with the frontal theta increase and a negative correlation with 
TRLα-orth. We therefore conclude that load dependent BOLD decreases in these 
regions are related to the load dependent increases in alpha power (see figure 9B). 
 
Theta 
In contrast to the correlation to alpha power, negative as well as positive correlations 
with TRLθ are observed in model I (see table 4.3 and figure 4.10A). For the regions 
where BOLD correlates positively with TRLθ in model I, the ROI analyses in Model II 
reveal that there are no significant linear trend observed for  the left (F(1,19)=0.12, not 
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Figure. 4.9. Results of the integrated EEG fMRI analysis for the right posterior alpha effect. 
Panel A shows the clusters where the BOLD signal significantly correlated with TRLα in model 
I. Regions depicted here passed a 0.001 uncorrected voxel-level and a 0.05 family wise error 
corrected cluster-level threshold. Panel B shows which of these regions are functionally related to 
the WM-induced right posterior alpha increase. These clusters correlated significantly with the 
orthogonalized TRLα regressor as depicted in panel E and showed a significant WM modulation 
that is in line with the parametric alpha increase (see panel C). Panel C shows the average beta 
weights associated with the regressors in Model I modelling different WM loads for ROIs that 
were based on the regions shown in panel A. Panels D and E show the average beta weights for 
these ROIs for the orthogonalized AVGα and orthogonalized TRLα regressor in Model II 
respectively. Panel F shows the average of the log transformed relative alpha power increases for 
the different WM loads in the maintenance interval. Both TRLα and AVGα regressors are based 
on individually selected right posterior alpha independent components (see also Fig. 4). 
Abbreviations of the anatomical structures: RMT: right middle temporal gyrus; RMF: right 
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middle frontal gyrus; VI: primary visual cortex; LCB: left cerebellum; LSM: left supramarginal 
gyrus; RSM: right supramarginal gyrus. *|t(19)|>2.093, p<0.05; **|t(19)|>2.861, p<0.01; 
***|t(19)|>3.883, p<0.001. Errors bars indicate the standard error. 
 
Table 4.2. Relation between the BOLD signal and right posterior alpha activity 

 Model I  Model II 

Brodmann 
area 

Anatomical 
structure 

Size 
(voxels) MNI coordinates 

t-
value  

Par. 
WM 

Orth. 
AVG
α 

Orth. 
TRL
α 

   x y z      
Negative 
effects          

37/21/19 
Right middle 
temporal gyrus 2002 62 -48 10 8.28  + + + 

9/46/6 
Right Middle 
frontal gyrus 1621 38 38 20 6.91    + 

17 

Left and Right 
primary visual 
cortex 1100 14 -90 10 5.72  + + + 

 

Left cerebellum/left 
middle occipital 
gyrus 654 -30 -70 8 5.14   + + 

40 
Left supra marginal 
gyrus 228 -52 -46 38 5.52    + 

40 
Right supra 
marginal gyrus 210 58 -38 38 5.20    + 

+ Regions that show a parametric modulation with WM load, a significant correlation to the orthogonalized 
AVGα regressor or orthogonalized TRLα in Model II. 
 
significant.) and right (F(1,19)=2.61, not significant) inferior frontal gyrus. Both these 
regions do not show a significant relation (see figure 4.10D) with orthogonalized-AVGθ 
but do show a significant positive relation with orthogonalized-TRLθ (see figure 4.10E). 
The regions where BOLD correlates negatively with TRLθ in Model I do show an 
significant linear decrease with WM load (medial prefrontal cortex: F(1,19)=15.08, 
p<0.01; posterior cingulate cortex F(1,19)=35.59, p<0.001; left angular gyrus: 
F(1,19)=34.27, p<0.001; right angular gyrus: F(1,19)= 21.48, p<0.001). Except for the 
right angular gyrus, these regions show a monotonic decrease with WM load that is 
strongest for the Load 7 condition (figure 4.10C). This strong decrease in activity in 
Load 7 is in line with the strong increase observed in frontal theta power (figure 4.10I). 
ROI analyses for orthogonalized-AVGθ reveal only a significant negative correlation 
with the medial prefrontal cortex (see figure 4.10D). All selected regions show a 
significant negative relation with orthogonalized-TRLθ (see figure 4.10E). In summary, 
the medial prefrontal cortex, posterior cingulate/precuneus and the left angular gyrus 
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show both a parametric decrease with WM load that is in line with the increase in 
frontal theta power and a negative correlation with TRLθ-orth. We therefore conclude 
that load dependent BOLD decreases in these regions are related to the load dependent 
increases in theta power (see figure 4.10B). 
 
DISCUSSION 
 
In the present study, we used simultaneously recorded EEG and fMRI to investigate if 
the brain regions related to WM maintenance by previous fMRI studies are also 
functionally related to WM-induced posterior alpha and frontal theta increases.  Analysis 
of the EEG data inside and outside the MR scanner revealed parametric increases with 
WM load in right posterior alpha and frontal theta power. Conventional analysis of the 
fMRI data yielded an increase in activity from Load 3 to Load 7 in a set of regions that 
have been related to verbal WM tasks (Cabeza et al., 2002). In the Load 0 condition 
these regions also showed increased activity compared to Load 3, indicating this 
condition did not function well as a high level baseline. The integrated single trial 
EEG/fMRI analysis revealed a functional relation between WM induced right posterior 
alpha increases and BOLD decreases in right middle temporal gyrus and primary visual 
cortex. The WM induced frontal theta power was found to be related to decreased 
activity in the default mode network (DMN; Gusnard and Raichle, 2001; Raichle et al., 
2001; Shulman et al., 1997). The results of this integrated analysis are discussed in more 
detail below.  
 
Right posterior alpha-BOLD correlations 
 
The right posterior alpha increase with WM load is in line with earlier results obtained 
by Jensen et al. (2002) and Tuladhar et al. (2007). Interestingly, Jensen et al. (2002), who 
also used a verbal WM task, also reported a predominantly right lateralized effect, 
although their effect seems to have a more anterior scalp distribution than the effect we 
observed.  
We found a variety of regions, predominantly located in the right hemisphere, where the 
BOLD signal correlated negatively with the right posterior alpha power increase 
(TRLα). Of those regions, only the right primary visual cortex (BA17) and the right 
middle temporal gyrus (BA 37) showed a significant relation with the three sources of 
variance that is in line with this monotonic increase in alpha power. For these two  
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Figure 4.10. Similar as Fig. 4.9, but then for the frontal theta effect. Both TRLθ and AVGθ 
regressors were based on individually selected frontal midline theta independent components 
(see also Fig. 6). Similar as in panel A, the colour of the bars in panels C, D and E indicate 
negative positive (red) and negative (blue) correlations with TRLθ. Abbreviations for the 
anatomical regions: LIF: Left inferior frontal gyrus; RIF: right inferior frontal gyrus; MPC: medial 
prefrontal cortex; PCC: posterior cingulate cortex/precuneus; LA: left angular gyrus; RA: right 
angular gyrus. 
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Table 4.3. Relation between the BOLD signal and frontal theta activity. 

 Model I  Model II 

Brodmann 
area Anatomical structure

Size 
(voxels) MNI coordinates 

t-
value  

Par. 
WM 

Orth. 
AVG
θ 

Orth. 
TRL
θ 

  x y z      

positive effects          

43 
Left Inferior frontal 
gyrus 272 -64 -4 14 6.23    + 

43 
Right inferior frontal 
gyrus 250 58 0 8 5.34    + 

negative effects          

9/10/32 
Medial prefrontal 
cortex 3772 6 60 32 6.82  + + + 

23/31 
Posterior cingulate 
cortex/precuneus 970 -2 -52 28 6.60  +  + 

39 Left angular gyrus 420 -52 -68 38 5.75  +  + 

39 Right angular gyrus 157 54 -60 42 5.51    + 
+ Regions that show a significant relation to the three sources of variance in Model II that is in line with the 
sign of the correlation with TRLθ. 
  
regions, a monotonic decrease in the BOLD signal with WM load as well as negative 
correlations with orthogonalized AVGα and orthogonalized TRLα regressors were 
observed. We therefore conclude these regions and possibly also the left cerebellum, 
where only the Load 7 condition showed a deviation from the expected pattern, were 
functionally related to the observed WM induced alpha power increase. 
For the other regions that correlated with alpha power fluctuations there is less evidence 
that they were functionally related to the WM alpha increase. All these regions showed a 
significant negative correlation with orthogonalized TRLα and except the left 
supramarginal gyrus also with orthogonalized AVGα. Although all these regions showed 
a significant modulation of BOLD by WM load, the ROI analysis shows that the pattern 
of activity across the four loads is not in line with the alpha increase. These regions were 
therefore more likely related to spontaneous non-WM-related fluctuations in alpha 
power. 
The results detailed above are in line with the inhibition hypothesis relating increased 
alpha power to top-down functional inhibition of regions that can possibly perturb WM 
maintenance (Jokisch and Jensen, 2007; Klimesch et al., 2007). The negative correlations 
between alpha power and reaction time suggest a behavioural relevance of the 
deactivation of primary visual cortex and of the posterior part of the right middle 
temporal gyrus further supporting this hypothesis. The analysis of the different alpha 
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sub-bands revealed that the power increases with load mainly in the upper alpha band, 
which is in line with observations by Klimesch et al. (1999) in a similar WM task. 
Decreases in power in the upper alpha band have been related to increased performance 
in declarative memory tasks (Klimesch, 1999).  
 
Frontal theta 
 
Both inside and outside the MR scanner a significant parametric increase in theta power 
was detected for the Fz electrode. This midline frontal distribution is typical for the 
frontal theta response (Asada et al., 1999; Gevins et al., 1997; Onton et al., 2005). 
Applying ICA not only increased the relative power change, but also increased the time-
frequency range for which a significant parametric increase with load was observed. The 
results also show that the theta response is particularly strong in Load 7. 
Based on resting state correlations (Scheeringa et al., 2008) and similar findings by 
Meltzer et al. (2007) who correlated EEG and fMRI measured in separate sessions, we 
hypothesized that also during task conditions frontal theta activity would correlate 
negatively with the BOLD signal in the default mode network (Gusnard and Raichle, 
2001; Raichle et al., 2001; Shulman et al., 1997). The results obtained here confirm this. 
We found that the medial prefrontal cortex, anterior cingulate cortex/precuneus and left 
and right the angular gyrus correlated negatively with single trial estimates of frontal 
theta power (TRLθ). If we split this regressor in three sources of variance, we saw that 
these regions also correlate negatively with trial-by-trial fluctuations in frontal theta 
power (orthogonalized-TRLθ). In addition, for three of the four regions the pattern of 
decreased activation with increasing WM load is in line with the observed frontal theta 
increase. The decrease of the BOLD signal in the right angular gyrus for the higher 
loads was not significant here, but this region typically is also part of the DMN. 
The left and right inferior frontal gyrus showed significant positive single trial 
correlations modelled in Model I by TRLθ. For model II, no significant effect of WM 
load was however observed for these regions when analyzed in the conventional way, 
and no significant relation with orthogonalized-AVGθ was observed. There is only a 
significant positive relation with trial-by-trial variation modelled by orthogonalized-
TRLθ. These regions are therefore probably only related to non-task-related fluctuations 
in frontal theta power. 
The question arises whether one or more of the regions in which the BOLD signal 
correlated with frontal theta is the location where the frontal theta rhythm is generated. 
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Equivalent dipole models report sources of frontal theta to be predominantly in or near 
the anterior cingulate (Asada et al., 1999; Gevins et al., 1997; Onton et al., 2005; 
Scheeringa et al., 2008). This is just outside the largest negatively correlating cluster we 
observed in the medial prefrontal cortex. This discrepancy may be explained by the fact 
that equivalent dipole models tend to estimate the source location too deep when there 
is in reality a more superficial distributed source (De Munck et al., 1988). Interestingly, 
Ishii et al. (1999), who applied a beamformer approach on MEG data, and Miwakeichi 
et al. (2004) and Martinez-Montez et al. (2004), who applied distributed source models 
on EEG data, located frontal theta activity in a region in the medial prefrontal cortex 
that overlaps considerably with the medial frontal region observed here. We therefore 
assume that the medial frontal cluster is the likely source location for the frontal theta 
component. 
The data presented above strongly suggests that increased frontal theta EEG power can 
be regarded as a direct consequence of the decreased default mode network activity as 
measured by fMRI. This notion unites the large body of literature on both topics. Both 
decreased DMN activity and increased frontal theta activity have been linked to 
increased cognitive demands. Increased frontal theta is reported in a wide variety of 
tasks, such as mental arithmetic (Inanaga, 1998; Inouye et al., 1994; Ishihara and Yoshii, 
1972; Ishii et al., 1999; Lazarev, 1998; Mizuki et al., 1980; Sasaki et al., 1996; Smith et al., 
1999), error detection (Luu et al., 2003; Luu et al., 2004), language comprehension 
(Bastiaansen et al., 2002; Hald et al., 2006) and WM tasks (Gevins et al., 1997; Jensen et 
al., 2002; Krause et al., 2000; Onton et al., 2005). DMN network activity as measured by 
PET and fMRI is reported to decrease in a similarly wide variety of cognitive tasks 
(Mazoyer et al., 2001; Shulman et al., 1997). Moreover, increased DMN activity has been 
positively related to activities such as self referential processing (Gusnard et al., 2001) 
and mind-wandering (Mason et al., 2007). These are activities subjects are typically not 
engaged in during cognitively demanding tasks. This link between frontal theta activity 
and DMN activity opens avenues to study activity of default network activity with EEG 
at sub second level by computing the time-course of frontal theta power. 
 
General issues 
 
The relation between frontal theta and DMN activity observed here illustrates that EEG 
power fluctuations measured at scalp level can be related to the activity in larger 
networks of brain regions and not only to the region that is the direct source of the 
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EEG activity. Not all activity in a functional network is readily detectable with EEG. 
This study illustrates that concurrent registration of EEG and fMRI can be used to 
reveal an entire network of regions that is related to changes in EEG features like 
frequency band specific power modulations. In addition, this study illustrates that by 
correlating single trial EEG measures, in this case power, with the BOLD signal we can 
separate different networks that show the same task induced BOLD responses. All the 
regions that were found to be functionally related to WM related increases in either right 
posterior alpha or frontal theta power show a decrease in BOLD with WM load. By 
correlating BOLD with single trial alpha and theta power we are able to separate these 
regions in two separate networks. 
We observed here an inverse relationship between the BOLD signal and both right 
posterior alpha and frontal theta activity. These results are in line with the ideas put 
forward by Kilner et al. (2005), who concluded on theoretical grounds that increased 
neural activity should lead to decrease in low frequency power (e.g. delta and theta) and 
an increase in high frequency power (e.g. beta and gamma). According to their heuristic, 
the BOLD signal is inversely related to the degree of low versus high frequency 
components in the EEG. The studies investigating the correlation between 
electrophysiological measures and hemodynamic measures are largely in line with this 
hypothesis. Simultaneous recordings of EEG and fMRI have predominantly reported 
negative correlations with theta (Mizuhara et al., 2004; Scheeringa et al., 2008; present 
study, but see also: Sammer et al., 2007) and alpha power (Feige et al., 2005; Goldman et 
al., 2002; Goncalves et al., 2006; Laufs et al., 2006; Laufs et al., 2003a; Moosmann et al., 
2003) and positive correlations of the default mode network with beta power in (Laufs 
et al., 2003b). In anaesthetized cats Niessing et al. (2005) recorded local field potentials 
while blood oxygenation was simultaneously measured with optical imaging. They 
reported negative correlations between the two measures in the delta and theta bands 
and positive correlations in beta and gamma bands during visual stimulation. Especially 
for the higher gamma frequencies they observed a strong positive correlation with 
BOLD. This positive BOLD-gamma relation was also observed by Logothetis et al. 
(2001) who found that the BOLD signal showed a strong positive correlation with 
gamma band activity observed in local fields potentials (LFP) in monkeys, and Shmuel 
et al. (2006), who reported that negative BOLD responses go together with a decrease in 
gamma band activity in the LFP. The majority of studies relating electrophysiological 
brain signals to hemodynamics thus support the notion of a systematic relation between 
frequency and direction of the BOLD response, in the sense that low-frequencies are 
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associated with BOLD decreases, while high frequencies are associated with BOLD 
increases. 
Initially, we set out to determine whether the observed increases in alpha and theta 
power during WM maintenance are related to the regions that are thought to be 
involved in WM maintenance (mainly dorsolateral prefrontal cortex, DLPFC). We 
found that alpha power correlated negatively with BOLD in visual cortex and the 
posterior part of the right temporal gryus, which we link to the inhibition of activity that 
may disturb the WM maintenance process. Frontal theta power correlated negatively 
with BOLD in the DMN, suggesting that the presence of theta reflects ‘task-
orientedness’. Strikingly, both these processes (inhibiting irrelevant information and 
being engaged in the task) are necessary for the adequate performance of a WM task, 
but are not central to WM maintenance per se. In other words, what we are missing in 
our present results is EEG-BOLD correlations in the WM network itself. This begs the 
question of why we did not observe any correlations between oscillatory EEG activity 
(recall that we studied a full 1-100 Hz range) and BOLD signal changes in the usual WM 
regions (e.g.., DLPFC). We see at least three possible answers to this question. First, it 
may be that DLPFC synchronizes at relatively high (e.g. gamma) frequencies, and that 
the relatively low amplitudes of gamma oscillations were not reliably detected within the 
noisy environment of the MR scanner. Second, it may be that WM-related neuronal 
activity in DLPFC does not show massive synchronization changes, and as a result we 
did not find any systematic EEG power changes that stem from DLPFC. The third 
possibility is that the effects were present in other independent components that were 
not used to construct regressors. Our selection of the components was based on the 
effects observed in channel level data. An effect that is obscured at channel level by 
noise or confounds, might be recovered by ICA. Identifying these possible components 
however is problematic, since we do not have the channel level information in terms of 
frequency and topography of the effect. 
Despite these unresolved issues, the present results illustrate that correlating BOLD 
signal changes with EEG power fluctuations measured at the scalp while a subject is 
engaged in a cognitive task yields interpretable and meaningful patterns of activity, 
which reveal the existence of neuronal activity in functionally coherent, yet spatially 
distributed networks in the brain. Not all activity in a functional network is readily 
detectable with scalp EEG. However, our results show that the current approach of a 
concurrent registration of EEG and fMRI, combined with the appropriate analytic 
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techniques, can uncover both the full spatial extent of functional networks, even if more 
than one network is simultaneously active during the execution of a given task. 
 



 79

Chapter 5 
 
ELECTROPHYSIOLOGICAL CORRELATES OF THE HUMAN BOLD 
SIGNAL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Addepted version acceted for publication in: 
Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris DG, Hagoort P 

and Bastiaansen MCM. 
Neuronal dynamics underlying high and low frequency EEG oscillations contribute 

independently to the human BOLD signal. 
Accepted for publication in Neuron.



 80 

 ABSTRACT 
 
The exact relation between hemodynamic responses (such as BOLD-based fMRI) and 
underlying neuronal activity is as yet not fully understood. Previous work on 
anesthetized and awake animals indicates that BOLD is preferentially sensitive to local 
field potentials, and that it correlates with gamma-band neuronal synchronization 
(Logothetis et al., 2001; Niessing et al., 2005). In this work, we aim to investigate 
whether the BOLD-gamma coupling also holds in human subjects engaging in cognitive 
tasks, and whether neuronal synchronization in other frequency bands contributes 
independently to the BOLD signal. 
We simultaneously recorded EEG and BOLD in humans while they engaged in a 
cognitive task (a visual attention task) known to induce sustained changes in neuronal 
synchronization across a wide range of frequencies. Trial-by-trial BOLD fluctuations 
correlated positively with trial-by-trial fluctuations in EEG gamma power, and 
negatively with alpha and beta power. Gamma power on the one hand, and alpha and 
beta power on the other hand, independently contributed to explaining BOLD variance. 
The data demonstrate that the BOLD-gamma coupling previously evidenced in 
(anesthetized) animals can be extrapolated to studies of human cognition. In addition, 
the results suggest that low-frequency neuronal dynamics constitute another, 
independent mechanism underlying the BOLD signal. 
 
INTRODUCTION 
 
Functional magnetic resonance imaging (fMRI) is now the most widely used research 
tool in human cognitive neuroscience. In this branch of science, the hemodynamic 
responses obtained with fMRI measurements are commonly used to infer relationships 
between brain activity and cognitive functions. However, the exact relation between 
hemodynamic responses as measured with fMRI Blood Oxygenation-Level Dependent 
(BOLD) responses on the one hand, and underlying neuronal activity on the other, is 
not yet fully understood (Logothetis, 2008). Recordings in the anesthetized and awake 
monkey have shown that hemodynamic responses are preferentially sensitive to local 
field potentials (LFP) as opposed to action potentials (Goense and Logothetis, 2008; 
Logothetis et al., 2001). In addition, recordings from anesthetized cat visual cortex have 
revealed a strong positive correlation between BOLD and neuronal synchronization in 
the gamma frequency range (> 30 Hz) together with a negative correlation of BOLD 
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with lower frequency bands (up to 7 Hz; (Niessing et al., 2005)). However, in order for 
these results to have validity for fMRI studies in human cognitive neuroscience, an 
important question that needs to be answered is whether the coupling between BOLD 
and gamma extends to the case of human subjects engaging in cognitive tasks.  
Encouraging first findings in this context are that the reactivity patterns of human and 
monkey gamma-band oscillations appear to show strong similarity, at least in the visual 
cortex (Hall et al., 2005). Furthermore, single-unit recordings of spike trains and high-
frequency LFPs in the auditory cortex of patients watching a movie correlated 
significantly with fMRI BOLD responses measured in another set of healthy volunteers 
watching the same movie (Mukamel et al., 2005). 
To further answer the question of BOLD-gamma coupling in human cognition, we 
asked twenty subjects to engage in a visual attention task known to elicit strong, long-
lasting (up to several seconds) rhythmic activity in a relatively narrow gamma-frequency 
band in the MEG (Hoogenboom et al., 2006). This narrow band gamma 
synchronisation has been found in both human MEG/EEG recordings as well as 
monkey local field potentials (Fries et al., 2008). This task is therefore well suited to 
study the electrophysiological correlates of the BOLD signal in humans. We studied the 
relationship between frequency-specific power changes in the scalp electro-
encephalogram (EEG) on the one hand, and simultaneously measured fMRI BOLD 
changes on the other hand. We hypothesized a positive correlation between BOLD and 
EEG gamma power, in parallel to what has been observed in animal experiments. In 
addition, we also explored the relationship between BOLD and other - lower - EEG 
frequency bands, in order to establish whether the negative correlation between BOLD 
and lower-frequency neuronal synchronization observed previously (Goldman et al., 
2002; Laufs et al., 2003a; Niessing et al., 2005) independently contributes to explaining 
BOLD variance. 
 
MATERIALS AND METHODS 
 
Subjects 
 
Twenty right handed subjects (13 female, 7 male, mean age 24, range 19-31), without a 
history of known psychiatric or neurological disorders participated in the simultaneous 
EEG/fMRI session. All had normal or corrected-to-normal vision. Before the start of 
the experiment, written informed consent was obtained from each subject. The 
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experiment was approved by a local ethical committee (CMO region Arnhem/ 
Nijmegen). 
 
Experimental paradigm and stimuli 
 
It has been established that neuronal synchronization in the gamma frequency range is 
associated, amongst others, with attentional processes, most notably in the visual system 
(Bichot et al., 2005; Fries et al., 2001; Lakatos et al., 2008). Therefore, subjects engaged 
in a visual attention task that is known to elicit strong, long-lasting (up to several 
seconds), and narrow-band gamma activity in the MEG (Hoogenboom et al., 2006). In 
this task, subjects attend to circular, inward moving gratings, and are asked to detect a 
change in inward speed. The experimental paradigm is illustrated in figure 5.1. Each trial 
started with a reduction in contrast of a fixation point that was present between trials 
(Gaussian of 0.4º) by 40%. This contrast reduction served as a warning for the 
upcoming visual stimulation, and instructed the subjects to stop blinking until the end 
of the trial. After 1100 ms, the fixation point was replaced by a sine wave grating 
(diameter: 7º; spatial frequency:  2.5 cycles/degree; contrast: 100%). The sine wave 
grating contracted to the fixation point (1.6 degrees/sec) for one of four stimulus 
durations: 700, 1050, 1400 or 1750 ms. This was followed by an increase of the 
contraction speed to 2.2 degrees/sec for maximally 500 ms. Each stimulation length 
occurred in 20% of the trials. The remaining 20% percent of trials were catch trials 
without a speed change. Here the stimulus duration was 2100 ms.  
Subjects were instructed to press a button with their right index finger as soon as they 
detected the speed change. The stimulus disappeared after a response was given, after 
2100 ms of stimulation (for catch trials), or if no response was given within 500 ms after 
the speed change. Feedback about the performance was given for 500 ms. In the case of 
a correct response or if a response was correctly withheld, ‘ok!’ appeared in green above 
the fixation point. In case of premature or slow/no responses, ‘early’ or ‘late’ 
respectively appeared in red. Trials were triggered by the onset of an fMRI volume, and 
occurred every two volumes. FMRI images were recorded in 330 ms, followed by a 
3300 ms scan free period. This scan-free period allowed us to collect EEG data that 
were free of gradient artifacts during the visual stimulation interval.  
In total, four blocks of 100 trials (20 of each trial length) were administered. One block 
had a length of approximately 12 minutes and 30 seconds. All trials were projected on a 
screen at the back of the MRI scanner, which was made visible for subjects via a mirror 
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mounted on the head coil. All stimuli were presented using the ‘Presentation’ software 
package (Neurobehavioral Systems, Inc.). 
 
MRI data 
 
MRI data were acquired using a 3.0-T whole body MRI scanner (Siemens Magnetom 
Trio Tim, Siemens, Erlangen, Germany). A custom built eight channel array (Stark 
Contrast, MRI Coils, Erlangen, Germany; see (Barth and Norris, 2007) for details), 
covering the occipital cortex was used to record the functional images. Eight slices 
positioned parallel to the calcarine sulcus were recorded using a gradient echo EPI 
sequence (TE=30 ms, 90 º flip angle,  4.0 mm slice thickness, 0.4 mm gap, voxel size 3.5 
by 3.5 by 4.0 mm, bias field correction filter was turned on). In order to speed up image 
acquisition, no fat suppression was used, and a GRAPPA parallel imaging sequence was 
used with an acceleration factor of 2.  As a result, one volume was registered in 330 ms. 
Each volume was followed by a 3300 ms gap (for gradient-free EEG recording). This 
resulted in a TR of 3630 ms. As a result of these parameters, the (theoretical) peak of 
the BOLD signal resulting from a given trial was reached approximately two TRs after 
the onset of that trial (see figure 5.1). 
An anatomical MR was acquired with the same head coil and slice position as the EPI 
data. A 3D MPRAGE sequence was used (TE=3.49 ms, TR= 2300 ms,10 º flip angle, 
80 slices per slab, 1mm slice thickness, 0.5 mm gap,  GRAPPA acceleration factor=2, 
FOV=224 mm, voxel size 0.9 by 0.9 by 1.0 mm, bias field correction filter was turned 
on). 
 
EEG data 
 
EEG data were recorded with a custom made MRI compatible cap equipped with 
carbon wired Ag/AgCL electrodes (Easycap, Herrsching-Breitbrunn, Germany). Data 
were recorded from 29 scalp sites selected from the 128 channel international 10-10 
system (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Pz, TP9, 
TP10, PO3, PO4, O9, O10, PO7, PO8, POz, Oz, Iz). The placement of the electrodes 
was focused over posterior regions, so that signals coming from visual regions could be 
recorded with greater accuracy. Two dedicated electrodes were placed on the sternum 
and clavicle to record the ECG. One additional electrode was placed under the right eye 
to record eye movements. The reference electrode was placed at Cz. A 250 Hz low-pass 
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analogue hardware filter was placed between the electrode cap and the MRI compatible 
EEG amplifier (BrainAmp MR plus, Brainproducts, Munich, Germany). The EEG was 
recorded with a 10-second time constant and continuously sampled at 5 kHz. EEG 
recordings were performed with Brain Vision Recorder software (Brainproducts 
GmbH, Germany). 
 
FMRI data analysis  
 
FMRI data of each subject was corrected for movements, coregistered to the individual 
anatomical scan and smoothed with a 6mm FWHM isotropic Gaussian kernel in SPM5 
(Wellcome Department of Imaging Neuroscience, London, UK; see 
http://www.fil.ion.ucl.ac.uk/spm). In SPM5 a GLM was constructed to isolate the 
voxels that showed activation related to the visual stimulation. For each block, the visual 
stimulation was modelled by a regressor that was formed by convolving mini-blocks of 
the length of the visual stimulation period up until the speed change with the canonical 
HRF as implemented in SPM5. In addition to this regressor, the design matrix 
contained a regressor that modelled the behaviourally erroneous trials and a regressor 
for each of the six movement parameters. Significance was assessed by testing whether 
the beta values of the regressor modelling the visual simulation period was larger than 
zero in a t-contrast. For each single subject, all voxels with a t-value greater than 10 
formed a region of interest for the integrated EEG-fMRI analysis. 
 
EEG data – preprocessing and time-frequency analysis of power 
 
Preprocessing of the EEG data was carried out in Vision Analyzer (Brainproducts 
GmbH, Germany). The recorded EEG was first downsampled to 1000 Hz, and 
rereferenced to common average. The original reference electrode was recomputed as 
electrode Cz. Subsequently the data was segmented in epochs that started 750 ms before 
onset of visual stimulation, and ended either 400 ms after the speed change, or 400 ms 
after the end of stimulation in the catch trials. These segments were manually checked 
for artifacts, and trials with anomalies such as eye blinks and large muscle artifacts were 
removed. Behaviourally erroneous trials were excluded from further analysis. Further 
analysis of the EEG data was carried out in Fieldtrip (Donders Institute for Brain, 
Cognition and Behaviour, Nijmegen, The Netherlands; see 
http://www.ru.nl/neuroimaging/fieldtrip/). Time-frequency analysis was carried out 
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using a multitaper approach (Mitra and Pesaran, 1999). In order to optimize the trade-
off between time and frequency resolution, separate analyses were carried out for a 
lower frequency window (2.5-45 Hz) and a higher frequency window (10-120 Hz). For 
the lower frequencies, the power was estimated every 50 ms in steps of 1.25 Hz, using 
800 ms time smoothing, and ±2.5 Hz frequency smoothing windows. For the higher 
frequency window, power was estimated every 50 ms in steps of 2.5 Hz, with 400 ms 
time smoothing and ±10 Hz frequency smoothing windows. An initial analysis was 
carried out at channel level, revealing a similar sustained gamma band response as 
described by Hoogenboom et al. (2006) for some of the subjects. However, due to the 
many artifacts caused by the MR recording environment, data of most subjects was too 
noisy to observe this effect.  
 
EEG data – ICA-based denoising  
 
To denoise the data we used a two-step independent component analysis (ICA) 
approach. Each ICA step was performed with the extended infomax algorithm as 
implemented in EEGLab 5.03, (Delorme and Makeig, 2004), using a weight change of 
10–7 as a stop criterion. The maximum number of iterations was 1000. In a first step, 
ICA was performed on the 45-100 Hz band-pass filtered EEG data. The unmixing 
matrix thus obtained was applied on the unfiltered data. The resulting component time 
courses therefore have a broadband spectral content, and were subsequently subjected 
to a time-frequency analysis as described in the previous section. For all subjects we 
were now able to observe a sustained gamma band response, with some individual 
variation in the peak frequency of this response. In a second step we again applied ICA, 
but this time on EEG data that was band-pass filtered with a narrow band of 10-20 Hz 
(depending on the spectral extent of each subject’s gamma response) around the 
individually adjusted peak of the sustained gamma response). The unmixing weights of 
this analysis were again applied on the unfiltered data, and a time-frequency analysis of 
power was run on the component time courses. Components that showed a sustained 
gamma band response were selected (1-5 components for each subject) and projected 
back to channel level. Finally, these channel level data were again subjected to a time-
frequency analysis, separately for the lower and the higher frequency windows, as 
described in the previous section. The results of this analysis constitute the basis for the 
construction of regressors that were used in the integrated EEG-fMRI analysis. The 
rationale behind the choices is explained in more detail in chapter 2. 
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Integrated EEG / fMRI analysis – regressor construction 
  
For each subject, the EEG channel with the maximum gamma power increase (defined 
as the average increase, across time points and trials, during visual stimulation in the 55-
85 Hz band, relative to a 200 ms pre-stimulation baseline) was selected. In addition, all 
the channels were selected that showed a gamma power increase of at least 25% of the 
maximum gamma power increase. Next, for each frequency bin, separately for the 
analysis of the lower frequency window and the analysis of the higher frequency 
window, EEG-based regressors were constructed as follows. For each single trial the 
power time course during the stimulation interval was averaged across the selected 
channels. These power time courses were concatenated into one time series (for 
behaviourally correct trials that were discarded at the artifact rejection stage, the average 
power time course across all trials of the same length was inserted at the appropriate 
positions in this time series). This time series was subsequently convolved with the 
canonical hemodynamic response function as implemented in SPM5, and downsampled 
to one value for each scan. This resulted in one EEG-based regressor for each 
frequency bin, both in the analysis of the lower frequency window and in the analysis of 
the higher frequency window.  
 
Integrated EEG / fMRI analysis – statistical models  
 
The region of interest data obtained from the single subject stimulation versus baseline 
contrast were analyzed in the context of the general linear model, using frequency-
specific design matrices. For each frequency bin, the regressor modelling the single trial 
power estimates of that frequency bin was included. In addition, five HRF-convolved 
box-car regressors (one for each trial length) accounted for the main effect of the task 
on the BOLD signal. For the four regressors showing a speed change separate 
regressors modelling the reaction time were added. A regressor that modelled the 
behaviourally incorrect trials was included, and the six realignment parameters were 
used to control for possible movement artifacts. Finally, one regressor accounting for a 
linear trend was also included. The four runs from each subject were modelled with 
separate regressors. In the context of the five regressors modelling the task, the 
frequency specific EEG power regressor accounts for the relation between single trial 
variations the EEG power of that particular frequency and the BOLD signal. At the 
single-subject level, for each frequency the relation between the EEG power regressors 
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and the BOLD signal is assessed by a single sample t-contrast of these regressors against 
zero. At group level we averaged these t-values over subjects, and tested whether they 
significantly differed from zero. We chose t-values since the beta weights critically 
depend on the scale of the power fluctuations, which can differ by orders of magnitude 
between frequencies and subjects. Since all sessions for all subjects had the same 
number of regressors, the t-value is a monotonic transformation of the partial 
correlation between the EEG-based power regressor and the BOLD signal.  
 
Inferential statistics  
 
Significance, at the group level, of the EEG and MEG power changes relative to 
baseline (Figure 3A-B), and of the BOLD-EEG power relation (Figure 3C-D), was 
evaluated by a cluster-based randomization procedure (Maris and Oostenveld, 2007). 
This effectively controls the Type-1 error rate in a situation involving multiple 
comparisons (here: all the individual frequency bins). This procedure allows for user-
defined test statistics tailored to the effect of interest within the framework of a cluster 
based randomization test. For the BOLD-EEG power relation, our test statistic was a 
single sample t-test against zero of the averaged t-value over subjects (giving 
uncorrected p-values). All data points that do not exceed a pre-set significance level 
(here 5%) are zeroed. Clusters of adjacent non-zero frequency points were computed, 
and for each cluster a cluster-level test statistic is calculated by taking the sum of all the 
individual t-statistics within that cluster. This statistic was entered in the cluster-based 
randomization procedure. This same procedure was also used to test the difference of 
the EEG power from baseline where the test statistic was a single-sample t-test of the 
log-transformed relative power compared to baseline (the 200 ms pre-stimulation 
interval). The above procedures were applied separately to the analyses of the lower and 
the higher frequency windows. The results of the analysis detailed above yielded 
significant negative correlations between alpha and beta power fluctuations and BOLD 
and a positive correlations between gamma power fluctuations and BOLD. This raised 
the question of whether this was due to one ore more underlying processes that 
correlate with the BOLD signal. To investigate this we first ran another GLM in which 
we included three regressors modelling the trial-by-trial variability in these three 
frequency bands. For each frequency band the regressor was based on the average of 
the power across the frequency bins that were part of the significant cluster in the EEG-
BOLD correlation. This analysis evaluates whether the regressors can account for 
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unique variance in the BOLD signal. As a second step, the partial correlation between 
these three regressors were computed, partialling out the regressors modelling the main 
effect of visual stimulation.  
 
MEG data 
 
Subjects 
Twenty four right-handed, healthy volunteers (13 female, 11 male, age range 18-49 
years) participated in the study, after giving their written informed consent.  All subjects 
had normal or corrected-to-normal visual acuity. Subjects were paid a small fee for their 
participation.  
 
Experimental paradigm 
Subjects performed a modified version of the task described earlier. Each trial started 
with the presentation of a fixation point (Gaussian of diameter 0.5º). After 500 ms, the 
fixation point contrast was reduced by 40%, which served as a warning. The fixation 
point was visible for another 1000 ms, which in later analyses served as the baseline 
period. Subsequently, the fixation point was replaced by a concentrically inward moving 
circular sine wave grating (diameter: 5º; spatial frequency: 2 cycles/deg; contrast: 100%). 
The sine wave grating contracted toward the centre, which served as a fixation point 
(velocity: 1.6 deg/s). These parameters are the same as for the EEG data. Subjects were 
instructed to maintain fixation on the centre and report a luminance change of the 
grating at an unpredictable moment in time, between 750 and 1500 ms after stimulus 
onset, by pressing a button with their right index finger. The luminance changed from 
100 percent to 80 percent and this decrement lasted for one refresh period (~17 ms). 
The stimulus was turned off 500 ms after the response was given, or lasted until a 
maximum of 1000 ms in case no response was given, after which feedback was 
presented for 1000 ms. Feedback could either be “Early” (reaction time < 150 ms), 
“Ok” (150 ms < rt < 650 ms), or “Late” (> 650 ms). Subjects were instructed to blink 
during feedback presentation. Each subject completed 10 blocks of 100 trials. After 
each block there was a self-paced break in which feedback about the mean percentage 
correct, mean reaction times and amount of blocks was presented. All stimuli were 
presented using the ‘Presentation’ software package. 
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Data acquisition 
The subjects were lying comfortably on a bed, with their head placed in the MEG-
helmet. Ongoing brain activity was measured using a whole head 151-sensor MEG 
system (CTF systems Inc., Port Coquitlam, Canada). The MEG signals were low-pass 
filtered at 300 Hz and digitized at 1200 Hz and stored for off-line analysis. The 
simultaneously recorded horizontal and vertical electro-oculograms (EOGs) were used 
for off-line artifact rejection. To measure the head position with respect to the sensors, 
three coils were placed on anatomical landmarks of the head (the subject’s nasion, left 
and right ear channel). The position of the coils was determined by measuring the 
magnetic signals produced by currents passed through the coils, right before and after 
the MEG session; hereby it was possible to get an estimate of the subject’s head 
movement.  
 
Data-analysis 
All the analyses started with the same preprocessing steps: data epochs of interest were 
defined as such from the continuously recorded MEG. Data epochs that were 
contaminated by eye movements, muscle activity or jump artifacts in the SQUIDs were 
discarded using semi-automatic artifact rejection routines. Power line fluctuations were 
removed by estimating and subtracting the 50- and 100- Hz components in the MEG 
data, using a discrete Fourier transform (DFT) on 10-s data segments surrounding the 
data epochs of interest. The data epochs of interest were then cut out of these cleaned 
10s segments and the linear trend was removed from each epoch. After preprocessing a 
minimum of 700 trials was present for subsequent analyses. 
Time-frequency analysis was performed only on the visual stimulation period before the 
luminance change. Settings for low and high frequencies were the same as for the EEG 
data. The same cluster based randomization technique as used for the EEG power and 
EEG-BOLD relation was applied on the EEG data. 
 
Source reconstruction 
A frequency domain beam-forming approach was used for source reconstruction 
(Dynamic Imaging of Coherent Sources, DICS). This technique uses adaptive spatial 
filters to localize power in the brain (Gross et al., 2001; Liljestrom et al., 2005). For each  
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 Figure 5.1. Schematic representation of the task. The full captions can be found on page 91. 

Figure 5.2. Results for EEG and MEG data. The full captions can be found on page 91. 
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Figure 5.1 (page 90, top). Schematic representation of the task. A: Sequence of events of a single 
trial. A trial started on the start of the acquisition of an fMRI volume with the reduction of the 
contrast of the fixation dot (the warning signal). After 1100 ms the fixation point is replaced by a 
foveal contracting grating, with a duration of either 700, 1050, 1400, 1750 or 2100 ms. Except 
for the 2100 ms condition (catch trials), visual stimulation was followed by an increase in the 
speed of the foveal contraction. Subjects were instructed to push a button as soon as they 
detected the speed change. Subsequently, feedback was presented for 500 ms. B: Illustration of 
the timing of the trials relative to fMRI data acquisition. Trials were presented every two 
volumes. Scanning parameters were chosen such that the visual stimulation part of the trial 
would always be outside the fMRI acquisition, allowing for good quality EEG acquisition. As 
illustrated by the modelled HRFs to the visual stimulation of different lengths, the second fMRI 
volume after stimulation onset is close to the expected peak of the BOLD response.  
 
Figure 5.2 (page 90, bottom). Results for EEG and MEG data. The most left side of this figure 
shows the grand average time-frequency representations of log-transformed EEG power for low 
and high frequencies after back reconstruction of the selected components to channel level. This 
grand average is based on individual averages of the channels that formed the regressors in the 
integrated EEG fMRI analysis. The second column from the left shows the grand average 
topographies of the alpha, beta and gamma effects, and is computed as the average over the root 
mean square normalized power differences in the indicated frequency bands. The most right side 
of this figure shows the grand average time-frequency representations of log-transformed MEG 
power for low and high frequencies of a selection of occipital-parietal sensors. The second 
column from the right shows the accompanying topographies that are based on the individual 
average of the log transformed relative power of the indicated frequency bands. 
 
subject a realistic single-shell description of the brain-scull boundary was constructed 
based on the anatomical MRI. For each subject an MNI aligned grid with a 1 cm 
resolution was constructed based on the individuals anatomical MRI (Gross et al., 2001). 
Subsequently, a lead field was constructed for each grid point (Nolte, 2003). We used 
the same filter for both baseline and the visual stimulation periods.  
A 500 ms pres-stimulus period was used for estimating baseline power. Also for the 
visual stimulation period 500 ms time windows were extracted. Multiple windows were 
extracted form one trial if the trial length allowed this. Alpha source power was 
estimated based on a Fast Fourier Transform of Hanning tapered time windows at the 
10 Hz bin. For beta and gamma power a multitaper approach was used. Beta power was 
estimated for the 22 Hz bin using 4 orthogonal Slepian tapers resulting in a frequency 
smoothing of ± 5 Hz. For the gamma band the peak individual gamma increase was 
determined. Gamma power was estimated for this peak gamma frequency with 9 Slepian 
tapers resulting in a frequency smoothing of ± 10 Hz. The relative power compared to 
baseline was calculated. 
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RESULTS 
 
Conventional Analyses 
 
The analysis of visually induced power changes in the EEG recorded in the MR 
revealed a decrease in alpha (around 10 Hz) and beta (around 20 Hz) power, together 
with an increase in gamma (60-80 Hz) power. Time-frequency representations and scalp 
topographies of the different time-frequency components are presented in figure 5.2. 
A standard analysis of the fMRI data shows BOLD activations in the calcarine sulcus, 
and lateral visual cortex (figure 5.3D). The locations of the BOLD activations 
correspond well with the scalp topographies of the EEG and MEG responses (figure 
5.2) and MEG source localisation (figure 5.3 A-C; Hoogenboom et al., 2006). The 
sources of alpha and beta power decreases appear however to be more widespread. The 
regions obtained by this source analysis largely overlap with the regions found active in 
the fMRI data. The reported EEG and fMRI effects were highly consistent across 
subjects. 
 
 
Joint EEG-fMRI analysis 
 
In order to test for a more direct link between hemodynamic responses and human 
gamma-band activity, we set up a statistical model that evaluates whether trial-by-trial 
fluctuations in BOLD co-vary with trial-by-trial fluctuations in frequency-specific EEG 
power. 
We constructed separate design matrices for each individual frequency bin in the EEG 
signal, from 2.5 to 120 Hz. Each of these design matrices included a frequency-specific 
regressor based on the single trial EEG power estimates, as well as a set of regressors 
(one for each trial length) modelling the task. 
Investigating all frequencies up to 120 Hz produces a spectrum of beta values that 
expresses the strength of the relation between EEG power and the BOLD signal. 
Separate spectra for the low (<45 Hz) and high (20-120 Hz) frequencies were 
constructed with different spectral concentrations (see Materials and Methods for details 
and rationale). The results of this analysis are shown in figure 5.4. This analysis shows 
that there is a significant positive relation between BOLD and EEG gamma power in 
the 60-80 Hz frequency range (p=0.0038, corrected for multiple comparisons), and a 



 93

negative relation between BOLD and low-frequency EEG power in the alpha-frequency 
range (around 10 Hz; p=0.0276) and in the beta-frequency range (around 20 Hz; 
p=0.0014). In addition, there is a marked correspondence between the BOLD-EEG 
correlation spectrum on the one hand, and the spectral changes observed in the EEG 
compared to the pre-stimulation baseline (compare figure 5.4A-B with figure 5.4 C-D). 
In order to test whether the three observed frequency effects in the EEG are 
independent of each other, we tested a general linear model (GLM) that included 
regressors modelling the EEG alpha, beta and gamma power fluctuations. These 
regressors therefore account for a unique part of the variance of the BOLD signal, 
whereas variance that can be explained by more than one band is excluded for each 
regressor. The analysis (figure 5.4E) shows that the alpha band only marginally 
contributes to explaining BOLD variance. The beta band contribution is small but 
significant, whereas trial-by-trial fluctuations in gamma most strongly and significantly 
contribute to explaining BOLD variance. A pair-wise correlation of these regressors, 
(figure 5.4F) shows why this pattern emerges. While alpha and beta regressors show a 
significant positive correlation, they do not correlate with gamma power. Thus, while 
the alpha and beta regressors are highly correlated with each other, the gamma regressor 
is independent from these low-frequency fluctuations.  
 
DISCUSSION 
 
We aimed to investigate (1) whether the positive correlation, previously observed in 
(anesthetized) animals, between rhythmic neuronal activity in the gamma frequency 
range on the one hand, and fMRI BOLD on the other, also holds in human subjects 
engaging in cognitive tasks, and (2) whether rhythmic neuronal activity in other 
frequency bands contributes independently to the BOLD signal. We found that in 
human visual cortex during an attentional monitoring task, trial-by-trial BOLD 
fluctuations correlated positively with simultaneously recorded trial-by-trial fluctuations 
in EEG gamma power. In addition, BOLD fluctuations correlated negatively with EEG 
alpha and beta power. Gamma power on the one hand, and alpha and beta power on 
the other hand, independently contributed to explaining BOLD variance. 
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Figure 5.3 MEG source localization and fMRI results. The full captions can be found on page 95 

Figure 5.4 BOLD-EEG correlations. The full captions can be found on page 95 
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Figure 5.3 (page94, top). MEG source localization and fMRI results. Figures A-C show the grand 
average source estimates for the alpha, beta and gamma increase observed in the MEG using the 
beamformer technique described in the supplementary materials. Figure D shows for a 
representative subject the fMRI activation in response relate to the visual stimulation. 
 
Figure 5.4 (page 94, top). BOLD-EEG correlations. Panels A and B: Spectra of the group 
average of the log transformed relative power effects compared to a pre-stimulation baseline for 
low and high frequencies. Panels C and D: relation between BOLD and EEG power for low and 
high frequencies expressed in averaged t-values. The shaded area indicates the standard error of 
the mean; a blue line indicates a significant deviation form zero using a cluster based 
randomization technique (Maris and Oostenveld, 2007). Panel E shows the average t-values of 
one general linear model that included regressors modelling alpha, beta and gamma power 
fluctuations. Panel F shows the partial correlation between the alpha, beta and gamma regressors 
in this model, controlling for the task effect. The error bars in panels E and F indicate the 
standard error of the mean. The p-values in panels E and F are based on the Wilcoxon ranked 
sign test (Wilcoxon, 1945) 
 
Our results indicate that, apart from gamma-band neuronal synchronization, another, 
independent mechanism underlying hemodynamic responses is inversely related to 
neuronal dynamics in the lower (alpha and beta) frequency ranges. This is consistent 
with previous work that established a negative correlation between fMRI BOLD 
activations and low-frequency (4-30 Hz) neuronal synchronization (Goldman et al., 
2002; Laufs et al., 2006; Laufs et al., 2003a; Mukamel et al., 2005; Niessing et al., 2005; 
Scheeringa et al., 2008; Scheeringa et al., 2009; Yuan et al., 2010).  The interdependence 
of alpha-band and beta-band power fluctuations suggests that neuronal dynamics in 
these two frequency ranges are strongly related. Although this would fit the observation 
that event-related changes in alpha and beta rhythms often co-occur, e.g. during self-
paced movements (Pfurtscheller et al., 1996a, b), these rhythms are often considered to 
subserve different (though not very consistently specified) functions (Jokisch and 
Jensen, 2007; Klimesch et al., 1998; Klimesch et al., 2007; Palva and Palva, 2007; 
Posthuma et al., 2001). An important implication of our observations is that alpha and 
beta rhythms contribute to explaining BOLD variance independently of gamma-band 
dynamics. 
 
The independence of low and high frequency oscillations has also been established 
recently in mouse cortex. Using cell type specific optogenetic activation Cardin and 
colleagues (2009) were able to show a cell type specific double dissociation. Where 
activation of fast spiking interneurons selectively increased gamma band LFP power, 
direct activation of the pyramidal neurons only increased low frequency power. Some 
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evidence in humans also suggests alpha and gamma can be dissociated. In a task closely 
related to our task, larger visual gamma power increases were observed with larger 
contrast, while alpha and beta power remain largely unaltered (Koch et al., 2009). 
 In our view, or findings of an independent contribution of low- and high-frequency 
dynamics, together with the converging evidence discussed above, may have substantial 
implications for our understanding of the BOLD signal.  
First, our findings indicate that the relationship between BOLD and neurophysiology 
does not hinge primarily on neuronal dynamics in the gamma frequency range, as recent 
animal work has suggested (Goense and Logothetis, 2008; Logothetis et al., 2001; 
Niessing et al., 2005). Our results support the notion that more frequency bands should 
be taken into account as correlates of the BOLD signal (Kilner et al., 2005; Laufs et al., 
2006; Rosa et al., 2010). 
Second, our findings contradict the hypothesis that BOLD activation is closely related 
to a shift in the EEG spectral profile to higher frequencies as a consequence of larger 
energy dissipation (Kilner et al., 2005). This theory would predict an inverse trial-by-trial 
coupling between low and high frequency power, which is clearly not observed here. We 
do find the expected pattern of negative correlations between BOLD and low frequency 
power and a positive correlation between BOLD and high frequency power. At trial-by-
trial level the high and low power effects are however not correlated, as would be 
expected based on this theory. In a recent article Rosa and colleagues reported evidence 
for a spectral profile shift in a simultaneous EEG-fMRI experiment (Rosa et al., 2010). 
However, here only frequencies up to 40 Hz were considered. The gamma band effect 
we observed is of a substantially higher frequency (roughly 60-80 Hz). It is therefore 
possible that a shift in spectral profile contributes to the BOLD signal, but the high 
gamma band effect observed in our study is clearly independent of the effects observed 
in lower frequency bands, and therefore also likely independent of the proposed shift in 
spectral profile.  Although average power around 40 Hz is elevated compared to 
baseline, no reliable 40 Hz peak was observed. The BOLD-power correlation did also 
not deviate significantly from zero around this frequency range. Although a relation 
between ~ 40Hz gamma power and BOLD has been reported (Mulert et al., 2010), 
Muthukumaraswamy and Singh (Muthukumaraswamy and Singh, 2009) also showed 
evidence for a decoupling between gamma power and the BOLD signal in this 
frequency range. 
Third, the independent contributions of low- and high-frequency neuronal dynamics to 
the BOLD signal imply that simultaneous recording of electrophysiology and 
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hemodynamic activity can potentially dissociate whether an observed BOLD activation 
or deactivation is related to either low or high frequency effects, or a combination of 
both. In conventional hemodynamic studies it is impossible to make these distinctions. 
The ability to relate hemodynamic (de)activations to frequency-specific power changes 
can substantially benefit the interpretation of results obtained by hemodynamic studies, 
since neuronal activity in different frequency bands has been hypothesized to subserve 
different functions. For instance, the band limited gamma effects observed here have 
been linked to enhanced neural communication (Fries, 2005) while alpha oscillations 
have been related to functional inhibition (Klimesch et al., 2007). 
Concerning the relationship between BOLD and gamma, the combined results of the 
different analyses presented in this work confirm previous findings from animal work 
(Goense and Logothetis, 2008; Logothetis et al., 2001; Niessing et al., 2005), of a strong 
coupling between hemodynamic responses on the one hand, and high gamma-band (60-
80 Hz) neuronal synchronization on the other hand. Our results are in line with a recent 
study that combined NIRS and EEG, and that also suggested a BOLD-gamma coupling 
in humans (Koch et al., 2009). The inference in this study was primarily based on a 
parametric modulation of both BOLD and gamma, and no trial-by-trial coupling was 
reported. Our results are also supported by findings from a study using separate 
intracranial recordings of EEG and fMRI (Lachaux et al., 2007). Studies using 
simultaneous EEG-fMRI until now only investigated the lower gamma range up to 40 
Hz in both task (Mulert et al., 2010) as well as in a resting state conditions (Giraud et al., 
2007; Mantini et al., 2007). In line with our results, these studies also yielded positive 
BOLD-gamma correlations. Others using separate MEG and fMRI recordings however 
have reported a decoupling with BOLD in this low gamma frequency range 
(Muthukumaraswamy and Singh, 2009). In our study we however are able to show 
BOLD-gamma coupling in a frequency range up to twice the frequency (80 Hz) 
reported in these studies for a region that has been identified as the source region by 
MEG (Hoogenboom et al., 2006). Although gamma power was elevated compared to 
baseline in the lower gamma band, no significant correlation with BOLD was observed 
in our data either.  
In conclusion, our data provides the most direct evidence yet that the coupling between 
BOLD and high gamma band oscillations in animal work also holds in humans 
performing a cognitive task. More importantly, our data suggest that at least two 
independent neurophysiological mechanisms contribute to the generation of the BOLD 
signal that can observed during cognitive neuroscientific experiments in humans: (1) A 
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mechanism related to high-frequency (gamma-band) neuronal synchronization, which 
correlates positively with BOLD signal changes, and (2) a mechanism reflected in low-
frequency (alpha- and beta-band) neuronal synchronization, which correlates negatively 
with BOLD signal changes. As such, the present work provides a step forward in 
understanding the electrophysiological underpinnings of cognition-related 
hemodynamic responses in humans. 
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Chapter 6 
 
FMRI CONNECTIVITY WITHIN AND BETWEEN RESTING STATE 

NETWORKS VARIES AS A FUNCTION OF EEG ALPHA BAND 

SYNCHRONIZATION 
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ABSTRACT 

 
In the past decade, the fast and transient coupling and uncoupling of functionally related 
brain regions into networks has received much attention in cognitive neuroscience. 
Empirical tools to study network coupling include fMRI-based functional and/or 
effective connectivity, and EEG/MEG-based measures of neuronal synchronization 
changes. In this article we use simultaneous EEG-fMRI to assess whether fMRI-based 
BOLD connectivity and frequency-specific EEG power are related phenomena. Using a 
psychophysiological interaction approach on resting state EEG-fMRI data, we studied 
whether connectivity within the visual network and between visual network and the rest 
of the brain is modulated as a function of posterior alpha EEG power. The results show 
that when alpha power increases (1) BOLD connectivity within a network of visual 
regions decreases and (2) the inverse coupling between the visual cortex and regions of 
the default mode network weakens, especially with the posterior cingulate. The 
decreased connectivity within the visual system is in line with the notion that alpha 
represents functional inhibition, which subsequently results in decreased connectivity 
between closely connected regions. The decreased negative coupling between visual 
cortex and default mode network regions might be related to increased positive coupling 
when activity in the visual system is low and activity in the default mode network is 
high. A tentative interpretation of this observation is that the function of the default 
mode network might be to couple to inactive regions in order to prevent them from 
interfering with processes in other regions. In general, this study illustrates that the 
current methodology makes it possible to study how the temporal dynamics within and 
between resting state networks is related to changes in synchronisation measured with 
electrophysiological recording techniques. 
 
INTRODUCTION 
 
In the past few years most studies using simultaneously recorded EEG and fMRI 
addressed the relation between EEG power and the BOLD signal. These EEG-fMRI 
studies have predominantly investigated where in the brain EEG power fluctuations 
correlate with the BOLD signal. While some of these studies have investigated the 
relation between task-evoked changes in frequency band specific power and the BOLD 
signal (Sammer et al., 2007; Scheeringa et al., 2009; Yuan et al., 2010), many studies have 
focussed on the relation between ‘spontaneous’ fluctuations in both the fMRI BOLD 
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signal and EEG power during resting state (Feige et al., 2005; Goldman et al., 2002; 
Goncalves et al., 2006; Laufs et al., 2006; Laufs et al., 2003a; Laufs et al., 2003b; Mantini 
et al., 2007; Moosmann et al., 2003; Scheeringa et al., 2008). Within these studies most 
interest has been in the BOLD correlates of (posterior) alpha power. These studies have 
reported mostly negative correlations with the BOLD signal, although exactly which 
anatomical regions are correlated seems to be related to more subtle differences across 
frequency bands (Goncalves et al., 2006; Laufs et al., 2006). Besides conventional 
analysis investigating which regions show task related changes in the strength of the 
BOLD signal, fMRI also offers the possibility to investigate the connectivity in the 
BOLD signal from different brain regions. In a task context the psycho-physiological 
interaction (Friston et al., 1997) and dynamic causal modelling (Friston et al., 2003) are 
often the methods of choice for studying task related changes in connectivity. In resting 
state fMRI studies more straightforward correlational methods (e.g. Biswal et al., 1995; 
Fox et al., 2005) and independent component analysis are often used (e.g. Damoiseaux 
et al., 2006). How changes in fMRI connectivity depend on EEG power however is 
largely uncharted territory.  
In this study we explore how fMRI connectivity in a well known resting state network, 
the visual system, changes as a function of posterior alpha power. This system was 
chosen since the visual system is a reliably observed network in resting state fMRI 
studies (Damoiseaux et al., 2006; Mantini et al., 2007), and comprises of both early and 
late/extra-striate visual regions. More importantly, the strongest alpha oscillations are 
recorded from the posterior region of the scalp and have been linked to visual 
processing. In addition, source analyses of both MEG and EEG data have located task 
related changes in this posterior alpha rhythm in early visual regions (Hoogenboom et 
al., 2006; Makeig et al., 2004a; Makeig et al., 2004b). The visual system and the posterior 
alpha rhythm therefore seem to be the best suited candidates to start to explore how 
changes in fMRI connectivity relate to changes in EEG power. 
While alpha oscillations oscillation were originally seen as an ‘idling rhythm’ indicating 
inactivity of (mostly visual) brain regions (Pfurtscheller et al., 1996a), recent findings 
suggest alpha oscillations as recorded with EEG and MEG are closely tied to cognitive 
functions. Experiments have shown that alpha power actually increases in task irrelevant 
regions (Jensen et al., 2002; Klimesch et al., 1999; Scheeringa et al., 2009), and that this 
increase is related positively to behavioural performance (Haegens et al., 2010; 
Scheeringa et al., 2009). This has led to the notion that alpha oscillations are a reflection 
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of functional inhibition of neural activity in task irrelevant regions (Klimesch et al., 
2007). Such spurious activity could otherwise influence activity in task relevant regions.  
Based on this inhibition theory we hypothesize that a region that exhibits increased  
alpha power should not only show a decrease in the BOLD signal, but also a decrease in 
connectivity of this region with closely connected regions. To test this hypothesis we 
used simultaneously recorded EEG and fMRI data during an eyes-open resting state 
session. By using the psycho-physiological interaction (PPI) approach we test whether 
connectivity of the primary visual cortex with other visual regions differs for high versus 
low posterior alpha power. Our posterior alpha power estimate is based on the central-
posterior alpha component obtained by independent component analysis. This is a 
component that is reliably observed when ICA is applied on EEG data, and source 
analysis revealed that its most likely source localisation lies in the primary visual cortex 
(Makeig et al., 2004a; Makeig et al., 2004b). 
 
METHODS 
 
Subjects 
 
 Twenty right handed volunteers (17 female, 3 male, age range: 18–28) participated in 
the study after giving written informed consent. None had a neurological impairment, 
experienced neurological trauma or had used neuroleptics. The subjects were paid a 
small fee for their participation. The experiment was approved by a local ethical 
committee (CMO region Arnhem / Nijmegen). 
 
Design and procedure 
 
First the electrode cap was applied and instructions were given. While in the scanner, 
the subjects first participated in a working memory experiment for approximately one 
hour, divided in three blocks (see Scheeringa et al., 2009, for further details). Then a 
resting-state measurement was carried out in which subjects were asked to watch a black 
fixation cross presented on a grey background for 10 min. At the end of the scanning 
sessions a T1-weighted anatomical MRI was acquired. Between measurements there 
were small breaks of a few minutes. Subjects were also allowed to go outside the 
scanner during these breaks. Only the data from the resting-state measurement is used 
in the analysis presented here.  
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Electrophysiological recordings 
 
EEG was recorded at 29 scalp sites (Fp1, Fp2, F3, F4, C3,C4, P3, P4, O1, O2, F7, F8, 
T7, T8, P7, P8, Fz, Cz, Pz, FC1,FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, TP10) with 
a MR-compatible BrainAmp MR amplifier (Brainproducts, Munich, Germany) and an 
MR-compatible electrode cap equipped with carbon wired sintered Ag/AgCl electrodes 
(Easycap, Herrsching-Breitbrunn, Germany). The reference electrode was located at 
FCz. To record the vertical EOG one electrode was placed under the right eye. The 
ECG was measured by two dedicated electrodes attached to the electrode cap. One 
electrode was placed on the sternum, the other electrode was placed on the clavicle, near 
the shoulder. A 250-Hz hardware filter was placed between the electrode cap and the 
amplifier. The EEG was recorded with a 0.16 s time constant and a 100 Hz low-pass 
software filter, and continuously sampled at 5 kHz. Impedances were kept under 5 kΩ. 
All recordings were done with Brain Vision Recorder software (Brainproducts). 
 
Image acquisition 
 
MRI measurements were performed using a 1.5 T Sonata whole body scanner (Siemens, 
Erlangen, Germany). Functional images were acquired using a gradient echo EPI 
sequence (TR 2.34 s including 50 ms dead time; FOV=224 mm, TE=30 ms, 33 slices, 
3.0 mm slice-thickness with 0.5 mm slice-gap; resulting in an isotropic voxel size of 
3.5×3.5×3.5 mm). 
 
MR artifact removal EEG 
 
The EEG data were corrected for gradient and pulse artifacts along the lines described 
by Allen et al. (2000; 1998) using Vision Analyzer (Brainproducts). A 20-volume, 
baseline corrected sliding average was used for the correction of the gradient artifacts. 
In order to achieve this, 10 extra volumes were recorded before and after the 10 min of 
data used for analysis. After gradient correction the data were low-pass filtered at 100 
Hz and downsampled to 500 Hz. The average pulse artifact was calculated based on a 
sliding average, time locked to the R-peak present in the bipolar derivation of the two 
ECG electrodes. This sliding average was scaled to an optimum least squares fit for each 
heart beat using the scaling option in Vision Analyzer before it was subtracted from the 
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data. The data were subsequently re-referenced to a common average reference. The 
original reference channel was recomputed as FCz. 
 
FMRI preprocessing 
 
Processing of the fMRI data was carried out in SPM5. The fMRI data was corrected for 
movements and slice acquisition time differences, anatomically normalized to the 
canonical EPI template provided by SPM5 and smoothed with an isotropic Gaussian 
kernel (FWHM=8 mm). 
 
Alpha power extraction 
 
Alpha power was estimated based on the central posterior alpha component that is 
reliably observed if independent component analysis is applied on EEG data (Makeig et 
al., 2004a; Makeig et al., 2004b; Makeig et al., 2002). Source analysis of this component 
has indicated that the primary visual cortex is the most likely source of this component 
(Makeig et al., 2004a; Makeig et al., 2004b). Here we applied extended infomax ICA as 
implemented in EEGLab 5.02 (Delorme and Makeig, 2004) on 7-13 Hz band pass 
filtered EEG data. Since many brain and artefact processes occur at specific frequencies 
(e.g. the medial frontal theta component and residual MR gradient artifacts), band-pass 
filtering before applying ICA increases the reliability of observing the central posterior 
alpha component. For each subject one posterior alpha component was selected by 
hand based on the following criteria: it should have (i) a peak in the alpha range (8-12 
Hz) and (ii) a central-posterior topography of the mixing weights. The average power 
spectrum of the selected components was based on power spectra computed from 
FFTs applied on Hanning tapered 2s windows of the component time courses. These 
settings result in a resolution of the spectra of 0.5Hz. These 2s windows were shifted in 
0.1 s steps. To be able to show the spectrum outside the alpha range the unmixing 
weights were applied on the unfiltered EEG data before the spectrum was calculated. 
The average topography and power spectrum of the selected components are depicted 
in figure 6.1. 
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Strategy for the connectivity analysis 
 
The best estimate is that the posterior alpha power component is generated in the 
primary visual cortex (Makeig et al., 2004a; Makeig et al., 2004b; Makeig et al., 2002). 
Previous work has also shown that alpha power is inversely related to the BOLD signal 
at source level (see also chapter 5). We therefore chose to base the selection of the seed 
region on a correlational analysis between power fluctuations in the posterior 
component and early visual cortex. A region located for the major part in primary visual 
cortex was observed to correlate negatively with alpha power, and was selected as seed 
for the PPI analysis. A problem with the PPI results is that it does not indicate whether 
the baseline connectivity between regions is positive or negative. A positive PPI effect 
can therefore be related to a decrease in negative coupling strength or an increase in 
positive coupling strength. Therefore, we performed also a functional connectivity 
analysis using the same seed region, since this will indicate whether average connectivity 
with the seed region is negative or positive. 
 
Alpha-BOLD correlational analysis 
 
The construction of the alpha power regressor was based on a 4 Hz band centred 
around the individual alpha peak (mean 9.73 Hz, standard deviation 1.15 Hz) observed 
in the average spectrum of the selected independent component. Power was averaged 
over the four frequency bins (of 0.5 Hz each) below the peak frequency, the peak 
frequency bin and the 3 bins above, resulting in a power time course of 10 minutes with 
resolution of 0.1 s. An EEG based power regressor was formed from this time course 
by subsequently z-transforming the values for normalisation, convolution with the 
hemodynamic response implemented in SPM5 (Wellcome Department of Imaging 
Neuroscience, London, UK; see http://www.fil.ion.ucl.ac.uk/spm) and downsampling 
to one value for each scan. Together with nuisance variables consisting of the six 
realignment parameters and four compartment signals (modelling the average signal in 
the gray matter, white matter, cerebrospinal fluid and outside the brain), this formed a 
design matrix for the analysis using the general linear model as implemented in SPM5. 
The compartment signal averages were based on the segmented individual anatomical 
images provided by SPM5. Significance was assessed using the Gaussian random field 
correction on cluster level. Clusters were defined as adjacent voxels passing a p=0.005 
uncorrected threshold. 
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Functional connectivity analysis 
 
The correlation analysis of alpha and BOLD yielded a negative correlation between 
alpha and BOLD with the strongest effect observed in primary visual cortex. The exact 
region for this negative correlation formed the basis for the seed signal for the 
functional connectivity analysis. The significant cluster observed at a voxel level 
threshold level of 0.001 was largely inside Brodmann Area 17 (69.0 % of the volume of 
the cluster, anatomy toolbox; Eickhoff et al., 2005). The realignment parameters and the 
four compartment signals were included as nuisance variables. Multiple comparison 
correction was carried out at cluster level using Gaussian random field theory after 
applying a uncorrected voxel level threshold of p = 0.005. 
 
EEG modulation of BOLD connectivity: PPI analysis 
 
The modulatory effect of EEG power on BOLD functional connectivity between the 
alpha correlation based seed region in visual cortex (the same seed as for the 
connectivity analysis) and the rest of the brain was assessed using a standard psycho-
physiological interaction (PPI) approach (Friston et al., 1997). The EEG power time-
course used to construct the alpha regressor (see above) formed the basis for the 
‘psychological factor’ (physio-physiological interaction is a more suiting label in this 
study). The ‘psychological factor’ regressor was based on a median split on the power 
values. This resulted in a time-course that contrasted high versus low power, which was 
subsequently convolved with the HRF. The PPI-regressor was formed by multiplying 
this regressor with the BOLD time course from the seed region. The design matrix for 
the PPI analysis consisted of this PPI regressor, two regressors modelling high and low 
power based on the median split, the time course of the seed region and the motion 
parameters. The beta values of the PPI regressor were tested at group level using a one-
sample t-test. Multiple comparison correction was carried out at cluster level using 
Gaussian random field theory after applying a uncorrected voxel level threshold of p = 
0.005. 
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RESULTS 
 
Alpha-BOLD correlation 
 
The maps for the correlation between alpha power and BOLD are shown in figure 6.2. 
Negative correlations between alpha and BOLD were observed in the occipital lobe. 
The largest cluster is located in early visual cortex with its local maxima located in 
primary visual cortex (MNI coordinates: 2 -86 10, k=1182,  z =3.73). Two other clusters 
were observed in extrastriate regions in the left (MNI: -40 -80 -4; k=280, z= 3.58) and 
right (MNI: 30 -92 22; k=280, z= 3.58) occipital cortex. 
The strongest positive correlations are observed in the posterior cingulate/precuneus 
(MNI: 6 -62 28; k=997, z= 5.27). Other positive correlations were observed in the 
medial prefrontal cortex (MNI: 0 56 -10; k=4372, z= 5.02), left lateral inferior parietal 
cortex (MNI: -38 -82 38; k=357, z= 3.91) and the left (MNI: -56 -14 -12; k=466, z= 
4.96) and the right (MNI: 64 -12 -16; k=371, z= 4.64) middle temporal gyrus. These 
regions have all been found to be part of the default mode network (DMN) (Raichle et 
al., 2001; Raichle and Snyder, 2007; Shulman et al., 1997). 
 
Functional Connectivity 
 
The maps for the functional connectivity with the (alpha-based) seed in primary visual 
cortex are depicted in figure 6.3. Positive correlation with the seed regions are observed 
across a large part of the occipital lobe, encompassing both striate and extra-striate 
visual regions. In addition, positive clusters are observed in the dorsal anterior cingulate 
cortex and the right temporal-parietal junction. In contrast, negative correlations are 
observed in posterior cingulate/precuneus, medial frontal cortex, lateral inferior parietal 
cortices, left and right middle temporal gyrus, bilateral inferior frontal cortices, bilateral 
hippocampus, and bilateral supplementary motor areas. Thus, these regions comprise 
the full extent of the DMN, and additional areas.  
 
PPI analysis 
 
The results for the PPI analysis are depicted in figure 6.4. Clusters of significant negative 
contrast estimates for the PPI regressor were observed in three clusters in the occipital 
lobe (left inferior occipital cluster: MNI: -12 -62 2; k=450, z= 3.60; right inferior 
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Figure 6.1. Average topography (A) and power spectrum (B) of the independent components 
selected for further analyses. The topography is based on root mean square normalized single 
subject topographies of the mixing weights. The single subject power spectra that constitute the 
average spectrum were calculated after the unmixing weights were applied on the unfiltered EEG 
data. The power spectrum was averaged after normalizing the single subject spectra to the 
maximum in the alpha frequency range (8-12 Hz). 

Figure 6.2. Maps of the anatomical locations of the significant positive (red) and negative (blue) 
correlations with posterior alpha power. All the regions shown here are significant after cluster 
level correction for multiple comparisons (p<0.05), after passing an uncorrected threshold of 
p=0.005. 
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occipital cluster: MNI: 14 -72 6; k=715, z= 4.07; right superior occipital cluster: MNI: 
20 -90 24; k=1400, z= 4.83). In addition one negative cluster was observed in the left 
insula (MNI: -32 2 -10; k=293, z= 3.75). The three clusters in the occipital lobe are 
largely located outside V1. Only 14.9% of the voxels fall within BA17, as assessed with 
the anatomy toolbox (Eickhoff et al., 2005). A significant positive effect was observed in 
the posterior cingulate/precuneus (MNI: -10 -56 24; k=296, z= 4.37), additionally a 
trend (p=0.07, corrected) was observed in the lateral inferior parietal cortex (MNI: -36 -
64 22; k=202, z= 3.75). These two regions are part of the DMN. Interestingly, the next 
region that appears when the extend threshold is lowered (k>100 voxels) is the medial 
prefrontal cortex (MNI: -4 60 14; k=107, z= 3.97), which is also part of this network. 
To be able to interpret the clusters we also need to know whether the positive effects 
are related to either an increase in positive connectivity strength of a region with the 
seed region, or a decrease in negative connectivity strength. Similarly for negative 
clusters we need to know whether baseline connectivity is negative or positive. Direct 
comparison between the connectivity maps for high and low power is however not 
possible for the method applied here, since the separate connectivity maps for high and 
low alpha power are not computed. We therefore compared the locations obtained in 
the PPI analysis with the functional connectivity maps, which is a close approximation 
for the average of these two maps. This gives a tentative idea whether we for instance a 
positive effect is related to a stronger positive connection or a less strong negative 
connection.  
This comparison shows that the clusters in the occipital cortex fall within the large 
occipital cluster that is positively related to the seed region. This indicates that 
connectivity within the visual system decreases as a function of alpha power. For the 
negative cluster in the left insula there is no significant effect in the functional 
connectivity analysis for the threshold at which the data is presented here. At a lower 
uncorrected voxel level threshold the cluster falls within a region spanning a large part 
of the cortex that shows a negative correlation with the seed in primary visual cortex. 
This indicates the negative relation is stronger when alpha power is high. The positive 
effects are only observed in regions that are part of the DMN. Functional connectivity 
shows a negative correlation between the DMN and the seed in primary visual cortex. 
The connectivity results therefore suggest that the positive PPI effect is related to a less 
strong negative connectivity. Another possibility is that also the sign of the correlation 
changes between low and high power, but the current analysis does not allow verifying 
this. 
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Figure 6.3. Functional connectivity maps for a seed region in the primary visual cortex. Positive 
connections are depicted in red, negative in blue. The same seed region as used for the PPI 
analysis was used here and is shown in figure 4. All the regions shown here are significant after 
cluster level correction for multiple comparisons (p<0.05), after passing an uncorrected 
threshold of p=0.005. 

Figure 6.4. Anatomical maps of the contrast estimates for the alpha-based PPI analysis. Red 
indicates a positive contrast estimate, blue a negative. The seed region is depicted in green. All 
the negative effects and the positive effect in the posterior cingulate are significant after cluster 
level correction for multiple comparisons (p<0.05), after passing an uncorrected threshold of 
p=0.005. The lateral inferior parietal cluster shows a trend at corrected level (p=0.07 corrected). 
The effect in the medial prefrontal cortex also passes the voxel level threshold, but is not 
significant at corrected cluster level and is shown for illustration purposes since it is well known 
part of the default mode network, as are the other positive effects. 
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DISCUSSION 
 
In this experiment we studied how resting state connectivity within the visual system 
and between the visual system and the rest of the brain is modulated as a function of 
posterior alpha power. We observed that increased alpha power originating from the 
visual system is associated with decreased connectivity within this system. In addition, 
during episodes of high alpha power the average negative connectivity between the 
primary visual cortex and regions forming the default mode network (Raichle et al., 
2001; Raichle and Snyder, 2007; Shulman et al., 1997) became less strong, and possibly 
might have been positive. 
The fact that alpha-band neuronal synchronization is inversely related to connectivity 
between regions involved in visual processing suggests that local alpha-band 
synchronization serves to block, or at least reduce, the communication with closely 
connected regions. This notion is in line with the general functional role of alpha-band 
synchronization as inhibiting spurious activity as described in for example the alpha 
inhibition hypothesis proposed by Klimesch and colleagues (Klimesch et al., 2007), and 
as hypothesized in neurophysiological models of alpha generation (Lopes da Silva, 1991; 
Steriade et al., 1990). In addition our data indicate that not only activity within this 
region is decreased when the level of alpha synchronisation is high (as evidenced 
through the BOLD-power correlation analysis), but that as a consequence also 
connectivity and communication with tightly connected brain regions is reduced (shown 
by the PPI analysis). This implies that an increase in synchrony in the alpha band 
indicates a decrease in connectivity and in inter-regional communication.  
The finding that increased synchrony is related to decreased connectivity seems to 
contradict the idea of synchronisation subserving functional integration (Varela et al., 
2001). It is however important to consider that the most likely source location of the 
alpha lies within the primary visual cortex (Makeig et al., 2004a; Makeig et al., 2004b), 
and the reduced connectivity is mainly with surrounding extrastriate regions. This 
strongly suggests that local increases in synchrony in the alpha band might be related to 
decreased communication with regions further removed. We do however also find 
negative correlations between BOLD and alpha power in surrounding regions. If these 
regions would be partly the source of the alpha power reflected in the central 
independent alpha component, it would imply that within a region showing increased 
synchronization in the alpha frequency range, connectivity as measured with fMRI is 
decreased. This would then also imply that electrophysiological measures for 
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connectivity (phase-synchronization) and hemodynamic measures for connectivity (e.g. 
PPI) can yield contradicting results.  
The reduced strength of the negative connectivity between visual cortex and brain 
regions that are part of the default mode network comes as a surprise. We would have 
expected a stronger negative coupling between visual regions and the default mode 
network since activity in visual cortex and the default mode network is anti correlated in 
the functional connectivity analysis, and alpha shows a negative correlation with the 
visual cortex and a positive with the DMN. These results therefore require an alternative 
explanation. The results observed here might suggest that when the visual cortex is in 
low state of activity, which is related to an increase in alpha synchronization, its activity 
is more susceptible to be influenced positively by activity in regions of the DMN, whose 
activity is actually stronger at those moments. This would then suggest that the function 
of the DMN is to dynamically couple to inactive brain regions, which would also explain 
why activity in the DMN is in general higher during baseline conditions (Shulman et al., 
1997), when more brain regions are inactive. In this respect it is also interesting to note 
that the strongest effect is observed in the posterior cingulate cortex. Especially this 
region has been identified as a major node in the brain that is connected to many 
regions across the brain (Buckner et al., 2009; Hagmann et al., 2008). It is therefore 
ideally suited to dynamically couple to various regions or networks. The functional 
relevance of this might be that while regions are coupled to the DMN they are less likely 
to unpredictably influence regions engaged in task execution, and as a consequence 
influence behaviour in a non-adaptive way. This could also relate to the seemingly 
contradicting finding that increased activity in this network has both been related to 
increased (Sadaghiani et al., 2009) and decreased (Eichele et al., 2008) performance. 
When increased coupling with task irrelevant regions is established, this might have a 
facilitating effect on performance, while when this occurs with task relevant regions this 
can have deteriorating effect. The main function of the DMN might therefore be to 
keep other brain regions or networks in their default state of activity.  
This work presents an initial report of changes in functional connectivity that correlate 
with changes in measures of neuronal synchronization. In our view, this methodology 
allows the study of connectivity dynamics at a relatively good time scale. As such, it is in 
line with recent work studying the temporal dynamics of resting state networks in MEG 
(De Pasquale et al., 2010). Our approach of combining EEG and fMRI based measures 
for studying dynamic network coupling opens up new avenues for investigating the 
behaviour of functional networks at detailed temporal and spatial scales. This is a 
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departure from the static view that prevails in most of the work studying these networks 
in fMRI. 
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Chapter 7 
SUMMARY AND DISCUSSION 
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In this thesis the focus has been on the relation between oscillatory EEG activity and 
the BOLD signal. This relation was investigated in both resting state as well as task 
contexts. In this chapter first the separate chapters are summarized and the implications 
that each of them provides are discussed. The second part discusses the general 
implications that arise from the chapters collectively. The last part discusses how to 
proceed from what has been learned in this thesis, and explore new avenues where 
concurrently recorded EEG/fMRI can provide further insight above and beyond 
recording them separately. 
 
Summary 
 
In chapter 3 we investigated in which brain regions the BOLD signal correlates with 
frontal theta power during eyes open resting state. The frontal theta rhythm is the most 
prominent in the theta range (3-8 Hz). It reliably shows up as a single component when 
independent component analysis is applied on EEG data (Makeig et al., 2002; Onton et 
al., 2005). The rhythm was thought to be involved in active processing of information 
like working memory maintenance. Based on this idea, increases in activity in regions 
involved in working memory or cognitive control was assumed to be related to the 
generation of the frontal theta rhythm. The results in this chapter however indicate this 
rhythm is negatively correlated with the default mode network (Gusnard and Raichle, 
2001). This is a network of brain regions that deactivates, as measured by PET and 
fMRI, during many cognitive tasks. Dipole analysis revealed the medial frontal part of 
this network is the likely source of the frontal theta rhythm. Activation within this 
network has been associated with processes like self referential processing (Gusnard et 
al., 2001) and mind wandering (Mason et al., 2007). These activities people are usually 
not engaged in during cognitive tasks. 
In the next chapter (chapter 4) we investigated the same frontal theta rhythm, as well as 
the alpha rhythm (8-12 Hz) in a task context. Both rhythms have been reported to 
increase parametrically with load during working memory maintenance. In an EEG 
session outside the MRI scanner we indeed observed such a parametric increase, in 
midline frontal theta power and right posterior alpha power. Inside the scanner we 
obtained single trial estimates of these effects using independent component analysis. 
These estimates were used to locate the brain regions where the BOLD signal is related 
to the increases in alpha and theta power. Since trial-by-trial variation in power can also 
be related to task-independent variations or other sources of variability that were not 
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fully removed with ICA, we reasoned that regions in which the BOLD response is 
related to the working memory-induced power increases should correlate with this trial-
by-trial variance in EEG power, and additionally these regions should show the same 
parametric increase with working memory load in the BOLD signal as is observed in the 
EEG. For frontal theta power we found positive as well as negative correlations of the 
BOLD signal with trial-by-trial variability of power. However, the regions showing a 
negative correlation with trial-by-trial variation in power also showed a parametric 
modulation (decrease) of the BOLD signal with working memory load. As was expected 
from the negative correlations observed in the resting state condition, the default mode 
network showed both a negative correlation with trial-by-trial variations in frontal theta 
power as well as a decrease in BOLD. This corroborates the notion that a decrease in 
default mode network BOLD activity is directly related to an increase in frontal theta 
power as measured by EEG. It also suggests it is possible to track default mode activity 
at a higher temporal resolution as with BOLD by studying the temporal evolution of 
frontal theta power. 
We used the same strategy to investigate the right posterior alpha increase. Here we 
observed only negative correlations in several regions in predominantly the right 
hemisphere. Two of these regions showed a strong parametric decrease in the BOLD 
signal with working memory load. These regions were located in the primary visual 
cortex and posterior part of the right middle temporal gyrus. These results were 
interpreted in the context of a theory that states that increased alpha is a reflection of 
inhibition of task-irrelevant regions (Jokisch and Jensen, 2007; Klimesch et al., 2007). 
Corroborating this notion was the finding that increased right posterior alpha during 
working memory maintenance predicted shorter reaction times only in the working 
memory conditions, and not in the control condition. This chapter demonstrates the 
added value of using trial-by-trial variation in power in disentangling the different 
networks that activate and deactivate during task conditions. 
 
In the chapters 3 and 4 we observed an inverse relation between the BOLD signal and 
fluctuations in low frequency bands (alpha and theta). In chapter 5 we attempted to 
answer the question whether other frequency bands do show a positive relation with the 
BOLD signal. Work in cats and monkeys indicate that especially power fluctuations in 
high gamma frequencies show a strong positive relation with the BOLD signal (Niessing 
et al., 2005). In this chapter we set out to replicate these findings in humans during task 
execution. We used an adapted version of a task that reliably induces strong increases in 
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the gamma band as well as strong decreases in the beta and alpha bands (Hoogenboom 
et al., 2006). Moreover, from previous MEG source localization and fMRI experiments 
the localization of these sources is well known. Based on this work we were able to 
study the relation between the BOLD signal and EEG power for each single frequency 
at a trial-by-trial level. This yields a spectrum reflecting the trial-by-trial correlation 
between BOLD signal and EEG power. We observed that both alpha and beta power 
correlated negatively with the BOLD signal, while the high gamma-band increase 
showed the expected positive correlation with the BOLD signal. In addition we were 
able to show that the low frequency decreases in alpha and beta power are not 
correlated with the gamma band increases, suggesting that low and high frequency 
oscillations are a reflection of different underlying neural processes that both contribute 
to the BOLD signal. 
 
We used a conventional correlation approach in chapters 3 to 5 to see how fluctuations 
in EEG power correlate with the BOLD signal. In chapter 6 we adopted a novel 
approach and investigated whether EEG power modulates the connectivity between 
brain regions when subjects are at rest. As a network of interest we chose the visual 
system, which is a network that is regularly observed in resting state fMRI studies. 
Moreover, the posterior alpha rhythm observed at parieto-occipital electrodes, is most 
likely generated within this network. This network is therefore well suited to investigate 
whether connectivity within the visual system and of the visual system with other brain 
regions is modulated as a function of alpha power. 
As a first step we performed a straightforward correlational analysis between posterior 
alpha power and the BOLD signal across the entire brain. Posterior alpha power was 
separated from other artifacts and brain related EEG activity by means of ICA, in a 
similar way as done in chapter 3. Negative correlations between posterior alpha power 
and BOLD were observed in the visual cortex, with the main cluster located in the 
primary visual cortex. A positive correlation was observed with regions part of the 
default mode network. The cluster in the primary visual cortex that correlated negatively 
with alpha power formed the seed for a functionally connectivity analysis and psycho-
physiological interaction analysis with the rest of the brain.  
The functional connectivity analysis revealed that the selected seed region correlated 
positively with most of the visual system. A negative correlation was observed with 
regions that together form the default mode network. The PPI analysis revealed the 
connectivity of the cluster in the primary visual cortex with extra-striate regions in the 
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visual system decreases as a function of alpha power. The negative relation observed in 
the functional connectivity analysis with regions in the default mode network however 
also decreased in strength. The decreased connectivity within the visual system is in line 
with the notion that alpha represents functional inhibition (Jokisch and Jensen, 2007; 
Klimesch et al., 2007), which subsequently results in decreased connectivity with closely 
connected regions. This hypothesis states that increased alpha power is related to the 
inhibition of spurious activity in task-irrelevant regions that can otherwise disturb 
processing going on in other parts of the network. The decreased negative coupling 
between visual cortex and default mode network regions might be related to an increase 
in positive coupling when activity in the visual system is low and activity in the default 
mode network is high. A tentative interpretation of this observation is that the function 
of the default mode network might be to couple to inactive regions in order to prevent 
them from randomly interfering with processes in other regions.  
 
General Discussion 
 
The general theme in the four previous chapters is the relation of oscillatory EEG 
activity with the BOLD signal. A common finding in the previous four chapters is the 
negative correlation found between BOLD and EEG power in the lower frequency 
bands, while we for the first time demonstrated a positive correlation between BOLD 
and high gamma band EEG power in humans. This pattern of negative correlations 
with low frequencies and positive correlations with high frequencies fits well with 
intracranial recordings of LFPs and hemodynamic measures in animals. The question 
arises whether these decreases in low frequencies and the increase in high frequencies 
are coupled, and therefore represent the same underlying neurophysiological process as 
suggested by some  (Kilner et al., 2005), or different processes. In chapter 6 we were 
able to show that correlations between BOLD on the one hand, and EEG oscillations 
in the lower frequencies (alpha and beta) on the other hand are coupled, and might 
therefore reflect (partly) the same underlying process. The trial-by-trial variation in the 
observed gamma band response power was however not correlated with power 
variations in the alpha and beta bands. This strongly suggests low frequency 
modulations of power are a reflection of underlying neurophysiologic processes that are 
independent from those related to the high-frequency power changes, and that these 
two processes contribute independently to the BOLD signal. This would also imply that 
fMRI activations might be related to low frequency decreases, high frequency increases 
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or both. Since low and high frequencies have been linked to different neural processes, 
this distinction might be very important for the interpretation of neuroimaging data. 
Without relating fMRI activations to electrophysiology it is not possible to make this 
differentiation.  
 
For the low frequency bands (<30 Hz) we only found negative correlations between 
BOLD and EEG power. This was a surprise, since computational models and animal 
work suggest an important involvement of theta oscillations in spatial navigation and 
working memory maintenance (Jensen, 2006). Several explanations for these surprising 
negative correlations with frontal theta power can be envisaged.  
The first possibility is that the negative correlation between theta and BOLD is indirect: 
the source location is actually located outside the regions that show a negative 
correlation with theta. This implicates the negative correlation is indicative of a change 
in different neural process than the one directly generating frontal theta power.  In 
chapter 3 we showed however that the medial frontal cluster that correlated negatively 
with frontal theta oscillations is also the likely source location for frontal theta, a notion 
that is also supported by other studies investigating the source location of frontal theta 
oscillation (Ishii et al., 1999; Martinez-Montes et al., 2004; Miwakeichi et al., 2004). This 
therefore is not a likely scenario. 
If we accept that frontal theta is generated in this medial frontal cluster of the default 
mode network, this leaves two explanations that are in line with the negative correlation 
with the BOLD signal in this region and the rest of the default mode network. The first 
explanation is that the increased frontal theta power still indicates increased processing 
in the (medial prefrontal part of the) default mode network. This would have serious 
implications for cognitive neuroscience using the fMRI-BOLD signal as dependent 
measure. The fundamental assumption in fMRI research is that increases in the BOLD 
signal are related to increases in neural activity that is a consequence of increased 
information processing. If both increases and decreases in BOLD could indicate 
increased involvement of a region in a task, any contrast between two conditions would 
be uninterpretable. The data presented in this thesis however do not favour such a far 
reaching conclusion. On the contrary, the network where BOLD was found to correlate 
with frontal theta power is the so called default mode network. This is a network that 
shows decreased BOLD activity in wide variety of cognitive tasks (Shulman et al., 1997). 
This lack of specificity of tasks in which this network shows a decrease in the BOLD 
signal indicates that this decrease is not related to a specific cognitive process. In 
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agreement with this is that frontal theta power is known to increase in a similar wide 
variety of tasks. 
The most likely interpretation of the data is therefore that this increase in frontal theta 
reflects a decrease in neural activity and processing. This however requires 
reinterpretation of the role frontal theta plays in information processing. Instead of an 
active role in processes like working memory maintenance, the role of frontal theta 
oscillations might be similar to that of alpha oscillations in other (e.g. visual) regions. 
This would imply that frontal theta increases signal a disengagement or inhibition of the 
(medial prefrontal part of the) default mode network during task execution, since 
activity in these regions would otherwise interfere with the ongoing processing in other 
regions. 
The fact that we only find negative power-BOLD correlations for low frequencies 
certainly does not implicate that all low frequencies show negative correlations with the 
BOLD response. Most ERPs are in the theta-alpha frequency range, and several papers 
have reported regions positively related to the BOLD response. Moreover, Debener et 
al. (Debener et al., 2005) showed that the region found to correlate positively with the 
Error Related Negativity is also a likely source for this ERP component.  But also non-
phase-locked low frequency activity can still be positively related to the BOLD signal. 
Intracranial EEG recordings in humans and hippocampal recordings in mainly in 
rodents have shown that theta oscillations are involved in cognitive processes like 
navigation and working memory. A recent study that recorded intracranial EEG from 
the hippocampal region and fMRI in the same subjects in separate sessions suggests that 
these rhythms are positively related to the BOLD signal (Ekstrom et al., 2009). The 
crucial question for simultaneously recorded EEG-fMRI research to be able to take 
advantage of these rhythms (or any other electrophysiological brain response) is whether 
or not we can detect these signals at scalp level. A first prerequisite for this is that this 
low frequency activity is synchronous over a larger patch of cortex than is typically 
recorded from with intracranial EEG in humans or LFPs in animals. If this synchrony is 
not strong, picking up these activities with EEG is unlikely, certainly in the context of 
other processes and artifacts present in the same frequency bands. Another problem 
might be that the structures most strongly related to theta are in the medial temporal 
lobe, which is relatively far from the channels at scalp level, and might therefore be hard 
to pick up. A recent MEG study however suggests that MEG is able to pick up 
hippocampal theta activity in a task context (Cornwell et al., 2008). This suggests it 
might be detectable in the EEG signal too. A disadvantage here is that spatial blurring in 
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EEG is much larger than in MEG, and hippocampal theta might therefore be more 
easily obscured by other more superficial processes in the theta range like the dominant 
frontal theta rhythm, which activity is present at all channels, due to reference effects 
and volume conduction. Possibly the approach we applied recently to investigate the 
EEG correlates of the salience network (Sadaghiani, 2010) can help here. In this study 
the BOLD signal from a predefined brain network was correlated with all channels 
frequency over a wide frequency range. This approach might shed more light whether, 
on which channels, and for which specific frequencies (or other regions) these 
oscillations might be detectable.   
 
In three chapters we describe the relation between variations of oscillatory EEG activity 
in the alpha range and the BOLD signal (chapters 4, 5 and 6).  In these chapters the 
results support the notion that alpha is indicative of functional inhibition of regions 
whose activity might otherwise disturb task relevant processes (Jokisch and Jensen, 
2007; Klimesch et al., 2007).  This is a deviation from the long-standing idea that alpha 
oscillations are an idling rhythm (Pfurtscheller et al., 1996a) emerging when regions are 
not engaged in a task. Recent experiments however have reported increases in the alpha 
frequency range in a variety of tasks.  It has also been shown that the strength and phase 
of alpha power can influence visual perception (Mathewson et al., 2009; Romei et al., 
2008; van Dijk et al., 2008). The idea that activity in task-irrelevant regions can influence 
task-relevant activity has recently also been investigated using fMRI. Fox et al. (2007) 
report that during a finger tapping task, spontaneous BOLD fluctuations in the 
ipsilateral motor cortex (e.g. the one not related to the finger tapping) not only 
correlates with the contralateral motor cortex, but also predicts the strength of the 
motor output. These data suggest that during task execution it is especially important to 
silence task-irrelevant regions that are strongly connected to task relevant regions. The 
study in chapter 6 suggests just this is what is reflected in increases in alpha power, since 
we showed that increased alpha power predicts decreased connectivity between regions 
in the visual system that are strongly connected anatomically and in resting state BOLD.  
 
This notion that decreased activation can also be task-relevant suggests an alternate view 
on brain function compared to the one that has been most prevalent in cognitive 
neuroimaging. The major part of the literature in which either PET or fMRI has been 
used to obtain the neural correlates of specific brain functions focused on increases in 
the BOLD response to a particular experimental manipulation using the subtraction 
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paradigm (Fox et al., 1986). Although this approach has been immensely successful in 
segregating and identifying regions based on their task dependent BOLD increases, the 
data presented here and recent advances in network oriented analysis of neuroimaging 
data indicate that the subtraction paradigm is ultimately flawed in giving a full account 
of all the task relevant processes in the brain.  The flaw in the subtraction approach lies 
in the fact that it depends on the subtraction of tightly matched conditions in which one 
or more critical variables are under experimental control. This means that only 
differences between conditions can be detected, but ultimately this is not what is 
important for behaviour. Behaviour might be more guided by the difference in activity 
across brain regions within a certain task context, then solely by the activity in regions 
where differences in activation across conditions are detected.  This does not mean the 
subtraction paradigm is useless in this respect, but it does mean that its results should be 
interpreted within a different, more network-oriented framework. Differences in activity 
in one task context compared to another can give important clues about which regions 
are involved in processing specific aspects of the task, within the context of the 
presence or absence of activity in the rest of the relevant network(s). The importance of 
more network oriented research is reflected in the recent development of network 
oriented methods in both fMRI and electrophysiology. Examples can be found in the 
development of dynamic causal modelling for both fMRI (Friston et al., 2003) as well as 
electrophysiological data (Kiebel et al., 2009), and the increase in interest in existing 
functionally connected regions in both resting state and task contexts in fMRI in recent 
years.  
 
Compared to the fMRI BOLD signal that basically can only go up or down, 
electrophysiological signals are potentially richer in content, since such signals detect 
phase locked events like ERPs as well as differential effects across multiple frequency 
bands. Since simultaneous fMRI and intracranial or MEG recordings are not possible, 
the most promising technique at the moment in humans for relating changes in BOLD 
to electrophysiological phenomena is simultaneously recorded fMRI and EEG. 
Interpretation of the effects found in fMRI can be greatly improved by being able to 
relate regions of increased or decreased BOLD activity to specific EEG phenomena, 
since these different EEG phenomena have often been linked to different processes. In 
the ERP domain, it for instance has been argued that early components are rather 
related to bottom up processes while late ERP component are more related to feedback 
processes (Garrido et al., 2007). Also in the frequency domain responses in different 
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frequency bands have been linked to different processes. For example, alpha oscillations 
have been related to functional inhibition, while gamma oscillations have been argued to 
be fundamental to binding processes (Gray et al., 1989) and neuronal communication 
(Fries, 2005). Previous research using simultaneously recorded EEG and fMRI has 
shown entire networks of regions that can be related to different ERP components 
(Eichele et al., 2005). We have demonstrated in this thesis that this is also the case for 
different frequency components. Conversely, this research also contributes considerably 
to our understanding of specific oscillatory EEG phenomena. By integrating EEG with 
fMRI we are able to link whole networks to certain EEG characteristics, as is 
demonstrated by the relation of frontal theta to the entire default mode network. In this 
case this finding also suggests we should reinterpret an EEG measure, midline frontal 
theta oscillations in this case, differently than has been done in the past. 
 
Combined EEG and fMRI in the future 
 
Combined registration of EEG and fMRI is a relatively new technique, and both 
recording techniques, preprocessing of data as well as applications will therefore likely 
continue to develop rapidly in currently unpredictable ways. Several interesting lines of 
research that already have gained some ground will probably be continued.  A good 
example is the study of epileptiform activity, which will most likely continue to be a 
fruitful enterprise in the future. What is foreseeable in the future is that other clinical 
conditions that have well known EEG correlates will also be investigated in more detail 
with simultaneous EEG / fMRI. One such example can be found in children with 
Attention Deficit Hyperactivity Disorder (ADHD).  A large proportion of theses 
children show enhanced theta band and reduced beta band activity (Barry et al., 2003). 
Obtaining the neural correlates of these rhythms might inform us also on the neural 
underpinnings of the clinical manifestation of ADHD.  
Besides clinical applications, the interest in the BOLD correlates of ERPs and 
oscillatory activity (both in resting state and in a task context) will probably remain, and 
the recording and analysis procedures will become more refined. Where the first studies 
mainly focused on well known components in well known paradigms, it is likely that 
more novel and more elaborate paradigms will also be used to investigate which regions 
are related to more subtle experimentally manipulated EEG features.  
The advancement of EEG-fMRI is until now also tightly bound to methodological 
developments. The first correlations reported between alpha oscillations and BOLD 
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(Goldman et al., 2002; Laufs et al., 2003a; Moosmann et al., 2003) very much depended 
on the development of the first adequate correction algorithms for the MR gradient and 
ballisto-cardiac artifact (Allen et al., 2000; Allen et al., 1998). Likewise, single trial 
coupling between EEG and fMRI critically depended on the ability to isolate specific 
EEG features from artifacts and other nuisances in order to harness variation over 
trials. It is therefore very likely that future applications will also go hand in hand with 
both technical as well as methodological advances. This development is not only 
restricted to the EEG side. Also developments on the fMRI side could very well 
influence future research lines.  An example can be found in the recent advances in 
high-resolution scanning protocols, which allows one to asses the BOLD response in 
different cortical layers (Goense and Logothetis, 2008; Goense et al., 2007; Koopmans 
et al., 2010). Low and high frequency oscillations for instance have been related to 
activity in different cell types. Where gamma band oscillations have been closely linked 
to activity of fast spiking inhibitor interneurons, while low frequency oscillations have 
been related to regular spiking excitatory pyramidal neurons (Cardin et al., 2009). Since 
these different cell types are differentially distributed over the cortical layers, and both 
rhythms show an independent relation with the BOLD signal, the profile of their 
correlation with the BOLD over the cortical layers might very well differ. The 
development of faster high-resolution fMRI sequences opens the way to study whether 
EEG features actually have layer-specific BOLD correlates. 
A question that emerged in this thesis is whether electrophysiological signals recorded 
intracranial result from the same neural processes as the signal recorded with EEG and 
MEG, which integrate electrophysiological activity over a much larger brain region. 
Where we found frontal theta to be negatively related to the BOLD signal, others using 
separate intracranial and fMRI recordings in humans suggest a positive relation between 
theta and BOLD in the hippocampus (Ekstrom et al., 2009). This begs the question of 
whether intracranial recorded theta reflects fundamentally different processes than that 
recorded at the scalp. This question can potentially be addressed by taking the BOLD 
signal from regions that we know from intracranial recordings to show strong task 
relevant theta oscillations and correlate this theta activity in the EEG recorded at the 
scalp. 
Until now EEG-fMRI has mainly relied on correlational methods either in resting state 
or in a task context. By sorting on an aspect of prestimulus activity in one modality this 
technique however makes it possible to make more causal claims.  In recent years there 
has been a growing interest in the influence of spontaneous fluctuations in brain activity 
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on behaviour and the processing of incoming stimuli. This theme has been explored in 
fMRI (Herrmann and Debener, 2008; Herrmann et al., 2000; Sadaghiani et al., 2009) as 
well as in EEG and MEG (Mazaheri et al., 2009; van Dijk et al., 2008).  The 
combination of EEG and fMRI might turn out to be a very powerful tool to investigate 
this, giving us the opportunity to really harness the advantage of the superior temporal 
resolution of the EEG and the superior spatial resolution of fMRI. With EEG we are 
able to asses the brain state up to several milliseconds before a stimulus is presented. A 
good example for an EEG feature that indexes the brain state would be ongoing 
fluctuations in posterior alpha power or alpha phase, but also more complicated 
measures like coherence measures or cross frequency coupling can be envisaged. With 
fMRI we can subsequently asses the effect this brain state has on the processing of this 
stimulus in various brain regions. Since the EEG activity precedes the stimulus, under 
some not too unreasonable assumptions we are able to make causal inferences. These 
assumptions are that (i) fluctuations of the EEG feature of interest are indeed reflecting 
some kind of underlying neural process (and not an artifact) and (ii) we can properly 
adjust for the effect the EEG feature has on the BOLD signal. If these two assumptions 
hold, we can assume the differences in the BOLD response to that stimulus can be 
causally related to fluctuations in underlying neural activity that is reflected in the pre-
stimulus EEG. 
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INLEIDING 
 
Elektro-encefalografie (EEG) en functional Magnetic Resonance Imaging (fMRI) zijn op het 
moment de twee meest gebruikte methoden voor het registreren van menselijke 
hersenactiviteit tijdens het uitvoeren van cognitieve taken. Met fMRI meten we de toe- 
en afname van zuurstofrijk bloed in de hersenen. Het signaal dat we meten is het 
zogenaamd Blood Oxygenation Level Dependent (BOLD) signaal. Hiermee kunnen we een 
goed beeld krijgen waar in de hersenen de toevoer van zuurstofrijk bloed toe of afneemt 
wanneer een bepaalde taak wordt uitgevoerd. De impliciete assumptie hierbij is dat 
gebieden die betrokken zijn bij een bepaalde taak door de verhoogde neurale activiteit 
een verhoogde toevoer van zuurstofrijk bloed krijgen. Deze verhoogde toevoer treedt 
echter op met een vertraging van enkele seconden en is uitgesmeerd over een langere 
tijdsperiode. FMRI geeft dus geen goede informatie over wanneer activiteit precies 
plaatsvindt. 
Het EEG is een reflectie van de elektrofysiologische activiteit van het brein. Door 
middel van het plaatsen van elektroden op het hoofd, kan een deel van de 
elektrofysiologische activiteit van de onderliggende hersengebieden worden 
geregistreerd met milliseconde precisie. Hiermee krijgen we een idee van de 
elektrofysiologische reactie van het brein op bijvoorbeeld een visuele stimulus. Er zijn 
verschillende manieren waarop dit EEG signaal kan worden geanalyseerd. Als 
proefpersonen vele malen dezelfde taak uitvoeren, kan het EEG-signaal gemiddeld over 
alle presentaties. De verschillende pieken die in dit gemiddelde signaal te onderscheiden 
zijn worden ook wel Event Related Potentials (ERP) genoemd. Een andere manier van 
analyseren is door te kijken hoe de frequentie-inhoud van het EEG signaal varieert over 
tijd, en hoe deze gemanipuleerd kan worden door het doen van een taak. Het EEG kan 
namelijk ook beschouwd worden als een signaal dat is opgebouwd uit elektrische golven 
van verschillende frequenties. Veranderingen in de sterkte van verschillende frequenties 
kunnen over een tijdsbestek worden gevolgd, en worden ook beïnvloed door het 
uitvoeren van een taak. Het grote nadeel van EEG is dat we de signalen alleen op het 
hoofd kunnen meten. Hierdoor is het moeilijk om erachter te komen waar deze signalen 
in het brein vandaan komen.  
De motivatie voor het ontwikkelen van het gelijktijdig registreren van EEG en fMRI is 
dat de voordelen van de ene techniek de nadelen van de andere techniek kunnen 
compenseren. FMRI levert informatie op over waar in het brein de activiteit plaatsvindt, 
terwijl het EEG aangeeft wanneer dat precies gebeurt. Het gelijktijdig meten van de 
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signalen op zich levert echter geen voordeel op wanneer we alsnog naar de EEG data en 
fMRI data afzonderlijk zouden kijken. Men zou zich dan de technologische problemen 
die gelijktijdige metingen met zich meebrengen kunnen besparen. Gelijktijdige metingen 
hebben alleen zin wanneer we de analyse van de EEG en fMRI data op een manier 
kunnen integreren die ons informatie oplevert die we niet kunnen halen uit afzonderlijke 
metingen. In dit proefschrift wordt gedemonstreerd hoe we extra informatie kunnen 
halen uit het feit dat we gelijktijdig EEG en fMRI gemeten hebben. Hierbij maken we 
expliciet gebruik van het feit dat we voor elk tijdspunt informatie hebben over zowel het 
EEG signaal als het fMRI signaal. Dit is informatie die alleen te verkrijgen is door 
gelijktijdig EEG en fMRI te meten. 
De meest voorkomende toepassing van simultane metingen is in epilepsie onderzoek, 
waarbij wordt onderzocht in welke gebieden het BOLD signaal dat wordt gemeten met 
fMRI, samenhangt met het voorkomen van epileptische activiteit in het EEG. 
Gelijktijdig meten van EEG en fMRI is hier noodzakelijk omdat het optreden van deze 
epileptische activiteit onvoorspelbaar is. Buiten deze klinische context is de techniek in 
het begin voornamelijk gebruikt om te onderzoeken in welke hersengebieden activiteit 
gemeten met fMRI samenhangt met spontane veranderingen in specifieke 
frequentiebanden in het EEG zonder dat er een taak uitgevoerd wordt. Verscheidene 
van deze studies hebben onderzoek gedaan naar de alfa frequentieband, die van 8 tot 12 
Hertz loopt. Het alfa ritme is het sterkste ritme in het EEG van de wakkere mens.  Het 
is vaak met het blote oog waar te nemen in het ruwe EEG-signaal, en is vooral sterk als 
de ogen van de proefpersoon gesloten zijn. Het is daarom een voor de hand liggend 
ritme om als eerste met gelijktijdig EEG en fMRI te onderzoeken. Interessanter is 
echter om te weten welke gebieden betrokken zijn bij taakgerelateerde effecten in het 
EEG. Inmiddels zijn er onderzoeken verschenen die er met behulp van gelijktijdige 
EEG en fMRI metingen in zijn geslaagd om hersengebieden te identificeren die 
gerelateerd zijn aan ERP's in verschillende taaksituaties. Een essentiële stap hierbij was 
dat zij in staat zijn gebleken om de taak-oninteressante activiteit dusdanig te reduceren, 
dat ook voor elke aanbieding afzonderlijk een goede schatting van de ERP waarin men 
geïnteresseerd is kon maken. In conventioneel onderzoek wordt deze taakoninteressante 
activiteit als ruis beschouwd verwijderd door te middelen over herhaalde aanbiedingen 
van dezelfde taak, maar dit is voor indivuduele aanbiedingen van een taak niet mogelijk. 
Door taakoninteressante activiteit door middel van andere manieren te reduceren waren 
de onderzoekers in staat voor elke taakaanbieding een schatting van de sterkte van de 
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ERP te maken. Variaties hierin vertoonden hersengebied specifieke correlaties met het 
BOLD signaal.  
De experimenten die gepresenteerd worden in dit proefschrift bouwen voort op dit 
werk. In dit proefschrift draait het specifiek om de vraag hoe we met een geïntegreerde 
analyse van simultaan gemeten EEG en fMRI data kunnen onderzoeken hoe variaties in 
de sterkte van de verschillende frequenties waaruit het EEG is opgebouwd 
samenhangen met veranderingen in het BOLD signaal. De methodologische 
overwegingen die hierbij een rol spelen worden in Hoofdstuk 2 besproken. Hierin wordt 
onder andere uitengezet hoe oninteresante acitivieit in het EEG kan worden verwijderd 
en hoe de geintegreerde analyse is uitgevoerd. In de vier hoofdstukken die hierop volgen 
worden de uitkomsten en interpretaties van verschillende experimenten die zijn 
uitgevoerd besproken. Twee van de vier hoofdstukken (Hoofdstuk 3 en Hoofdstuk 6) 
behandelen de relatie tussen spontane fluctuaties in het EEG en hersengebiedspecifieke 
veranderingen in het BOLD signaal tijdens rust. In de andere twee hoofdstukken 
(Hoofdstuk 4 en Hoofdstuk 5) is juist onderzocht hoe taakgerelateerde veranderingen in 
de sterkte van verschillende frequenties in het EEG samenhangen met veranderingen in 
het BOLD signaal. Hieronder wordt voor elk van de vier hoofdstukken kort de inhoud 
beschreven. 
 
DE EXPERIMENTEN  
 
Hoofdstuk 3 
 
In Hoofdstuk 3 onderzoeken we in welke hersengebieden het BOLD signaal correleert 
met fluctuaties in de sterkte, ook wel power genoemd, van het mediaal frontale theta 
ritme in het EEG terwijl de proefpersonen met de ogen open rusten. Dit ritme is het 
sterkste ritme in de theta band (3-8 Hertz), en wordt onder andere geassocieerd met 
werkgeheugen en cognitieve controle. De resultaten in dit hoofdstuk wijzen er echter op 
dat veranderingen in de sterkte van dit ritme niet samengaan met veranderingen in het 
BOLD signaal in gebieden die betrokken zijn bij werkgeheugen of cognitieve controle. 
Er bleek wel een negatieve correlatie tussen frontale theta power en het BOLD signaal 
in het zogenaamde default mode network te bestaan. Dit is een netwerk van gebieden dat 
bestaat uit de mediale frontale cortex, de posterieure cingulate gyrus en de linker en 
rechter angulaire gyrus. Van dit netwerk is bekend dat de gebieden onderling een sterke 
correlatie vertonen in zowel taak als rust condities. Uit fMRI en PET onderzoek is ook 
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gebleken dat de activiteit van dit netwerk verlaagd wordt tijdens het uivoeren van de 
meeste cognitieve taken. Activiteit in dit netwerk is onder andere gerelateerd aan 
dagdromen. De negatieve correlatie tussen frontale theta power in het EEG in dit 
default mode network, impliceert dus dat een verhoging van frontale theta EEG power 
direct gerelateerd is aan de-activatie van dit default mode network. Een verhoging van 
frontale theta activiteit lijkt dus te maken te hebben met het onderbreken van 
bijvoorbeeld dagdromen en is niet gerelateerd aan activiteit in gebieden die direct bij 
werkgeheugen of cognitieve controle betrokken zijn 
 
Hoofdstuk 4 
 
In Hoofdstuk 4 onderzoeken we met behulp van gelijktijdig gemeten EEG en fMRI 
welke gebieden gerelateerd zijn aan door werkgeheugen geïnduceerde verhoging van 
frontale theta en posterieure alfa (8-12 Hz) power. Van beide ritmes is bekend dat de 
amplitude toeneemt bij een grotere belasting van het werkgeheugen. In een EEG sessie 
buiten de MRI scanner werd inderdaad een toename van mediale frontale theta power 
en rechts posterieure alfa power gevonden naarmate de werkgeheugenbelasting hoger 
werd. Tijdens de meting in de scanner observeerden we hetzelfde effect van 
werkgeheugenbelasting op alfa en theta power.  
Voor het frontale theta ritme vonden we zowel gebieden waar het BOLD signaal 
positief, als gebieden waar het negatief met theta correleerd. Hieruit volgt echter niet 
meteen dat deze gebieden ook direct betrokken zijn bij de werkgeheugen gerelateerde 
toename in theta power. Het is mogelijk dat ze alleen correleren met niet aan 
werkgeheugen gerelateerde fluctuaties power. Gebieden die betrokken zijn bij de met 
werkgeheugen gerelateerde toename in theta power zouden naast een correlatie met 
theta power ook een effect van werkgeheugenbelasting op het BOLD signaal moeten 
laten zien die overeenkomt met diezelfde toename in theta power. Wanneer we dit 
criterium toepassen, blijven gebieden over die een negatieve correlatie met theta 
fluctuaties over trials en een afname in het BOLD signaal naarmate de 
werkgeheugenbelasting groter wordt vertonen.  
Deze gebieden bleken allen in het default mode netwerk te liggen, in overeenstemming 
met de resultaten in Hoofdstuk 3. Hieruit kan dus worden geconcludeerd dat de 
toename in frontale theta oscillaties met werkgeheugenbelasting direct gerelateerd is aan 
een afname in activiteit van het default mode netwerk. 



 145

Voor het effect van werkgeheugenbelasting op rechts posterieure alfa power volgden we 
dezelfde strategie. Hierbij werden meerdere gebieden gevonden waar frontale theta 
negatief correleerd met het BOLD signaal. Maar twee van deze gebieden vertoonden 
echter een afname in het BOLD signaal met werkgeheugenbelasting die overeenkomt 
met de toename in alfa power. Deze twee gebieden bevinden zich in de primaire visuele 
cortex en het achterste gedeelte van de rechter middelste temporale gyrus. Deze 
resultaten zijn te interpreteren in de context van de functionele inhibitie theorie voor 
alfa oscillaties. Hierbij word gesteld dan verhoogde alfa amplitude een gevolg is van 
inhibitie van hersengebieden die niet direct bij een taak betrokken zijn, maar de activiteit 
van gebieden die dat wel zijn zouden kunnen verstoren. 
De analyse en resultaten in dit hoofdstuk demonstreren hoe met gelijktijdig gemeten 
EEG en fMRI de hersengebieden kunnen worden gevonden die gerelateerd zijn aan 
taakgeïnduceerde veranderingen in EEG power. In dit geval vertonen de gebieden die 
gerelateerd zijn aan alfa en de gebieden die gerelateerd zijn aan theta beiden een afname 
van het BOLD signaal met werkgeheugenbelasting. We zijn dus ook in staat een 
differentiatie te maken tussen deze gebieden op basis van de relatie die ze hebben met 
frontale theta dan wel rechts posterieure alfa EEG power. 
 
Hoofdstuk 5 
 
In zowel Hoofdstuk 3 als Hoofdstuk 4 observeerden we een inverse relatie tussen het 
BOLD signaal en power fluctuaties in de lage frequentiebanden (alfa en theta). In 
Hoofdstuk 5 onderzochten we of andere frequentiebanden een positieve correlatie met 
het BOLD signaal vertonen. Studies in katten en apen suggereren dat voornamelijk 
power fluctuaties in de gamma band (ca 30 - 100 Hz) een positieve correlatie met het 
BOLD signaal vertonen. In dit hoofdstuk probeerden we deze bevindingen te repliceren 
in mensen tijdens het uitvoeren van een cognitieve taak. Hiervoor gebruikten we een 
taak waarvan bekend is dat het een sterke toename in gamma power en een sterke 
afname in alfa en bèta power (12-30 Hz) induceert. Daarbij is vanuit MEG onderzoek 
ook bekend dat de waarschijnlijke bronlocatie van deze power effecten te vinden is in de 
visuele cortex. Door het BOLD signaal in gebieden in de visuele cortex die 
taakgerelateerde activiteit vertonen te correleren met EEG power voor alle frequenties 
tot en met 120 Hz waren we in staat de relatie tussen het BOLD signaal en frequentie 
specifieke veranderingen in EEG power te onderzoeken.  
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De correlatie tussen het BOLD signaal en EEG power voor elke frequentie tot 120 Hz 
leverde een correlatiespectrum op. Dit spectrum vertoonde een significante negatieve 
correlatie van het BOLD signaal met alfa en bèta power en een significante positieve 
correlatie met gamma power tussen 60 en 80 Hz. Deze resultaten repliceren de eerdere 
bevindingen van de studies in katten en apen. Daarnaast bleek ook dat de gamma band 
fluctuaties ongecorreleerd waren aan de alfa en bèta fluctuaties. Dit suggereert dat er ten 
minste twee onafhankelijke neurale processen zijn die een effect hebben op het BOLD 
signaal. Eén van deze processen hangt samen met amplitude fluctuaties in de lagere 
frequenties van de alfa en bèta band en één met de hogere frequenties in de gamma 
band. 
 
Hoofdstuk 6 
 
In de vorige hoofdstukken maakten we gebruik van een conventionele correlationele 
benadering om te onderzoeken hoe EEG power samenhangt met het BOLD signaal in 
verschillende hersengebieden. In dit hoofdstuk kozen we voor een nieuwe benadering 
waarbij we onderzochten of de interactie tussen hersengebieden samenhangt met power 
veranderingen in het EEG. Het netwerk waarin we dit onderzochten is het visuele 
netwerk. Van dit netwerk is bekend dat het een sterk alfa ritme genereerd dat goed te 
meten is met electroden achter op het hoofd. Hierdoor is het een geschikt newerk om te 
onderzoeken of de connectiviteit binnen en tussen dit netwerk en andere 
hersengebieden afhangt van de sterkte van het alfa ritme.  
Uit een conventionele analyse van data gemeten tijdens rust bleek dat het BOLD signaal 
uit de primaire visuele cortex negatief samenhangt met de sterkte van het alfa ritme. Dit 
komt overeen met eerder studies die alfa en BOLD gecorreleerd hebben, en ook met de 
waarschijnlijke locatie van de posterieure alfabron zoals gerapporteerd in de literatuur. 
Voor dit gebied is onderzocht of de sterkte van de samenhang met andere gebieden in 
het visuele systeem en met gebieden buiten het visuele systeem afhangt van de sterkte 
van het alfa ritme. Hier blijkt dat dat de sterkete van de koppeling met gebieden binnen 
het visuele systeem afneemt wanneer de sterkte van het alfa-ritme toeneemt. De 
verminderde interactie met dit gebied past goed in de functionele inhibitie theorie voor 
alfa oscillaties. Deze suggereert dat alfa oscillaties te maken hebben met de inhibitie van 
gebieden binnen een netwerk van gebieden waartussen sterke connectiviteit bestaat.  
Naast een minder sterke positieve koppeling binnen het visuele systeem is een toename 
in de sterkte van het alfa ritme ook gerelateerd aan een mider sterke negatieve koppeling 
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met gebieden in het default mode network. Dit is mogelijk gerelateerd aan een sterkere 
positieve invloed van het default mode network wanneer alfa power hoog is en de 
activitiet dus laag is. Het default mode network vertoont over het algemeen juist 
verhoogde activiteit wanneer andere gebieden minder actief worden, wat ook tot 
uitdrukking komt in een positieve correlatie met het alfa ritme en een over het algemeen 
negatieve correlatie met de primaire visuele cortex. Dit suggereerd dat de functie van het 
default mode network mogelijk te maken heeft met het verbinden met en het onder 
controle houden van inactieve hersengebieden. 
 
DISCUSSIE 
 
In dit proefschrift wordt de relatie onderzocht tussen het EEG en het BOLD signaal. 
Een van de patronen die consistent uit de verschillende experimenten en analyses in de 
verschillende hoofdstukken naar voren komt is de negatieve relatie tussen BOLD en 
laag frequente (theta, alfa en bèta) oscillaties. Alleen gamma band activiteit vertoonde 
een positieve relatie met het BOLD signaal. Dit patroon komt goed overeen met wat 
bekend is uit onderzoek op dieren. De onderliggende neurale processen voor de hoge 
en lage frequenties lijken ook onafhankelijk van elkaar bij te dragen aan het BOLD 
signaal. Een implicatie hiervan is dat een fMRI activatie samen kan hangen met zowel 
afname in power in de lagere frequentiebanden als een toename in power in hogere 
frequentiebanden. Alleen door fMRI activatie te relateren aan elektrofysiologische 
activiteit is een differentiatie hiertussen mogelijk.  
Het was verassend dat laag frequente EEG activiteit alleen negatief correleerde met het 
BOLD signaal. Vooral van theta EEG activiteit werd gedacht dat dit samenhing met 
actieve verwerking van informatie in het werkgeheugen. Dit zou in het BOLD signaal 
als een toename, en niet een afname, naar voren moeten komen. In het 
discussiehoofdstuk van dit proefschrift worden verscheidene redenen aangevoerd voor 
deze discrepantie. Een belangrijke reden zou kunnen zijn dat de meeste evidentie voor 
de rol van theta oscillaties in bijvoorbeeld werkgeheugen komt van intracraniële 
metingen in dieren en mensen. In dit type metingen wordt voornamelijk locale neurale 
synchroniciteit gemeten, terwijl EEG de synchroniciteit over een veel groter deel van de 
cortex registreert. Een bijkomend probleem is dat de mediale temporale cortex waar 
theta effecten in dieren voornamelijk worden gevonden relatief ver van de EEG kanalen 
ligt en daardoor in menselijk EEG mogelijk niet wordt opgepikt. Van bepaalde ERP’s is 
echter bekend dat deze wel een positieve correlatie hebben met het BOLD signaal en 
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ERP's zijn doorgaans golven van een lage frequentie. De negatieve relatie tussen BOLD 
en power fluctuaties in lage frequenties hoeft dus niet noodzakelijk voor alle 
electrophysiologische activiteit in de lagere frequenties te gelden. 
In drie van de vier analyses observeerden wij een negatieve correlatie tussen alfa en het 
BOLD signaal. Dit werd geïnterpreteerd in het licht van de functionele inhibitie theorie 
voor alfa. Deze stelt dat alfa oscillaties gerelateerd zijn aan de inhibitie van taak 
irrelevante gebieden. De observatie dat verhoogde alfa power samenhangt met verlaagde 
interactie tussen hersengebieden past ook in deze interpretatie. Voor de interpretatie van 
fMRI experimenten heeft dit als gevolg dat zowel gebieden met deactivaties als activaties 
van belang kunnen zijn voor een goede taakuitvoering. Tot nu toe lag de nadruk in 
fMRI onderzoek voornamelijk op taak gerelateerde activaties en niet op deactivaties. 
De belangrijkste conclusie van dit proefschrift is dat het gelijktijdig meten en analyseren 
van EEG en fMRI het begrip van de effecten in beide modaliteiten afzonderlijk kan 
vergroten. Uit dit onderzoek, blijkt bijvoorbeeld dat frontale theta EEG activiteit niet 
zoals werd aangenomen te maken heeft met activiteit in werkgeheugen gerelateerde 
gebieden, maar met verminderde activiteit in het default mode netwerk. Dit geeft ook 
meteen aan dat variaties in EEG activiteit kunnen samenhangen met veranderingen in 
een netwerk van gebieden. De bevinding dat alfa en gamma afzonderlijk van elkaar 
bijdragen aan het BOLD signaal is een goed voorbeeld van hoe het EEG de 
interpretatie van fMRI resultaten kan bevorderen. 
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