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Abstract

Proposals for quantum computing using rotational states of polar molecules as qubits have previously

considered only diatomic molecules. For these the Stark effect is second-order, so a sizable external electric

field is required to produce the requisite dipole moments in the laboratory frame. Here we consider use

of polar symmetric top molecules. These offer advantages resulting from a first-order Stark effect, which

renders the effective dipole moments nearly independent of the field strength. That permits use of much

lower external field strengths for addressing sites. Moreover, for a particular choice of qubits, the electric

dipole interactions become isomorphous with NMR systems for which many techniques enhancing logic

gate operations have been developed. Also inviting is the wider chemical scope, since many symmetric top

organic molecules provide options for auxiliary storage qubits in spin and hyperfine structure or in internal

rotation states.
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I. INTRODUCTION

In principle, a quantum computer can perform a variety of calculations with exponentially

fewer steps than a classical computer [1–6]. This prospect has fostered many proposals for means

to implement a quantum computer [7–17]. Using arrays of trapped ultracold polar molecules is

considered a promising approach, particularly since it appears feasible to scale up such systems to

obtain large networks of coupled qubits [15–29]. Molecules offer a variety of long-lived internal

states, often including spin or hyperfine structure as well as rotational states. The dipole moments

available for polar molecules provide a ready means to address and manipulate qubits encoded in

rotational states via interaction with external electric fields as well as photons.

Entanglement of qubit states, a major ingredient in quantum computation algorithms, occurs

in polar molecule arrays by dipole-dipole interactions. In a previous study, we examined how the

external electric field, integral to current designs for quantum computation with polar molecules,

affects both the qubit states and the dipole-dipole interaction [29]. As in other work concerned

with entanglement of electric dipoles, we considered diatomic or linear molecules, for which the

Stark effect is ordinarily second-order. Consequently, a sizable external field (∼several kV/cm) is

required to obtain the requisite effective dipole moments in the laboratory frame.

In considering the operation of a key quantum logic gate (CNOT), we evaluated a crucial pa-

rameter, 4ω, due to the dipole-dipole interaction. This is the shift in the frequency for transition

between the target qubit states when the control qubit state is changed. For candidate diatomic

molecules, under anticipated conditions for proposed designs, 4ω is very small (∼20-60 kHz).

It is essential to be able to resolve the 4ω shift unambiguously, but in view of line broadening

expected with a sizeable external field, whether that will be feasible remains an open question

[29].

This question led us to consider polar symmetric top molecules, for which the Stark effect is

first-order in most rotational states. The effective dipole moments are then nearly independent

of the field strength. That enables use of a much lower external field (a few V/cm) to address

and manipulate the dipoles, improving prospects for resolving the 4ω shift. The constancy of

the symmetric top effective dipole moments also makes entanglement properties of electric dipole
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interactions isomorphous with those for nuclear magnetic resonance systems. This suggests that

NMR techniques, extensively developed for quantum computation but limited in application by the

small size of nuclear spins and scalability prospects [7, 30, 31] might find congenial applications

with qubit systems comprised of polar symmetric top molecules.

II. EIGENSTATES FOR A POLAR SYMMETRIC TOP

The Hamiltonian for a single trapped polar symmetric top molecule in an external electric field

may be written

H = HR + HS + HT + Hs.q (1)

The major term is the rotational energy

HR = BJ2 + (A − B)J2
z (2)

where J denotes the total rotational angular momentum and Jz its projection on the symmetry axis;

A and B, the rotational constants, nominally inversely proportional to the moments of inertia about

the principal axes along and perpendicular to the symmetry axis, respectively (actually effective

values averaged over vibration and centrifugal distortion of the molecule). The Stark energy from

interaction with the external electric field is

HS = −µ · ε = −µεcosθ (3)

with θ the angle between the body-fixed dipole moment µ (along the symmetry axis) and the

direction of the field. The trapping energy is

HT =
p2

2m
+ Vtrap (4)

but at ultracold temperatures the translational kinetic energy p2/2m is quite small and very nearly

harmonic within the trapping potential Vtrap; thus HT is nearly constant and for our purposes can

be omitted. The remaining term, Hs,q, represents interactions arising from nuclear spins and/or

quadrupole moments; here we omit treating these, except for an important effect of the quadrupole

interaction in modifying selection rules for transitions between qubit states.
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In familiar notation, [32, 33] the eigenenergy for HR is

ER(J,K) = BJ(J + 1) + (A − B)K2 (5)

For a prolate top, A > B; for an oblate top, A < B. The Stark energy for HS is

ES (J,K,MJ) = −µεMJK/J(J + 1) (6)

to first order. The second-order term is far smaller [34] (so neglected here) except for K = 0 or

MJ = 0 states (which we will not use as qubits). The corresponding eigenfunction for HR can be

written as [32, 33]

|J,K,M〉 = (−1)M−K

[
2J + 1

8π2

] 1
2

eiφMdJ
−M−K(θ)eiχK (7)

where φ, θ and χ are the Euler angles and dJ
−M−K(θ) is a Jacobi polynomial (aside from a simple

prefactor). Hence, in addition to the polar angle θ that governs the Stark interaction, the eigen-

function depends on the azimuthal angles χ and φ associated with, respectively, the projections of

J on the molecular symmetry axis and on the ε-field direction.

Figure 1 displays for the K = 1 sublevels of the J = 1 and 2 symmetric top rotational states

the (a) eigenenergies W = ER + ES and (b) expectation values 〈cos〉 = µe f f /µ for the projection of

the dipole moment on the field direction, as functions of µε/B. The dependence on µε/B differs

markedly from a similar plot for a diatomic molecule (for which K = 0; cf. Fig. 1 of ref. [29]);

there the effective dipole moments are field-dependent and vanish at zero-field. For symmetric top

qubit states, to take advantage of the first-order Stark effect, we consider only K , 0 and MJ , 0

states. For such states, the effective dipole moments,

µe f f = −∂ES /∂ε = µMJK/J(J + 1) (8)

are just constants independent of the field (except at unusually high fields, where higher order

terms become important [34]). According as µe f f is positive or negative, the Stark energy drops or

climbs as the field strength grows, so the molecular states are termed high field seeking (HFS) or

low field seeking LFS), respectively.
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A. Choice of qubit states

We consider two qualitatively distinct choices for qubit states, designated I and II. The orthodox

choice, type I, is exemplified by

|0〉 = |J = 1,K = 1,MJ = −1〉 and |1〉 = |J = 2,K = 1,MJ = −1〉 (9)

For this choice (green curves in Fig. 1), radiation induced transitions between the qubits are fully

allowed, in accord with the familiar selection rules, 4J = 0,±1; 4K = 0; 4M = 0,±1 [32]. Also,

both the |0〉 and |1〉 qubit states are LFS, thereby facilitating trapping by either DC or AC fields or

an optical lattice [35]. The corresponding eigenenergies, ER + ES , are

W0 = A + B +
µε
2

and W1 = A + 5B +
µε
6

(10)

and the cosθ matrix elements are

C0 = 〈0|cosθ|0〉 = −1
2
, C1 = 〈1|cosθ|1〉 = −1

6
, CX = 〈0|cosθ|1〉 =

√
15

10
(11)

We are particularly interested in an unorthodox choice, type II (red curves in Fig. 1). For this,

the qubit states are

|0〉 = |J = 1,K = 1,MJ = +1〉 and |1〉 = |J = 1,K = 1,MJ = −1〉 (12)

The eigenenergies are degenerate at zero-field but for ε > 0 split apart strongly and linearly,

W0 = A + B − µε
2

and W1 = A + B +
µε
2

(13)

and the cosθ matrix elements are

C0 = 〈0|cosθ|0〉 =
1
2
, C1 = 〈1|cosθ|1〉 = −1

2
, CX = 〈0|cosθ|1〉 = 0 (14)

These type II qubits render the effective dipole moments constant and equal in magnitude but

opposite in sign. However, type II qubits require further specification. As initially defined in

Eq.(12), the transition |0〉 ↔ |1〉 between the qubits requires 4MJ = ±2. Thus, it is not allowed

as a one-photon electric dipole transition (the transition cosine, CX = 0). It is allowed as a two-

photon transition (using the J = 1, K = 1, MJ = 0 state as intermediate). Another remedy,
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simpler to implement, is to use a molecule that contains a nuclear quadrupole moment. Even a

small quadrupole coupling constant typically introduces sufficient mixing of Stark states to make

4MJ = ±2 transitions become prominent in microwave or radiofrequency spectra [36]. In accord

with theory [32, 37], in the next subsection we show that modifying the type II qubit choice to

exploit the quadrupole hyperfine structure renders CX , 0, enabling |0〉 ↔ |1〉 to occur as a one-

photon transition.

In another contrast with type I, for type II qubits |0〉 is HFS while |0〉 is LFS. That is also

often the case for qubit states considered for diatomic molecules, and is not regarded as a seri-

ous handicap [35]. Although HFS states are harder to trap, both HFS and LFS can be captured

simultaneously in an AC trap or an optical lattice [35].

B. Quadrupole perturbation of Stark states

For simplicity, we consider symmetric top molecules having only one atom with a nuclear

quadrupole moment, with that atom located on the symmetry axis. We also treat explicitly only

cases in which the nuclear spin I = 1 for that atom, and the quadrupole interaction is much smaller

than the Stark energy. The CH3CN molecule [38] is a prototypical case: for the 14N nucleus (spin

I = 1), the quadrupole coupling constant is eqQ = −4.22 MHz. For conditions in prospect for a

quantum computer, usually µε > 100 MHz. A first-order perturbation treatment, referred to as the

”strong-field approximation” [32, 37], and governed by the ratio eqQ/µε, hence is appropriate for

this example and many others.

When set-up in the usual |JKMJIMI〉 basis, with MI the projection of the nuclear spin on the

ε-field direction, the Hamiltonian matrix, HR + HS + HQ, is diagonal in J, K, and I. The HR and

HS portions are also diagonal in MJ and MI whereas HQ has off-diagonal elements which connect

MJ and MI states differing by up to two units. In consequence of the resulting mixing, neither MJ

nor MI is a ”good” quantum number. Their sum, MJ + MI remains good, however, since the total

angular momentum along the field must be constant. Accordingly, we modify our choices for the

|0〉 and |1〉 qubits of Eqs.(9) and (12), that involve MJ = ±1, to specify them further as particular

hyperfine components with MJ + MI = 0. In Appendix A we evaluate the contributions from HQ
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to the qubit eigenenergies and cosine matrix elements.

In first-order, the quadrupole interaction simply adds to the qubit eigenvalues of Eq. (10) or

(13) a diagonal term given by

EQ = eqQ/40 or eqQ/56 (15)

for J = 1 or J = 2, respectively.

The cosine matrix elements of Eqs.(11) and (14) are augmented by terms involving w =

|eqQ|/µε, given in Table I. Since typically w < 10−2, these contributions are insignificant for

type I qubits, and for the C0 or C1 elements for type II qubits, but of major importance in the CX

transition element for type II, which would otherwise be zero. Even when CX is very small, con-

ventional power levels suffice to make transitions facile between the MJ = ±1 Stark components

[36].

TABLE I: Cosine matrix elements for symmetric top qubits a

Type I qubits Type II qubits

C0 −1/2 − 0.00168w + 0.0418w2 1/2 − 0.00347w − 0.0213w2

C1 −1/6 + 0.00526w + 0.0218w2 −1/2 − 0.00168w + 0.0418w2

CX
√

15/10 − 0.00658w − 0.0437w2 0 + 0.153w − 0.0108w2

a Terms in w = |eqQ|/µε are contributions from quadrupole coupling. These were fitted to
results of numerical calculations (see Appendix A) extending over the range w < 1.

III. TWO INTERACTING DIPOLES

Adding a second trapped polar symmetric top, identical to the first but a distance r12 apart,

introduces the dipole-dipole coupling interaction,

Vd−d =
µ1 · µ2 − 3(µ1 · n)(µ2 · n)

|r1 − r2|3 (16)

Here n denotes a unit vector along r12. In the presence of an external field, it becomes appropriate

to express Vd−d in terms of angles related to the field direction (Appendix A in ref. [29]). The
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result after averaging over azimuthal angles reduces to

Vd−d = Ω(1 − 3cos2α)cosθ1cosθ2 (17)

where Ω = µ2/r3
12, the angle α is between the r12 vector and the field direction and polar angles θ1

and θ2 are between the µ1 and µ2 dipoles and the field direction.

When set up in a basis of the qubit states (either type I or II) for the pair of molecules,

{|00〉, |01〉, |10〉, |11〉}, the HR + HS portion of the Hamiltonian takes the form



W0 + W ′
0 0 0 0

0 W0 + W ′
1 0 0

0 0 W1 + W ′
0 0

0 0 0 W1 + W ′
1



(18)

and the Vd−d portion is

Ωα



C0C′0 C0C′X CXC′0 CXC′X

C0C′X C0C′1 CXC′X CXC′1

CXC′0 CXC′X C1C′0 C1C′X

CXC′X CXC′1 C1C′X C1C′1



(19)

where Ωα = Ω(1 − 3cos2α).The primes attached to quantities for the second dipole indicate that

the external field magnitude will differ at its site; that is necessary for addressing the sites and to

ensure that the qubit states |01〉 and |10〉 differ in energy.

A. Evaluating entanglement of eigenstates

The form of the Hamiltonian in Eqs. (18) and (19) is identical to that for two polar diatomic

molecules, treated in ref. [29]. Thus, we follow the same procedures in evaluating eigenstate prop-

erties and entanglement for symmetric tops, merely introducing the appropriate matrix elements

for qubits of types I and II (as specified in Sec IIA). We again use unitless reduced variables, x =

µε/B and y = Ωα/B; in terms of customary units, these are given by

x = µε/B = 504µ(Debye)ε(kV/cm)/B(MHz) (20)

8



y = Ωα/B = 1.51 × 10−4µ2(Debye)/r3(µm)/B(MHz) (21)

Likewise, we use z = eqQ/B for quadrupole coupling terms. The pertinent ranges are x < 1, y <

10−5, and |z| < 5 × 10−3 for candidate symmetric tops (with dipole moments µ < 4 D, quadrupole

coupling |eqQ| < 10 MHz, and rotational constants B > 2000 MHz) under conditions deemed

practical for prospective quantum computer designs (field strengths ε < 1 kV/cm, intermolecular

spacings r ∼ 0.5µm). Unless otherwise noted, we take α = 90o. In the pertinent regime, the

dependence on x, y, and z of the eigenenergies is simply linear in all three variables.

Another key variable is 4x = x′ − x, specified by the difference in the field strength at adjacent

qubit sites. As the site addresses are provided by observing the one-qubit transition, |0〉 ↔ |1〉, the

size of 4x must be large enough to produce a clearly resolvable Stark shift between the sites. Yet

4x must not exceed XR/N, where N is the number of sites and XR the range in x of field strengths

considered feasible. To benefit from keeping the field strength relatively low, we take XR ∼ 1;

then to accommodate N sites requires 4x < XR/N. At least for exploratory calculations for up to

N ∼ 103, we consider 10−4 < 4x < 10−2 appropriate.

Tables II and III exhibit properties, for qubit types I and II, respectively, of the four eigenstates

of the two-dipole system, listed in order of increasing energy (i = 1 → 4). The eigenvalues are

obtained as simple explicit functions of x, x′, y, z, applicable to any polar symmetric top molecule

and conditions within the pertinent regime specified above. Also indicated, in order of magnitude

only, are quantities that express the extent of entanglement among the qubit basis states, but must

be evaluated by numerical means. Entanglement is exhibited most directly in the coefficients with

which the qubit basis states appear in the eigenfunctions,

Ψi = ai|00〉 + bi|01〉 + ci|10〉 + di|11〉 (22)

In Appendix B, we give somewhat cumbersome formulas for these coefficients in terms of x, x′,

y, z. Tables II and III show just orders of magnitude, evaluated for CH3CN, under conditions

specified in Table IV. This is done to illustrate most simply a major point: In the pertinent range,

the entanglement is so feeble that the successive eigenfunctions Ψi differ only slightly from the

respective basis qubits, {|00〉, |01〉, |10〉, |11〉}; there is little admixture with other qubits.
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TABLE II: Eigenproperties for N = 2 symmetric top dipoles, type I qubitsa

i (Ei − 2A)/B Ψi |00〉 |01〉 |10〉 |11〉 C12

1 2 + x
2 + x′

2 +
y
4 + z

20 1 − O(10−15) +O(10−8) +O(10−8) −O(10−8) O(10−8)

2 6 + x
2 + x′

6 +
y

12 + 3z
70 −O(10−8) 1 − O(10−7) −0.0009 +O(10−8) 0.0018

3 6 + x′
2 + x

6 +
y

12 + 3z
70 −O(10−8) −0.0009 1 − O(10−7) +O(10−8) 0.0018

4 10 + x
6 + x′

6 +
y

36 + z
28 +O(10−8) −O(10−8) −O(10−8) 1 − O(10−15) O(10−8)

a Here x = µε/B = 0.0107, y = Ωα/B = 2 × 10−6, z = eqQ/B = 5 × 10−4, 4x = x′ − x = 10−3.

TABLE III: Eigenproperties for N = 2 symmetric top dipoles, type II qubits a

i (Ei − 2A)/B Ψi |00〉 |01〉 |10〉 |11〉 C12

1 2 − x
2 − x′

2 +
y
4 + z

20 1 − O(10−17) −O(10−9) −O(10−9) −O(10−12) O(10−12)

2 2 + x
2 − x′

2 − y
4 + z

20 +O(10−9) 1 − O(10−17) −O(10−10) +O(10−9) O(10−9)

3 2 + x′
2 − x

2 − y
4 + z

20 +O(10−9) +O(10−10) 1 − O(10−17) +O(10−9) O(10−9)

4 2 + x
2 + x′

2 +
y
4 + z

20 +O(10−12) −O(10−9) −O(10−9) 1 − O(10−17) O(10−12)

a Here x = µε/B = 0.0107, y = Ωα/B = 2 × 10−6, z = eqQ/B = 5 × 10−4, 4x = x′ − x = 10−3.

TABLE IV: Parameters for CH3CN molecule.

Properties Reduced variablesa

µ 3.92 D x = µε/B = 0.0107

B 9198.8 MHz 4x = µ(ε′-ε)/B = 10−3

eqQ -4.22 MHz y = Ωα/B = 2 × 10−6

µε 988 MHz z = eqQ/B = 4.6 × 10−4

Ωα 18.5 kHz w = |eqQ|/µε = 4.3 × 10−3

a For ”pertinent” conditions, ε = 500 V/cm, r = 0.5µm; See
Eqs (20) and (21).
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B. Pairwise concurrence of eigenstates

A quantitative measure of entanglement is provided by the pairwise concurrence function, C12,

which becomes unity when entanglement is maximal and zero when it is entirely lacking. The

general prescription for evaluating C12 involves somewhat arcane manipulations of the density

matrix [39]. However, it becomes simple here as the entanglement arises entirely from off-diagonal

terms in the Vd−d matrix of Eq.(19). These terms are small, since they are all proportional to y,

which is < 10−5. Otherwise the off-diagonal terms contain either CX, or C2
X, factors essentially

independent of x or x′; for type I qubits, CX ∼ 0.4 and for type II qubits CX < 10−3. Accordingly,

as seen in Tables II and III, the ground eigenstate, Ψ1, and the highest excited eigenstate, Ψ4, are

almost solely composed of the basis qubits |00〉 and |11〉, respectively, especially for type II. In

terms of the coefficients in Eq.(22), in this case C12 is to good approximation just 2d1 or 2a4, for

eigenstates 1 and 4, respectively. Thus, for eigenstates 1 and 4, we find

C12 = K(x, x′)[Ωα/B] (23)

with weak dependence on x, given by

K(x) = 0.03752 + 0.00312x + 0.00029x2 (24)

and the dependence on x′ is well represented by K(x, x′) = [K(x)K(x′)]1/2 when 4x = x′−x < 10−2.

The concurrence for a pair of polar diatomic molecules [29] has this same form (for small Ωα/B),

but the second-order Stark effect makes the K(x) coefficient much larger (> 0.12 for x < 1).

The C12 function becomes more interesting for the middle eigenstates, Ψ2 and Ψ3. As seen in

Tables II and III, for the conditions we refer to as ”pertinent” these eigenstates are essentially just

the |01〉 and |10〉 basis qubits, respectively. However, if 4x → 0, the eigenenergies E2 and E3

become the same. In that limit, even very small y can produce strong entanglement of the |01〉 and

|10〉 qubits. Figure 2 illustrates how C12 varies as 4x is scanned over a range from well below to

well above y; at least in principle that can be done by adjusting the ε-field and/or the spacing of

the dipoles. The curve shown is given by

C12 = 2|α±|/(1 + α2
±) (25)
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with

α± =
(E3 − E2) ±

[
(E3 − E2)2 + 442

]1/2

24 (26)

where 4 = C2
XΩα. This formula for C12 results from omitting all off-diagonal terms in the Vd−d ma-

trix except the pair that couple |01〉 and |10〉 along the antidiagonal. The eigenstates then become

Ψ2 = Ψ+ and Ψ3 = Ψ−, with

Ψ± =
|10〉 − α±|01〉√

1 + α2±
(27)

In the limit E3 − E2 � 4 (i.e, 4x � y), where α± → ±1 and C12 → 1, the eigenfunctions

become maximally entangled states, termed Bell states. Figure 2 also displays points obtained

from numerical diagonalization of the Hamiltonian with all elements included in the Vd−d matrix.

For both type I (green points) and type II (red points), the numerical results agree very closely with

the formula given in Eq.(25). It is a striking demonstration of the extent to which matrix elements

that connect almost degenerate levels generate entanglement.

C. Inducing large entanglement via resonant pulses

Under the ultracold conditions needed to localize trapped molecules in the qubit sites, the

two-dipole system is in its ground eigenstate, Ψ1 ∼ |00〉, wherein the entanglement is very small.

However, the large entanglement often needed for quantum computing can be induced dynamically

via resonant pulses to higher eigenstates [40, 41]. Several procedures have been presented for

accomplishing this to use polar molecules in operating quantum logic gates [16, 17, 23, 24, 26, 27,

42–46]. Here we consider just a rudimentary version, exemplified with the CNOT gate, since our

chief aim is to compare and contrast the symmetric top qubits of types I and II with the diatomic

case treated in ref. [29].

Figures 3 and 4 give schematic diagrams, analogous to Fig. 10 of ref. [29], depicting available

transitions among the two-dipole eigenstates. Table V lists the corresponding transition frequen-

cies. In contrast to type I, for type II qubits the contributions from both the rotational constants

and quadrupole coupling cancel out, hence the transition frequencies depend only on the Stark

energy shifts and dipole-dipole interaction. Since the entanglement is so feeble for the eigenstates,

as seen in Tables II and III, for a heuristic description we may speak as if the transitions simply
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occur between the unperturbed basis qubits. A typical procedure applies a π/2 pulse resonant with

the transition frequency ω1 to transfer population from the ground eigenstate |00〉 to the excited

state |01〉, thereby putting the system into the state 2−1/2(|00〉+ |01〉). Then a π pulse resonant with

the transition ω2 between |01〉 and |11〉 will put the system into the state 2−1/2(|00〉 + |11〉), which

is a completely entangled Bell state. The same process can be done applying a π/2 pulse to ω3,

followed by a π pulse to ω4.

TABLE V: Transition frequencies between eigenstates of two dipoles a

Type I qubits Type II qubits

ω1/B 4 − x′/3 − y/6 − z/140 x − y/2

ω2/B 4 − x/3 − y/18 − z/140 x′ + y/2

ω3/B 4 − x/3 − y/6 − z/140 x′ − y/2

ω4/B 4 − x′/3 − y/18 − z/140 x + y/2

4ω/B y/9 y

a Here x = µε/B, y = Ωα/B, z = eqQ/B.

To carry out such procedures, the transition frequencies need to be unambiguously resolved

from each other. As evident in Table V, for both type I and II qubits, ω1 can be resolved from

ω2 and ω3 from ω4 simply by adjusting the difference in external field strengths, 4x = x′ − x. In

frequency units, a Stark shift of 4x = 10−3 for CH3CN is 3 MHz for type I qubits and 9 MHz

for type II. The relative difference is far more in favor of type II, because ω1 = 35, 869 MHz for

type I whereas it is only 988 MHz for type II. However, for either type such differences are easily

resolvable in conventional microwave and radiofrequency spectroscopy.

Resolving ω1 from ω4 and ω2 from ω3 presents an experimental challenge. The frequency

difference is governed simply by the dipole-dipole interaction, since

4ω = ω4 − ω1 = ω2 − ω3 = Ωα(C1 −C0)(C′1 −C′0) (28)

The 4ω shift is the essential feature of a CNOT gate: ω3 transfers the target qubit on dipole 1

from |0〉 to |1〉 when the control qubit on dipole 2 is in |0〉, whereas ω2 = ω3 − 4ω transfers the
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target from |0〉 to |1〉 when the control is in |1〉. For ω1 and ω4 the roles of target and control sites

are exchanged. Unlike the diatomic case [29], for symmetric tops the cosine elements are nearly

independent of the external field in the pertinent regime, except via the minor quadrupole terms

included in Table I. Thus,

4ω = Ωα/9 for type I and 4ω = Ωα for type II (29)

Here the significant advantage of type II occurs because both C0 and C1 are large and of opposite

sign. In frequency units, for CH3CN the 4ω shift is only 2 kHz for type I and 18 kHz for type

II. Again, the relative difference greatly favors type II, since 4ω/ω1 is more than a hundredfold

larger than for type I.

As compared with candidate polar diatomic molecules [29], we expect prospects for resolving

4ω for symmetric tops are improved in two ways: (1) The first-order Stark effect enables use of

a much less strong external field. That should reduce line broadening caused by nonuniformity

and fringing of the electric field. (2) The choice of Stark components for type II qubits lowers

the transition frequencies between qubit states down to the radiofrequency range (often factors of

30-50 lower than transitions between rotational states, which occur in the microwave range). In

molecular beam spectra, collision free but without trapping in an optical lattice, line widths are

typically much smaller in the rf region; e.g., 2 kHz or below for 4J = 0, 4MJ = ±1 transitions

[36]. The effect of the optical lattice on line widths is uncertain. It may introduce broadening

via motional shifts, which are strongly dependent on the well depths required for trapping [47].

Such shifts have been avoided for ultracold atoms by use of ”magic” optical trapping conditions

[48], but there might be less scope to do that for molecules. As yet, no line width data have been

reported for ultracold molecules trapped in an optical lattice and subject to a sizable electric field.

Thus, although less problematic for type II symmetric top qubits, the feasibility of resolving the

4ω shift remains an open question.

D. Comparison with NMR

A motivation for considering symmetric top type II qubits is the resemblance to spin-1/2 NMR,

which has been extensively analyzed in the context of quantum computation [10, 30, 49–52]. The
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resemblance stems from the unorthodox choice of ±MJ Stark components for type II qubits. That

renders the effective qubit dipole moments, µe f f = µ〈cosθ〉, which are essentially independent of

the external field, equal in size but opposite in spatial orientation. There are further similarities.

For the generic N = 2 case, the corresponding Hamiltonian for NMR resembles our Eqs. (18)

plus (19), except for omission of the rotational energy. The molecular dipoles are replaced by

nuclear spins, the Stark field by a Zeeman field, and the dipole-dipole interaction by spin-spin

coupling. Thereby our Ωα is replaced by J12, the spin-spin coupling parameter. Since the Zeeman

energy terms are much larger than the spin-spin coupling, the equivalent of our Vd−d matrix is

usually approximated as simply diagonal [30]. Accordingly, the eigenstates are then just the basis

qubits {|00〉, |01〉, |10〉, |11〉}, so entirely lack entanglement. That resembles our type II qubits when

CX = 0, in the absence of quadrupole coupling.

Another, different sort of similarity arises from the choice of NMR qubits as nuclear spins on

different atoms within a molecule [49]. Even for atoms of the same kind, chemical shifts cause

the effective external magnetic field to differ at different sites. This corresponds to the role of the

gradient in electric field, emphasized in Sec.III, wherein 4x > 0 is important both for addressing

sites and for resolving the |01〉 and |10〉 qubit pairs.

Many procedures for producing dynamical entanglement in NMR systems by means of se-

quences of radiofrequency pulses have been developed and demonstrated in performing quantum

gates and algorithms [10, 30, 49–52]. The prospects for adapting some of these to polar symmetric

tops invite systematic study. We will not pursue that here, but mention an example pertinent to

resolving 4ω, the key frequency shift for implementing the CNOT gate. For NMR the analog of

our Eq.(28) holds, with 4ω = J12.

Even if 4ω is too small to be well resolved, another general way to perform a CNOT gate

has been demonstrated in a NMR spin system [52]. Because qubits in both sites 1 and 2 are in

superposition states of |0〉 and |1〉, the qubit at site 1 comprises two populations, one coupled to

the qubit at site 2 in the |0〉 state and the other to the |1〉 state there. By means of a π/2 pulse,

the qubit at site 1 can be rotated into the transverse plane, where both populations will undergo

Larmor precession, but with different frequencies. After a time ∼ 1/4ω, the two populations are

180o out of phase. Then another π/2 pulse can be performed to place both populations at site 1
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along the z-axis. The net effect is to complete a CNOT gate with the qubit at site 2 controlling

that at site 1. At least in principle, such procedures, well developed in NMR, seem applicable to

symmetric top type II qubit states.

IV. CONCLUSIONS AND PROSPECTS

The seminal proposal by DeMille [15] envisioned a quantum computer using as qubits rota-

tional states of ultracold polar molecules, trapped in an optical lattice, partially oriented in an

external electric field and coupled by dipole-dipole interactions. Many aspects and variants have

been extensively studied in the decade since, all considering diatomic molecules [22–29]. As

the external field has an essential role, the fact that the Stark effect is second-order for diatomic

molecules has major consequences. The field strength must be sufficiently high to induce exten-

sive hybridization of rotational states, so that the molecules undergo pendular oscillations about

the field direction; otherwise rotational tumbling averages out the effective dipole moments in the

laboratory frame. As discussed in Sec. IIIC, and more fully in ref. [29], line broadening by the

high field handicaps resolution of 4ω, the key frequency shift for 2-qubit operations.

We find that polar symmetric top molecules offer significant advantages. These come primarily

from the first-order Stark effect, available for all states with K and MJ nonzero. As symmetric

tops in those states precess rather than tumble, the effective dipole moments are independent of

the electric field strength (except at high fields). Because there is no need to induce pendular

hybridization, a considerably lower external field can be used, thereby improving prospects for

resolving the 4ω shift. Moreover, in the first-order Stark effect the ±MJ components are readily

resolved (not possible for second-order). This enabled considering the |J = 1,K = 1,MJ = ±1〉
Stark components as the basis qubits (our type II), rather than rotational states (type I). That lowers

the transition frequencies between eigenstates (cf. Table V) to the radiofrequency range, again

more congenial for resolving the 4ω shift. Even more welcome, the use of ±MJ components as

qubits brings forth direct correspondences with spin-1/2 NMR systems. This opens up the prospect

of exploiting with symmetric tops a wide repertoire of radiofrequency NMR techniques developed

for quantum information processing.
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Another prospect for dealing with the small size of the 4ω shift involves spatial rather than

frequency resolution. This is exemplified by quantum computer designs employing supercon-

ducting flux qubits [53]. For these, the generic N = 2 Hamiltonian in the case of transversely

coupled qubits is much like our Eqs.(18) and (19). Instead of the Stark terms, µε and µε′, there

appear single-qubit energy splittings, denoted 41 and 42, respectively, and in place of Ωα there ap-

pears the qubit-qubit coupling energy, denoted by J (unrelated to rotational angular momentum or

NMR spin-spin). The analog of our Vd−d matrix has nonzero elements only along the anti-diagonal

(equivalent to setting our C0 and C1 = 0). However, for typical conditions, J << (41 − 42), the

analog reduces just to the simple case described under our Eq.(26) and Fig. 2; the correspondence

replaces our C2
XΩ/(E3 − E2) by J/(41 − 42). The transitions involved in the CNOT gate (cf. Fig.

1b of ref. [53]) then occur in degenerate pairs, ω1 = ω4 and ω2 = ω3. Therefore, 4ω = 0, so

frequency-selective operations are impossible. Yet, one transition of each degenerate pair can be

selectively suppressed while coherently exciting the other, ”by simultaneously driving both qubits

with the resonant frequency of that pair, employing different amplitudes and phases” [53]. This

method requires spatial resolution sufficient to enable qubits on different sites to be driven individ-

ually. That may not be feasible for our conditions, with polar molecules separated by only 0.5 µm.

Such a method is well suited to a proposed design with molecules trapped in QED cavities spaced

∼ 1 cm (!) apart along a superconducting transmission line resonator [16].

As in our previous study of entanglement of polar diatomic molecules [29], we provide a

generic formulation in terms of reduced variables (x,4x, y, z,w). This makes our results applica-

ble to a broad class of symmetric top molecules and range of conditions envisioned for proposed

quantum computers. We also present specific results for the CH3CN molecule [38], regarded as

a particularly suitable candidate, particularly for type II qubits. Its large dipole moment enhances

the dipole-dipole interaction and hence the 4ω shift, and its nitrogen atom supplies a quadrupole

moment that makes the transition dipole CX nonzero, thereby enabling 4MJ = ±2 transitions

between the type II qubits.

Many aspects important for quantum computing with polar molecules are not discussed here

(trapping operations, sources of decoherence, and much more) because extensive analysis given

for diatomic molecules [14, 16–18, 22–29] pertains as well to symmetric tops. We note an ironic
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exception. Auxiliary storage qubits are sometimes desired to minimize decoherence or to remove

unwanted information [30]. Also, ”switchable dipole” schemes have been devised to in effect

turn dipole-dipole coupling ”on” or ”off” by transferring qubits between states with very different

dipole moments. For diatomic molecules, such maneuvers typically involve excited electronic

states; a prototype proposal [17] uses CO, for which the dipole moment in the ground X1 ∑+ state

is only 0.1 D, but in the metastable excited a3 ∏
state is 1.5 D. For a symmetric top, such things

can be accomplished more simply by transfer to states with K or MJ zero, where the first-order

Stark effect vanishes. For example, in the J = 1, K = 1 states of CH3CN under the conditions

of Table IV, for MJ = 0 the second-order Stark effect [34] yields an effective dipole moment

of only 0.084 D, whereas for MJ = ±1 the first order Stark effect gives an effective moment of

1.96 D. A transfer MJ = ±1 → 0, without change in the electric field strength, would reduce the

dipole-dipole coupling 500-fold.

Symmetric tops offer many other options for qubits. Some, such as hyperfine structure, are

also available with diatomic molecules. Others are not, such as doublet structures [54] produced

by tunneling through barriers to inversion (e.g., in NH3) or internal rotation (e.g., in CH3CF3). If

inversion is fast (∼ 1 Hz for NH3 in ground state), the dipole flips rapidly and the Stark effect is

second-order, whereas if inversion is slow (e.g. ∼ 1 year for AsH3), it is first-order. For internal

rotation involving a three-fold barrier, the tunneling doublets occur as a nondegenerate A state,

and a doubly degenerate E state; the Stark effect for A is second- order, for E first-order.

For both diatomic and symmetric top molecules, under conditions considered amenable for

proposed quantum computers, the entanglement of eigenstates and the associated pairwise concur-

rences are very small. Furthermore, it is not needed in the eigenstates, because the entanglement

required for computations is actually induced dynamically. The role of dipole-dipole coupling as

the source of eigenstate entanglement, via the off-diagonal terms of Eq.(19), therefore is irrelevant.

Its important role is determining a different eigenstate property, the 4ω shift, via Eq.(28). The eval-

uation of 4ω does not require eigenfunctions, only eigenvalues. This is a liberating perspective in

considering analysis of multidipole systems well beyond N = 2.

Mindful of the somewhat metaphysical status often accorded to entanglement [55], we men-

tion that fundamental theory shows that even for symmetric tops, the ”true molecular eigenstates
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should not have first-order Stark effects” [56]. That is because the full permutation-inversion group

for a molecule shows that the only levels allowed by quantum statistics are nondegenerate. Yet

both theory and experiment confirm that a quasi-first-order Stark effect does appear in the pres-

ence of even a very weak field (< 0.3 V/cm) that introduces coupling between nearly degenerate

states. Hence, the very existence of first-order Stark effect in molecules comes from field-induced

entanglement.
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APPENDIX A: QUADRUPOLE COUPLING

As outlined in Sec.IIB, we use the ”strong-field” approximation [32, 37], appropriate when the

Stark shifts are much larger than hyperfine splittings introduced by quadrupole coupling. We need

to evaluate contributions from HQ to be added to the qubit eigenvalues of Eqs.(10) and (13). Also,

we need to obtain, by diagonalizing HS + HQ, the modified qubit eigenfunctions that arise from

mixing of the MJ Stark components with the MI nuclear spin components. These are required

to determine the quadrupole contributions to the cosine elements of Table I. The requisite matrix

elements of the HQ Hamiltonian,

〈J,K, I,MJ,MI |HQ|J,K, I,M′
J,M

′
I〉 (A1)

are given in Eq.(33) of ref. [37]. All contain a common factor,

P(J,K, I) =
eqQ

4(2J − 1)(2J + 3)(2I − 1)

(
3K2

J(J + 1)
− 1

)
(A2)
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For the qubit states we consider,

P(1, 1, 1) = eqQ/40 and P(2, 1, 1) = −eqQ/168 (A3)

The elements of HQ comprise a 9 × 9 matrix labeled with MJ = 1, 0,−1 and MI = 1, 0,−1. The

first order energy of the quadrupole hyperfine components is given by the diagonal elements,

EQ = P(J,K, I)
[
3M2

J − J(J + 1)
] [

3M2
I − I(I + 1)

]
(A4)

Because the sum MF = MJ + MI is a good quantum number, the matrix is block diagonal, with

five submatrices corresponding to MF = 2, 1, 0,−1,−2 (respectively 1 × 1, 2 × 2, 3 × 3, 2 × 2,

1 × 1). We deal only with the MF = 0 block, containing elements connecting the (MJ,MI) =

+1,−1; 0, 0; and − 1,+1 hyperfine components:

P(1, 1, 1)



1 −3 6

−3 4 −3

6 −3 1


(A5)

P(2, 1, 1)



−1 −√3 6

−√3 4 −√3

6 −√3 −1


(A6)

To the diagonal elements of these matrices, we add the Stark components, from Eq.(6), ES =

−(µε/J(J + 1))MJ, then carry out diagonalization to obtain the MF = 0 eigenfunctions. As speci-

fying MJ automatically specifies MI , we denote the eigenfunctions simply by Ψ(J, M̃J), expressed

as linear combinations of the basis functions φ(J,MJ). Here we revert to wavefunction notation,

to avoid confusion with the bra notation used for qubits. Also in labeling the eigenfunctions,

we adorn M̃J with a tilde, to indicate it is no longer a good quantum numbers because the Stark

and spin states are mixed. Performing numerical diagonalizations led to recognition that, for

µε� eqQ, the eigenfunctions are well approximated using for each J a single mixing coefficient;

for J = 1:

Ψ(1,−1̃) ≈ (1 − a2)φ(1,−1) − aφ(1, 0) + aφ(1,+1) (A7)

Ψ(1, 0̃) ≈ aφ(1,−1) + (1 − a2)φ(1, 0) − aφ(1,+1) (A8)
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Ψ(1,+1̃) ≈ −aφ(1,−1) + aφ(1, 0) + (1 − a2)φ(1,+1) (A9)

and for J = 2:

Ψ(2,−1̃) ≈ (1 − 2b2)φ(2,−1) + bφ(2, 0) −
√

3bφ(2,+1) (A10)

Ψ(2, 0̃) ≈ −bφ(2,−1) + (1 − b2)φ(2, 0) + bφ(2,+1) (A11)

Ψ(2,+1̃) ≈
√

3bφ(2,−1) − bφ(2, 0) + (1 − 2b2)φ(2,+1) (A12)

The coefficients a and b are small positive numbers, determined by w = |eqQ|/µε. From our

numerical results, we find

a = 0.1522w and b = 0.1789w (A13)

These values are accurate within 1% for w < 0.1. Since MJ = ±1 for our qubit states, as defined in

Eqs.(9) and (12), we now specify them further as the hyperfine components Ψ(J,−1) and Ψ(J,+1);

thus for type I,

|0〉 = |J = 1,MJ = −1,MI = +1〉 and |1〉 = |J = 2,MJ = −1,MI = +1〉 (A14)

and for type II,

|0〉 = |J = 1,MJ = +1,MI = −1〉 and |1〉 = |J = 1,MJ = −1,MI = +1〉 (A15)

The quadrupole terms in the cosine elements of Table I result from using the mixing coefficients

of Eq.(A13) with Eqs.(A7) and (A10) for type I qubits and Eqs.(A7) and (A9) for type II together

with Eq.(7) of Sec.II. In particular, for type II this gives CX ≈ a(1 − a2).

Symmetric top molecules, other than CH3CN, which contain one nucleus with spin I = 1 on

the symmetry axis, include: NH3 and NF3, where 14N has eqQ = −4.09 MHz and 7.07 MHz,

respectively [57, 58]; and CH3D and CF3D, where 2D has eqQ = 191 kHz and 171 kHz, respec-

tively [36, 59]. In many halide molecules, such as CH3X, the halogen nuclei have I > 1 and large

quadrupole coupling constants [32]. Treatment of such cases requires use of an intermediate or

weak-field approximation [37, 60].
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APPENDIX B: ENTANGLEMENT OF TWO DIPOLES

For the ranges of reduced variables specified in Sec. III: x < 1; 10−4 < 4x < 10−2; y < 10−5;

|z| < 5×10−3; w < 0.1, we have obtained explicit formulas for the coefficients of the basis qubits in

Eq.(22), {ai, bi, ci, di}, that determine the two-dipole eigenstate entanglements. Tables VI and VII

give these formulas for types I and II qubits, respectively. Also included are corresponding values

of the pairwise concurrence, C12, for the eigenstates; these conform well to the approximations

of Eqs.(25) and (27). The corresponding eigenvalues and orders-of-magnitide of the coefficients,

under conditions listed in Table IV, are in Tables II and III. Contributions from quadrupole coupling

are not included in Table VI because these only slightly affect the entanglement for type I qubits.

The quadrupole contributions are included in Table VII because for type II qubits these are the sole

source of eigenvalue entanglement (since without them CX = 0 and the Vd−d matrix of Eq.(19) is

diagonal). The quadrupole contributions enter the entanglement coefficients in various powers of

the ratio of the quadrupole coupling to the Stark energy, wn, ranging from n = 2 to 4. In the

concurrence values, the same dependence on wn appears.

Tables VI and VII both pertain to the regime 4x � y, where the Stark shift between adjacent

qubit sites is much larger than the dipole-dipole interaction. At present, this regime appears most

relevant for implementation prospects. As illustrated in Fig. 2 and Eq.(27), therein the eigen-

functions differ little from the basis qubit states, and entanglement is slight. The extreme opposite

limit, 4x = 0, has been analyzed in ref. [23]; there the eigenfunctions Ψ2 and Ψ3 become the

maximally entangled Bell states, 2−1/2(|01〉 ± |10〉). An interesting consequence emerged. For

operation of the CNOT gate, it was concluded that a preliminary pulse of bandwidth much wider

than the dipole-dipole interaction should be applied. It would entirely undo the entanglement by

forming ± combinations of the Bell states and thereby unwed the |01〉 and |10〉 qubits.
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TABLE VI: Eigenfunction entanglement coefficients, type I qubitsa

Ψi = ai|00〉 + bi|01〉 + ci|10〉 + di|11〉

a1 = (0.07y)2/2; b1 = c1 = (0.048 + 0.0044x)y;

d1 = −a4 = (0.019 + 0.0017x)y; C12 = K(x, x′)y ≈ 2d1;

a2 = −(0.028 + 0.0026x)y; b2 = 1 − c2
2/2; c2 = −0.454y/4x;

d2 = (0.009 + 0.0009x)y; C12 ≈ 2|c2|;

a3 = −(0.062 + 0.0058x)y; b3 = −c2 = 0.454y/4x; c3 = b2;

d3 = (0.021 + 0.0019x)y; C12 ≈ 2|c2|;

a4 = −d1 = (0.019 + 0.0017x)y; b4 = c4 = −(0.016 + 0.0015x)y;

d4 = −a4 = 1 − (0.04y)2/2; C12 = K(x, x′)y ≈ 2a4;

a Coefficients {ai, bi, ci, di} of eigenfunctions i = 1→ 4 obtained from numerical diagonalization of the matrices of
Eqs(18) and (19). Table II gives the corresponding eigenvalues as well as orders-of-magnitude of the coefficients
under conditions listed in table II. Values are included for the pairwise concurrence, C12, and conform well to
the approximations of Eqs.(25) and (27).

TABLE VII: Eigenfunction entanglement coefficients, type II qubitsa

Ψi = ai|00〉 + bi|01〉 + ci|10〉 + di|11〉

a1 = 1 − b2
1; b1 = c1 = −0.0786w2y/z;

d1 = −0.0118w3y/z; C12 = 0.0247w3y/z ≈ 2d1;

a2 = d2 = a3 = d3 = 0.0743w2y/z; b2 = −c3 = −0.0225w2y/4x;

c2 = 1 − a2
2; d2 = a2; C12 = 0.044w2y/4x ≈ 2|b2|;

a3 = d3 = a2 = d2; b3 = c2 = 1 − a2
2; c3 = −b2 = 0.0225w2y/4x;

d3 = a3; C12 = 0.044w2y/4x ≈ 2|c3|;

a4 = 0.0107w3y/z; b4 = c4 = −0.0715w2y/z;

d4 = 1 − b2
4; C12 = 0.0205w3y/z ≈ 2a4;

a Footnote to Table IV pertains have as well, except that corresponding eigenvalues and order-of-magnitude values
are in Table III. Contributions from quadrupole couplings are included with w = |z|/x = |eqQ|/µε and z =

eqQ/B
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FIG. 1: (Color online)Stark states for a polar symmetric top molecule, as functions of µε/B. (a) Eigenen-

ergies for MJ = 0 and ±1 components of K = 1 levels for J = 1 and J = 2 states and (b) corresponding

expectation values that determine effective dipole moments, µe f f = 〈cos〉. States used as basis qubits are

labeled |0〉 and |1〉: type I (green) are MJ = −1 for J = 2 and type II (red) are MJ = +1 and -1 for J = 1. By

virtue of the ordinate scale used, (a) as well as (b) applies to any symmetric top molecule (treated as rigid,

without fine or hyperfine structure).
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FIG. 2: (Color online) Pairwise concurrence C12 for eigenstates 2 and 3 of two symmetric top dipoles

entangled via dipole-dipole interaction, as a function of the ratio of the difference of the eigenvalues, (E3 −

E2), to the element, C2
X that connects the |01〉 and |10〉 basis qubits in the Vd−d matrix of Eq.(19). The

difference (E3 − E2)/B = 4x/3 and 4x, for type I and type II qubits, respectively, as seen in Tables II and

III. Points (green for type I, red for II) were obtained from numerical calculations including all elements

of the Vd−d matrix; curve (black) from the minimalist 2 × 2 model of Eqs.(25-27). The same C12 function

applies to spin-1/2 NMR systems, with E3 − E2 = gµN(H′ − H) and C2
XΩα replaced by 1

2 J12, where g is

the nuclear g-factor, µN the nuclear magneton, H the magnetic field strength, and J12 the spin-spin coupling

constant.
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FIG. 3: (Color online) Schematic energy levels for type I qubit eigenstates of two symmetric top dipoles. At

left are indicated qubit basis states, with corresponding eigenenergies from Eqs.(18) and (19). Contributions

from quadrupole coupling are not shown (but included in Tables II and V). At right are transitions that are

involved in CNOT operation: ω1 transfers the dipole at site 2 from |0〉 to |1〉, with dipole at site 1 remaining

in |0〉, then 2 transfers dipole at site 1 from |0〉 to |1〉 with dipole at site 2 remaining in |1〉. The same result

could be reached by ω3 followed by ω4. Transition frequencies are given in Table V.

FIG. 4: (Color online) Schematic energy levels for type II qubit eigenstates of two symmetric top dipoles;

format as in Fig. 3. Eigenenergies, including quadrupole coupling are (not shown) are given in Tables III

and transition frequencies in Table V.
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