
Hands-On Parameter Search for Neural Simulations by a
MIDI-Controller
Hubert Eichner*, Alexander Borst

Max-Planck-Institute of Neurobiology, Department of Systems and Computational Neurobiology, Martinsried, Germany

Abstract

Computational neuroscientists frequently encounter the challenge of parameter fitting – exploring a usually high
dimensional variable space to find a parameter set that reproduces an experimental data set. One common approach is
using automated search algorithms such as gradient descent or genetic algorithms. However, these approaches suffer
several shortcomings related to their lack of understanding the underlying question, such as defining a suitable error
function or getting stuck in local minima. Another widespread approach is manual parameter fitting using a keyboard or a
mouse, evaluating different parameter sets following the users intuition. However, this process is often cumbersome and
time-intensive. Here, we present a new method for manual parameter fitting. A MIDI controller provides input to the
simulation software, where model parameters are then tuned according to the knob and slider positions on the device. The
model is immediately updated on every parameter change, continuously plotting the latest results. Given reasonably short
simulation times of less than one second, we find this method to be highly efficient in quickly determining good parameter
sets. Our approach bears a close resemblance to tuning the sound of an analog synthesizer, giving the user a very good
intuition of the problem at hand, such as immediate feedback if and how results are affected by specific parameter changes.
In addition to be used in research, our approach should be an ideal teaching tool, allowing students to interactively explore
complex models such as Hodgkin-Huxley or dynamical systems.

Citation: Eichner H, Borst A (2011) Hands-On Parameter Search for Neural Simulations by a MIDI-Controller. PLoS ONE 6(10): e27013. doi:10.1371/
journal.pone.0027013

Editor: Vladimir Brezina, Mount Sinai School of Medicine, United States of America

Received August 4, 2011; Accepted October 7, 2011; Published October 31, 2011

Copyright: � 2011 Eichner, Borst. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Max-Planck-Society. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: eichner@neuro.mpg.de

Introduction

A frequent challenge in computational neuroscience is to come

up with models that properly replicate some quantitative or

qualitative characteristics of measured data. This process usually

involves exploring a high-dimensional space of model parameters

in order to arrive at satisfying fits of the data in question. One

common approach is to use an automated search algorithm such

as gradient descent [1], variants of Newton’s method [2] or genetic

algorithms [3]. While successfully applied in a large range of

projects (reviewed in [4]), these methods also suffer from several

shortcomings, such as requiring an exactly defined measure of

quality for a given parameter set (an error function), slow

convergence or ending up in local minima. Most notably, the

search algorithm is usually unaware of the intrinsic structure of the

underlying problem.

A particularly profound problem, however, becomes apparent

when the user desires a good qualitative, not quantitative fit, for

instance because the model is intentionally simplified and thus unable

to exactly reproduce the results, or because the desired behavior of

the model is hard to formulate in mathematical terms. In such cases,

standard error functions like the root mean squared difference

between the actual and the target output may fail to arrive at suitable

parameter sets, and significant effort is spent on defining and refining

a proper error function. A further problem is optimizing multiple

objectives at the same time [5] when the tradeoff between the

different objectives depends on the user’s intuition.

Consequently, a further frequently employed approach is

manual parameter fitting ([6], [7]). Here, the user evaluates

different parameter sets, modifies them according to his intuition

of the problem, evaluates them again etc. This process usually

involves a lot of typing and mouse movements, and is often a

cumbersome and tedious procedure.

Inspired by the learning process on musical instruments or

synthesizers, where the constant auditory feedback shapes the

student’s technical abilities, we treat the process of parameter

adjustment in a similar way. The parameters are now controlled by

a MIDI device, and the model is continuously simulated with the

actual parameters, repeatedly plotting the latest result on the screen.

Materials and Methods

An Evolution UC-33 USB MIDI controller (M-AUDIO/Avid

Technology Inc., USA) attached to a PC (Intel Core 2 Quad

Q9550, 2.83 GHz, 8 GB main memory, running Windows 7) is

accessed by a middleware software layer (see File S1) written in the

Java programming language (Oracle Corporation, Redwood

Shores, CA; compiled with JDK version 1.6). This program is

notified about control element changes via the javax.sound.midi

application programming interface and stores the positions of the

modified control elements. The middleware is then accessed by the

simulation software. We employed either the MATLAB (Math-

works, Natick, MA; JRE version 1.6) or IDL (ITTVIS, Boulder,

CO; JRE version 1.6) development environment which both are

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e27013

unable to directly access MIDI devices by default but can readily

communicate with Java software. The information about control

element changes is retrieved by the simulation software, which then

adjusts the model parameters, reruns the simulation and plots the

most recent results on the screen. While the actual implementation

of the graphical user interface is left completely to the user, we found

it helpful to illustrate the control elements and their positions right

next to the simulation results; this way, the user does not have to

shift attention from the MIDI controller to the screen and vice versa.

In its current version, the middleware software layer supports only

one MIDI controller, but it could be enhanced to support multiple

devices to increase the number of control elements.

While this concept has been applied to multiple problems in our

lab, we here present a popular example for illustration purposes,

the simulation of the Hodgkin-Huxley equations [8]. The spiking

mechanism is formally described by the following current balance

equation for one compartment:

C
dV (t)

dt
~�ggNam3h(ENa{V (t))z

�ggK n4(EK{V (t))zgL(EL{V (t))zIinj

with �ggNa and �ggK denoting the maximum sodium and potassium

conductance, respectively, and with the gating variables defined by

tm
dm(t)

dt
~m?(V){m(t); th

dh(t)

dt

~h?(V){h(t); tn
dn(t)

dt
~n?(V){n(t);

We assume voltage-independent, but user-controlled values for the

time constants, and approximate the steady-state functions of the

gating variables by a sigmoidal function of the form

x?(V)~
1

1ze
{(V{mx)

sx

This slight deviation from the original Hodgkin-Huxley allows for

easier modification of the time constant and the activation curve, the

latter by shifting it on the voltage axis (mx) or changing its slope (sx).

The sodium and potassium conductances are computed using

the explicit Euler scheme; the final equation for computing the

voltage at the next time step is then obtained by applying the

implicit Euler method for greater numerical stability:

V (tzDt)~
ENa�ggNam3hzEK �ggK n4zELgLzIinjzV (t) C

Dt

�ggNam3hz�ggK n4zgLz C
Dt

We use a time step of Dt = 0.1 ms and simulate the model for

300 ms, with a step current injection of I nA lasting from t = 50 ms

to t = 250 ms. The eleven model parameters tm, th, tn, mm, mh, mn,

sm, sh, sn, �ggNa, �ggK and the current amplitude I are set via the MIDI

controller. The Java middleware layer is polled for control element

changes in an infinite loop. Each time a change is observed, the

corresponding parameters are adjusted, the model is simulated

with the new parameter set, and the new result is immediately

plotted on the screen.

Results

We attached a MIDI controller featuring knobs, sliders and

buttons to the computer performing the simulations. The model

parameters and the simulation results are updated whenever the

position of a MIDI control element is changed. This leads to a

more or less instant change of the depicted results, depending on

the simulation runtime. The method therefore provides a closed-

loop experience to the user. Indeed, and similar to using a musical

instrument or tuning the sound of an analog synthesizer, we find

that being able to instantly and, equally important, continuously

observe changes in the results based on manually controlling the

knobs and sliders gives a certain intuition for the problem at hand.

This allows for a rapid exploration of high-dimensional parameter

spaces and identifying potential solutions to a certain problem. It

also should make this technique a great tool for teaching.

To illustrate this method, we chose one of the most popular

models in neuroscience, the Hodgkin-Huxley equations for an

excitable patch of membrane [8], in a slightly modified form to

allow for greater user control of the ion channel activation and

inactivation process (see Materials & Methods). Figure 1 depicts a

graphical user interface written in MATLAB. The knobs and sliders

on the MIDI controller that are assigned to the various changeable

parameters are replicated in the left portion of the window; this way,

the user does not have to switch attention between the controller

and the computer screen. Changes on a knob or slider instantly

change the internal parameters of the simulation, and the most up-

to-date activation curves, current injection and voltage traces are

plotted with a latency of about 80 ms.

It is straightforward to use our middleware layer for parameter

fitting. It is written in Java, which allows for accessing the

controller from various development environments that do not

natively support MIDI devices but allow accessing Java classes,

such as MATLAB or IDL, but also using other programming

language capable of interfacing Java. Briefly, the middleware layer

has to be initialized with one command; after that, a single

function returns tuples of the form (control element ID, value)

when a knob, switch or button has been turned or pressed. The

user has to modify existing programs only slightly to continuously

check for events from the controller, followed by translating the

received values into specific parameter changes. Whether the

relation between the control element value and the parameter is

linear, exponentially etc. is left to the user. On rare occasions

where either the dynamic range or the precision of a knob or slider

is found to be insufficient, we assigned other knobs that

dynamically adjust the parameter range or precision of the

corresponding primary control element. For instance, if a

simulation parameter is obtained by linearly mapping the knob

position to the interval [low; high], then a second knob might be

used to change either low or high (on an exponential scale), or

both simultaneously by widening or shortening the interval.

Figure 2 shows three example fits of the Hodgkin-Huxley model

responding to a current injection step (red trace): regular spiking

(Fig. 2A), subthreshold oscillations (Fig. 2B) and a parameter set

that exhibits transient spiking (Fig. 2C). Figure 2D depicts the

control element changes performed by the user for the six

parameters that were varied to arrive at the results of Figure 2C.

The ordinate corresponds to the value reported by the MIDI

controller for a specific knob or slider, which lies between 0 and

127. It can be seen that some parameters are changed only once

(current injection strength Iinj), while others are found to be

negligible (midpoint of sodium activation curve mm) or changed

multiple times, even at once (sm and sh).

Discussion

We presented a novel method for manual parameter fitting that

provides the user with an external device for adjusting the model’s

Parameter Search by a MIDI-Controller

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e27013

variables. For illustrational purposes, we restricted our results to

the relatively simple example of simulating the Hodgkin-Huxley

equationhowever, we have used the method on multiple occasions

for more complex tasks where defining an exact error function was

difficult.

The major limitation of our technique is latency, that is, the

delay between a user-controlled parameter change on the

controller and the actual display of the simulated results based

on the new parameter set. While the delay between e. g. turning a

knob and changing the corresponding parameter in the simulation

was found to be negligible, simulation times of about a second or

more lead to problems. To draw another analogy to musical

instruments, imagine trying to learn the piano when each time a

key is pressed, it takes a second until the actual tone can be heard.

In a similar way, runtimes in the order of seconds limit the

intuition the user can gain for a model. Several classes of problems,

such as complex multi-compartment simulations with active

membrane parameters, or simulations of Integrate & Fire neurons

that require many repetitions to form a reliable firing rate

estimate, are therefore likely excluded from this technique in the

near future, at least on single PCs.

We would like to point out, however, that these challenges may

be alleviated by using coarser discretization steps, e. g. increasing

the time step size of simulations or reducing the number of

compartments. Other possibilities are careful optimization of the

source code, such as computing the voltage-dependent forward

and backward rates of ion channels of the Hodgkin-Huxley model

in advance and using look-up tables during the simulation, as

described in the previous section. In addition, parallelizing the

simulation by e. g. multi-threading, as already employed in

MATLAB for basic vector and matrix operations, and further

advances in microprocessor development may also render the

method more realistic in the future for an even broader class of

problems.

Although only 12 knobs and sliders were used in the Hodgkin-

Huxley example, there is no software-imposed restriction on the

supported number of control elements; the MIDI controller we

used has 33 knobs and sliders and, in addition, 14 buttons. It is

possible to control more parameters by assigning a control element

to several simulation variables and switch between these

assignments by using push buttons [9]. In addition, a coherent

user experience upon such switches would require a MIDI

controller where the sliders are motor-controlled to move them to

the correct position after an assignment switch, an option we are

currently investigating. A further possibility is to connect multiple

MIDI controllers, but this would require changes to the Java

middleware.

Finally, we would like to stress the applicability of our method to

teaching. Every senior scientist will agree that a certain familiarity

with a method or a model is best achieved by virtually playing

around with it and putting it to use. Accordingly, rather complex

models such as non-linear dynamical systems could, in addition to

Figure 1. Using a MIDI device to control a computer simulation. On the computer screen, the application (in this case, a simulation of the
Hodgkin-Huxley model) is depicted, with the actually used control elements of the MIDI controller (highlighted by a green template) replicated on
the left side of the application. The simulation is updated on every control element change, and the latest results are immediately plotted on the
right side of the application window.
doi:10.1371/journal.pone.0027013.g001

Parameter Search by a MIDI-Controller

PLoS ONE | www.plosone.org 3 October 2011 | Volume 6 | Issue 10 | e27013

the theoretical introduction, be taught by providing students with

the simulation and a controller, allowing them to become familiar

with the problem and solve exercises such as finding bifurcation

points or optimal solutions to specific questions.

Supporting Information

File S1 Source code for the MIDI interface.
(DOC)

Acknowledgments

We would like to thank Friedrich Foerstner for initial help with the MIDI

controller and useful discussions.

Author Contributions

Conceived and designed the experiments: HE AB. Performed the

experiments: HE AB. Analyzed the data: HE AB. Contributed reagents/

materials/analysis tools: HE AB. Wrote the paper: HE AB.

References

1. Snyman JA (2005) Practical Mathematical Optimization: An Introduction to
Basic Optimization Theory and Classical and New Gradient-Based Algorithms

(New York, Springer).

2. Bonnans JF, Gilbert JC, Lemarechal C, Sagastizábal CA (2006) Newtonian
Methods. In Numerical Optimization (Berlin/Heidelberg, Springer). pp 51–66.

3. Holland JH (1992) Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence, 1st edn (Boston, MIT Press).

4. Van Geit W, De Schutter E, Achard P (2008) Automated neuron model
optimization techniques: a review. Biol Cybern 99: 241–251.

5. Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, et al. (2007) A
novel multiple objective optimization framework for constraining conductance-

based neuron models by experimental data. Front Neurosci 1: 7–18.

6. Haag J, Theunissen F, Borst A (1997) The intrinsic electrophysiological

characteristics of fly lobula plate tangential cells: II. Active membrane properties.

J Comput Neurosci 4: 349–369.

7. Spavieri DL, Jr., Eichner H, Borst A (2010) Coding efficiency of fly motion

processing is set by firing rate, not firing precision. PLoS Comput Biol 6:

e1000860.

8. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current

and its application to conduction and excitation in nerve. J Physiol 117:

500–544.

9. Wicher D, Berlau J, Walther C, Borst A (2006) Peptidergic counter-regulation of

Ca2+ and Na+ dependent K+ currents modulates the shape of action potentials in

neurosecretory insect neurons. J Neurophysiol 95: 311–322.

Figure 2. Simulation of the Hodgkin Huxley model with three example parameter sets. The red line shows the duration of the current
injection. (A) Regular spiking behavior. (B) A parameter set that leads to subthreshold oscillations. (C) A parameter set that exhibits transient spiking
upon current injection. (D) Trajectory of the modified parameters during fitting of the model in C. The ordinate ranges from 0 to 127, the range of
control elements on a MIDI controller. The abscissa does not depict absolute time but the simulation index.
doi:10.1371/journal.pone.0027013.g002

Parameter Search by a MIDI-Controller

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e27013

