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1 Abstract 

In Drosophila, Dscam1 (Down syndrome cell adhesion molecule) encodes neuronal 

cell recognition proteins of the immunoglobulin superfamily that play a profound role 

in wiring the fly brain. By alternative splicing of three exon clusters, each encoding 

half or a complete variable immunoglobulin domain, Dscam1 generates 19,008 

different ectodomains. In this thesis, variable functional Dscam1 experiments have 

been performed in Horizontal Sensitive (HS) cells, which belong to the group of 

Lobula Plate Tangential Cells (LPTCs). The HS system comprises three individually 

identifiable cells—the northern HSN, the equatorial HSE, and the southern HSS cells 

which are tuned to large-field horizontal motion in a direction-selective way. Their 

dendritic terminals are located within the lobula plate where they overlap each other 

up to 90%. These anatomical properties of the HS system make them an excellent 

model to study the role of Dscam1 in shaping complex branching patterns. Using 

homologous recombination, Dscam1 loss-of-function animals were generated in 

which the number of alternative exons is reduced at the endogenous locus within 

these cells. Reduction of Dscam1 diversity as well as expression of unfunctional 

protein elicits strong self-crossings of dendritic branches whereas the dendritic fields 

of neighboring HS cells do not fasciculate, suggesting that heteroneuronal tiling may 

not depend on Dscam1. Furthermore, Dscam1 mutant neurons can alter the 

projections of neighboring wild-type neurons thereby showing a non-cell-autonomous 

effect of Dscam1. In contrast, overexpression of single Dscam1 isoforms leads to 

reduced branching complexity and significant smaller dendritic fields, assuming that 

this phenotype is elicited by Dscam mediated repulsive responses. Dscam-elicited 

gain-of-function phenotype strongly depends on the onset of overexpression during 

cell development. Both results speak for a cell-autonomous role of Dscam1 function 

in self-avoidance. Anatomical findings were complemented with detailed anatomical 

reconstructions carried out by Friedrich Förstner. Further functional analyses with 

Dscam gain-of-function and loss-of-function flies were performed by Bettina Schnell 

and Väinö Haikala.  

For further investigations on the function of LPTCs and their role in flight control, a 

series of genetic tools and protocols was developed. Firstly, RicinA induced ablation 

of single LPTCs revealed normal development of remaining LPTCs thereby 
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suggesting independence from neighboring LPTCs during development. Secondly, to 

identify the neurons presynaptic to LPTCs I started to establish a viral system for 

retrograde transsynaptic labeling of neurons in collaboration with Conzelmann Lab. 

At present, we are able to target viral infection to identified and labeled neurons. 

Third, different transgenic flies were generated for blocking inhibitory and excitatory 

inputs to the LPTCs and for detailed optical recording of neuronal activity. 
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2 Introduction 

2.1 The scientific career of Drosophilae: history and genetics 

The fruit fly Drosophila melanogaster has been used as a model organism for 

biological studies since the early 1900´s. Since then Drosophila has been used to 

study many topics, most notably genetics and development. Although first described 

by Johann Wilhelm Meigen in 1830 (Meigen 1830) it took more than 70 years until 

Drosophila was discovered for scientific research. Harvard Professor William Ernest 

Castle was one of the first alongside Charles W. Woodworth to work with the fruit fly.  

 

Fig. 1: The life cycle of Drosophila 

melanogaster. 

Drosophila, like all flies, is a holometabolous 

organism. The embryonic stage takes 1 day. 

Thereafter, the larva hatches out of the egg. 

The larvae are mobile and undergo molting 

twice. This larval stage takes around 3 days. 

The pre-pupal stage, when the larva starts to 

become a pupa, lasts only one hour. During 

this time, the larva becomes immobile and 

develops a solid shell surrounding its body. 

This shell turns brown and non-transparent 

when the pupal stage starts. After 4 days, the 

adult fly hatches out of the pupa. In total, the 

life cycle takes about 10 days at 25°C. 

Modified from “An introduction to Genetic 

Analysis, 7th Edition”  

 

The major advantages of fruit flies are their fast reproduction cycle and high fertility: 

During 10 days of captivity, flies cycle through all steps of life (Fig. 1) and a single 

female fly is capable of laying several hundreds of eggs during its life span.  

In 1909, Thomas Hunt Morgan discovered a mutation affecting the eye-color of a 

single fruit fly. The white mutant possessed white eyes instead of red ones (Fig. 2 A) 

and its offspring were expressing this phenotype according to Mendel’s law of 

heredity (Fig. 2 B) (Morgan 1910).  
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Morgan was also the first who proposed that the material basis of heritage within the 

fly is conserved in fiber-like structures in the cells, the chromosomes and each 

chromosome consists of genes, which are reorganized during reproduction. 

 

 

 

Fig. 2: The white-eyed mutant is a spontaneous recessive mutation on the X chromosome of 

Drosophila melanogaster and therefore sex-linked inherited. 

(A) Mutant white- flies have a lack of pigment cells in the photoreceptors and therefore possess white 

eyes instead of red ones. (B) Shows the crossing scheme with which Thomas Hunt Morgan was able 

to locate the mutation on the X chromosome and demonstrate the recessive, sex-linked inheritance of 

the according feature. When a white+ male is crossed to a wildtype virgin female, then all offspring 

have normal-colored red eyes, pointing to the recessive heritage. If those progenitors are crossed inter 

se then the male offspring split up into flies with white eyes and flies with red eyes whereas all female 

flies are red-eyed. Therefore, Morgan concluded that the mutation must be located on the X-

chromosome. Modified from Morgan 1919: “The physical basis heredity”, Philadelphia: J.B. Lippincott 

Company 1919.  

 

In late 1926, Hermann Joseph Muller, a former student of Morgan, obtained critical 

evidence of the abundant production of gene mutations and chromosome changes 

by radiation (X-ray mutagenesis). The appearance of Drosophila mutants contributed 

much to the comprehension of the basic rules of heritage. 

In 1933, Theodosius Dobzhansky discovered the genetic variability between fly 

individuals (Dobzhansky 1938) by recording inversion events in the giant polytene 

chromosomes of the salivary glands. Dobzhansky also discovered that these genetic 

changes were causing reproduction barriers to other fly population, an observation 

that has strongly supported Darwin’s theory about the origin of species. 
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In the following years: 1940-1970, research on Drosophila put much effort into the 

comprehension of the hierarchical structure of genes. Here, outstanding studies 

unraveling the genetic key mechanisms of embryonic development were performed 

by Edward B. Lewis, Eric Wieschaus and Christiane Nüsslein-Volhard whose work 

was honored by the Nobel Prize. Within the same period, Seymour Benzer made the 

first behavior studies on Drosophila, showing that fruit flies possess a short term as 

well as a long-term memory. Further experiments were carried out in Drosophila 

memory mutants by Tim Tully (Benzer 1974; Tully and Quinn 1985). These findings 

revealed that Drosophila is able to show complex behavior patterns. In addition, they 

demonstrated that genetic mutations could interfere with the behavior of organisms.  

In the 1980s, scientists unraveled the function of DNA fragments called transposons. 

These elements exist within all organisms and are able to jump within the genome of 

the host species. By doing so, random mutations could appear whenever the 

transposon hits a gene locus. It was possible to extract a specific transposon called 

P-element, which was already discovered in the 1950s in a wild population of 

Drosophila melanogaster. With that, they opened up a revolutionary possibility: The 

incorporation of alien DNA sequences into the native Drosophila genome. In 1982, 

Gerald M. Rubin and Allan C. Spradling pioneered technology to use artificial P 

elements to insert genes into Drosophila by injection into embryos (Spradling and 

Rubin 1982). This procedure must happen during the syncytial blastoderm stage 

before the cell membranes are built. With that genetic accessibility the era of genetic 

manipulations in Drosophila melanogaster has started.  
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2.2 The Gal4/ UAS system 

Based on the discovery of P-elements, Andrea Brand und Norbert Perrimon were 

able to introduce a new genetic method called the Gal4/UAS-System (Brand and 

Perrimon 1993) for targeted gene expression that is still one of the most used 

methods to manipulate the Drosophila genome (Fig. 3).  

 

 

 

Fig. 3: The Gal4/ UAS-System 

The system has two parts: the Gal4 gene, encoding the yeast transcription activator protein Gal4 

(Galactosidase 4), and the UAS (Upstream Activation Sequence) sequence, a short section of the 

promoter region, to which Gal4 specifically binds to activate gene transcription. In this system, 

expression of the gene of interest, the responder, is controlled by the presence of the UAS element. 

This only occurs when the responder line is mated to flies that express Gal4 in a particular pattern, 

termed the driver. The resulting progeny then express the responder in a transcriptional pattern that 

reflects the Gal4 pattern of the respective driver. Scheme modified from Muqit and Feany 2002. 

 

The transcriptional activator galactosidase 4 (Gal4), together with the upstream 

activator sequence (UAS) form a two component system which enables a spatial and 

temporal controlled expression of a certain gene. The Gal4 sequence does not 

possess a consensus in Drosophila as it is originally derived from the yeast genome. 

Thus, it will not interfere with endogenous cis- active sequences.  

The promoter in the P-element is too weak for expressing the Gal4 gene. However, if 

the insertion happens to be close to an endogenous enhancer region in the 
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Drosophila genome the Gal4 expression will be controlled and regulated through that 

enhancer. Due to the “enhancer trap” method, it has been possible to create a large 

spectrum of Gal4 lines with variable onsets of gene expression. 

The reporter gene downstream of the UAS sequence is only transcribed through the 

binding of the Gal4 protein to the promoter region upstream. The UAS-reporter gene 

sequence is also included into the genome by P-element insertion. With this method 

it is possible to do variable genetic manipulations (e.g. overexpression of specific 

genes or introduce RNAi sequences into the genome for knockdown of gene 

function). Further methods to specify the Gal4 expression pattern are described in 

Chapter 2.8 ff.  

The establishment of the Gal4/UAS system was a genetic breakthrough in the 

scientific career of Drosophila melanogaster and combined the attributes of temporal 

and spatial control over gene-expression in a single organism. 
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2.3  The anatomical basis of the motion detection pathway in flies 

Motion vision is a major function of all visual systems. However, only little is known 

about the underlying neural mechanisms and the identity of the neurons constituting 

those circuits. In this chapter, I want to outline the most important relay stations in 

which visual information is processed and the proposed pathways of motion 

detection. 

Just looking at the outer appearance of fly eyes, the differences to those of humans 

are striking; not only their shape and structure but also their relative proportion to the 

rest of the body is outstanding, thereby underlining the importance of this sense 

organ to flies. Each compound eye of the fly consists of around 800 ommatidia.  

 

 

Fig. 4: Drosophila melanogaster possesses neural superposition eyes. 

The compound eyes of flies are built up of 800 single ommatidia. Each ommatidium possesses a 

strong refractive lens called cornea, beneath the lens is the crystalline cone. Both bundle the light 

towards the 8 photoreceptor cells located in the center of each ommatidium. Pigment cells are 

surrounding each ommatidium, separating them from each other. Flies possess an open rhabdom in 

which the rhabdomeres of one ommatidium have different optical axes whereas the optical axes of 

seven rhabdomeres in seven adjacent ommatidia are parallel. The axons of such retinula cells project 

onto a common cartridge in the first optical ganglion, the lamina. Thus, each lamina cartridge looks at 

one point in the visual space. This kind of neural superposition eye allows vision under lower light 

levels. Modified from Moses et al. 2006. 

 

Every ommatidium is a dioptic apparatus with a lens system, pigment and receptor 

cells (Fig. 4). The light conducting rod structures in arthropods are called 

rhabdomeres accommodating millions of light receptor molecules required for 
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efficient photon collection. Drosophila melanogaster possess an open rhabdom 

system, in which the seven rhabdomeres of each ommatidum are optically separated 

from each other. Therefore, these rhabdomeres function as independent light guides. 

The central rhabdomere contains two photoreceptors: R7/R8. It is surrounded by six 

peripheral non-fused rhabdomeres containing photoreceptors R1-R6.  

Photoreceptors are signaling components that capture and transform photons into an 

electrical signal that is conveyed to higher visual brain regions. All outer 

photoreceptors within one rhabdom possess divergent optical axes. Whereas seven 

rhabdomeres located in neighbored ommatidia are orientated in parallel and are 

therefore directed towards the same environmental point. The axons of such retinula 

cells (except the central R7 and R8, which pass through to the second optic ganglion, 

the Medulla) converge onto the same cartridge of secondary neurons in the first optic 

ganglion, the lamina. Thus, each lamina cartridge 'looks at' one point in space. Visual 

information is thereby processed from the photoreceptors down to all neuropil layers 

in a strictly retinotopic way (i.e. information from two neighbored spots in the visual 

field is processed via axons to two neighbored columns in all neuropils). The 

neuronal superposition eye built by R1-R6 is used at low light intensities and for 

broad-spectral band motion vision; the other part is built by R7 and R8, is used at 

high light intensities, and is used for color vision (Hardie and Raghu 2001).  

In the Lamina, photoreceptors R1-R6 provide input onto five different Lamina 

Monopolar cells: L1-L5 via chemical synapses. Two of them, L1 and L2 have been 

proposed to be the major input lines to the motion detection circuitry (Bausenwein et 

al. 1992). Based on the co-stratification of columnar neurons (Fig. 5) as well as 2-

deoxyglucose the neurons potentially constituting these pathways have been 

predicted long ago. Recent studies have provided the physiological basis for split 

motion detection in the fly showing that L1 and L2 are specifically involved in the 

processing of ON and OFF stimuli (Joesch et al. 2010). In the first pathway, L1 

synapses onto medulla intrinsic neuron Mi1 and L2 onto Transmedullar neuron Tm1. 

Mi1 proposed to contact T4 cells and Tm1 cells are synapsing onto T5 cells 

(Bausenwein et al. 1992; Bausenwein and Fischbach 1992; Fischbach and Dittrich 

1989). The axons of these cells converge on the dendrites of the lobula plate 

tangential cells (LPTCs) that are part of the optomotor pathways. 
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Fig. 5: Two motion pathways in the fly visual system. 

Light information captured by the photoreceptors is split into five pathways: L1-L5. L1 and L2 are 

proposed as the entry points to the motion vision pathways in the fly. Based on co-stratification studies 

the pathway from L1, labeled in red, continues to M1 which dendrites are co-located with the L1 axon 

terminals at the Medulla layers 1 and 4. M1 in turn synapse onto T4 cells at the Medulla layer 10. The 

second pathway is labeled in blue. Here, L2 is supposed to be synaptic connected to Tm1 at the 

Medulla layer 2. Tm1 contacts T5 cells in the Lobula layer1. Modified from Fischbach and Dittrich 

1989.  
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2.3.1 The Horizontal and Vertical System in Calliphora 

LPTCs are giant tangential neurons which can be grouped into horizontal (HS) and 

vertical (VS) systems (Pierantoni 1976). 

The HS system consists of three neurons, which dendritic ramifications extend over 

the entire innermost layer of the lobula plate. The dendrites are distributed along the 

dorsal-ventral axis where HSN is the dorsal horizontal neuron, HSE the equatorial, 

and HSS the ventral horizontal neuron. HSN and HSE give rise to many branches 

over the lateral border of the lobula plate and overlap widely at the para-equatorial 

level. HSS, on the other hand, occupies space at the lowermost region in the lobula 

plate and does overlap with HSE (Fig. 6).  

 

 

Fig. 6: The HS system in Calliphora. 

Frontal view of the 3 horizontal cells of the right lobula plate. The cobalt diffusion technique allows 

simultaneous impregnation of all three horizontal cells, thus resolving not only their complete 

arborization patterns, but also the relative positions of their dendritic fields and the degree of overlap 

between them. Modified from Hausen et al. 1980. 
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 Electron microscopy has revealed that all fibers in the lobula plate are post-synaptic 

possessing a high concentration of synapses and receptors (Pierantoni, 1976; 

Hausen et al. 1980). The number of such spines increases with distance from the 

main stem and reaches its maximum at the lateral border of the lobula plate. A rule 

proposed by Pierantoni says that the synaptic density is inversely proportional to the 

local radius of the curvature of the membrane. Despite the high density of 

ramifications, the fibers of the HS never synapse with one another. Furthermore, it 

has been proposed that not only the arborization density, but also the number of 

spines and hence the density of input synapses in each horizontal cell increases from 

the proximal to the lateral margin of the lobula plate, which represents the frontal part 

of the visual field (Hausen et al. 1980). Much is known about the anatomical aspects 

of HS dendrites however, the pre-synaptic elements have yet to be identified. 

Within the lobula plate, the fibers of the three HS cells are running independently 

from each other. Around 200 µm from the lobula plate, they converge to a large and 

very long branch descending towards the ipsilateral posterior slope of the central 

brain. Their endings are located near the external face of the connective and below 

the esophagus. During their way, the fibers are additionally connected to three other 

large units, which descend along the esophageal connective. The HS fibers are 

ipsilateral and do not enter the contra-lateral connective. At the level of the branching 

in the mid-brain, the HS fibers are simultaneously pre- and post-synaptic; at their 

endings, in the periesophageal region, the fibers of the HS show a pre-synaptic 

nature. The cell bodies of the HS neurons are located at between the ventral medial 

edge of the lobula plate and the bundle of the VS fibers (Dvorak et al. 1975).  

 

The vertical system of Calliphora consists of eleven neurons, which have vertically 

oriented dendrites in the most posterior layer of the lobula plate (Hengstenberg et al. 

1982). The dendritic fibers in the lobula plate are T-shaped. They enter the lobula 

plate dorsally and their main dendrite turns ventrally. Therefore, the main arbors are 

covering lateral parts of the retinotopic map and the smaller arbors located at the 

most anterior layer of the lobula plate covering a dorso-frontal retinotopic area. The 

branching points of all fibers follow the equator of the lobula plate. Like in HS cells, 

the main branches give rise to a large number of secondary ones that in turn give 

origin to tertiary endings; the terminals always found postsynaptic. The distribution of 

secondary branches is highly asymmetric: almost all of them are oriented towards the 
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lateral edge of the lobula plate and largely overlap with the following main fiber. 

However, The VS fibers never synapse with one another or with HS fibers. 

Postsynaptic sites comparable to those in the horizontal cell collaterals were found 

also at the axon terminals (Hausen et al. 1980). The fibers of the VS gather in a 

bundle at the equatorial level along the medial edge of lobula plate. Approximately 

200 µm after the emergence from the lobula plate, the fibers give rise to long and tiny 

branches. The terminals are located slightly above the esophagus and remain 

ipsilateral to the neuropil from which they originated (Pierantoni 1976).  

 

 

Fig. 7: The VS system in Calliphora. 

The dendritic fibers of VS neurons are distributed over the proximal-distal axis of the lobula plate. 

Their axonal terminals are located at the periesophageal region. Modified from Hausen et al. 1980. 

 

The somata of the VS cells are located in close proximity to the cell bodies of HS 

cells. The dendritic fibers of HS as well as VS neurons do not follow the plane axis 

straight but bended. In this way, the fibers run along the curved shape of the lobula 

plate. 
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2.3.2 The Horizontal and Vertical System in Drosophila 

The general architecture of the lobula plate is quite similar to that of big flies. All the 

big fibers join into a horizontal bundle running towards the protocerebral slope close 

to the esophagus (Heisenberg et al. 1978). 

There are 3 cells contributing to the horizontal motion detection. Their fibers, which 

lie on the frontal surface along the dorsal-ventral axis of the lobula plate, can be 

distinguished from each other by the domains of their arborizations: north, equatorial, 

south. In Drosophila these overlap considerably (Heisenberg et al. 1978).  

 

 

Fig. 8: Camera lucida drawing of the horizontal system in Drosophila melanogaster. 

The dendritic fibers of HSN cover the dorsal part of the lobula plate whereas HSE ramifies at the 

equatorial part and HSS in the ventral region. The axonal region is located in the periesophageal 

region of the central brain. Modified from Fischbach and Dittrich 1989.  

 

 In the Lobula plate, their ramifications are slightly tilted in respect to the surface of 

the plate and are staggered like tiles on a roof. There, the HS cells possess a very 

rich ramification pattern appearing more complex then in big flies. Golgi stainings 

have revealed a large number of terminal spines along the secondary and tertiary 

branches (Hausen 1976; Heisenberg et al. 1978). The north and equatorial fibers join 

the horizontal bundle where they leave the plate; the south fiber joins it just laterally 
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to the retractor muscle of the proboscis. Immediately medially to the retractor, the 3 

HS cells leave the bundle, bend downward and split each into two branches, one 

going further down along the posterior slope, the other turning forward into the depth 

of the brain.  

The most significant difference to the larger flies is found in the set of VS cells at the 

caudal surface of the lobula plate. It is not clear yet how many of these cells there are. 

Six of them have been identified based on the expression patterns given by Gal4 

lines. The general shape of VS cells is comparable to those in big flies (Heisenberg 

et al. 1978). 

 

 

 

Fig. 9: Identified VS cells in Drosophila melanogaster. 

VS cells loaded via the patch pipette with Alexa-568. VS cells have vertically oriented dendrites in the 

most posterior layer of the plate. The VS neurons enter the lobula plate dorsally and their main 

dendrite turns ventrally. A smaller dendrite branches to the most anterior layer of the lobula plate 

(Fischbach and Dittrich 1989). Picture from Joesch et al. 2008. 

 

The giant fiber bundle of VS cells enters the lobula plate high up. Around 3/4 of the 

height of the plate is covered by the prominent branches of VS1 and VS2. All 

branches run parallel to each other, those of cells VS1 and VS4 and VS5 being 

closer together than the others are. The branches of VS1, VS2, and VS3 are 

accompanied by satellite fibers. The upward extending branches are much smaller 

and less well oriented. What distinguishes the VS cells of Drosophila from those of 

big flies is that several of these collaterals run parallel to the columns of the lobula 

plate to the frontal surface where they have arborizations in the plane of the HS cells. 
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These branches end in a part of the lobula plate, which presumably corresponds to 

the upper frontal part of the visual field. A large branch of cell VS2 enters the middle 

plane of the plate and fills the upper frontal part of the projection of the visual field. 

The VS cells have long horizontal extensions to the upper posterior slope. Close to 

the esophagus, they split into an ascending and a descending branch and end in a 

region where they meet some of the ocellar giant fibers and a branch of a huge fiber 

of the cervical connective (Heisenberg et al. 1978). 

A detailed analysis of presynaptic release and postsynaptic inhibitory and excitatory 

sites in LPTCs has been carried out by Raghu SV et al. (2007, 2009). HS as well as 

VS cells express in their dendritic regions within the lobula plate both gamma-

aminobutyric acid (GABA) receptors and Dalpha7-type nAChR subunits. Specifically 

on higher-order dendritic branches, the density of receptors are increased. These 

findings underline the postsynaptic nature of HS and VS cell neurites in the lobula 

plate and shed light on their presynaptic columnar partners, which provide inhibitory 

and excitatory inputs to these cells. Moreover, presence of these receptors supports 

a model in which directional selectivity of LPTCs is achieved by the dendritic 

integration of excitatory, cholinergic, and inhibitory GABAergic input from local motion 

detectors with opposite preferred direction (Raghu et al. 2009).  

The terminals of LPTC neurites in the protocerebrum express synaptobrevin, 

suggesting the presence of presynaptic specializations there. HS-cell and VS-cell 

terminals additionally show evidence of postsynaptic GABAergic input. 
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2.3.3 The Reichardt detector model. 

Despite the anatomy-based prediction of the motion detection pathways, columnar 

neurons in the Medulla have so far escaped electrophysiological analysis because of 

their small sizes. Here, the so-called Reichardt detector model predicts the key 

mechanisms of elementary motion detectors downstream of the Lamina. 

Photoreceptors only provide information on time-dependent variations of local light 

intensity. For motion detection, at least two input channels are necessary, as motion 

is a vector in the spatiotemporal domain that needs two points for its representation.  

 

Fig. 10: The Reichardt detector model. 

The Reichardt detector model represents a simple 

principle mechanism of how motion can be extracted 

from incoming signals of neighboring photoreceptors. 

This model includes two essential steps, which are 

firstly, asymmetric temporal filtering through a high-pass 

(HP), a low-pass (LP) filter, and secondly, nonlinear 

integration in which the filtered information is multiplied. 

This composition makes the detector sensitive to motion 

direction of the motion as well as the stimulus pattern 

and velocity of movement. At each image location, at 

least two of these units in orthogonal orientation are 

needed. Scheme adapted from Borst et al. 2003. 

 

The interaction between both input channels must be non-linear in order to preserve 

the information about temporal order of the incoming signals and with that, the 

direction information of the motion. The movement detector must be asymmetrical in 

order to allow a different response to the direction of motion from that to the opposite 

direction. In case of the correlation-type motion detector, multiplication-like 

interactions at each photoreceptor integrate the direct, delayed input signal from the 

first photoreceptor pathway with the high-pass filtered signal from the second 

photoreceptor. Output signals from both half-detectors are then subtracted from each 

other (Borst and Haag 2002).  

Many studies of the mechanisms underlying direction selectivity have been first 

performed on the visual system in large flies, where motion-sensitive LPTCs do 

spatially pool the output signals on their dendrites from many thousands of 
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directionally selective neurons. Two fields of Reichardt detectors are supposed to 

provide input from columnar neurons, one inhibitory, and the other excitatory. 

Spatially integrated arrays of motion detectors exhibit a velocity optimum beyond 

which the responses decline. In addition, the responses also depend on the structure 

of the moving pattern, i.e. high contrast elicits greater responses than lower contrast 

despite the same moving velocity. Moreover, the optimum velocity depends on the 

spatial pattern wavelength leading to an invariant temporal frequency optimum 

(Reichardt 1986; Borst and Haag 2002).  

 

 

Fig. 11: Sample recording from VS2 cell in a blowfly. 

The signal of a fluorescent calcium indicator is shown during motion along the preferred direction of 

the cell. Measurements were taken from the VS2 cell shown in d within the indicated area (box). (c) 

Membrane potential is recorded simultaneously from the axon of the cell. Unlike the local dendritic 

signal, no modulation is visible because of spatial integration over many periodic signals, which are 

phase-shifted with respect to each other in different dendritic areas. (d) Projected 2-Photon image 

stack. Modified from Haag et al. 2004. 

 

The axonal signals of these neurons represent the global detector signal in the fly 

visual system. Using optical recordings of free cytosolic calcium (Fig. 11) revealed 

that stimulation by uniformly moving gratings elicited local modulations in the 

dendritic tips of integrating motion-sensitive neurons like LPTCs (Singer and Borst 

1998). These modulations were synchronous with the temporal frequency of the 
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moving pattern and phase-shifted with respect to each other in different parts of the 

dendrite, thus providing clear evidence in favor of Reichardt-type motion processing 

in the fly visual system (Haag et al. 2004). 

All these predictions have been recently shown to be also true for LPTCs in 

Drosophila (Jösch et al. 2008; Schnell et al. 2010). 

2.3.4 The physiological properties of LPTCs in Drosophila 

Electrophysiology studies have shed light on many intrinsic properties of LPTCs. The 

3 HS cells are distributed along the dorsal-ventral axis. The preferred direction (PD) 

of a presented moving sine grating is from front to back and the null direction (ND) is 

from back to front (Schnell et al. 2010). The 6 VS cells are distributed along the 

distal-lateral axis and respond to vertical motion.  

 

 

Fig. 12: Anatomical and physiological characteristics of HS cells in Drosophila melanogaster. 

The recording setup and fly preparation are schematically shown (A). A vertical sine grating moving 

horizontally is presented to the fly while HS neurons are recorded by whole cell patch clamp. The 

canonical response of an HSN cell is directionally selective, i.e. the neuron depolarizes to ‘front to 

back motion’, whereas the preferred direction (PD) hyperpolarizes to ‘back to front motion’, the null 

direction motion (ND). (B) HS neurons are also sensitive to contralateral stimulation. A weak 

depolarization is visible when the contralateral side is stimulated with ‘back to front motion’(C). 
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Although the dendritic fields of HSN, HSE and HSS strongly overlap, the receptive fields of these cells 

show that they are most responsive to stimulation in those areas which are covered by their dendrites 

in the lobula plate (D). Modified from Schnell et al.2010.  

 

The PD of the stimulus is downwards whereas the ND is upwards. Whole cell 

recordings revealed that stimuli in PD elicit excitatory responses in both LPTC groups 

in the form of a graded depolarization with superimposed spikelets, while presenting 

stimuli in ND cause an inhibitory hyperpolarisation response. Response properties 

also depend on the velocity and contrast of the sine-grating stimulus as predicted 

from the Reichardt detector model. The receptive field of each HS or VS cell consists 

of those regions in the visual field in which the presence of a stimulus alters the firing 

of that neuron (Fig. 12).  

2.3.5 The suggested role of LPTCs in behavior 

Flies respond to moving visual stimuli with various behavioral actions depending on 

the specific circumstances. The so-called optomotor responses elicited by rotation of 

the visual surround serves to reduce the velocity of the pattern movement on the fly’s 

retina. This is important for stabilization of the head and locomotion course, thereby 

minimizing involuntary, rotatory displacements during flight (Pflugfelder and 

Heisenberg 1995). One possibility of monitoring optomotor responses is to tether the 

fly at the dorsal thorax to a torque meter. Presenting a visual stimulus in a drum thus 

functions as a flight simulator. In flight, under the same conditions, the moving 

stimulus will elicit the same behavior in tethered flies as in untethered ones (Götz 

1964; Heisenberg and Wolf 1984). For example, with a vertical moving grating, 

passive turns around the fly’s vertical body axis can be simulated which are then 

achieved by an opposing optomotor response. In this case, the yaw torque is 

exercised through a change of the wing beat amplitude between the left and the right 

wing. The wing beat analyzer has been used for measuring those wing beat 

kinematics in real time (Götz 1987; Dickinson et al. 1993). The method implements 

an infrared light source above the fly in order to cast a shadow of the wings onto 

photodetectors positioned below. Above each photo detector is a crescent-shaped 

aperture, which traces out a section of the stroke envelope of the wings. The relative 

position of the wings can be determined through the monotonic increase of the 

aperture width from top to bottom that leads to a proportional increase of light-
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blocking when the wing is moving through the ventral point of the wing beat. The 

magnitude of the peak shadow during each wing beat provides a signal that is 

roughly proportional to the stroke amplitude. 

 
Fig. 13: The wing beat analyzer monitors the wing beat kinematics in real time. 

(A) An infrared detector (ID) and a lens (L) are used to track the shadows cast by the wings when they 

move through the light of the infrared emitter (IE). The crescent-shaped aperture possesses a 

monotonically increasing width of grating (G) so that maximum occlusion occurs during down stroke. 

(B) A sharp transmission peak is produced during ventral flip of the wing when the wing becomes 

aligned with the incident light. Information of the photodectors is used to calculate relative wing beat 

amplitude and ventral flip delay. Modified from Dickinson et al.1993. 

 

The HS neurons of the lobula plate are most probably part of the optomotor 

pathways. This has been shown anatomically and electrophysiologically in 

Calliphoridae (Hausen 1989), the blowfly. In support of this evidence, the optomotor 

responses of the Drosophila mutants: optomotor blind ombH31 (an omb allele) and 

lobula plate-less (lop) are strongly interrupted (Heisenberg and Wolf 1984). The omb 

mutant lacks the HS neurons while in lop these neurons are depleted of their 

suggested input neurons T4 and T5 (Fischbach 1983; Fischbach and Dittrich 1989).  

For instance, in ombH31 flies (an omb mutant) the yaw torque response to a vertical 

moving grating is reduced by 30% of the wildtype value. The residual response 

properties are, however, different from wildtype torque. In wildtype animals, unilateral 

large field stimulation in front-to-back and back-to-front motion elicits syndirectional-

turning tendencies and gratings in frontolateral and caudolateral positions elicit 



IINNTTRROODDUUCCTTIIOONN  

PPAAGGEE  3322  

responses of similar strength. However, in ombH31 flies, front to back motion evokes a 

syndirectional response of only half the wildtype strength and visual stimuli from 

back-to-front evokes zero or even antidirectional yaw torque (Brunner et al. 1992). 

However, when presenting individual stripes, ombH31 flies show nearly wildtype 

behavior. Here, movement from front-to-back in the frontolateral visual field elicits 

syndirectional torque response whereas the fly does not react to back-to-front 

movements. These results reveal that in ombH31 flies the object response is still 

functional whereas large field response is impaired. Anatomical analysis of ombH31 

flies revealed the conspicuous absence of HS and VS cells. These results give a 

strong argument that HS and VS cells are involved in optomotor large field responses.  
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2.4 The role of Drosophila Down-syndrome-cell-adhesion-molecules (Dscams) 

in neuronal wiring 

In Drosophila, information in the visual system is processed in a strict retinotopic way. 

In case of LPTCs, the dendritic branches in the lobula plate are spatially pooling the 

output signals from many thousands of directionally selective columnar neurons. 

Therefore, space filling and correct dendritic ramification are crucial for cell function. 

However, no guidance molecule has yet been identified to date.  

One of the most discussed candidates involved in the establishment of neuronal 

patterning during neuronal development is Drosophila Dscam1. In total, there are 

four Dscam paralogs in Drosophila (Dscam1-4). However, the generated diversity 

through alternative splicing is unique to Dscam1. This gene locus encodes several 

thousands of cell surface proteins through alternative splicing. The resulting isoforms 

are shown to mediate the correct formation of branching patterns via homophilic 

repulsion between Dscam proteins expressed on opposing cell surfaces, thereby 

resulting in self-avoidance. Each individual Dscam1 isoform exhibits isoform-specific 

binding that mediates homophilic recognition (Wojtowicz et al. 2004, 2007, Matthews 

et al. 2007). This provides the molecular basis for self-recognition in the nervous 

system.  

Although the gene locus is highly conserved throughout arthropods, vertebrate 

DSCAMs are not diversified. All Dscam isoforms share identical extracellular domain 

structure with 10 Ig domains and 6 fribronectin type III domains (Schmucker et al. 

2000; Yamakawa et al. 1998). However, in Drosophila the extracellular part 

possesses three alternatively spliced hypervariable immunoglobulin domains that 

contribute to Dscam1 interaction specificity. 12 alternative exons encode for the first 

half of Ig2, 48 alternative exons encode the first half of Ig3, 33 alternative exons 

encode Ig7 and finally, 2 exons encode the transmembrane domain. Together, 

Dscam1 gives rise to 38,016 different Isoforms and 19,008 different ectodomains, 

respectively (Fig. 14 a) (review: Hattori et al. 2008, 2009). 

Quantitative RT-PCRs of photoreceptor cells as well as mushroom body neurons 

provided evidence of a stochastic yet biased expression of different Dscam isoforms 

in neighboring cells (Neves et al. 2004; Zhan et al. 2004). Moreover, RT-PCR of 

single photoreceptors showed that even neurons of the same type differ in the sets of 

expressed Dscam isoforms. However, directly neighboring photoreceptors express 
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between 15-50 distinct mRNAs and thereby possess a unique Dscam cell surface 

code. 

Homophilic binding of Dscam1 isoforms is mediated by matching of all three 

hypervariable domains, i.e. only self-binding of all three domains initiates a repulsion 

mechanism between opposing cell surfaces. This requirement of a direct Dscam-

Dscam interaction has been demonstrated by a series of biochemical experiments in 

which it was shown that, from a randomly chosen set of 11 Dscam isoforms, each 

one binds to itself but not to others (Hughes et al. 2007) (Fig. 14 b). However, rare 

exceptions exist if differing domain-pairs exhibit high amino acid identity, then 

heterophilic binding does also occur. Nevertheless, heterophilic binding is always 

weaker than homophilic binding.  

 

 

Fig. 14: Alternative splicing of Dscam1 can give rise to 38,016 different cell surface proteins 

that exhibit isoform-specific homophilic binding. 

The Dscam1 gene locus encodes for four blocks of alternative exons that encode 12 different variants 

for the N-terminal half of Ig2 (red), 48 different variants for the N-terminal half of Ig3 (blue), 33 different 

variants for Ig7 (green), and two different variants for the transmembrane domain (TM) (yellow). In 

total, this variable incorporation of alternative exons leads to 19,008 different ectodomains and hence 

38,016 different Dscam1 isoforms (a). Despite this vast number of isoforms most of these proteins 

exhibit isoform-specific binding, i.e. only if all three variable Ig domains match opposing structures will 

binding occur (b). Figure adapted from Hattori et al. 2008. 
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The homophilic binding structure and mechanism behind the Dscam-Dscam 

interaction were extensively studied. Results strongly suggest that the N- terminal 

eight Ig domains comprise a region sufficient for homophilic binding in vivo. During 

the binding procedure, each of the three variable domains binds to its identical 

counterpart in an antiparallel fashion. In crystal structure, the ectodomains fold into S 

shapes, which position the variable domains on that side of the molecule at which 

interactions to counterparts of the opposing molecule occur (Meijers et al. 2007). 

These interactions give rise to a double-S homophilic dimer, formed by two 

homophilic bound monomers. This homophilic dimer buries the homophilic binding 

area, more than half of which is made up of variable Ig domains. Therefore, small 

differences between the Ig domains lead to loss of that variable domain surface. 

These molecular findings illuminate the molecular basis for the all-or-none binding 

mechanism of Dscam1 isoforms.  

Dendrites distinguish between sister branches and those of other cells. Self-

recognition can often lead to repulsion, a process termed 'self-avoidance.' Da-

neurons associate closely with the epidermis as they extend across the body wall; 

their dendrites thus create a two-dimensional meshwork in which developing 

branches frequently encounter other dendrites. Self-avoidance in Drosophila da 

sensory neurons has been demonstrated to be dependent on cell-recognition 

molecules encoded by the Dscam locus. For example, da-neurons that were deficient 

in Dscam function do not recognize sister branches and failed to initiate repulsion, 

leading to a breakdown in self-avoidance. Furthermore, individual branches of 

Dscam mutant cells often failed to disperse evenly across their territory. However, 

processes from specific da neurons still gathered at discrete target sites within their 

territory. This observation leads to the assumption that Dscams are not involved in 

heteroneural tiling, a process in which inhibitory interactions with nearby neurons 

control the size of dendritic fields in such a way as to achieve a complete but 

nonredundant innervation of a receptive area by functionally uniform groups of 

neurons (Hughes et al. 2007). Expression of chimeric Dscam1-GFP, in which the 

cytoplasmic domain was substituted with GFP, elicited an extensive fasciculation of 

sister branches (Matthews et al. 2007). In In contrast thereto, overexpression of the 

same Dscam isoforms in two overlapping da neurons forced a spatial segregation of 

the two fields. This underlines the hypothesis that dendritic branches of da neurons 

use isoform-specific homophilic interactions to ensure minimal overlap (Fig. 15). 
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Homophilic binding of the highly diverse extracellular domains of Dscam may 

therefore limit the use of the same 'core' repulsion mechanism to cell-intrinsic 

interactions without interfering with heteroneuronal interactions (Hughes et al. 2007). 

Taken together these experiments revealed that sister dendrites are expressing the 

same Dscam isoforms in order to mediate self-avoidance in a cell-autonomous 

fashion and with that correct spacing of dendrites. Thereby, the cytoplasmic tail of 

Dscam converts homophilic interactions of the ectodomain to dendrite repulsion. By 

contrast, Dscam diversity ensures that inappropriate repulsive interactions between 

dendrites sharing the same receptive field do not occur.  

 

 
Fig. 15: Overexpression of a single Dscam1 isoform elicits inappropriate repulsion between 

two da neurons with overlapping dendritic fields.  

(A) Da-neurons of different classes (ddaE in red and ddaF/A in green) extensively overlap in wildtype 

animals. (B) Overexpression of the same Dscam isoform in two da neurons prohibits them from 

sharing the same region of the hemisegment. Neurons were labeled with GPP. DdaE was 

pseudocolored in red. Modified from Hughes et al. 2008. 

 

Dscams have the same role in bifurcating mushroom body (MB) axons and in 

pathway finding of projection neurons (PN) in the olfactory system. 

In the MB, the olfactory learning and memory center of insects (Heisenberg et al. 

1985), growth cone bifurcation and guidance to the different lobes are very important 

during development (Grotewiel et al. 1998). Dscam deletion mutants revealed 

defects in the divergent segregation of sister branches (Wang et al. 2002). Instead of 

two branches that project away from each other, Dscam mutant axons gave rise to 

multiple branches through repeated bifurcation. In addition, Dscam mutant axons 
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altered the projections of wild-type axons within the same MB. The non-cell-

autonomous effect of Dscam provides the evidence that the first-born alpha'/ß' 

neurons play a crucial role in shaping the projection patterns of all later-born MB 

neurons. Overexpression experiments of single Dscam1 isoforms caused multiple 

core fibers and disorganization within the peduncle and lobes (Hattori et al. 2007). 

These dominant phenotypes were only seen when large cell populations were 

involved but not in small or single cell clones, suggesting that the Dscam gain-of-

function phenotype is a non-cell-autonomous effect.  

In the olfactory system of Drosophila melanogaster, axons of olfactory receptor 

neurons (ORNs) and dendrites of second-order PNS typically target 1 of ~50 

glomeruli. Dscams control the formation of dendritic fields in PNs. The removal of 

Dscam selectively from these neurons leads to dendritic agglomerations and major 

reduction in their dendritic field size. Overexpression of Dscam in PNs causes 

dendrites to be more diffuse during development and shifts their relative position in 

adulthood. Nevertheless, the positional shift of projection neuron dendrites causes a 

corresponding shift of its partner ORN axons, thus maintaining the connection 

specificity. This observation provides evidence for a pre- and post-synaptic matching 

mechanism independent of precise glomerular positioning (Zhu et al. 2006). 

Taken together, Dscams are playing a pivotal role in self-avoidance and target 

finding during the construction of neural circuits in Drosophila. Whether these 

molecules are necessary for the establishment of the motion detection circuitry is 

unknown and, if so, manipulation of the endogenous Dscam code should have a 

severe influence on the morphology of LPTCs. 
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2.5 Methods for functional dissection of the visual circuitry 

In Drosophila melanogaster, a broad spectrum of genetic techniques is available 

which allows the dissection of neural circuits. Different approaches based on the 

Gal4/UAS system have been developed over the last decades, which allow the 

restriction of individual Gal4 expression patterns from small cell patches down to 

single cells. On the other hand, the UAS promoter can be used to modulate the 

expression of any target genes, which can be used to visualize cells, as well as 

enhancing and removing molecules of interest. 

 

2.5.1 Intersectional strategies 

Despite the enormous diversity of available tissue-specific lines, GAL4 expression 

patterns are rarely restrictive enough to map key elements of neural circuitry (Bohm 

et al. 2010). However, GAL4 expression can be made more specific by means of 

intersectional strategies. These can combine two different GAL4 linesin such a way 

that GAL4 is only expressed in the cells that are in one line but not in the other one, 

or those that are in both lines. When combined with intrinsically sparse GAL4 lines, 

this offers very specific selection, often limited to a single cell type. In the following 

section, I will introduce some basic techniques. 

 

2.5.1.1 Gal4 inhibition via Gal80 expression.  

One way to create GAL4 expression in the cells that are only expressed in one line 

requires line A to be made to express GAL4, and line B made to express GAL80, a 

repressor protein that blocks Gal4 by binding to its transcriptional activation domain 

(Lue et al. 1987) (Fig. 16 a). Therefore, only the cells that are in the Gal4 expression 

pattern but not expressing Gal80 will have active GAL4, which can then drive the 

reporter gene. A temporal regulation of the Gasl4/UAS system can be additionally 

achieved by using a temperature sensitive allele of Gal80. At restrictive temperature, 

the temperature sensitive protein would not splice, hence no functional Gal80 can be 

produced and Gal4 protein remains fully active (Zeidler et al. 2004).  

To express GAL4 in only the cells contained in both lines, a technique called split-

GAL4 can be used (Luan et al. 2006). Here the first line is made to express half of 
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the GAL4 protein, which is inactive by itself. Similarly, the second line is made to 

express the other half of GAL4, also inactive by itself. Only the cells that are in both 

lines make both halves, which self-assemble into GAL4 and activate the reporter 

gene. 

 

2.5.1.2 FRT/FLP mosaic technique 

Another mosaic technique uses targeted DNA recombination at FLPase 

recombination targets (FRTs), which can be driven in flies by the FLP recombinase 

(FLPase) (Golic and Lindquist, 1989). If a fly has two FRTs in identical positions on 

homologous chromosomes, heat shock-induced expression of FLPase (hs-FLP) can 

cause recombination between the FRT sites. With that technique, a random 

restriction can be achieved by using patches of expression of the recombinase 

Flippase (FLP) to catalyze removal of sequences between a tandem pair of FLP 

recognition target sequences (Bohm et al. 2006). The basic FLPout construct 

contains a strong, ubiquitously active promoter (often that of actin or tubulin) coupled 

to an FRT, a marker gene, a transcription termination signal, a second FRT and 

finally, the coding sequence to be misexpressed. In such constructs, the promoter is 

blocked from driving the expression of the downstream coding sequence by the 

termination signal. 

Another use of FRTs is to remove stretches of DNA and to induce the misexpression 

of selected genes and constructs in clones of cells via the so-called FLPout 

technique (Struhl and Basler, 1993). FRTs are removed by FLPase-induced 

recombination (‘FLPout’), both the marker gene and the termination signals are lost, 

and the downstream coding sequence is expressed. In most applications of this 

technique, recombination is driven by hs-FLPase with which the timing of the FLPout 

and the percentage of cells undergoing recombination depend on the timing and 

levels of heat shock. Here, the activation of the FLPout does not require mitosis, and 

can thus be used to drive gene expression in post mitotic tissues. 

 

2.5.1.3 MARCM technique 

In the MARCM (mosaic analysis with a repressible cell marker) technique, the tub-

Gal80 is removed using FRT mediated mitotic recombination (Lee and Luo, 1999) 
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(Fig. 16 b). The advantage of this technique over FLPouts is that it simultaneously 

generates a mitotic recombinant clone. This can be used, for example, to generate a 

clone of homozygous mutant neurons that also express a membrane-associated 

GFP, thus marking the mutant axons; in fact, this technique can be used in all cases 

where one needs to mark homozygous mutant clones. Moreover, this technique can 

also be used to generate clones that are not only homozygous for a given mutation, 

but also simultaneously express any chosen UAS construct. 

 

 

Fig. 16: Restriction of the expression pattern with Gal80 and MARCM 

(a) In cells containing the GAL80 protein, GAL4-dependent expression of a UAS–gene (GFP) is 

repressed. By contrast, cells containing GAL4 but lacking GAL80 will express the UAS–gene (GFP). In 

this schematic, genes are denoted by colored boxes whereas proteins are denoted by colored ovals. 

(b) MARCM requires two FRT sites located at the same position on homologous chromosomes. GAL 
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80 is located distally to one of the FRT sites. The FLP recombinase is located anywhere in the 

genome. GAL4 is located anywhere in the genome except distally to the FRT site, on the FRT, GAL80 

recombinant chromosome arm. The UAS–marker is located anywhere in the genome except distal to 

the FRT site on the FRT, GAL80 recombinant chromosome arm. Optionally, there is a mutation distal 

to the FRT in trans but not on the FRT, GAL80 recombinant chromosome arm. Site-specific mitotic 

recombination at FRT sites (black arrowheads) gives rise to two daughter cells, each of which is 

homozygous for the chromosome arm distal to the FRT sites. Ubiquitous expression of GAL80 

represses GAL4-dependent expression of a UAS–marker (GFP) gene. Loss of GAL80 expression in 

homozygous mutant cells results in specific expression of GFP. Modified from Wu and Luo 2006. 

 

2.5.1.4 Calcium imaging using GECIs 

Optical methods have proved helpful in the analysis of the neuronal principles 

underlying visual motion processing in flies, which allows physiological investigation 

under in vivo conditions. Many aspects of dendritic processing in large-field motion-

sensitive neurons of Calliphora have been investigated by calcium imaging. The main 

advantage in Drosophila melanogaster compensating the tiny size of its neurons is 

the possibility to introduce genetically encoded Calcium indicators (GECIs), such as 

TN-XXL, via the Gal4/UAS system (Mank et al. 2008). One recently published 2-

Photon imaging study (Reiff et al. 2010) demonstrated how these indicators can be 

used to do functional studies in lamina monopolar neurons. In that study, L2 

terminals were expressing the genetically encoded Ca2+ TN-XXL. Visually evoked 

changes of intracellular Ca2+ in single neurons were recorded optically. The results 

revealed that Ca2+ in single terminals of L2 neurons in the medulla carried no 

information about the direction of motion. However, brightness decrements (light OFF) 

induced a strong increase in intracellular Ca2+ and whereas, brightness increments 

(light ON) induced only small changes, suggesting that half-wave rectification of the 

input signal occurs.  

Unraveling the function of neurons with that method is elegant, but utilizing the 

Gal4/UAS system is limited by the expression specificity of the Gal4 promoter. 

Especially LPTCs with their rich ramifications and overlapping areas are difficult to 

trace. In addition, there are no Gal4 lines, which express single cells in the lobula 

plate. The established expression pattern therefore needs to be refined by 

intersectional expression methods.  
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2.5.2 Single cell ablation using RicinA 

A powerful technique to dissect the motion-vision circuit is by ablating cells 

genetically, mechanically or with laser (Nässel et al. 1983; Bausenwein et al. 1986; 

Hausen and Wehrhahn 1989; Warzecha et al. 1992; Farrow et al. 2008, 2009). By 

selective ablation, the role of individual neurons within synaptic networks can be 

clarified as the function of a network strongly depends on the appropriate connectivity 

between its components. Regarding motion detection there are three steps of 

information flow at the level of LPTCs: the first is the integration of information at the 

dendritic ramifications, the second is the interchange of information between LPTCs 

and the last one is the axonal propagation of information to motor neurons. One way 

of unravelling the function of a single LPTC for motion detection is to monitor the 

optomotor response of a fly missing that specific neuron. Organic toxins are 

poisonous molecules, peptides, or proteins produced by living cells or organisms. 

They are capable of causing cell death on contact with or absorption by body tissues 

through the interaction with biological macromolecules, such as enzymes or cellular 

receptors. Here again, the genetic accessibility of Drosophila allows the integration of 

various toxins into the fly genome under the control of the Gal4/UAS system. 

Ricin is organically found in the castor bean (Ricinus communis). In nature, the 

protein is a heterodimeric glycoprotein consisting of an A-chain, which displays a 

ribosome-inactivating function connected by disulfide bond to a B-chain that is 

catalytically inactive but serves to mediate entry of the AB-protein complex into the 

cytosol. In order to display the cytotoxic function the disulfide bond must be 

reductively cleaved (Fig. 17). In vitro assays demonstrated that the concentration of 

approximately 5x10^-10 M is toxic to retinoblastoma cells (Merriam et al. 1984). 

Since 1992, RicinA is used as a genetically encoded toxin for targeted cell ablation in 

Drosophila (Moffat et al. 1992).  
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Fig. 17: Synthesis and function of RicinA. 

Ricin is cleaved to RicinA in the cell cytosol. Ricin is derived from the castor bean and consists of 2 

chains, A- and B chain which are connected by a disulfide bond (S-S). The B-chain is needed for 

cytosol entrance and binds to glycoproteins or glycolipids present at cell surface. Once bound, the 

Ricin-Glycoprotein-complex undergoes endocytosis and Clathrin-coating. The vesicle is transported to 

the Trans-Golgi network, where the coat is removed, and reaches the Endoplasmic Reticulum. There, 

the A chain dissociates from the B-chain via cleavage. The RicinA (A-chain alone) is the efficient toxin 

that blocks protein synthesis in the Endoplasmatic Reticulum by cleaving an adenine residue near the 

3’ end of 28S RNA in the 60S subunit in the eukaryotic ribosome that causes a failure in the binding of 

the elongation factor-2. Adapted from Cummings and Etzler 2009. 

 



IINNTTRROODDUUCCTTIIOONN  

PPAAGGEE  4444  

Under control of the UAS/Gal4 system, it is possible to express RicinA in specific 

tissues or subsets of cells. However, the transcription of RicinA occurred to be leaky, 

thereby causing unwanted depletion of cells (Kunes and Steller 1991). Different 

attempts have been made to control the expression pattern more reliably. 

Temperature-sensitive RicinA mutations were isolated and successfully used for 

temperature sensitive ablation. It has been hen the temperature shift is given and 

further, the toxin does not affect neighbored cells. In the following example, it is 

shown how effective RicinA can be used to ablate single photoreceptors in the eye of 

Drosophila melanogaster. Sevenless-Gal4 was used as driver line, which gives a 

specific expression pattern within R7 photoreceptors (Basler and Hafen 1989). The 

transgenic RicinA flies were temperature-sensitive and thus RicinA activity was 

induced though temperature shift. By doing so, R7 photoreceptors were completely 

ablated. This was additionally proven in EM sections. 

RicinA has been demonstrated to be a powerful toxin that can be used to ablate 

subsets of cells. However, for enabling a more directed ablation specific to single 

cells, another control mechanism for the expression is needed. In this thesis, I will 

use a transgenic fly line that possesses a FRT flanked Stop cassette upstream of the 

Ricin sequence. This allows regulating RicinA expression through Flipase activity. 

Here, heatshock-Flipase was used to adjust the temporal onset of Flipase 

transcription to a very small time frame during development and with that, RicinA is 

tunable to the developmental onset of LPTCs. 

2.5.3 Viral tracers shedding light on neuronal connectivity and circuits 

Knowing the physiological properties of LPTCs, the question occurs as to which 

neurons are providing input information to these neurons. Here, only a single electron 

microscope (EM) study has provided the evidence that T4 and T5 neurons might be 

presynatically connected to LPTCs (Strausfeld and Lee 1991). However, since 

specific driver lines have been missing there have not been further studies since then. 

In Drosophila melanogaster, the only way to prove unequivocally the synaptic 

connectivity between two neurons has been by EM-studies. Therefore, the aim was 

to look for an alternative and less time-consuming method. In the mammalian system, 

viruses have been used for tracing neuronal circuits and various genetic methods 

have been established to utilize characteristic properties. Use of viruses allows 
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numerous advantages including highly detailed and stable cell labeling properties, 

fast spreading throughout the cell and identification of transsynaptic connected 

neurons, etc. which have been demonstrated in numerous studies (Conzelmann 

1998; Ugolini 1995).  

2.5.4 Tracing neuronal circuits with the Rabies Virus 

The Rabies Virus belongs to the family of Rhabdoviridae and is a member of the 

lyssavirus genus. The virion has a distinct bullet shape with a helical nucleocapsid 

and envelope with about 400 large trimeric glycoprotein spikes on the surface. The 

sizes are approximately 75 nm in width and 180 nm in length. The single stranded, 

negative sense RNA is linear and encodes for five proteins in total: Nucleocapsis 

protein (N), Large protein (L), Phosphoprotein (P), Matrix protein (M) and 

Glycoprotein (G) (Fig. 18). The genome is tightly wrapped by around 1200 molecules 

of N proteins. In addition, this nucleoprotein complex is tightly associated with 

approximately 50 molecules of L proteins and 500 molecules of P proteins. The L 

and P proteins are part of the RNA polymerase complex, which transcribes the 

genomic RNA to a small leader RNA and 5 mRNAs. The M and the G proteins form 

the envelope of the virus and are supposed to determine host specificity. The 

reproduction cycle, which is common to all RNA viruses, takes place within the cell 

cytoplasm and is initiated by the fusion of the Rabies Virus envelope to the host cell 

membrane (adsorption). In this adsorption step, the G protein might recognize cell 

specific surface receptors (Fig. 19). The virus is taken up by endocytosis. The acid 

pH within the endosome allows the G protein to facilitate fusion of the virus 

membrane with that of the endosome. Because of the fusion, the nucleocapsid of the 

viron is released into cytoplasm of the host cell where genome replication of the viron 

takes place.  

Fig. 18 The structure of Rabies Virus. 

The bullet shell consists of spine-like 

Glycoproteins (G), Nucleocapsis proteins 

(N), Phosphoproteins (P), Large proteins (L) 

and Matrix proteins (M). They enwrap the 

genomic RNA which encodes 5 genes and 

package the transcribing ribonucleoprotein 

complex. Adapted from www.rabies.net 
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RNA replication is the process by which new copies of genome-length RNAs are 

created. It is carried out through the viral polymerase. The full length plus strand is 

coated with nucleocapsid protein and is copied into full length minus strand, which is 

also being coated with nucleocapsid protein. The envelope proteins are synthesized 

on ribosomes bound to the endoplasmic reticulum and modified at the Golgi body of 

the host cells. The viral RNA polymerase complex associates with the nucleocapsids 

when they are formed. Nucleocapsids bud out through modified areas of the 

membrane with G and M-proteins. The M-protein is involved in assembly: It interacts 

with patches of G proteins in the membrane and with nucleocapsids. After completing 

the entire assembling process within the host cell, the following offspring generation 

buds from the plasma membrane. The entire cycle takes only 1.5 hours post initial 

infection that makes the duration of reproduction extremely fast.  

 

Fig. 19: Reproduction cycle of the Rabies Virus 

The virus adsorbs to cell surface. Glycoprotein (G) is the attachment protein, which binds to a receptor 

on the host cell surface. The attached virus is taken up by endocytosis. The membrane of the virus 

fuses with the endosome membrane. As a result of fusion of the viral membrane with the endosome 

membrane, the nucleocapsid is released into cytoplasm. There, the RNP complex is activated and the 

genome is replicated. The viral protein assembles at the membrane surface where finally the new 

virus buds from the cell. Scheme adapted from ‘Trends in Molecular Medicine’. 

 

Rabies virions are transported in a retrograde fashion in infected cells (Wickersham 

et al. 2007) and in addition, they spread exclusively at synaptic connections. 

However, it is still speculative which of the five proteins encoded by the viral genome 
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defines these characteristics. Most probably, the G protein is involved in the 

retrograde transportation system as well as the presynaptic budding location. 

 

In the past decade, the ability to recover negative-strand RNA viruses entirely from 

cDNA has been established with which a detailed analysis of molecular genetics and 

biology of viruses was enabled. Furthermore, the replication machinery of RNA 

viruses allows heterologous sequences to be expressed from other species like 

enhanced GFP (EGFP) (Tamamaki et al. 2000; Tomioka and Rockland 2006). 

Therefore, the advantages of the viral system in terms of easy manipulation of 

constructs, high capacity for foreign sequences, genetically stable expression, and 

the possibility of adjusting expression levels have been made accessible 

(Conzelmann 1998). Since then, in various studies the Rabies Virus has been 

successfully used as trans-synaptic tracer that infects neurons through axon 

terminals and spreads between synaptically coupled neurons in an exclusive 

retrograde way (Ugolini 1995). 

Another major advantage of labeling cells by virus infection is the resulting high 

intensity of fluorescence in these cells that provides detailed information about their 

anatomical structures even without immunohistochemical amplification. 

Manipulations of the viral genome itself led to the production of a mutant virus in 

which the envelope G protein is deleted from the genome and replaced by the 

encoding sequence for EGFP (Fig. 20). These viruses are not able to infect cells due 

to the missing G-proteins that are needed for the adsorption step (Mabatsion et al. 

1996, Etessami et al. 2000). However, through growth in complementing host cells 

the G protein is incorporated into the viral particle’s membrane despite the lack of the 

coding sequence in its genome. The procedure whereby the viral envelope protein is 

exchanged is called pseudotyping and it allows G protein deletion viruses to infect 

contacted cells normally. However, the newly created progeny are trapped within the 

initial infected cells without the ability to synthesize the G protein themselves. The 

result is a high copy number of the viral core and EGFP within single cells allowing 

anatomical identification in living tissues (Wickersham et al. 2007). 
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Fig. 20: Replacement of the viral G-protein though EGFP in the genome. 

In the Rabies Virus deletion mutant SAD-dG-EGFP, the G protein open reading frame is replaced with 

that of EGFP. Light gray boxes show viral open reading frames, non-coding sequences are shown in 

gray and transcription signals are in black. Modified from Wickersham et al. 2007. 

 

A problem of the viral infection is the different rates through which tracers cross 

synapses due to individual cellular transportation mechanisms on which they depend. 

Therefore, stronger synapses will be crossed and spreading occurs from these 

presynaptic cells even before the virus can label weaker connected neurons. The 

consequences are an ambiguity in the number of crossed synapses and no 

distinction between direct connected weak connection and strong indirect ones. 

Wickersham and colleagues constructed a virus that can only cross one synaptic 

step from the initial infected cell population, allowing the labeling of unambiguous 

connected monosynaptic cells. These viruses are genetically constructed like G 

deletion viruses mentioned before in which the G protein encoding sequence is 

replaced by that of EGFP.  
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Fig. 21: Monosynaptic restriction of the viral infection through the EnvA/TVA system. 

(A-B) Here, the Rabies strain: St. Augustine Decline (SAD) is used. A two component system derived 

from the ASLV-A virus is used for specific targeting of the virus to the cells of interest. The G-protein 

deletion mutant virus in which the G-protein encoding sequence is replaced by EGFP sequence is 

pseudotyped with EnvA. These VSVdG-EGFPpt (EnvA) target only host cells which express the 

complementary TVA receptor which is achieved through transfection of the cells with a plasmid 

encoding for TVA. Co-transfection of the G-protein encoding plasmid allows the newly created viral 

progeny to spread normally (B). However, without the ability to produce the G-protein by themselves, 

these viruses are trapped within these cells and cannot spread further (D+E). Scheme modified from 

Wickersham et al. 2007. 

 

However, for a higher specification of host tropism these viruses were pseudotyped 

with EnvA. This protein is derived from ASLV-A virus (avian sarcoma and leukosis 

virus subgroup A) and it targets exquisitely the TVA receptor. Brain culture slices 

from the cortex of adult rats were co-transfected with plasmids encoding for dsRed 

and TVA, which labeled successfully transfected cells in red and form TVA receptors 

on their membrane surfaces. EnvA encoated viruses will only target TVA expressing 
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cells leading to a dual labeling of infected cells with dsRed and EGFP. By additionally 

providing the G protein in trans, the virus is enabled to spread once. With that, all 

direct presynaptic neurons are labeled by viral EGFP, allowing an unambiguous 

identification of initial infected cell population and presynaptic connected ones. 

 
Fig. 22 Neuronal recordings reveal specificity of viral spread. 

(A+F) Bright field images of the recorded region in the cortical slice. (C+H) Infected cells are labeled 

by viral EGFP and initiator cells are additionally marked in red through transfection with a ds-Red 

encoding plasmid (D+I). Merged images of green and red fluorescence channels are illustrated in 

B+G. In both cases, one can measure coincident responses between postsynaptic current injections 

and presynaptic recordings (E+J). This experiment proves the unambiguous monosynaptic spread to 

presynaptic cells. Modified from Wickersham et al. 2007. 

 

Another important aspect to using attenuated Lyssaviruses as neuronal tracers is 

their significantly lower cytotoxicity and infection efficiency compared to commonly 

used tracer viruses from other families. The viability of host cells was tested by 

electrophysiological recordings. Both primarily infected cell and the marked one 

respond to current injection revealing synaptic connectivity (Fig. 22). This study 

provided strong evidence that Rabies Viruses have been successfully used to 

unravel synaptic connectivity and with that neuronal circuits.  

 

The Rabies Virus has been demonstrated to be a powerful tool for anatomical 

identification of neuronal circuitries. However, viruses are specialized to specific host 
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species and infection has been only shown in mammalian species. No reports on its 

function in insect neurons have yet been published. 

 

2.5.5 Using Vesicular Stomatitis Virus for labeling neurons. 

The Vesicular Stomatitis Virus (VSV) belongs to the same family of Rhabdoviridae. 

Its genome is capable of accommodate an insert up to 4.5 kb. The VSV G-protein is 

affected by many different cell types including neuronal and glia cells. In contrast to 

Rabies Virus, it has been reported that within infected cells VSVs spread primarily 

through diffusion but also via directed anterograde and retrograde transport. Genetic 

manipulation of the VSV genome has opened up a wide range of possibilities, e.g. 

observing neuronal structure and tracing neuronal development and circuits (Van den 

Pol et al. 2009). However, the major advantage of the VSV is its broad host tropism: 

Infections of rats, mice, swines and flies have already been reported (Howerth et al. 

1997; Schnitzlein and Reichmann 1985; Llewellyn et al. 2002; Van den Pol et al. 

2009). In addition, the virus particles are small enough to be transported into 

submicron structures like dendritic spines supporting detailed anatomical studies. 

Time-lapse studies have revealed how effectively these viruses spread among cells 

without changing the cell structure or its vitality. With that, it is possible not only to 

take a closer look at anatomical features of neurons but also to trace neuronal 

circuits if the virus can be restricted to propagating only through cell-specific 

transportation systems.  

Here, the functional combination of components from different viruses of the 

Rhabdoviridae family could create a new virus that combines the ability of VSV to 

infect insect neurons with the advantages of Rabies Virus like retrograde 

transportation and transsynaptic spread. 

 



MMAATTEERRIIAALLSS  

 

PPAAGGEE  5522  

3 Materials 

3.1 Buffers, solutions and media 

 

Name Recipe 

Flyfood 

5 l   H2O 

28 g   agar 

110 g   treacle 

400 g   malcine 

400 g   corn flour 

50 g   soy flour 

90 g   dry yeast 

31.5 ml  nipagin 

Injection Buffer pH 6.8 10x 

0.2 ml  0.5 M NaPi 

5 ml              1M KCl 

94.8 ml  H2O 

sterile filtration of 1x solutions 

TAE Buffer 50x 

(Tris-Acetate-EDTA) 

242 g   Tris base 

57.1 ml  glacial acetic acid 

100 ml  0.5 M EDTA 

add ddH2O to 1 l and adjust pH to 8.5 

TE Buffer 1x 

(Tris EDTA) 

10 mM  Tris-Cl (pH 7.5) 

1 mM   EDTA (pH 8) 

autoclave solution 

PBS 10x 

(Phosphate Buffered Saline) 

1.37 M  NaCl 

27 mM  KCl 

43 mM  Na2HPO4 

14.7 mM  KH2PO4 

PBT 10x 
1 l   PBS 10x 

5 ml   100 % Triton X-100 

Lysis Buffer for Western Blot 
250 mM Tris-HCl  

2%  SDS  
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Standard brain culture medium 

1 %   penicillin (10 000 U/ml) 

1 %   streptomycin (10 mg/ml)  

10 %   Foetal Bovine Serum  

10 µg/ml insulin  

mixed into the Schneider’s Drosophila Medium  

 

3.2 Flystocks 

 

Stockname 
Chromosome 

Location(s) 
Source 

DB331-Gal4  1 Reinhardt Stocker 

G73-Gal4 (NP282) 3 Kei Ito 

Bl/CyO; UAS-Dscam 1.30.30.1 

Bl/CyO; UAS-Dscam 7.27.25.1 

Bl/CyO; UAS-Dscam 2.9.19.2 

Bl/CyO; UAS-Dscam 1.34.30.2, Dscam 

1.6..19.2 

Bl/CyO; UAS-Dscam 7.19.2 

Bl/CyO; UAS-Dscam 11.31.25.1 

Dscam^23 

Dscam^21/CyOGB; Exon^2-FRT 

Dscam^21/CyO; Exon^6-FRT 

FRT40A, Dscam^21/CyO 

FRT42D, UAS-Dscam^21/CyO 

FRT42D, tubGal80/CyO 

2,3 Dietmar Schmucker 

UAS-mCD8::GFP  2 Liqun Luo 

UAS-cytoGFP   3 Liqun Luo 

UAS-FRT40A  2 
Bloomington Stock 

Center 

UAS-hs-Flp  1 Liqun Luo 

UAS>Stop>RicinA  2 Liqun Luo 

UAS-synaptotagmineHA  1 Andreas Prokop 
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UAS-synaptobrevine mRed  1 Shamprasad Raghu 

UAS-tubGal80ts  3 Ron Davis 

UAS-hsFlp,  

UAS-mCD8::GFP;UAS-tubp-

Gal80,FRT40A/CyO 

2,3 
Bloomington Stock 

Center 

GR27B03-Gal4 3 Gerald Rubin 

GR42H07 

GRR35F02 

GR54A03 

3 Gerald Rubin 

Dscam RNAi 3115 

25622 

25623 

36233  

108835 

2 
Vienna Drosophila RNAi 

Center (VDRC) 

Dcr2 2 
Vienna Drosophila RNAi 

Center (VDRC) 

 

3.3 Consumables 

 

Consumables Cat.number Source 

Falcon Petri dishes 351008 
Becton Dickinson 

Biosciences 

Primaria Cell culture dish 353801 
Becton Dickinson 

Biosciences 

14 ml Polypropylene 

Round-Bottom Tube 
352051 

Becton Dickinson 

Biosciences 

Blaugel 9351.1 Carl-Roth GmbH 

Silica Gel Orange T199.1 Carl-Roth GmbH 

1,5 ml / 2 ml Tubes 0030 125.150 Eppendorf AG 

PCR tubes 0030 125.215 Eppendorf AG 

Femtotips 5242 957.000 Eppendorf AG 

Microloader 5242 956.003 Eppendorf AG 
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Fast Digest Enzymes  Fermentas GmbH 

FastAP/SAP 
EF0651  

EF0511 
Fermentas GmbH 

T4 DNA ligase EL0011 Fermentas GmbH 

Inoculation loop 146051 Greiner Bio-One  

Gateway recombination 

enzymes 

BP: 11789013 

LR: 11791019 
Invitrogen GmbH 

Propidium iodide P1304MP Invitrogen (P1304MP) 

pDonR221 12536017 Invitrogen 

Voltalef 10S 9036-80-0 Labscientific 

Primers synthesis  Metabion / MWG 

Restriction Enzymes  New England Biolabs 

Wizard SV Gel and PCR 

Clean-Up 
A9281 Promega GmbH 

Triton-X 100 X100 Sigma Aldrich Co. 

Micropistill 211-2100 VWR International GmbH 

pUAST-Destination  VDRC 

Neurobiotin SP-1120 Vector Labs 

 

3.4 Antibodies  

 

Antibody Cat. Dilution factor Source 

α-Dlg (mouse) 4F3 anti-discs 

large 

1:200 Hybridoma Bank 

α-DscamIC 357 

(rabbit) 

gift 1:200 + 4% NGS Dietmar Schmucker 

α-mCD8 (rat) RM2200 1:200 Invitrogen/Caltag 

α-bungarotoxin, 

Alexa Fluor® 647 

conjugate 

B35450 1:200 + 4% NGS Molecular Probes 

Alexa Fluor 488 

goat anti-rat-IgG 

A11006 1:200 Molecular Probes 
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Alexa Fluor 568 

goat anti-rabbit-IgG 

A11011 1:200 Molecular Probes 

Alexa Fluor 594 

goat anti-mouse-

IgG 

A11005 1:200 Molecular Probes 

Anti-GFP, rabbit IgG 

fraction, Alexa Fluor 

488 conjugate  

A-21311 1:200 Molecular Probes 

Normal Goat Serum G9023 4% Sigma Aldrich 

 

3.5 Electronic equipment 

 

Electronic equipment Model 

Confocal microscope Confocal Leica NT 

Confocal Leica SP2 

Confocal Leica SP2-UV 

Fluorescence Microscope (FL) Leica M205 FA 

Bright light appliance for (FL) Schott FOSTEC LLC 

UV light appliance for (FL) Ebq 100 

Binocular Microscope Leica MZ6 

Leica MZ9 

Waterbath Thermo Haake DC10 

Table Centrifuge  Eppendorf Centrifuge 5415 D 

Thermoshaker peQ-Lab TS100 

Photometer Eppendorf Biophotometer Plus 

PCR cycler DNA Engine DYAD 

DNA injector Eppendorf Femtojet 

Vortexer  Scientific industries Vortex Genie-2 

Gel Doc  BioRad GelDoc2000 

Incubator Binder 
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3.6 Primerlist 

 

Primer Sequence Comments 

 

Project: UAS>Stop>TNXXL 

 

JS1 GTG AGC AAG GGC GAG GAG CT forward primer pcDNA3-TNXXL 

JS2 CTT AGT CCT CGA TGT TGT GGC reverse primer pcDNA3-TNXXL 

JS3  GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GT 

attB2 sequence 

JS4 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTC TTA GTC CTC GAT 

GTT GTG GC 

reverse primer pcDNA3-TNXXL 

with attB2 site 

JS5 GTG AGC AAG GGC GAG GAG ATG 

GTG AGC AAG GGC GAG GAG CT 

overlap Primer 5'Stop with 

3'TNXXL 

JS6 CTC CTC GCC CTT GCT CAC reverse primer pUAST-Stop-

YC3.6 

JS7 AGC TCC TCG CCC TTG CTC ACC 

ATC TCC TCG CCC TTG CTC AC 

overlap Primer 3'Stop with 

5'TNXXL 

JS8 GGT ACC CGG GGA TCT TGA AG forward primer pUAST-Stop-

YC3.6 

JS9 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CGG TAC CCG GGG 

ATC TTG AAG 

forward primer pUAST-Stop-

YC3.6 with attB1 site 

JS10 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CT 

attB1 Sequenz  

JS11 GTG AGC AAG GGC GAG GAG GCC 

GCC ACC ATG GTG AGC 

replacement for JS5 

JS12 GCT CAC CAT GGT GGC GGC  CTC 

CTC GCC CTT GCT CAC 

replacement for JS7 

JS13 CCG TGC GGC CGC CCT CCT CGC 

CCT TGC TCA C 

NotI Schnittstelle JS7 
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JS14 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTG CCA GTG TGA TGG 

ATA TCT GCA G 

TNXXL reverse primer new in 

backbone with attB2 JS4 

JS15 CCA AGC TTG GTA CCG AGC TCG 

G 

TNXXL forward without attB site 

JS16 ACA TCG GAG AAT CTG GTA CCC 

GGG GAT CTT GAA G 

 

JS17 ATC GGA GAT CTC TCC TCG CCC 

TTG CTC AC 

 

JS18 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTG CGG CCG CCT CCT 

CGC CCT TGC TCA C 

attB2-Not-Stop Primer 

JS19 TAT CTA GCG GCC GCC GCC TCC 

TCG CCC TTG CTC AC 

 

 

Project: pCasper-lexA 

 

JS20 ACA TCG GGG TAC CCC AGT CTT 

AAG CTC GGG CCC C 

forward Primer: 

KpnI_ccd_Chloramp_attP2_KpnI 

(gateway) 

JS21 TGC CAT CCA GCT GAT ATC CCC 

TAG GTA CCG ATG T 

reverse Primer: 

KpnI_ccd_Chloramp_attP2_KpnI 

(gateway) 

Js22 ACA TCG GGG ATC CCC AGT CTT 

AAG CTC GGG CCC C 

forward primer: 

BamHI_ccd_Chloramp_attP2_Ba

mHI (gateway) 

JS23 TGC CAT CCA GCT GAT ATC CCC 

TAG GAT CCG ATG T 

reverse primer: 

BamHI_ccd_Chloramp_attP2_Ba

mHI (gateway) 

JS24 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CGA CGG AAT TCC 

TTG CTG SCT GC 

forward Primer_gateway_NP282 

with attB1 

JS25 GGG GAC CAC TTT GTA CAA GAA reverse Primer_gateway_NP282 
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AGC TGG GTT TTC CTC GCC GGG 

CGA ACG 

with attB2 

JS26 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CTA GCT TGA GTG 

CCA GCG AAG CAC 

forward primer_gateway_NP1049 

with attB1 

JS27 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTT CTT CAC CAC TGA 

ATT GGA ATC TG 

 

reverse primer_gateway_NP1049 

with attB2 

JS28 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CGT TTC TGC AAC 

GAC TTT GTA CCT AAA 

forward primer_gateway_NP1195 

with attB1 

JS29 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTG AGG TGG CAA CGC 

CGC TGC 

reverse primer_gateway_NP1195 

with attB2 

 

Project: UAS-Bungarotoxin and UAS-Conotoxin 

 

pFU-ppV-aBtx-GPI 

JS30 GGT ACC GGT ATG TCT GCA CTT 

CTG ATC 

forward primer 

JS31 ATC GAA TTC TTA CAG CAA GCT 

CCA GAA GG 

reverse primer 

JS32 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CGG TAC CGG TAT 

GTC TGC ACT TCT GAT C 

forward primer with attB1 

JS33 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTA TCG AAT TCT TAC 

AGC AAG CTC CAG AAG G 

reverse primer with attB2 

 

pFU-PE 
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JS34 GGT ACC GGT ATG TCT GCA CTT 

CTG AT 

forward primer 

JS35 GAA TTC TTA CTT GTA CAG CTC 

GTC C 

reverse primer 

JS36 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CGG TAC CGG TAT 

GTC TGC ACT TCT GAT 

forward primer with attB1 

JS37 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTG AAT TCT TAC TTG 

TAC AGC TCG TCC 

reverse primer with attB2 

 

pFU-GIDs-PE 

JS38 ACC ATG TCT GCA CTT CTG ATC 

CTA 

forward primer 

JS39 GGC CGC TTT ACT TGT ACA GCT 

CG 

reverse primer 

JS40 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CAC CAT GTC TGC 

ACT TCT GAT CCT A 

forward primer with attB1 

JS41 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTG GCC GCT TTA CTT 

GTA CAG CTC G 

reverse primer with attB2 

JS42 ACA TCG GGG TAC CAA TCG ATT 

TCA ATG TCA ATG TGG AAC G 

forward primer KpnI 

JS43 ACA TCG GGA GCT CGT TTG ATG 

CTG GCT ACT AAC GGC 

reverse primer  

JS44 ACA TCG GCC GCG GGT TTG ATG 

CTG GCT ACT AAC GGC 

new reverse primer SacII 

JS45 CTA GCA AAA TAG GCT GTC CC forward primer for sequencing 

JS46 ACT AAT TGA GAT GCA GAT CGC 

A 

reverse primer for sequencing 
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JS47 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTA ATC GAT TTC AAT 

GTC AAT GTG GAA CG 

forward primer vGat for gateway 

with attB1 

JS48 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTG TTT GAT GCT GGC 

TAC TAA CGG C 

reverse primer vGat for gateway 

with attB2 

JS49 ACA TAC ATA CTA GAA TTC GGT 

AC 

pChs sequencing forward primer  

JS50 GAT CCA CTA GTG GCC TAT GCG 

G 

pChs sequencing reverse primer  

JS51 ACA TCG GGG TAC CTC TCG AGT 

TCC AGT TTG TGT CTC TC 

forward primer vGat 4kb with 

KpnI 

JS52 ACA TCG GGG TAC CTA ATC GAT 

TTC AAT GTC AAT GT 

forward primer vGat 3kb with 

KpnI 

JS53 ACA TCG GCC GCG GTA CGA GTA 

TAT TAT ACA TATCC 

reverse primer vGat 3kb with 

SacII 

JS54 ACA TCG GGG TAC CTA ATC GAT 

TTC AAT GTC AAT GT 

forward primer vGat 6kb with 

KpnI 

JS55 ACA TCG GCC GCG GAA TCT TAA 

GCC TGA GGG AGA A 

reverse primer vGat 6kb with 

SacII 

 

Project: Virus TVA and G-Protein 

 

JS56 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CAT GGC GCG 

GCT GCT GCC CGC GCT 

TVA forward primer attB1 

 

JS57 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTT TAC AGG AAC 

AGG TGG TGG CGG 

TVA reverse primer attB2 

 

JS58 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CAT GAA TAT ACC 

TTG CTT TGC TGT  

Mokola-G primer attB1 
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JS59 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTT CAA GTA CCT 

GGG AGC CCT TTA 

Mokola-G primer attB2 

 

JS60 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CAT GAA GTG CCT 

TTT GTA CTT AGC 

VSV-G primer attB1 

 

JS61 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTT TAC TTT CCA AGT 

CGG TTC ATC 

VSV-G primer attB2 

 

JS62 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CAT GTT ACT CTC 

TAC CGC CAT ATT 

BH-G primer attB1 

 

JS63 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTT TAT GAC TCA CCA 

GTG GCC CCC 

BH-G primer attB2 

 

JS64 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CAT GGT TCC TCA 

GGC TCT CCT GTT 

SAD-G primer attB1 

 

JS65 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTT TAC AGT CTG GTC 

TCA CCC CCA 

SAD-G primer attB2 

 

JS66 GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CTT CAT GGT TCC TCA 

GGT TCT TTT GTT TGT A 

CVS-G primer attB1 

 

JS67 GGG GAC CAC TTT GTA CAA GAA 

AGC TGG GTT TAC AGT CTG ATC 

TCA CCT CCA CTC TT 

CVS-G primer attB2 

 

 

Degenerative PCR 

 

JS68 GCA GAA GCT TTG CGT ACT CGC T1BUAS 

JS69 ATT CAA ACC CCA CGG ACA TG T2D 

JS30 WGT GNA GWA NCA NAG A AD3 
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JS31 

 

AAT CAT ATC GCT GTC TCA CTC 

A 

T2En 
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4 Methods 

4.1 Molecular Biology 

4.1.1 Plasmid DNA Extraction 

For plasmid isolation and purification of DNA for subsequent cloning procedures, an 

extraction kit (Plasmid Mini Kit from QIAGEN) was used. From each transformation 

plate, a single colony was picked with sterile inoculation loop (Greiner Bio One) and 

transferred to a 14ml polypropylene round-bottom tube (Falcon) containing 4 ml LB 

medium with the appropriate selective antibiotic. This primary cell medium was 

incubated for approximately 8 h at 37°C with vigoro us shaking (approx. 300 rpm). 

Bacterial cells were harvested by centrifugation at 6000 x g for 15 min with an 

Eppendorf table centrifuge. Therefore, the medium was transferred to 2ml Eppendorf 

tubes and twice spun down. The bacterial pellet was resuspended in 0.25 ml of 

Buffer P1 by vortexing them vigorously for several minutes. Afterwards 0.25 ml of 

Buffer P2 was added and mixed thoroughly by inverting the tube 4–6 times. The 

lysate should appear viscous addition of Buffer P2. Mixing should result in a 

homogeneously colored suspension. In the next step 0.35 ml of N3 was added and 

mixed immediately and thoroughly by vigorously inverting 4–6. After addition of Buffer 

N3, a fluffy white material formed and the lysate became less viscous (“The 

precipitated material contains genomic DNA, proteins, cell debris, and KDS”). The 

suspension should be mixed until all trace of blue had gone and the suspension was 

colorless. The final mixture was centrifuged at maximum speed in a microcentrifuge 

for 10 min. The supernatant containing plasmid DNA was transferred to a column 

with filter and spun down for 1minute. The solution in the column was discarded and 

the DNA within the filter washed by applying 0.5ml PE buffer. The buffer was again 

centrifuged for 1minute and afterwards discarded. After washing step, the emptied 

column with filter was centrifuged for another 1minute in order to remove remaining 

ethanol. For eluting, the DNA 50µl prewarmed (65°C) EB buffer or DNAse free H2O 

was dropped onto the center of the filter and incubated for 5minutes. At the end the 

filter was put into a 1.5ml Eppendorf tube and centrifuged for 1minute at maximum 

rpm. The final concentration of the DNA should be around 500ng/µl. 
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4.1.2 Polymerase Chain Reaction (PCR) 

This method was originally developed by Kary Mullis and allows the amplification of a 

distinct strand of DNA. Therefore, a thermo-stable variant of polymerase is used. 

Depending on the chosen polymerase the speed and amplification accuracy varies. 

In this thesis for all PCRs the “iProof High Fidelity Master Mix” (BioRad) was used. 

This high-fidelity DNA polymerase offered an extreme enhanced performance rate for 

all PCR applications by comprising a unique Pyrococcus-like proofreading enzyme 

fused to a dsDNA binding protein, Sso7d. This results in a thermostable polymerase 

that accurately amplifies long products from a variety of DNA templates. The “iProof 

High Fidelity Master Mix” has already polymerase, nucleotides, included in an 

optimized reaction buffer. Therefore, no further PCR components need to be added. 

For each 50µl reaction volume, 1µl of DNA template was given to 25µl of 2x Master 

Mix and filled up with DNAse and RNAse free water. The following setting adjusted to 

the length of PCR product was used in this thesis: 

 

Step Degree (°C) Time (min/sec) 

Denaturation 98 1’30’’ 

Annealing 98 30’’ 

Elongation Primer Tm Length of product 

End 70 1’ 

Cycle From Annealing till End  40x 

Termination 70 10’ 

Storage 4 forever 

 

4.1.3 Restriction of DNA vector backbone and insert 

Restriction sites are short (~6bp) DNA palindomic sequences which can be 

recognized by specific restriction endonucleases. These enzymes break the double 

stranded DNA sequence at those sites hence usually a single stranded end (sticky 

end) is left over; In some cases blunt ends, in which both DNA strands are evenly cut, 

do also occur. Restriction of the DNA is performed for preparing the vector backbone 

or PCR product for subsequent cloning procedures or for analyzing the correct 

introduction of an insert after ligation into a given vector. Control digestion was made 
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with a sample of 1-2µl of DNA (100-200ng). For nearly all DNA restriction-procedures, 

“Fast Digest enzymes” from Fermentas were used and proceeded after following 

protocol:  

 

2-5µg DNA 

10U restriction enzyme 

8µl 10xbuffer 

Add H2O to a total volume of 80µl 

Incubate 1hour at 37°C 

 

4.1.4 Preparation of DNA for ligation 

After treatment with restriction enzymes, vector backbones were treated with 

CIP/CIAP or SAP (Fermentas) for 3hours in order to dephosphorylate the endings. 

Neither digestion enzymes nor dephosphorylation enzyme were heat inactivated. 

Purification of the digestion product was done through gel electrophoresis. 

Appropriate DNA strand was identified under UV light and excised out of the gel.  

4.1.5 Vector backbone purification 

In order to discriminate cut from uncut vector, digested DNA was analyzed via gel 

electrophoresis. Cut vectors were identified under UV light and excised out of the gel. 

With “Wizard SV Gel and PCR Clean-Up System” (Promega) the DNA was extracted 

out of the gel and restriction enzymes removed. Therefore, the gel slice was put into 

a 2ml Eppendorf tube and 10µl Membrane Binding Solution per 10mg of gel slice 

was added into the tube. For PCR purification, the same volume of Membrane Wash 

Solution was added to the PCR product, respectively. The gel slice was incubated 

50–65°C until gel slice was completely dissolved. F or each DNA sample, one SV 

Minicolumn was inserted into a Collection Tube. Dissolved gel mixture or prepared 

PCR product was transferred to the Minicolumn assembly and incubated at room 

temperature for 1 minute. Then the Minicolumn was centrifuged at 16,000 × g for 1 

minute. The flow through was discarded and Minicolumn reinserted into Collection 

Tube. 700µl Membrane Wash Solution (ethanol added) was added onto the column 

and centrifuged at 16,000 × g for 1 minute. Again flow through was discarded and 
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Minicolumn reinserted into Collection Tube. The washing step was repeated with 

500µl Membrane Wash Solution and centrifugation at 16,000 × g for 5 minutes. The 

Collection Tube was emptied and the column-assembly re-centrifuged for 1 minute 

with the microcentrifuge lid open (or off) to allow evaporation of any residual ethanol. 

The Minicolumn was transferred to a clean 1.5ml microcentrifuge tube and adding 

50µl of Nuclease-Free Water to the Minicolumn. At room temperature, the water was 

inoculated for 5 minute. For elution of the DNA the assembly was centrifuged for 

1minute at 16,000 x g. Minicolumn was discarded and the DNA was stored at 4°C or 

–20°C. 

 

4.1.6 Insert purification 

Insertion products were accordingly digested with same enzymes as the vector was 

treated and remaining nucleotides and primers removed though inoculation with 

ExoSAP-IT (USB). The advantage ExoSAP-IT is the possibility to remove unused 

primers and nucleotides with absolutely no sample loss and therefore, ideal for small 

sample volumes. This reaction is an alternative to the common gel purification 

procedure. It was used for all PCR products, which were used later on for gateway 

cloning. ExoSAP-IT was directly given to the PCR products and incubated in 

commonly used PCR buffers.  

 

5µl PCR product  

2µl ExoSAP-IT  

Incubate 15minutes at 37°C  

Incubate 15minutes at 80°C for inactivation.   

  

4.1.7 Ligation 

A perquisite way to introduce DNA fragments into a vector backbone is to put 

restriction sites at each end of the desired insert. Treatment of DNA components, 

vector and insert with the same set of restriction enzymes enable a directed 

introduction of the insert into the vector backbone. The molar ratio of vector to insert 
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should be 1:3 or 1:5. The concentrations were determined prior via DNA photometer 

and ligation performed after following protocol: 

 

5µg PCR product 

1µg of plasmid DNA  

0.5µl of T4DNA ligase (Fermentas)  

1µl of 10xbuffer 

H2O was added to a total reaction volume of 20µl 

Incubation at 16°C overnight 

 

4.1.8 Gateway Cloning System 

The gateway cloning system offers a great alternative to commonly ligation systems 

for cloning DNA fragments into appropriate expression vectors. This cloning system 

is based on “Bacteriophage lambda att site recombination”. In bacteria, there is a 

stretch of DNA called attB, (B stands for bacteria), and in the phage there is a stretch 

of DNA called attP (P stands for phage). When the phage infects a bacterium, the 

injected lambda DNA recombines with the corresponding bacterial DNA via the att 

sites in the presence of integration-specific enzymes. When an attB site recombines 

with an attP site, the outcome is integration of the phage DNA into the bacterial 

genome. Once integrated, the hybrid recombination sites are called attL and attR (L 

stands for left, R stands for right). These recombination reactions (“LR” and “BP”) are 

the basis of the Gateway® Cloning System. The attB × attP reaction is mediated by 

Gateway® BP Clonase™ II enzyme mix; the attL × attR reaction is mediated by 

Gateway® LR Clonase™ II enzyme mix. ccdB is the F plasmid-encoded gene that 

inhibits growth of E. coli. 

 

BP-reaction 

 

1-7 µl of attB-PCR product (15-150 ng) 

1 µl pDonor 221 vector (150 ng/µl)  

TE buffer, pH 8.0 was added to a total volume of 8 µl  

2 µl of BP Clonase™ II enzyme was added and mixed by brief vortexing  
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Incubation at room temperature overnight 

1 µl of the Proteinase K solution was added to each sample  

10minutes incubation at 37°C the reaction for termi nating the reaction 

 

2 µl of the final mixture was taken for transformation and 50 µl of transfected cells 

were spread onto LB agarose plates containing Kanamycin. 

 

LR reaction  

 

For the LR reaction the same procedure was performed. Instead of attB-PCR product, 

1-7 µl of the Entry clone was taken and 2 µl LR Clonase- II enzyme mix for each 

reaction. In this step, incubation period was always overnight. Here again, 2 µl of the 

final mixture was taken for transformation of chemical competent cells and finally, 50 

µl of the transfected cells were spread onto LB agarose plates containing Ampicillin. 

 

4.1.9 Transformation of chemical competent E.coli strains 

For transformation an aliquot (50µl, stored at -80°C) of chemical competent cells (e.g. 

DH5α from Invitrogen) was thawed on ice for 15minutes. 150ng Plasmid DNA or 3µl 

of ligation product per 50µl cells was set for transformation and therefore inoculated 

within the cells on ice for another 30 minutes. Afterwards the mixture was given 

heatshock at 42°C for 30 seconds and chilled on ice  for 1,5minutes. The cells were 

incubated in 250µl of prewarmed S.O.C medium or LB medium for 1hour, at 37°C in 

a thermoshaker, with 300rpm. 20µl of that suspension was plated onto an agar plate 

containing the appropriate selective antibiotic. These plates were incubated overnight 

in 37°C incubator. 

 

4.1.10 Rapid small-scale isolation of Drosophila DNA 

With the following protocol it was possible to isolate small-scale DNA samples in a 

high quality, i.e. very pure and highly concentrated (>1µg/µl) from adult flies; but can 

be used equally well to extract DNA from other developmental stages. DNA prepared 
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accordingly to that method and used in this thesis primarily for isolation of promoter 

regions and location of P-element insertions within transgenic flies.  

Therefore, flies were first anesthetized with CO2. Around 1-20 flies were put in an 

Eppendorf tube and kept on ice until next step. Solution A which contained 0.1 M 

Tris-HCl, pH 9.0; 0.1 M EDTA; 1% SDS and 0.5-1% DEPC (added directly before use) 

were added into the tube and homogenize a sterile micro pistil (VWR). 100 µl of 

solution A was used for extracting DNA from 1-5 flies, 200 µl for 6-10 flies and 500 µl 

for up to 50 flies. The mixture was then incubated for 20-30 minutes at 70°C. 

Afterwards, 14 µl of 8 M potassium acetate was added for each 100 µl homogenate 

and left on ice for 30 minutes. For DNA extraction 100 µl Phenol-Chloroform (1:3) 

mixture was added, briefly vortexed and spun 10’ at RT. The supernatant containing 

DNA was moved to a new tube. Precipitation of DNA was done by adding 0.5 

volumes of isopropanol at and spun for 5 minutes at RT. The pellet was washed 

carefully with 70% EtOH, respun, dried and redissolved in 10 (1 fly) to 100 (50 flies) 

µl DNAse free H2O. 

 

4.1.11 Degenerative PCR 

The degenerative PCR enables to determine the exact insertion site of the P-element 

in the genome of transgenic Drosophilas. This method was derived from the so called 

“nested PCR”. Here, three different primers with specific binding properties are 

needed for distinguishing the chromosomal location. In the first PCR, one primer has 

to bind inside of the UAS or Gal4 vector (T1BUAS or T1BGal4). The second one is 

degenerated (AD3) this means binds at several positions within the genome. The 

second PCR does base on the PCR product of the first one. Here, the first primer is 

exchanged by another one (T2D) that binds more specifically in the primed out 

regions. Both primers, T1BUAS and T2D, are sitting within the 3’P-element site but 

not within the terminal repeat in the 5’ site whereas the T1BUAS primer is sitting with 

its final 8nts in the 3’ Pelement site thus the rest of the primer is vector specific since 

T2D is located within the 3’P. Therefore, T2D can be used with any P element. The 

2nd PCR is usually checked on gel and subjected to EXOSAP-IT. Primer stock 

concentration is 10 pmol/µl (= 10 µM). The 3rd PCR with the T2Den Primer is only 

used if the concentrations after the 2nd PCR are too low. 
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In the 1st PCR T1BUAS and AD3 primer were used. The PCR reagent contained: 

0.4 µl T1BUAS/T1BGal4 

8µl AD3 

1 µl DNA template (150ng) 

10 µl iProof Master Mix 

Add H2O to a total volume of 20 µl 

 

In the 2nd PCR T2D and the same AD3 primer that had been used for 1st PCR. The 

PCR reagent contained:  

0.4 µl T2D 

4µl AD3 

1 µl DNA from 1st PCR diluted 1:50 

10 µl iProof Master Mix 

Add H2O to a total volume of 20 µl 

 

Degenerative PCR protocol: 

 

PCR1 

    

1 Incubate  93°C 1min 

2 Incubate  95°C 1min 

3 Incubate  94°C 1min 

4 Incubate  62°C 1min 

5 Incubate  72°C 2min30sec 

6 Cycle to step3 for 4more times 

7 Incubate  94°C 1min 

8 Incubate  25°C 3min 

9 Incubate  72°C 2min30sec 

 Ramp to 72°C at 0.2°C per sec. 

10 Incubate  94°C 30sec 

11 Incubate  68°C 1min 

12 Incubate  72°C 2min30sec 



MMEETTHHOODDSS  

PPAAGGEE  7722  

13 Incubate  94°C 30sec 

14 Incubate  68°C 1min 

15 Incubate  72°C 2min30sec 

16 Incubate  94°C 30sec 

17 Incubate  44°C 1min 

18 Incubate  72°C 2min30sec 

19 Cycle to step10 for 14 more times 

20 Incubate  72°C 5min 

21 Incubate  4°C forever 

 

PCR2 

1 Incubate 95°C 1min30sec 

2 Incubate 94°C 30sec 

3 Incubate 64°C 1min 

4 Incubate 72°C 2min30sec 

5 Incubate 94°C 30sec 

6 Incubate 64°C 1min 

7 Incubate 72°C 2min30sec 

8 Incubate 94°C 30sec 

9 Incubate 44°C 1min 

10 Incubate 72°C 2min30sec 

11 Cycle to step 2 for 11 more times 

12 Incubate 72°C 5min 

13 Incubate 4°C Forever 

 

PCR3 

1 Incubate  94°C 30sec 

2 Incubate 44°C 1min 

3 Incubate 73°C 2min30sec 

4 Cycle to step 1 for 30 more times  

5 Incubate 72°C 5min 

6 Incubate 4°C forever 
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4.2 Transgenic flies 

4.2.1 Flyfood 

Flies were raised on standard corn meal medium supplemented with dry yeast. Soy, 

corn and dry yeast were mixed in one liter of cold water. Agar was oaked before 

adding another liter of cold water. Three liters were heated to 98 °C and the agar was 

added. After one hour of heating, malcine and treacle the mash were mixed with the 

boiling water. The solution was then filled up to five liters and cooled down to 65 °C. 

Propionic acid was added. The food was filled into plastic vials.  

Breeding Fly stocks were kept at 18 °C and transfer ed to fresh vials every 14 days. 

Experimental flies and crosses were kept at 25 °C a nd were flipped every week. All 

flies were kept at 70 % relative humidity at a 12 hour light/dark cycle. One 

development cycle (from egg to adult) takes approximately seven days at 29 °C, nine 

days at 25 °C, eleven days at 22 °C, or 19 days at 18 °C (source: Bloomington stock 

center). In our incubators this was somewhat slowed down to 11 days at 25 °C.  

 

4.2.2 Egglaying medium 

Grapeagar dishes were prepared for flies to lay eggs on 200 ml red grape juice (Rio 

D`Oro, Aldi) were warmed up in the microwave for 2 minutes and mixed with 3 g 

Select Agar. After reheating, the solution was poured into petri dishes. Fresh plates 

were prepared on day of injection. After removing all eggs from a plate it was reused. 

 

4.2.3 Generating transgenic flies 

For preparing the DNA injection mix 6µg of DNA and 2µg of transposase, ∆2-3, were 

diluted in 100µl DNAse and RNAse free water and gently mixed by turning the tube 

2-3 times. For precipitation 1/10   Volumen 3M Na-Acetat pH 5, 2µl pellet paint for 

marking the DNA and 2.5x Volumen  100% EtOH  were added and incubated on ice 

for 15min. Afterwards the mixture was spun down at 15000rpm, 15min, 40C. The 

supernatant was removed and afterwards the DNA was washed one time with 70% 

EtOH and once more with 100% EtOH. The DNA pellet was dried on air for >15min. 

The DNA pellet was finally diluted in 20µl 1x injection mix. Afterwards the DNA was 
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checked by gel electrophoresis. For P element mediated germline transfection of 

Drosophila embryos 2 day old flies were allowed to lay eggs on grape agar plates for 

20 to 30 min and then flies were transferred on a fresh plate. Eggs were collected, 

washed in PBT, washed in 50 % Klorix for 4.5 min to remove the chorion, rinsed in 

water and aligned smoothly with a paintbrush side by side on an agar block. Aligned 

eggs were transferred onto a cover slip coated with glue, such that the posterior end 

faced the edge of the slip. The slip was then transferred to a drying chamber with 

Blaugel (Roth) for 14 min. Eggs were fixed to a microscope table, where injections 

were done using an electrode holder, connected to Femtojet injector. Femtotips were 

back filled with 3 µl of injectionmix. The electrode tip was gently pushed against the 

side of the cover slip to widen the tip. Each egg was injected with a small volume of 

injection mix to its posterior end, where the polar cells formed which set up the 

germline. Importantly, injections needed to be performed in the syncytial stage of 

embryos. Cell membranes developed after the 13th nuclear division, at room 

temperature approximately 1 h after egg delivery. Polar cells were the first cells to 

form in the developing embryo. Eggs were then coated with oil (Voltalef 10S) and 

transferred to a humidified agar plate for embryos to hatch on. The first day the 

injected eggs were put in an 18°C incubator and lat er on they were transferred to a 

25°C incubator. Embryos were collected during the n ext 2 days and transferred to 

fresh yeast vials. Freshly hatched adults were collected and individually crossed to 

freshly hatched w– wild type BT (originally collected in Bayreuth, Germany) flies. 

Successful transfection was indicated by red-eyed progeny. These again were 

collected right after hatching and crossed individually to balancer flies 

(sp/CyO;TM6/MKRS), recognizable by the marker phenotypes "curly wings" and 

"tubby larva". Progeny was collected for red eyes and presence of the balancers, 

yielding stable lines if insertions hit 2nd or 3rd chromosome. Flies with X 

chromosomal insertions were backcrossed to yield homozygous stable lines. 

 

4.2.4 Anatomical analysis 

4.2.4.1 Fly crossings 

Drosophila melanogaster were grown on standard corn medium at 25°C, with 1 2:12 

hours dark: light cycle and 60% humidity. In all experiments, flies were kept in 30-ml 
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vials containing 10 ml food. For all crossing experiments, 5-8 female virgin flies were 

kept together with 3 male flies in one vial and transferred to a fresh one after 5 days.  

 

RicinA project 

In the Ricin experiment virgin females from the stock DB331; hsFlp/CyO were 

crossed to males from the following stock: UAS-RicinA,UAS-mCD8::GFP/CyO. 

Heatshock treatment was made after the developed protocol mentioned in the results 

part of the thesis. Heatshock was given for 1-2hours and flies were kept afterwards in 

vials containing standard medium at room temperature. 

 

UAS>Stop>TN-XXL project 

For testing the construct female virgins from the stock UAS>Stop>TN-XXL were 

crossed to males of the following stock: DB331-Gal4; hsFlp/CyO. After 48hours egg 

laying, adult flies were transferred to another fresh food vial and the egg containing 

vials were given heatshock for 1hour at 37°C. After wards the vials were kept at room 

temperature. 

 

UAS-Btx project 

For testing the construct female virgins from the stock UAS-Btx were crossed to 

males from the following stock: DB331-Gal4 

. 

vGat-Gal4 project 

For testing the vGat-Gal4 constructs female virgins from the different vGat-Gal4 

stocks were crossed to males of the following stock: UAS-mCD8::GFP and also to 

males of the stock: UAS-cytoGFP. 

 

Dscam project 

For the Dscam localization experiment virgin females from the stock GR27B03-Gal4 

(gift from Gerald Rubin) were crossed to males from the following stock: UAS-

mCD8::GFP/CyO (Bloomington Stock Center).  Progenitors were selected after GFP 

expression.  

For the overexpression experiment in HS neurons virgin females from the stock 

DB331-Gal4; UAS-mCD8::GFP (DB331-Gal4: gift from Reinhardt Stocker) were 

crossed to males from the following stock: 1. Bl/CyO; UAS-Dscam 11.31.25.1 (gift 
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from Dietmar Schmucker). Progenitors with following genetic background were taken 

for all experiments described in this study: DB331-Gal4/+; UAS-mCD8::GFP/Bl; +/+ 

(Dscam overexpression flies). For generating control flies with appropriate wildtype 

background and balancer Dscam overexpression flies were crossed inter se. Flies 

with the wildtype background of the UAS-Dscam stock were kept as a stock: 

+/+;Bl/CyO;+/+. Male flies from that stock were crossed to virgin females from the 

stock DB331-Gal4; UAS-mCD8::GFP. Progenitors with following genetic background: 

DB331-Gal4/+; +/Bl; +/+ were taken as control flies in behavior and electrophysiology 

assays. As wildtype reference flies from following stock: new wildtype were compared 

to control flies in both electrophysiology and behavior assays. No obvious differences 

occurred.  

Reconstructions of HS cells are based on confocal images that were taken from 

dissected brains after the staining procedure (s.Immunohistochemistry). For wildtype 

HS cell reconstruction an additional cytosolic GFP marker was added for enhancing 

the outline of fine structures. Males from the stock UAS-GFPcyto (Bloomington Stock 

Center) were crossed to virgin females of the following stock: DB331-Gal4; UAS-

mCD8::GFP resulting in: DB331-Gal4/+; UAS-mCD8::GFP/+; UAS-GFPcyto/ + 

progenitors of which confocal images were taken.  

For deficiency and null constructs virgin female flies from the stock: 

Dscam^23,mCD8::GFP/CyO; G73,UAS-Flp/TM6 were crossed to males  of the 

following stock: Dscam^21/CyOGB; Exon2^ (Exon6)-FRT. 

For the developmental onset study males from the stock: tub-Gal80ts/CyO; DsI/TM6 

were crossed to virgin females of the following stock: DB331-Gal4; UAS-

mCD8::GFP/CyO. For inactivating Gal80ts, the vials containing the experimental flies 

were shifted to a 30°C incubator.  

For the MARCM experiment (Lee, T. and Luo, L. 2001) male flies from the stock: 

DB331-Gal4/y; FRT40A/CyO; DsI/TM6 flies were crossed to virgin females of the 

following stock: UAS-hsFlp, UAS-mCD8::GFP; tubp-Gal80,FRT40A/CyO flies. 30-40 

L3 larvae were treated with half an hour heatshock in waterbath at 37°C and 

afterwards kept in fresh food vials at room temperature.  

For the Dscam null MARCM experiment males from the stock: FRT42D, UAS-

Dscam^21/CyO; UAS Flp flies were crossed to virgin females of the following stock: 

DB331-Gal4; FRT42D, tubGal80/CyO; UAS-mCD8::GFP. Crossings were kept in 

grape-agar plates at 25°C and parental flies discar ded after 3 days egg laying. After 
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reaching pupa stage flies were selected under fluorescent microscope after GFP 

expression and transferred to a fresh vial. Flies were kept at RT.  

For Dscam RNAi silencing experiments males from the individual UAS-RNAi (3115, 

25622, 25623, 36233 and 108835) stocks were crossed to female mCD8::GFP/ G73-

Gal4 flies. When in addition Dcr2 was expressed then UAS-RNAi flies were crossed 

to mCD8::GFP/ FM7; Dcr2/ CyO; G73/TM6 flies. 

For overexpression in T4 and T5 cells male flies from the following stocks: GR42H07, 

GRR35F02 and GR54A03 were crossed to virgin female flies of the following Stock: 

UAS-mCD8::GFP. GFP positive offspring was selected under fluorescent microscope 

and subsequently crossed to following stock: Bl/CyO; UAS-Dscam 11.31.25.1.  

 

4.2.4.2 Immunohistochemistry 

For cell reconstruction, female flies 3–5 days after eclosion were dissected. Flies 

tested in electrophysiology and behavior assays were immediately dissected after 

performances. Therefore, flies were anesthetized with CO2. The head was then 

removed and placed on a drop of PBS. The head cuticle was first cut open with 

forceps at the frontal part and then the rest was torn off. After discarding the 

neurolemma, brains were fixed in 4% PFA for 30 minutes at room temperature. 

Subsequently, brains were rinsed in phosphatebuffered saline (PBS), pH 7.2, 

including 1% Triton X-100 (PBT). For antibody staining, samples were further 

incubated in PBT including 4% normal goat serum (Sigma Aldrich) and primary 

antibodies were added according to their individual dilution factors overnight at 4°C. 

Antibodies were removed by several washing steps (3 x 20 minutes in PBT) and 

secondary antibodies were applied 1:200 overnight at 4°C. Finally, excessive 

antibodies were removed by a 3 x 20-minute washing protocol (PBT). Stained brains 

were mounted in Ibidi Mounting Medium (Ibidi GmbH) and analyzed via confocal 

microscopy.  

The following primary and secondary antibodies were used in the present study. 

Primary antibodies included: Alexa Fluor 488 conjugate rabbit IgG anti-GFP 

(Molecular Probes) used in all anti-GFP staining procedures unless otherwise stated, 

rat anti-mCD8 (Invitrogen Caltag) only used together with rabbit anti-DscamIC (gift 

from Dietmar Schmucker) in the Dscam localization experiment and mouse anti-Dlg 

(4F3 anti-discs large; DSHB) used for background staining.  



MMEETTHHOODDSS  

PPAAGGEE  7788  

4.2.4.3 Confocal microscope setup 

Serial optical sections were taken at 0.3-0.5 µm intervals with 1,024x1,024 pixel 

resolution and 4 times frame average using confocal microscopes (Leica TCSNT and 

Leica SP5) and oil-immersion 40x (n.a. 1.25) for cell reconstruction images and 63x 

(n.a. 1.4) Plan-Apochromat objectives. In most cases, frontal sections were taken 

from the posterior side of the brain. For Figure 1 b, horizontal sections were taken in 

the dorsal region of the brain. The individual confocal stacks were analyzed in Amira 

5 (Zuse Institute Berlin (ZIB)) software. The size, contrast, and brightness of the 

resulting images were adjusted in Photoshop CS3 (Adobe Systems). 

 

4.2.5 Whole brain culture 

All manipulations were performed in a clean environment using disinfected 

equipment (forceps, pipettes, PCR tubes, etc.) in order to prevent bacterial or fungal 

contamination.  

For whole brain culture (modified from Ayaz, D. 2008) Millicell low height culture plate 

inserts (Milipore) were placed in a sterile Petri dish (Falcon) containing 1 ml of sterile 

PBS Dulbecco’s (DPBS). On top of the membrane a freshly prepared coating, 

solution of Laminin (3.3 µg/mL; BD Biosciences) and Polylysine (33.3 µg/mL; BD 

Biosciences) in sterile D-PBS was added. The culture plate inserts were incubated 

overnight at 37°C. The next day they were washed ex tensively with sterile D-PBS 

and were stored at 4°C for up to three weeks. Just before use, the coated inserts 

were transferred to an empty sterile Petri dish. For making the brain explants, adult 

female flies of the desired genotype were collected within 4 days after eclosion. After 

CO2 anesthesia, the flies were placed in a 1.5 ml centrifuge tube on ice, keeping 

them alive but immobile. Before dissection, flies were washed in 70% Ethanol for a 

few seconds and placed into a sterile Petri dish containing ice-cold Schneider’s 

Drosophila Medium (GIBCO). The brains were dissected out in that medium as 

careful and as fast as possible (< 3 min). Parts of the eyes and lamina were left 

attached when they were difficult to remove. Damage to the brain or delay in the 

speed of the dissection reduced the quality of the brain culture and therefore, all 

damaged brains were discarded. The dissected brains were collected in a PCR tube 

containing Schneider’s Medium on ice and then washed with ice-cold dissection 
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medium. After dissection and washing, the brains were placed in a drop of medium 

on the membrane of the culture plate insert, using a pipette. Therefore, the pipette tip 

was cut a bit open with a scissor and rinsed with Schneider Medium. This prevents 

the brain to be stuck at the inner wall of the pipette tip. Up to five brains were 

transferred from the PCR tube onto the same insert. When all brains were in place, 

their antero-posterior orientation was verified and corrected if necessary. Excess 

medium was removed using a pipette, leaving only a thin film of medium covering 

each brain. 1.1 ml of culture medium was then added to the Petri dish containing the 

insert. The culture dishes with the explants were kept in a plastic box in a cell culture 

incubator at 25°C. The culture medium was refreshed  every two days. 

 

4.2.6 Behavior setup 

All tested flies developed in vials with medium under constant conditions. The 

incubators were set 25°C and 60%humidity. In all cr osses, maximum 10 virgin female 

flies were crossed with 3-5 male ones. In the behavior-setup-room, air humidity was 

put constant through a custom air humidifier. Test specimens were first put onto ice 

for making them immobile. Afterwards they were tethered to a torque via UV sensitive 

glue. Tethered flies were kept one day on a rack for starving and only fed with water 

and sugar solution. At the following day, the flies were put into the stimulation arena.  

 

4.2.6.1 LED arena 

Visual stimulation was presented with a custom built LED arena consisting of 30 by 8 

TA08-81GWA dot matrix displays (Kingbright, California, USA), each harboring 8 by 

8 individual green (568 nm) LEDs, covering 360° in azimuth and 85° in elevation of 

the fly’s visual field with an angular resolution of about 1.4° between adjacent LEDs. 

The arena is capable of frame rates above 600 fps with 16 intensity levels. 

 

4.2.6.2 Assays 

All stimuli were presented monocular with a 30-degree gap at the frontal area in order 

to avoid binocular view. At the beginning, a whole field stimulus was presented 

5seconds in one direction then 5 seconds in the other one. Afterwards stimulation for 
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elevation, azimuth, and contrast were in following sequence: 1. 1second break 2. 

1second null direction 3. 5seconds preferred direction 4. 5seconds null direction. At 

the end of all assays, again 5seconds whole field stimulation was presented.  

The elevation stimuli were presented randomly at different heights (38.6-30.9 deg , 

30.9-21.8 deg, 21.8-11.3 deg, 11.3-0 deg, 0  - -11.3 deg,  -11.3 - -21.8 deg, -21.8 – 

30.9 deg, -30.9 - -38.6 deg) as well as those in different azimuth angles (-180 - -

15deg or 15 - 180deg) on dark background.  

For contrast assay the pattern was presented at the entire arena but only at certain 

azimuths (-180 - -15 deg und 15-180 deg) the pattern was moved. 

4.2.6.3 Analysis 

For calculating the response strength the average response of the last 2seconds 

while PD stimulation subtracted from the average of the last 5seconds while ND 

stimulation were calculated and then divided by 2. The torque strength results from 

subtraction of the winbeat amplitude left from that of the right one.  

Data were acquired and analyzed with the data acquisition and analysis toolboxes of 

Matlab. 

4.2.7 Electrophysiology setup 

4.2.7.1 Visually Guided Whole-Cell Recording 

Detailed information about all electrophysiology procedures is provided in the recent 

publication from Schnell et al. 2010.  

Flies were anesthetized on ice and waxed on a Plexiglas holder whereby extended 

proboscises were fixed. The head was bent down to expose the caudal backside of 

the head and with Aluminium-foil with a hole of ~1–2 mm sustained by a ring-shaped 

metal holder was placed on top of the fly. The upper wet part (covered with ringer 

solution (Wilson et al. 2004)) of the preparation was thereby separated from the lower 

dry part. A small window was cut into the backside of the head, and during mild 

protease treatment, the neurolemma was partially digested and the main tracheal 

branches and fat body were removed. The protease was rinsed off and replaced by 

ringer solution. A saline jet was generated with a ringer-filled electrode in order to 

remove the extracellular matrix and to expose the HS-cell somata for recording. 

Water immersion optics were used from above and visual stimuli were presented to 

dry and fully intact compound eyes. Genetically labeled green fluorescent cells were 
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approached with a patch electrode filled with a red fluorescent dye and recordings 

were established under visual control. During the recordings, the fluorescence 

excitation was shut off to prevent blinding of the fly. After the recording, several 

images of each Alexa-filled LPTC were taken at different depths along the z-axis. 

 

4.2.7.2 LED arena 

For visual stimulation, a custom-built LED arena was used based on the open-source 

information of the Dickinson Laboratory. The arena consists of 15 by 8 TA08-81GWA 

dot matrix displays (Kingbright, California, USA), each harboring 8 by 8 individual 

green (568 nm) LEDs, covering 170° in azimuth and 8 5° in elevation of the fly’s visual 

field with an angular resolution of about 1.4° betw een adjacent LEDs. The arena is 

capable of frame rates above 600 fps with 16 intensity levels. Matlab was used for 

programming and generation of the patterns. The luminance range of the stimuli was 

0-8 cd/m2. 

 

4.2.7.3 Assays 

To study contrast dependency, a square-wave grating of 34° spatial wavelength 

moved at a constant angular velocity of 34°/s corre sponding to a temporal frequency 

of 1Hz. Contrast was calculated as (Imax - Imin)/(Imax + Imin). With the 16 intensity levels 

of the LEDs, seven pattern contrasts could be obtained ranging from 100 % down to 

6.7 % at the same mean luminance. To obtain a lower contrast of 3.3 %, four 

consecutive image frames were used to define one image as described above. The 

square-wave grating (spatial wavelength: 22.4°, ang ular velocity: 22.4°/s) used either 

ispilateral or contralateral stimulation covered about 56° in azimuth and 85° in 

elevation and was displaced by ±15° relative to fro ntal gaze. The local response 

characteristics of HS-cells were determined using a previously described stimulus 

(Nordstrom et al. 2008; Wertz et al. 2009). A small bar of 5.6° length and 1.4° width 

was moved horizontally from the contra- to the ipsilateral side and back again at 

different elevations or vertically downward and upward at different positions along the 

azimuth thereby an area of 12 about 145° along 250 the azimuth and 85° of elevation 

was covered.  
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Data were acquired and analyzed with the data acquisition and analysis toolboxes of 

Matlab. Receptive fields were calculated by binning the responses of single HS-cells 

mean response during null direction from the mean response during preferred 

direction motion. The receptive fields of all HS-cells of a certain type were averaged, 

smoothed by convolving them with a 3x3 kernel approximating an isotropic Gaussian 

function, and normalized to maximal value. 

 

4.2.7.4 Analysis 

In order to identify the cell type from which recording were taken an intracellular dye 

filling was done. Therefore, flies were decapitated and cut heads were fixed in a layer 

of glue in a way that the facet eyes were looking downward into the glue. After 

hardening of the glue (~2 min) the specimen were covered with Ringer’s solution, 

and the cuticle at the backside of the fly’s head was removed with sharp needles. 

This procedure allowed direct access to the brain. The main tracheal branches were 

removed. Dye fillings were performed using quartz electrodes. Electrodes were filled 

with a 10 mM Alexa Fluor 594 solution (Invitrogen) and backfilled with 2 M KAc/0.5 M 

KCl solution. Impaled cells were loaded by negative current pulses for a few seconds.  

For the determination of electric coupling between HS cells 2 - 4 % Neurobiotin 

(Vector Labs, Burlingame) was added to the intracellular solution. Neurobiotin and 

Alexa Fluor-568 were coinjected via ± 0.2 nA current pulses for up to 10 min. Whole 

fly heads were decapitated and fixed in 4 % paraformaldehyde for two hours before 

dissection in PBS 

 

4.2.8 Cell reconstruction 

The image stacks taken by confocal microscope were transferred to Matlab 

(Mathworks, Natick, MA) and all reconstruction analysis was performed there in 

custom written software combined with the “TREES” software (Cuntz et. Al 2008). 

Based on 2-D images cylinder models of the main branching structures were 

obtained in a semi-automated way: interactive software allowed switched viewing of 

either Z-projection or an individual slice of an image stack. Z-values were attributed 

to each cylinder directly from the depth-map according to their 2D location. Quick 

tracing results (30 min) were achievable working corrections based on individual 
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slices were necessary in all reconstruction steps. Jumps in the Z-axis were smoothed 

by use of linear interpolation. With that procedure hull areas of HS cell dendrites were 

calculated.  

In order to obtain a measure for the convexity of dendrites, the convex hull was 

drawn around all dendrite nodes. The surface ratio between the dendritic spanning 

field and this convex hull was chosen as a characteristic spanning field parameter, 

the convexity index.  

 

4.3 Virus injection into living flies 

First 5 µl of the virus solution was backfilled to an injection electrode. The tip of the 

electrode was broken open with a forceps. Flies were anesthetized on a CO2 pad 

and magnified under stereomicroscope (Leica). The fly was positioned with a brush 

and forceps in a way that the caudal backside of the head was exposed. The loaded 

electrode was carefully stabbed into the cuticle in a very sharp angle thereby 

avoiding strong penetration of the brain itself. The fly together with the electrode is 

connected to the electrode holder of the Femtojet injector. After two injection pulses 

with minimal pressure (100/20) the fly was removed off the electrode and put into a 

food vial. 2 days after infection flies were anatomically analyzed. 
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5 Results 

5.1 The role of Dscam1 in the development of Lobula Plate Tangential Cells 

HS neurons possess characteristic dendritic structures covering the frontal layer of 

the lobula plate. The dendritic ramifications of neighboring HS cells were overlapping 

each other. In addition, these neurons were connected to each other via gap 

junctions (Schnell et al. 2010). In order to determine how their complex anatomical 

features were important in fulfilling their function of motion detection HS cells were 

genetically manipulated by overexpressing single Dscam1 (Down Syndrome Cell 

Adhesion Molecules) isoforms. This kind of overexpression has been reported to 

elicit repulsion between overlapping neurons (Schmucker et al. 2007), a 

phenomenon that might also occur in HS cells. However, so far it has not been 

clarified whether HS cells possess an endogenous Dscam code at all and which 

potential role Dscams might play in establishing neuronal targeting and pattern 

formation in HS cells. In order to shed light on these questions an extensive 

anatomical study was carried out using immunohistochemistry combined with genetic 

manipulations in Drosophila melanogaster.  

 

5.1.1 HS cells possess an endogenous Dscam code that is required for self-

avoidance and pattern formation 

As a first step in establishing whether Dscams were endogenously present within 

wildtype HS cells, an immunolabeling assay was carried out in which a monoclonal 

antibody (357; kindly provided by Dietmar Schmucker) directed against the entire 

intracellular domain of Dscams in order to reveal the localization within the optical 

lobe. Furthermore, GR27B03-Gal4 was used to drive an expression pattern that is 

restricted to HS cells within the lobula plate. Here, membrane-tagged Green 

Fluorescent Protein (mCD8::GFP) was used as a cell marker. The Dscam antibody 

staining illustrated a massive presence of Dscams in the entire optical lobe (Fig. 23 

A). Notably, horizontal sections showed that Dscams were located in all four lobula 

plate layers, thereby collocating with the HS-cell layer and also with the VS cell layer 

(Fig. 23 C, D). Furthermore, Dscams were unambiguously present in the dendrites, 
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somata, as well as axonal terminals of HS cells (Fig. 23 B, E, F). Immunolabeling 

was also repeated in other driver lines giving consistent results (not shown).  

 

 

Fig. 23: Dscam is expressed in HS cells, the entire fly visual system.  

Three giant neurons of the horizontally sensitive (HS) system (green) express GFP (GR27B03-Gal4; 

UAS-mCD8::GFP). Their large overlapping dendrites are stacked along the dorsal-ventral axis and 

cover the entire lobula plate where they colocalize with Dscam. (A) In the frontal section, double 

immunolabeling of Dscam (magenta) and GFP (green) shows Dscam expression in all neuropils of the 

fly visual system. Furthermore, coexpression of Dscam can be observed in GFP labeled HS-cells. 

Immunolabeling of Dscam highlights columns and layers in the lamina (arrowhead, only partially 

included), medulla (triangle), lobula (arrow), and the lobula plate (asterisk) of the fly visual system. (B) 

Close-up of the lobula plate shown in A, GFP and Dscam colocalize in dendritic branches of HS cells. 

(C) The horizontal section shows how the dendritic arborizations of HS cells are restricted to the thin, 

most-anterior layer of the lobula plate. (D) Close up of the lobula plate reveals Dscam expression in all 

four layers of the lobula plate. The most-anterior layer colocalizes with GFP expressing dendrites of 

the three HS cells. (E) Further colocalization of Dscam and GFP in HS cell somata and (F) as well as 

HS axon terminals. Dscam was labeled with an antibody raised against the intracellular domain 

(Dscam IC, magenta). Confocal image stacks were taken with a z-increment of 0.3 µm, a 63X 
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objective and minimized pinhole. Composite images in A, B and C were generated by collapsing 150, 

29 and 40 images respectively. Scale bar 50 µm in A, C and 30 µm in B. D-F are single confocal 

images, scale bar 30 µm.  

 

In order to support the results and further to study the functional role of Dscams in 

HS cells, Dscam null flies were generated. Here, DB331-Gal4 was used to drive 

expression of GFP and Flipase activity in HS and VS cells (Raghu et al. 2007). 

Dscam null cells had the following genetic background: DB331-Gal4; FRT42D, 

tubGal80/ FRT42D, Dscam^21; UAS-mCD8::GFP/ UAS-FLP. The genetic design of 

the transgenic flies based on the MARCM technique (Lee and Luo 2001) ensured 

that only homozygous cells lacking GAL80 were Dscam null as well as GFP labeled. 

The rest of the fly still possessed the intact Dscam code and thus did not express the 

marker gene. This method has been successfully implemented before for selective 

labelling of Dscam null cells (Chen et al. 2007).  

Dscam null cells display strong dendritic and axonal disorders (Fig. 24 A, B). In the 

dendritic regions, fasciculation of first order sister branches were detectable as well 

as self-crossing events in higher order branches (Fig. 24 E). Furthermore, the 

general density of higher order branches appeared to be increased (Fig. 30). In the 

axonal regions, the fibers were diverging at their destination areas and did not reach 

their target regions. Furthermore, the terminals of HS cells appeared clumpy (Fig. 24 

D). Regarding VS cell terminals, the dendrites seemed to be much smaller than in 

wildtype flies. In addition, the axonal pattern was cluttered, which would indicate 

fasciculation between the terminal branches. In addition, some clumped structures at 

the endings were clearly visible (Fig. 24 F). Furthermore, the somata of VS and HS 

cells were dislocated and no longer associated with each other (Fig. 24 C).  

Together, these findings provided the first evidence that HS cells possessed an 

endogenous Dscam code, which was required for correct targeting and pattern 

formation. In the next step, I wanted to evaluate how many isoforms were required in 

order to provide an identification system that ensures a proper branching structure in 

HS cells. 
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Fig. 24: Dscam null causes loss of self-avoidance and clustering of dendritic and axonal 

branches in LPTCs. 
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(A-B) Overview images of the dendritic and axonal regions of GFP labeled LPTCs (green) which lack 

the endogenous Dscam code (DB331-Gal4; FRT42D, tubGal80/ FRT42D, Dscam^21; UAS-

mCD8::GFP/ UAS-FLP). Background staining was provided by immunolabeling with anti-disc-large 

(magenta). (C-F) Close up images reveal mislocation and altered clustering of HS and VS cellbodies 

(C). Axonal terminals of HS cells separate at the protocerebral region but possess clustered endings 

and projection errors (D: arrows). The axonal endings of VS cells are partially fasciculated and the 

endings are clumpy (F: arrows). At the dendritic areas in the lobula plate, clustering of high order 

branches is visible (E: triangle). However, only weak dendritic fasciculations could be detected in VS 

cells (E: arrows). Confocal image stacks were taken with a z-increment of 0.3 µm, a 63X objective and 

minimized pinhole. Composite images were generated by collapsing 150 (A, C, E) and 60 (B, D, F) 

images respectively. Scale bar 50 µm in A, B; 25 µm in C; 18 µm in D and 12 µm in E, F  

 

5.1.2 Thousands of isoforms are essential to provide HS cells with a robust 

self-avoidance mechanism 

Dscam loss-of-function experiments showed that Dscams were necessary for the 

proper development of dendritic shape and ramification of LPTCs. However, does 

reduction of Dscam variability also have an impact on complexity and formation of 

dendritic branching in HS cells? In order to answer this question, flies with restrictions 

in splicing variability were generated and anatomically analyzed. Here, flies with 

Dscam delta exon 2 and delta exon 6 in a heterozygous Dscam null background 

were generated restrictively to the G73-Gal4 (original: NP282 from Kei Ito lab) 

expression pattern which includes HSN and HSE. Excision of Exon 6 reduced the 

variability from 19008 to only 1584 potential isoforms (Fig. 25 A) and excision of Exon 

2, which does not possess endogenous splicing variability, was leading to Dscam null 

(Fig. 25 B) in the affected cells. Flies with the genetic background: Dscam^23, 

mCD8::GFP/ Dscam^21; G73-Gal4, UAS-Flp/ Exon2^ (Exon6) were generated. 

These flies possessed a homozygous lethal Dscam null (Dscam^21/ Dscam^23) 

background that was rescued by a heterozygous reinsertion of the entire Dscam 

allele in which the excisable exons were flanked by FRT sites (UAS-Dscam FRT 

Exon 2/ 6). Through UAS-Flipase activity, the exons could be removed from the 

rescue-allele, thereby resulting in the reduced Dscam variability (delta Exon 6; Fig. 

25 B) and the null ‘mutant’ (delta Exon 2; Fig. 25 D) in the expression pattern of G73-

Gal4.  
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Fig. 25: Single Exon excision elicits reduced Dscam variability and Dscam null. 

(A) The ‘Exon 6’ construct consists of the entire Dscam gene sequence in which exon6 is flanked by 

FRT sites. This allows the excision of exon6 by Flipase activation. (B) Crossing two flies, one carrying 

Dscam^21 and Exon 6 construct and the other Dscam^23, G73-Gal4, UAS-Flp and UAS-mCD8::GFP, 

results in offspring with a lethal Dscam null background (Dscam^21/Dscam^23) that is rescued by the 

Exon6 construct. However, green-labeled cells driven by G73-Gal4 possess Flipase activity that leads 

to the excision of Exon 6 off the gene. This reduces the hypervariability of exon 6 from 18 down to 1. 

(C) The ‘Exon 2’ construct consists of the entire Dscam gene sequence in which exon 2 is flanked by 

FRT sites. This allows the excision of exon 2 by Flipase activation. (D) Crossing two flies, one carrying 

Dscam^21 and Exon 2 construct, the other Dscam^23, G73-Gal4, UAS-Flp and UAS-mCD8::GFP, 

results in offspring with a lethal Dscam null background that is rescued by the Exon 2 construct. 

However, green-labeled cells driven by G73-Gal4 possess Flipase activity that leads to the excision of 

the entire Exon 2 off the gene. This leads to Dscam null in these cells. 

 

Excision of Exon2 caused severe changes in the anatomy of HS cell dendrites. Here, 

loss of Dscam function elicited self-crossing events and subtle fasciculation of sister 

branches (Fig. 26 D’ 1, 2, 5). In addition, an overall reduction of cell complexity, with 

partial lack of entire branching structures, was detectable (Fig. 26 D’ 3, 4). This 

observation was contradicting previous results made in Dscam null cells, where the 

lack of Dscams led to an increase in complexity and the dendritic fields were not 
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impaired. Excision of Exon 6 elicited strong self-crossings and fasciculations between 

sister- branches (Fig. 26 C’ 1, 4, 5). Comparable to the delta Exon 2 phenotype, the 

dendritic fields as well as branching complexity were reduced (Fig. 26 C’ 2, 3). The 

phenotypical penetrance in both transgenic flies was very low with only 3 out of 10 

HS cells showing anatomical changes in the dendrites. 
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Fig. 26: Reduction of Dscam variability as well as Dscam null causes variable self-crossing 

phenotypes in HS cells. 

 This figure shows the dendritic arborization phenotype of HSN and HSE labeled with mCD8::GFP 

(green) driven with G73-Gal4 in which either Dscam exon6 or Dscam exon2 was excised specifically 

within that expression pattern. Control flies possessed the following genetic background: Dscam^23, 

UAS-mCD8::GFP/ Dscam^21; G73-Gal4/ Exon2^ (Exon6). Dscam deficiency flies possessed the 

following genetic background: Dscam^23, mCD8::GFP/ Dscam^21; G73-Gal4, UAS-Flp/ Exon2^ 

(Exon6). Control flies without Flipase activity display a normal dendritic arborization pattern indifferent 

from wildtype ones, whereas the reduction of Dscam variability causes changed phenotypes in the 

branching pattern. In (a) the HSE cell (arrow) seems to possess a decreased branching pattern and 

furthermore, the cell does not reach the distal lobula plate border (asterisk) which is schematically 
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depicted with the dashed line. In (b) and (c), the distal regions of the dendritic tips are self-crossing 

(arrows) and some main branches are approaching each other (a: arrow). In Dscam delta Exon 2 

neurons, the arborization pattern is even more disrupted. In (d) HSN (arrow) is totally collapsed 

whereas HSE dendrites seem to be elongated to the direction of the missing cell. In cases where both 

cells are still present, the branching complexity is reduced (e and f: arrows). (C’ + D’) Close-up 

pictures from (C) and (D) depict areas in which fasciculations (C’ 1, 2 and D’ 1: arrows), self-crossings 

(C’ 5 and D’ 4, 5: arrowhead) and strong reductions of branching density (C’ 3, 4 and D’ 2, 3: asterisk) 

are prominent. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X objective and 

minimized pinhole. Composite images were generated by collapsing ~150 images. Scale bar 50 µm; 

Close up pictures: Scale bar 5 µm-12 µm. 

 

The results showed that excision of Exon2 caused different phenotypes with higher 

variability and differing from the prior described Dscam null phenotype. This 

observation will be discussed later on.  

 

Another possibility of assessing further Dscam null phenotypes was to use RNAi for 

silencing Dscam components. Five different UAS-RNAi lines targeted against Dscam 

were tested: 3115, 25622, 25623, 36233, and 108835 in the expression pattern of 

G73-Gal4. Only two UAS-RNAi lines elicited anatomical changes in the HS dendrites. 

Flies expressing UAS-RNAi 36233 and UAS-RNAi 3115 displayed dendritic self-

crossings (Fig. 27 B1) and clustering in HS cells (Fig. 27 A1). Using additional UAS-

Dicer2 enhanced neither the phenotype nor the penetration rate. In general, the RNAi 

phenotype was similar to that evoked by excising Dscam exon2.  

 

So far, the results revealed that reduction of Dscam variability and Dscam null had a 

severe impact on the dendritic morphology of HS cells, thereby providing strong 

evidence that thousands of different Dscam isoforms might be needed for controlling 

correct pathway finding and pattern formation of the dendritic branches in these cells. 

The deficiency experiments revealed how the phenotypes varied according to the 

number of potential available Dscam isoforms.  
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Fig. 27: RNAi silencing elicits loss of self-avoidance and dendritic clustering. 

Flies expressing UAS-RNAi targeted against Dscam (mCD8::GFP/ UAS RNAi; G73-Gal4/+) are 

showing dendritic clustering and self-crossings. (A 1+2) Overview of the HS cell dendrites in which 

Dscam is silenced by the expression of RNAi 3115 reveals reduction of dendritic ramification density. 

(A 1+2) Close-up images reveal dendritic clustering and self-crossings. (B) Similar phenotypes are 

elicited by silencing with RNAi 36233. Self-crossing events (1) and impaired dendritic pathway finding 

(2) are visible. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X objective and 

minimized pinhole. Composite images were generated by collapsing ~150 images. (A+B) Scale bar 50 

µm; Close up pictures (1-2): Scale bar 10µm. 
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5.1.3 Overexpression of single Dscam isoforms in HS cells results in strong 

gain-of-function phenotypes 

In total, six different Dscam isoforms were overexpressed in addition to the 

endogenous expressed Dscam code (Fig. 28). As cell marker, protein membrane 

tagged mCD8::GFP was used. The HS cells in UAS-mCD8::GFP/ +; G73-Gal4/ UAS-

Dscam isoform flies were visually inspected. At first sight, overexpression of Dscam 

1.30.30.1, Dscam 7.27.25.1, Dscam 2.9.19.2 and Dscam 1.34.30.2 + Dscam 1.6.19.2 

did not elicit any strong morphological changes, i.e. based on experiences with the 

wildtype anatomy, visual analysis of the taken confocal images resulted in the 

conclusion that no or only minor changes were caused by overexpression of these 

Dscam isoforms. In contrast, HS cells in which Dscam 7.6.19.2 (+7.6.19.2) or Dscam 

11.31.25.1 (+11.31.25.1) was overexpressed revealed severe alterations in the 

dendritic arborization pattern of HS cells. A major reduction in arborization density 

was present in +7.6.19.2 cells leading to the assumption that higher order branches 

were missing. +11.31.25.1 cells were partially lacking the entire distal area of their 

dendritic field. In +7.6.19.2 neurons the phenotype ranged from “fishbone”-like 

dendrites with practically no higher-order branches to wildtype branching patterns. 

Around 20 % of all +7.6.19.2 flies examined revealed severely reduced higher order 

branches. However, in +11.31.25.1 flies, the penetration was much higher. Around 

80 % of the flies showed non-wildtype dendritic fields. Sometimes only rudimentary 

dendritic trees of HSE remained. Furthermore, Dscam overexpression exhibited only 

partially penetrated phenotypes (Fig. 29) in which either HSN or HSE was affected. 
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Fig. 28: Overexpression of different single Dscam isoforms in HS cells elicits different dendritic 

branching phenotyps. 

The coding of single Dscam isoforms is built up of 6 constant domains and 4 different hypervariable 

exon domains that are individually spliced and assembled (A: scheme). (A) Control flies (UAS-

mCD8::GFP; G73-Gal4) in which the wildtype dendritic branching pattern of HSN and HSE are visible 

(green). (B) Six different single Dscam isoforms were overexpressed in HS cells (UAS-mCD8::GFP/ +; 

G73-Gal4/ Dscam isoform). In cells with Dscam 7.6.19.2 overexpression the number of higher order 

branches seems to be reduced and in Dscam 11.31.25.1 overexpression the entire dendritic field of 

HSE is in general reduced (B: red box). Here, a direct comparison is possible between normal-sized 

HSN and the smaller HSE dendrites. Other Dscam isoforms elicit a similar reduction in dendritic 

branching density (Dscam 2.9.19.2) but less severe than Dscam 7.6.19.2. Confocal image stacks were 

taken with a z-increment of 0.2 µm, a 63X objective and minimized pinhole. Composite images were 

generated by collapsing ~100images. Scale bar 50 µm.  

 

For testing stability and dosage dependence on penetrance and uniqueness of the 

elicited phenotypes, Dscam +7.6.19.2 and Dscam +11.31.25.1 were expressed with 

a different driver line: DB331-Gal4. Here, both isoforms elicited constant phenotypes 

whereas the penetrance rates changed. In case of +11.31.25.1, penetration rose up 

to 100 %, i.e. all three HS cells in heterozygous Dscam overexpression flies (DB331-

Gal4; UAS-mCD8::GFP; UAS-Dscam 11.31.25.1) displayed smaller dendritic fields. 

Moreover, the dendrites of VS cells also seemed to be anatomically affected. 

However, this phenomenon has not yet been analyzed in detail (Fig. 30 G-I). In order 

to underline the major lack of dendritic ramifications of HS cells in the distal region of 

the lobula plate, background staining was applied with anti-disc-large (Dlg) antibody 

staining, a postsynaptic marker that highlights all neuropils of the optical lobe 

(Fig. 30).  

These complicated, wide-ranging anatomical distortions revealed the importance of a 

phenotypic analysis of individual neurons. In order to support the anatomical findings 

and allow further dissection of the Dscam elicited gain-of-function phenotype, 

additional reconstructions of HS cells were performed by Friedrich Förstner.  
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Fig. 29: Uniqueness of individual Dscam phenotypes is independent of transgenic expression 

level.  

Images from control flies (UAS-mCD8::GFP; G73-Gal4 and DB331-Gal4; UAS-mCD8::GFP) illustrate 

the expression patterns of the used driver lines in the lobula plate: G73-Gal4 and DB331-Gal4. Here, 

the phenotypes elicited in the HS cell dendrites by Dscam +7.6.19.2 and +11.31.25.1 are shown to be 

highly variable in penetrance but the elicited changes are constant and independent from the used 

driver lines (UAS-mCD8::GFP/ +; G73-Gal4/ Dscam Isoform or DB331-Gal4/ +; UAS-mCD8::GFP/ 

+(Bl), Dscam Isoform/ +). When driven by DB331-Gal4, the elicited Dscam +11.31.25.1 

overexpression phenotype occurs stable whereas the penetrance rate of Dscam +7.6.19.2 

overexpression is not significantly increased (right side). Confocal image stacks were taken with a z-

increment of 0.2 µm, a 63X objective and minimized pinhole. Composite images were generated by 

collapsing ~100 images. Scale bar 50 µm.  
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5.1.4 Reconstruction and statistical analysis of HSN and HSE dendrites 

elucidate further characteristics of the Dscam gain-of-function and loss-

of function phenotypes 

For reconstruction of the main dendritic branches of HS cells an open-source 

software package, the ‘‘TREES toolbox,’’ was used by Friedrich Förstner. This 

package provides a general set of tools for analyzing, manipulating, and generating 

dendritic structure, including a tool to create synthetic members of any particular cell 

group and an approach for a model-based supervised automatic morphological 

reconstruction from fluorescent image stacks (Cuntz, H. 2010). Confocal images 

were taken as a basis for model-based reconstructions (Fig. 30). The expression 

pattern driven by DB331-Gal4 included two different subgroups of LPTCs: HS and 

VS cells. Nevertheless, tracing and reconstruction of the main dendritic branches in 

HS cells was very feasible due to the separate locations of VS and HS cells in 

different lobula plate layers (Fig. 30). In control flies, UAS-mCD8::GFP and an 

additional cytosolic GFP (UAS-cytoGFP) marker were both expressed. This dual 

labeling resulted in a clear outline of the branching structures that enabled tracing of 

the dendritic processes. In Dscam +11.31.25.1 flies, expression of the mCD8::GFP 

marker turned out to be sufficient for reconstructing the remaining cell branches. 

Dscam gain-of-function phenotype decreased the density of cell structures, which 

simplified tracing of the main branching patterns. Therefore, Dscam loss-of-function 

and Dscam gain-of-function were eliciting opposing phenotypes in HS cells.  

The dendritic density of HS cells was enhanced to such an extent in Dscam null flies 

that only a detailed reconstruction of the entire branching pattern of HSN revealed 

the high frequency of self-crossing events in Dscam loss-of-function cells (Fig. 31 B: 

arrowheads). In control flies, the endogenous self-avoidance mechanism prohibited 

any self-crossing events (Fig. 31 D). 
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Fig. 30: Different phenotypes elicited by genetic manipulations of the endogenous Dscam 

codes in LPTCs. 

Here LPTCs in control (DB331-Gal4; mCD8::GFP/ Bl), Dscam gain-of-function (DB331-Gal4/ +; 

mCD8::GFP/ Bl; Dscam +11.31.25.1/ +) and Dscam loss-of function flies (DB331-Gal4; FRT42D, 
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tubGal80/ FRT42D, Dscam^21; UAS-mCD8::GFP/ UAS-FLP) are shown. The expression pattern 

driven by DB331-Gal4 includes 3 HS and 6 VS cells labeled with mCD8::GFP (green). The lobula 

plate contours are labeled with anti disc-large (magenta). (A-C) Overview images already allow some 

differences to be assumed in the cell anatomy between control and Dscam +11.31.25.1 and Dscam 

null cells. (D-F) Images of the lobula plate show a dense expression pattern within the lobula plate. By 

using the Amira ‘Oblique Slice’ software toolbox, it was possible to separate the HS cells layer entirely 

from the VS cell layer. (G-I) Consistent with the findings made in HS cells, manipulation of the Dscam 

code elicits similar phenotypes in VS cells. Dscam +11.31.25.1 cells show reduced dendritic fields and 

Dscam loss-of-function elicits dendritic fasciculations. (J-L) Hence, HS cells can be observed 

independently. (M-O) Close up images of the ventral part of the lobula plate show lateral parts of HSS 

cells. In control cells (M) the ramifications extend to the lobula plate border whereas in +11.31.25.1 

flies the dendritic tips do not reach that border (N). Furthermore, dendritic branching density is strongly 

reduced. (O) In contrast to the gain-of function phenotype, Dscam loss-of-function massively increases 

pattern density. The ability to separate HS from VS cells is also fundamental in reconstructing the 

neurons. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X objective and 

minimized pinhole. Composite images were generated by collapsing ~150 and 50 images respectively. 

Scale bar 50 µm. Reconstruction data was kindly provided by Friedrich Förstner. 

 

 

 

Fig. 31: Detailed reconstruction of the entire dendritic branching pattern reveals the high 

frequency of self-crossings in HS cells missing the Dscam code. 

Image data taken for reconstruction are shown on the left sides. Corresponding reconstructions are 

illustrated on the right sides. (A +C) Overviews of the reconstructed HSN cell dendrites from control 

(UAS-mCD8::GFP; G73-Gal4) and Dscam null flies (DB331-Gal4; FRT42D, tubGal80/ FRT42D, 

Dscam^21; UAS-mCD8::GFP/ UAS-FLP). (B) Close up of the reconstructed cell in (A) reveal several 

self-crossing events caused by lack of the Dscam code (red arrowheads). (C) Close ups of the 

reconstructed wildtype cell in (B) show that in wildtype cells self-avoidance mechanisms prohibit 

crossing of sister branches. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X 
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objective and minimized pinhole. Composite images were generated by collapsing ~150 images. 

Scale bar 50 µm (A+C) and 15 µm (B+D). Reconstruction data was kindly provided by Friedrich 

Förstner. 

 

Statistical analysis of ten reconstructed HSN/ HSE pairs (Fig. 32 A), further 

underlined the previous anatomical observations. The dendritic fields were strongly 

impaired in Dscam gain-of function cells. In Dscam +11.31.25.1 flies, the HS-cell 

dendrites covered a far smaller area in the lobula plate than in wildtype flies (Fig. 32 

C). The coverage values were obtained by connecting the dendritic tips that were 

farthest away from the main branch. With that, the outline of the dendritic field was 

determined, which gave an approximated value for the coverage areas. In addition, 

the lobula plate areas were also defined for each set of reconstructed HS cells. By 

calculating the lobula plate areas covered by the HS cell outlines, the obtained values 

were normalized, excluding individual size variations from animal to animal. The 

wildtype HSN coverage values were on average around 38 % and reduced to 25 %. 

Moreover, the coverage by HSE was reduced from 60 % to 35 %. Furthermore, the 

overlap areas of HSN and HSE dendrites were determined, thereby demonstrating 

consistent results to the previous finding. The average areas significantly shrunk from 

~2700 µm² to ~1000 µm². 

As the analysis of the individual cell shapes demonstrated a clear decrease in size of 

the dendritic terminals, the question occurred whether something had changed within 

the lobula plate itself. Therefore, the size of the lobula plate was calculated and 

indeed revealed an increase of 15 % (from 9500 µm² to 11000 µm²) compared to 

control samples.  
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Fig. 32: Analysis of the reconstructed dendrites of HSN and HSE reveals a strong decrease in 

their dendritic fields.  
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8 pairs of HSN (green) and HSE (red) main dendritic branches were reconstructed from control flies 

(DB331 Gal4/ +; UAS-mCD8::GFP/ +; UAS-cytoGPF/ +) (A) and Dscam +11.31.25.1 flies (DB331 

Gal4; UAS-mCD8::GFP/ Bl; Dscam +11.31.25.1/ +). The lobula plate borders are illustrated in grey. 

The approximated coverage areas in the lobula plate are shown in green for HSN and in red for HSE. 

The cross section areas in which HSN and HSE outlines share common areas are marked in red. In 

those overlap areas heteroneural interactions between both cells might take place. (B) Analysis of 

lobula plate coverage areas demonstrates that Dscam misexpression causes a reduction of around 

35% in HSN cells (from 38% to 25%) and in HSE of around 42% (from 60% to 35%). (C) Analysis of 

the overlap areas of HSN and HSE dendrites reveals expected results. In control flies, both dendrites 

overlap at an area of ~2700 µm² that is more than 90% of the entire dendritic area of the cell. In 

+11.31.25.1 flies, this overlap is strongly reduced to a value of ~1000 µm². Reconstruction data and 

analysis were kindly provided by Friedrich Förstner. 

 

 

Fig. 33: Dscam +11.31.25.1 elicits increased spacing between HS and VS cell layers and 

expansion of the entire lobula plate. 

(A) The horizontal view of HS and VS cell layers (green) in control (DB331-Gal4; UAS-mCD8::GFP; 

UAS-cytoGFP) and Dscam +11.31.25.1 flies (DB331-Gal4/ +; UAS-mCD8::GFP/ Bl; Dscam 

+11.31.25.1/ +) indicates the increased distance between the layers of both cell groups elicited by 

Dscam misexpression. For an appropriate view of the cell layers, the three-dimensional images from 

+11.31.25.1 and control flies were aligned and all parameters accordingly adjusted. Afterwards, 

oblique slices were selected. Statistical analysis in (B) demonstrates a stronger increment of HSN and 

HSE with Dscam overexpression and with that an increased penetration in the z-axis. In addition, the 
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entire lobula plate area is enlarged (C). Confocal image stacks were taken with a z-increment of 0.2 

µm, a 63X objective and minimized pinhole. Images show single slices. 

 

Further observations of the distance between the HS to VS cell layers in the lobula 

plate were performed, showing an increase in the space between. Calculations of the 

cell increment, i.e. the cell depth of HSN and HSE dendrites were analyzed by 

looking at the strength of HS cell bending in z-axis within the lobula plate. In wildtype 

flies, HS cells were also not planar but following the elliptic shape of the lobula plate 

until the outer borderline. There, the branches curve shapely into the other lobula 

plate layers like the outermost VS cell layer. Consistent with the previous findings, an 

increased bending of HSN and HSE cells in +11.31.25.1 flies was found (Fig. 33).  

 

Taken together, this study provided a quantitative analysis of the elicited Dscam gain-

of function phenotype in HS cell dendrites. The results underlined the anatomical 

observations and revealed a massive decrease in dendritic branches leading to 

smaller coverage areas of the HS cells in the lobula plate. However, +11.31.25.1 had 

an opposing effect on the entire lobula plate, causing an increased dendritic field of 

about 20% and hence a larger cell increment in the z-axis.  
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5.1.5 The elicited Dscam gain-of-function phenotype is a non-cell-autonomous 

effect 

With a MARCM-analysis, Dscam +11.31.25.1 was overexpressed restrictively in 

single cells. This study was intended to answer the question whether the 

misexpression phenotypes were caused by direct interactions between HSN and 

HSE, between HS cells and columnar neurons or cell autonomous effects. If Dscam 

is acting cell autonomously in HS cells, then single clones should reveal Dscam 

+11.31.25.1 phenotype independently of the overexpression in other cells. 

Alternatively, if single Dscam +11.31.25.1 cells do not show any alterations in 

phenotype, then this would suggest a non-cell-autonomous effect. Around 500 brains 

needed to be dissected and analyzed in order to obtain a single HSN clone (Fig. 34). 

Consistent with the findings in various other studies, the labeled HSN did not show 

the characteristic lack of distal arborizations of the +11.31.25.1 phenotype. This 

result provided the first hint that the +11.31.25.1 phenotype was only elicited when 

two interacting cells both possess the same Dscam isoform on their membranes. 

However, due to the low number of observed single HS clones, a further experiment 

should provide supportive result.  

This experiment was carried out by Bettina Schnell, in the electrophysiology setup. 

Here, Dscam null flies from a previous experiment (DB331-Gal4; FRT42D, tubGal80/ 

FRT42D, Dscam^21; UAS-mCD8::GFP/ UAS-FLP) were used. Dscam null cells were 

GFP labeled. Here, a fluorescent dye (Alexa-Fluor 569/ Invitrogen) was injected into 

non-fluorescent wildtype cells located close to HS cells, which were Dscam null in 

order to observe non-cell-autonomous effects of Dscam mutant cells. The wildtype 

cell in Fig. 35 did indeed show fasciculations of higher order branches (arrowhead) 

as well as self-crossings of sister branches (arrow) that were most probably caused 

by interactions with Dscam null cells.  

In addition, the MARCM analysis revealed other cell types that were included in the 

expression pattern of DB331-Gal4 (Fig. 36). Notably, there were couples of lobula 

plate intrinsic neurons; trans-lobula plate neurons, trans-medulla neurons labeled. 

Whether these neurons were interacting with LPTCs has yet to be investigated.  
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Fig. 34: Overexpression of Dscam +11.31.25.1 in single HSN cells does not elicit mutant 

phenotype.  

Overexpression of Dscam +11.31.25.1 in single GFP labeled HSN cell (green) via MARCM does not 

change in the dendritic arborization pattern. DB331-Gal4 was used as driver line and mCD8::GFP to 

label cells. For background, staining anti-disc large (red) was used. As morphological wildtype 

references, single HS cells are depicted: Single HSN labeled with mCD8::GFP and HSE additionally 

labeled by Alexa Fluor 568 in G73 expression pattern. Single HSN cells with Dscam +11.31.25.1 are 

not morphological altered. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X 

objective and minimized pinhole. Composite images were generated by collapsing ~150 images. 

Scale bar 50 µm and 25 µm (close up). 

 

These results provided the first evidences of a non-cell autonomous effect of Dscam 

gain-of-function phenotype in HS cells.  
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Fig. 35: Dscam null cells elicit self-crossings and fasciculations in wildtype cells. 

In Dscam null flies (DB331-Gal4; FRT42D, tubGal80/ FRT42D, Dscam^21; UAS-mCD8::GFP/ UAS-

FLP) a fluorescent dye (Alexa Fuor 568) was injected into the soma of a non-GFP labeled, wildtype 

cell located close to the HS cellbodies. The branching pattern located in the lobula plate shows 

clumping of higher order branches (arrowhead) as well as self-crossing of sister branches (arrow). As 

this cell still possesses its Dscam code, the observed phenotype is most probably elicited through 

interactions with neighbored Dscam null cells and points to a non-cell-autonomous Dscam effect. 

Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X objective and minimized 

pinhole. Composite images were generated by collapsing ~150 images. Scale bar 25 µm. 
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Fig. 36: MARCM analysis reveals different cell types within DB331-Gal4 expression pattern. 

A number of various cell types within the expression pattern of DB331 were detected through MARCM 

analysis. There are various Trans-Lobula Plate cells GFP labeled (green) which possess ramifications 

both in the lobula plate and in the lobula and thus connect both neuropils (A+B). In addition, the 

expression pattern contains lobula plate intrinsic neurons (C+D). As background, staining anti-disc 

large (magenta) was used. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X 

objective and minimized pinhole. Composite images were generated by collapsing ~50 images. Scale 

bar 25 µm.  
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5.1.6 The Dscam +11.31.25.1 dendritic phenotype depends on the onset of 

expression during development 

To indicate the developmental time points at which Dscams have an influence on the 

dendritic outgrowth and pathway finding in HS cells, the following transgenic flies 

were generated: DB331-Gal4/ +; tub-Gal80ts/ UAS-mCD8::GFP; +/ TM6. Here, 

temperature-sensitive tubulin-Gal80 was used to control Gal4 activity. As long as the 

flies were kept at 18°C, Gal80 was inhibiting Gal4.  Therefore, flies were developing 

under wildtype conditions at 18°C. By shifting the temperature to 30°C, Gal80 

became inactivated and Gal4 activated. With that, the onset of Dscam +11.31.25.1 

was triggered to different developmental stages of the fly. The temperature shift was 

implemented at three different stages: larval stage L3, pupa stages P30-36 and P42-

48 and flies were observed in adult stage. If different Dscam isoforms were regulating 

different processes at different time points during the development of HS cells, then 

the onset of Dscam +11.31.25.1 should be critical for the elicited phenotypes.  

The results demonstrated that onset of Dscam +11.31.25.1 overexpression at 3rd 

instar larval (L3) stage or around P35 were both causing reduced dendritic fields and 

a decrease in branching complexity of LPTCs (Fig. 37). However, onset of Dscam 

+11.31.25.1 at P35 caused a more severe reduction of dendritic ramification than the 

onset at L3 stage. When Dscam +11.31.25.1 was induced at P45 or later on, then the 

dendrites retained the wildtype morphology. Dscam +11.31.25.1 onset between P42 

and P48 elicited intermediate phenotypes. Here, the dendritic fields were unaltered 

as in case of control flies (DB331-Gal4/ +; UAS-mCD8::GFP/ CyO; +/ TM6) whereas 

the branching pattern appeared less dense with a decrease in higher order branches.  

These observations lead to the assumption that Dscam misexpression was not able 

to influence dendritic targeting once the branches were established their final 

patterning. In order to prove this hypothesis, the developmental growth of wildtype 

HS cells was observed. The results revealed that the main branches were covering 

their final dendritic fields at P45. This coincidence provides the evidence that Dscams 

might be mainly involved during dendritic outgrowth. 
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Fig. 37: Dscam +11.31.25.1 phenotype depends on the onset of expression in HS cells. 

The scheme illustrates the developmental stages and corresponding temporal periods of Drosophila. 

DB331-Gal4/ +; tub-Gal80ts/ UAS-mCD8::GFP; +/ TM6 flies and control flies (DB331-Gal4/ +; UAS-

mCD8::GFP/ CyO; +/ TM6) were kept at 18°C until tem perature shift. At 18°C, no GFP expression was 

observable, corresponding with no Gal4 activity. A temperature shift to 30°C was implemented at 3 

different developmental stages: larval stage L3 and during pupa stages at ~P35 and ~P45. Flies were 

then constantly kept at 30°C until adult stage. Bra ins from +11.31.25.1 induced flies as well as control 

flies were analyzed in adulthood. Confocal image stacks were taken with a z-increment of 0.2 µm, a 

63X objective and minimized pinhole. Composite images were generated by collapsing ~150 images. 

Scale bar 50 µm.  
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5.1.7 HS cells with Dscam gain-of-function phenotype still possess 

fundamental connectivities 

HS cells possess a density of nicotinic acetylcholine (nAchR) and gamma 

aminobutyric acid (GABA) receptors on their dendritic branches. In order to 

investigate whether nAchRs were still present on the remaining dendritic branches of 

Dscam +7.6.19.2 and +11.31.25.1 HS cells, staining with fluorescent α-bungarotoxin-

Alexa 647 was performed. This peptide extracted from Bungarus multicinctus venom 

binds with high affinity to the α-subunits of the nAchR in the brain. A detailed 

description of the procedure is available in previous study (Raghu et al. 2009) 

In fact, in Dscam +7.6.19.2 as well as Dscam +11.31.25.1 flies, α-bungarotoxin 

labeling revealed nAchRs expression on the remaining dendritic tips of HS cells (Fig. 

38). However, the receptor density seemed to be strongly reduced in the entire distal 

area of the lobula plate according to the decrease in branching complexity and 

dendritic fields in Dscam overexpression flies.  

Furthermore, on Dscam +11.31.25.1 cells staining accumulation was detectable (Fig. 

38 arrows). All tested lines were stained separately following the same protocol. The 

α-bungarotoxin labeling revealed remaining nAchRs on the dendritic tips of Dscam 

overexpression cells.  
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Fig. 38: HS cells with Dscam gain-of-function phenotypes possess detectable nicotinic 

Acetylchonlinreceptors on their remaining dendrites. 

Immunostaining with α-Bungarotoxin (α-Btx) in magenta reveals the presence of nAchR at the GFP 

labeled dendritic tips of HS cells (green), both in control flies (UAS-mCD8::GFP; G73-Gal4) and the 

remaining branches of HS cells with Dscam overexpression. Here, Dscam 7.6.19.2 (+7.6.19.2) is 

depicted in the red box and Dscam 11.31.25.1 (+11.31.25.1) in the blue box. The number of labeled 

nAchRs seems to be decreased in Dscam overexpression cells. However, as the staining procedure 
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for each transgenic line was performed separately, differences in labeling intensity can be caused by 

variations in handling. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X 

objective and minimized pinhole. Composite images were generated by collapsing ~5 images. Scale 

bar 10 µm.  

 

For observing the axonal terminals of LPTCs in Dscam overexpression flies, three 

specific Gal4 driver lines: GR42H07, GRR35F02 and GR54A03-Gal4 (generously 

provided by Gerald Rubin) were used, giving a very specific expression pattern of 

T4/T5 cells alone or including LPTCs (Fig. 39). 

 

Fig. 39: T4 and T5 neurons possess axonal ramifications in all four layers of the lobula plate. 

The driver lines: GR42H07 -Gal4 is used to label T4/T5 cells with mCD8::GFP (green). The additional 

presynaptic marker: synaptotagmine-HA (magenta) reveals the axonal terminals of these neurons 

after immunolabeling with a secondary fluorescent antibody. Horizontal sections reveal that T4 and T5 

neurons ramify in all four layers of the lobula plate and thereby exhibit potential interactions to LPTCs. 

Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X objective and minimized 

pinhole. Composite images were generated by collapsing ~150 images. Scale bar 50 µm.  

 

In order to highlight presynaptic terminals of T4 and T5 synaptotagmine-HA 

(hemagglutinin) was expressed as a presynaptic marker. To label them anti-HA 

conjugated with Alexa Fluor 568 was used. Notably, the axonal ramifications of T4 

and T5 cells terminated in the same lobula plate layers where the dendrites of LPTCs 

located. Close up images from horizontal sections as well as frontal sections show 

overlap areas between green-labeled LPTC dendrites and magenta-labeled T4/ T5 

axonal terminals (Fig. 40). These findings support the results from previous studies 

(Bausenwein, B. 1992 a, b, Fischbach, KF. 1989) revealing potential connectivity 

between T4/ T5 cells and LPTCs. 
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Fig. 40: Axonal terminals of T4/T5 neurons are overlapping with the dendrites of LPTCs. 

(A) Horizontal sections of the expression pattern of GR54A03-Gal4 labeled with mCD8::GFP and anti 

disc-large as background staining reveal the four layers in the lobula plate in which T4 and T5 cells 

ramify. The section also shows neuritis in the medulla layer 10 and in the superficial most lobula layer. 

In this case, the expression pattern additionally includes LPTCs. HS cells are located in the innermost 

lobula plate layer (arrow). (B) Close up of synaptotagmine-HA, labeled terminals (magenta) suggest 

T4/ T5 cells synaptically contact on HS cell dendrites (arrow). (C) Frontal section supports this 

assumption and shows many areas where synaptotagmine-HA and GFP colocalize in VS cell 

dendrites (C) as well as HS cell dendrites (D). Confocal image stacks were taken with a z-increment of 

0.2 µm, a 63X objective and minimized pinhole. Composite images were generated by collapsing ~150 

images and 5 images respectively in frontal sections. Scale bar 25 µm.  
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In the next step, GR54A03-Gal4 was used to overexpress Dscam 11.31.25.1 in T4/ 

T5 cells and LPTCs. Here, the questions were whether Dscam gain-of-function in 

LPTCs would elicit the same phenotype as observed before and how T4 and T5 cells 

were impaired by Dscam misexpression. The results revealed that Dscam 

+11.31.25.1 elicited a constant phenotype in HS cell with a decrease of dendritic 

fields as well as reduction of branching density (Fig. 41 A). So far, three different 

driver lines were used for overexpressing the same Dscam isoform and each of them 

possesses different columnar neurons in its expression pattern. Therefore, the 

individual Dscam gain-of-function phenotype in HS cells seems to be independent 

from the Dscam code of surrounding neurons.  

Observations of the axonal targeting of T4 and T5 neurons in the lobula plate 

revealed a disrupted termination pattern (Fig. 41 B, C). The four target layers in the 

lobula plate were not innervated in a structured way, whereas ramifications in the 

lobula and medulla could still be recognized in their target layers but were also 

partially mislocated (Fig. 41 C). For unknown reason it was not possible to express 

synaptotagmine-HA in parallel to Dscam +11.31.25.1 within T4/T5 and LPTCs. 

Another morphological change was observable in the locations of T4 and T5 

cellbodies: They were forming clusters. 

However, due to the lack of any Gal4 driver line that constantly gives an expression 

only in T4 and T5 cells, it was not possible to distinguish between anatomical 

changes caused by Dscam misexpression in these cells or non-cell-autonomous 

Dscam effect from LPTCs.  
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Fig. 41: Overexpression of Dscam 11.31.25.1 in T4/T5 cells disrupts axonal targeting. 

GR54A03-Gal4 was taken to drive Dscam +11.31.25.1 in GFP labeled T4/ T5 cells (UAS-mCD:8-GFP/ 

+; GR54A03-Gal4/ Dscam +11.31.25.1). The background was stained by anti-dsic-large (magenta). 

(A) HS cell dendrites with Dscam +11.31.25.1 do not reach the distal lobula plate border (dotted line) 

and possess in general a reduced dendritic branching pattern. (B) The four termination layers of T4 

and T5 in lobula plate layer are not detectable anymore. This leads to the assumption that T4/ T5 

axons do not terminate in an ordered fashion within the defined layers of the lobula plate (arrowhead). 

Furthermore, the cellbodies of T4 and T5 cells are clumped together in two major clusters (arrows) 

located close to the lobula plate. However, this kind of disruption occurs less severely in the lobula and 

medulla where the pattern is still maintained (C: arrows). Confocal image stacks were taken with a z-

increment of 0.2 µm, a 63X objective and minimized pinhole. Composite images were generated by 

collapsing ~50 images. Scale bar 25 µm. 

 

Besides columnar information processing and connectivity, HS cells also possess a 

horizontal information flow. It is known that these cells are coupled with each other 
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via gap junctions (Schnell et al. 2010). Neurobiotin, a dye that passes gap junctions, 

was injected via a sharp electrode into the cellbody of a HS cell. This experiment was 

carried out by Bettina Schnell. The results revealed that all three HS cells were still 

connected in Dscam + 11.31.25.1 flies (Fig. 42). Therefore, the electric coupling was 

not affected by the reduction of dendritic fields. However, the location of the electric 

connections is still unknown.  

 

 

 

Fig. 42: HS cells with Dscam +11.31.25.1 phenotype are still electrically coupled with each 

other despite reduced dendritic fields. 

(A) Here, HSN was filled by a sharp electrode with neurobiotin (red) in UAS-mCD8::GFP; G73-Gal4/ 

Dscam +11.31.25.1 flies. (B) GFP labeled HSN and HSE neurons are illustrated in green. Here, HSE 

possesses a decreased dendritic field and HSN. (C) Neurobiotin was spreading into neighboring HS 

cells indicating that the cells are still electrically coupled with each other. The dendritic field of 

neurobiotin labeled HSS also seems be impaired in the observed fly. The dotted line depicts the distal 

lobula plate border. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X objective 

and minimized pinhole. Composite images were generated by collapsing ~100 images. Scale bar 

50µm.  

 

So far, the analysis was focused on HS cell dendrites. In the next step, the influences 

of Dscam overexpression on the axonal terminal were observed. Previous studies 

showed differences in localization of Dscam isoforms with transmembrane domain 1 

(TM1) or transmembrane domain 2 (TM2). It has been suggested that TM2-

containing isoforms were distributed along the entire cell surface, while TM1-

containing isoforms are largely excluded from axons (Zhan et al. 2004). In this study, 

two isoforms with different TM-domains, Dscam +7.6.19.2 with TM2 and Dscam 

+11.31.25.1 with TM1, were identified to elicit a strong dendritic misprojection 

phenotype. For a closer observation of the different elicited phenotypes, DB331-Gal4 
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was used as driver line. There, the axonal terminals were easily traceable down to 

the central brain region. In control flies, the axons of HS and VS cells terminate in two 

separate destination areas in the central complex: The VS cell axons were located 

slightly above the esophagus and HS cell axons ventral to the esophagus. In DB331-

Gal4, a third axonbundle from yet unidentified cells was descending from the lobula 

plate terminating dorsal to the esophagus.  

Dscam +7.6.19.2 did not change the pathway finding of HS or VS cell axons (DB331-

Gal4/ +; UAS-mCD8::GFP/ +; Dscam +7.6.19.2/ +). Flies were observed in adult 

stages so that nothing was known about the developmental outgrowth itself. 

Nevertheless, the axon bundles appeared to reach their destination areas in the 

central complex without showing altered projection pathways. However, the axonal 

terminals seemed to fasciculate and did not ramify as strongly as in wildtype cells 

(Fig. 43). In contrast to Dscam +7.6.19.2, misexpression of Dscam +11.31.25.1 was 

severely disrupting the axonal projection pathways (DB331-Gal4/ +; UAS-

mCD8::GFP/ +; Dscam +11.31.25.1/ +). Especially in the HS cell, the axon bundle 

revealed a great number of single fibers separating from the main axonbundle prior to 

their destination area (Fig. 43 arrowhead). Compared to control flies (DB331-Gal4/ +; 

UAS-mCD8::GFP/ CyO), the axons seemed to fail in pathway finding and their 

terminal branching complexity seemed to be reduced (Fig. 43 asterisks).  
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Fig. 43: Dscam misexpression disrupts axonal branching pattern of HS as well as VS cells.  

The figure shows the entire cell morphology of LPTCs labeled with GFP (green) (DB331-Gal4;UAS-

mCD8::GFP). The mutant phenotype in the dendritic area of Dscam +7.6.19.2 and +11.31.25.1 

samples seems to be continued at the axonal terminals. Both Dscam overexpression isoforms elicit a 

decrease of complexity within the axonal terminal branching pattern (asterisks) whereas in 

+11.31.25.1 additionally, a strong error in the projection itself occurs (arrowhead). In this case, the 

axonbundle of HS cells does not only target the wrong area but also ramifies prior to its destination 

area. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X objective and minimized 

pinhole. Composite images were generated by collapsing ~150. Scale bar 50µm.  
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5.2 Further investigations on the function of LPTCs and their role in flight 

control: A series of genetic tools 

For a better understanding of single LPTCs and their functionality within their 

environment, several molecular constructs were generated. One approach was to 

creat constructs that enable to learn more about the molecular and 

electrophysiological properties of single LPTCs. The second approach was 

selectively disconnect single LPTCs from each other by RicinA ablation. This should 

provide a yet unknown insight into the cell-autonomous mechanisms of single LPTCs 

during development. The third focus lied on the development of a new tracer strategy 

that uses VSV for labelling single neurons in flies. 

 

5.2.1 Shedding light on the presynaptic input elements of LPTCs 

LPTCs receive presynaptic inhibitory input from GABAergic neurons. However, these 

neurons have yet to be identified. Here, I tried to generate Gal4 driver lines under the 

control of vesicular GABA transporter (vGat) promoter, which would be the first step 

towards analyzing the neuronal circuitry. In the publication ?by Enell et al. (2007), the 

genomic region encoding for the vGat gene was identified as being located on the 2nd 

chromosome (Fig. 44) in Drosophila melanogaster. Therefore, the corresponding 

promoter region should be located upstream to the gene site. Looking at the genomic 

assembly upstream of that sequence, it was possible to identify a potential 700 bp 

region upstream of the gene region, an intron area between the Sox-box and the 

vGat gene, where the promoter could be present.  
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Fig. 44: Identification of the vGat promoter region. 

The screenshot from the NCBI search result shows the genomic location of the vGat gene in 

Drosophila melanogaster. The gene is located at the second right (2R) chromosome at CG8394 (red 

box). The scheme beneath depicts surrounding regions of the vGat gene. Upstream of the vGat gene 

is an intron sequence of about 700 bp (grey box) before the Sox box (blue box) encoding region starts. 

Downstream to the gene another intron sequence is followed by the genomic region encoding for NP 

610937(green box). Data obtained from NCBI. 

 

Firstly, the 700 bp intron region was cloned into the pChs-Gal4 vector at the 

KpnI/SacII restriction sites (Fig. 44) (gift from Heisenberg M.). The fragment was 

amplified within the genome of a wildtype fly using primers flanked with an additional 

KpnI restriction site at the N-terminus and an additional SacII restriction site at the C-

terminus via PCR. The positive transgenic flies were crossed with UAS-mCD8::GFP. 

Unfortunately, the offspring generation did not show any expression pattern for this 

construct (Fig. 45). As many promoters do not work without corresponding enhancers, 

a 4 kb fragment upstream of the vGat gene site was extracted in the next approach. 

This time, it was possible to observe a strong and wide GFP expression within the 

salivary glands in early larval stages under the fluorescent microscope. However, 

during development the strength of GFP expression decreased dramatically. 

Confocal images were taken from adult brains after immunolabeling with anti-GFP 

antibody. The images revealed a very faint remaining expression within the cell 

bodies but no neuronal processes were visible. The decrease in GFP expression 
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during development points to a homeostatically regulated gene expression that might 

be due to some influences of Sox box enhancers. 

 

 
Fig. 45: Screen of vGat promoter and enhancer regions. 

(A) Different genome fractions were selected at the surrounding locations of the vGat gene: 1. 700 bp 

intron region (red box) between the Sox box gene region and upstream of vGat; 2. a 4 kb fragment 

upstream of vGat (blue box) including a part of the Sox box gene; 3. 3 kb (yellow box) fragment 

including the intron sequence, the vGat gene sequence, and the intron upstream of vGat; 4. 5 kb 

fragment (black box) including the region of the yellow box and a small part of the gene downstream of 

vGat. All fragments were amplified within the wildtype Drosophila genome (B) and inserted at 

KpnI/SacII restriction sites of the pChs-Gal4 vector (light yellow). The pChs vector possesses an 

Ampicillin resistance sequence (green). 
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However, the dim expression could also be enhanced by a different fluorescent 

marker or the expression of several copies of the driver line. Therefore, a different 

marker was used for revealing the expression pattern. Here, cytosolic GFP showed 

much higher expression strength than the previously used mCD8::GFP marker. 

Furthermore, in combination with immunolabeling it was possible to detect neuronal 

processes (Fig. 46). Although, the expression strength was thereby enhanced, it was 

still not bright enough for potential single-cell analysis. Based on these results, a new 

set of experiments were started, this time targeting sequences downstream of the 

intron part.  

As enhancers were not exclusively located upstream of the gene sequence but also 

downstream and even within the gene coding region itself, a 3kb fragment including 

the whole vGat gene and a 5kb fragment including the sequence of the following 

gene and a further intron region were cloned into the Gal4 vector. 

 

 

 

Fig. 46: Expression pattern driven with vGat-Gal4 4kb fragment reveals neurons in the optical 

lobe as well as in the central brain. 

The expression of vGat 4kb-Gal4 driven pattern is restricted to small neuronal subpopulations in the 

optical lobes (left and right) and the central brain (middle). As a marker protein, cytosolic GFP was 

used and for background staining anti disc-large was applied. Confocal image stacks were taken with 

a z-increment of 0.2 µm, a 20X objective and minimized pinhole. Composite images were generated 

by collapsing ~100 images. Scale bar 50 µm. 

 

The vGat-Gal4 3 kb flies did not drive GFP expression in any cells whereas vGat-

Gal4 5 kb transgenes showed a strong GFP expression in the guts during larval 

stages. However consistently, in adult flies only very weak GFP was detected in 

neurons of the central brain, optical lobes, and ventral ganglia (Fig. 47). Here, the 
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results revealed the enhancers of the vGat promoter were neither present within the 

gene sequence nor downstream of the subsequent intron area. 

The conclusion therefore was that the only vGat enhancer region detected 

throughout this series of DNA extraction was the one in the vGat-Gal4 4kb construct 

upstream of the vGat gene. 

 

 
Fig. 47: Systematic dissection of the genomic regions around the vGat promoter region and 

anatomical analysis of various vGat-Gal4 transgenic flies.  

In this picture, the different expression patterns of three vGat-Gal4 constructs are illustrated. For 

neuronal labeling mCD8::GFP was used (green). The first 700bp intron sequence upstream of the 

vGat-gene sequence does not give any expression pattern within transgenic flies. Furthermore, 

transgenic flies with downstream fragments (3kb and 5kb) of the vGat gene region do not give any 

reasonable, strong expression pattern. In the 3kb construct, only single cells are labeled. In the 5kb 

construct, a diffuse pattern within the central brain as well as the ventral ganglion appears. Confocal 

image stacks were taken with a z-increment of 0.5 µm, a 40X objective and minimized pinhole. 

Composite images were generated by collapsing ~100 images. Scale bar 50 µm 

 

 



RREESSUULLTTSS  

PPAAGGEE  112255  

5.2.2 UAS->Stop>TN-XXL: refined expression of a genetic encoded calcium 

indicator 

TN-XXL represents an efficient tool for the analysis of activities in neurons. However, 

using this indicator under the control of the UAS system requires Gal4 driver lines 

with a highly restricted expression pattern in order to be able to recognize the cell 

region from which the recording was made. I tried to confront this problem by 

generating a construct with a FRT (Flippase Recognition Target) flanked Stop 

sequence for spatial restriction of TN-XXL expression. The Stop sequence will 

prohibit translation of the downstream-located TN-XXL sequence. Here, the Flippase 

recombination enzyme can induce site-directed recombination of FRT sites leading to 

removal of the Stop sequence. In addition, Flippase expression in transgenic flies 

carrying heatshock Flippase (hs-FLP) is restricted during heatshock treatment. 

Therefore, the combination of FRT/FLP system and Stop cassette should enable a 

restriction of TN-XXL in small subgroups of neurons. Here, I combined classical 

cloning tools with the gateway cloning system (Fig. 48) for isolating the DNA 

construct.  

 

Transgenic flies were tested with DB331-Gal4;hs-Flp/CyO impaired with heatshock 

treatment that was induced at various developmental stages starting 48 hours after 

egg deposition until late 3rd instar larval stage. Therefore, the resulting number of TN-

XXL highlighted LPTCs varied from cell clones to the complete number of LPTCs 

covered by the DB331 expression pattern (Fig. 49). This indicated that the construct 

was enabling restrictive expression in the way it was intended, i.e. the Stop cassette 

was able to prohibit completely the transcription of TN-XXL, and furthermore, it can 

be efficiently flipped out by heatshock-induced Flipase activity. The confocal images 

were taken directly after dissection and without fixation or further immunostaining in 

order to determine the absolute strength of TN-XXL expression within these neurons.  
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Fig. 48: Molecular approach to generate UAS->Stop>TN-XXL flies. 

The scheme shows the cloning strategy for generating the UAS>Stop>TN-XXL vector. Using common 

cloning strategies did not work in the past. Gateway Cloning Technology’ was therefore used primarily 

here. The pDONR221 (from invitrogen) is depicted in (A). Mainly all cloning steps were performed 

within this vector, as the size is much smaller than the pUAST destination vector. First, the FRT-

flanked Stop sequence (>Stop>) with an additional NotI restriction site at the C-terminus was 

recombined into the pDONR vectors (B) via BP reaction. Subsequently, TN-XXL was inserted through 

the NotI restriction site (C). Finally, the completed insert was recombined into the pUAST vector via LR 

reaction. 

 

pDONR221 
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Fig. 49: Heatshock-induced expression pattern in DB331-Gal4,hsFlp;UAS>Stop>TN-XXL. 

UAS>Stop>TN-XXL flies were crossed with DB331-Gal4,hs-Flp flies; 2nd and 3rd instar larvae were 

given heatshock treatment for 2 hours. The TN-XXL expression in green was observable within 24 

hours under fluorescent stereomicroscope. Adult brains were dissected for detailed analysis. 

Compared to control flies (A) with mCD8::GFP expression, a decreased number of LPTCs and general 

reduction of the expression pattern was observed (B). Depending on the timing of heatshock 

treatment, different sets of neurons were labeled by TN-XXL. The first TN-XXL sample (left) shows 

expression in the medulla (arrow) as well as VS (asterisk) and HS cells (triangle) whereas the second 

sample (right) expresses TN-XXL only in VS cells (asterisk). All mages show the optical lobes in full 

projection. Confocal image stacks were taken with a z-increment of 0.2 µm, a 63X objective and 

minimized pinhole. Composite images were generated by collapsing ~100 images. Scale bar 50 µm 

 

Here, it has been demonstrated that the generated UAS>Stop>TN-XXL transgenic 

flies were indeed working for inducing TN-XXL transcription restrictively in subsets of 

LPTCs. In order to target specific LPTCs, refinement of the heatshock protocol was 

needed. Nevertheless, the strength of the expressed TN-XXL was high enough to 

take high-resolution images via confocal microscope without further antibody 

treatment and therefore might enable tracing calcium changes within single cells via 

2-Photon microscope.  
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5.2.3 Genetic ablation of LPTCs by expression of RicinA. 

Transgenic flies of the stock: UAS>Stop>RicinA (from Luo.L) were used for cell 

ablation. RicinA is a ribosome-inactivating molecule that should lead to cell lethality. 

Thus, its expression needed to be controlled and targeted to specific neurons to 

prevent the fly from dying. Previous experiments have shown that leaky-expression 

of RicinA from a UAS-RicinA transgene was sufficient to kill. In order to enable the 

use of RicinA, a translation Stop cassette flanked by FRT sites was introduced. This 

allows triggering the expression of RicinA both temporal and spatial by using 

Gal4/UAS system in combination with the FRT/hs-FLP system.  

 

 

Fig. 50: The expression pattern of DB331-Gal4. 

Maximum projection view of the expression pattern driven by DB331-Gal4 and coexpression of UAS-

mCD8::GFP as marker gene (A). The pattern includes all 3 HS (B) and 6 VS neurons present in the 

optical lobe in Drosophila. In addition, some lobula plate intrinsic neurons are included (C). Confocal 

image stacks were taken with a z-increment of 0.5 µm, a 63X objective and minimized pinhole. 

Composite images were generated by collapsing ~ 60 images. Scale bar 50 µm. 

 

My aim was to establish a protocol for the specific ablation of LPTCs. By eliminating 

subsets of LPTCs from the motion detection circuitry, it might be possible to study 

their function in controlling optomotor behavior of the fly. Here, DB331-Gal4 was 

chosen to drive expression of UAS>Stop>RicinA in 6VS and 3HS cells (Fig. 50). 

Furthermore, mCD8::GFP was co-expressed as marker to label all surviving neurons. 
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The remaining expression was then compared with wildtype expression. The exact 

genetic backgrounds of the used stocks were depicted in Fig. 51.  

 

DB331-Gal4       hs-FLP10                       UAS-mCD8-GFP, UAS-∆w+∆-RicinA

DB331-Gal4       CyO CyO;

DB331-Gal4                                     hs-FLP10                                                           
Y/+ UAS-mCD8-GFP, UAS-∆w+∆-RicinA;

DB331-Gal4       hs-FLP10                       UAS-mCD8-GFP, UAS-∆w+∆-RicinA

DB331-Gal4       CyO CyO;

DB331-Gal4                                     hs-FLP10                                                           
Y/+ UAS-mCD8-GFP, UAS-∆w+∆-RicinA;

DB331-Gal4       hs-FLP10                       UAS-mCD8-GFP, UAS-∆w+∆-RicinA

DB331-Gal4       CyO CyO;

DB331-Gal4                                     hs-FLP10                                                           
Y/+ UAS-mCD8-GFP, UAS-∆w+∆-RicinA;

 

 

Fig. 51: Crossing scheme for heatshock-induced ablation of LPTCs in Drosophila. 

Female virgin flies of the stock: DB331-Gal4; hs-Flp/CyO are crossed to male flies of the following 

stock: UAS>Stop>RicinA, UAS-mCD8::GFP/CyO. The female offspring with following genetic 

background: DB331/+; hs-Flp/UAS-mCD8::GFP, UAS>Stop>RicinA were selected for further heat 

shock treatment. 

 

Due to the early onset of the used Gal4 line, it was possible to observe GFP 

expression in all larval stages. Hence, the probability was high that the expression 

time of the dirver line coincides with the developmental onset of LPTC progenitor 

cells. Therefore, in the next step, I determined the exact time point when the 

progenitor cells of LPTCs occurred during development. In this experiment, flies of 

the stock DB331-Gal4; UAS-mCD8::GFP were analyzed via confocal imaging at 

different developmental stages. This analysis determined the late 3rd instar larval 

stage to be the best time for RicinA induction in DB331.  

During this developmental stage, LPTC cell bodies were detectable for the first time, 

while in the white pupal stage the rudimentary branches already had appeared (Fig. 

52). The branches of HS cells were particularly identifiable at the later stage. 

However, the number of cell bodies at late 3rd instar stage was less than the number 

of LPTCs present in the adult stage, leading to the assumption that there was a 

successive development of different LPTCs.  
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Fig. 52: In the DB331-Gal4 driven expression pattern, LPTCs are first detectable at late 3rd 

instar larval stage. 

Flies from the stock DB331-Gal4; UAS-mCD8::GFP are screened for LPTCs at several developmental 

stages. In late 3rd instar larval stage, the cell bodies of LPTCs are visible for the first time (left image). 

Later, in the white pupa stage, first rudimentary outgrowing neurites are visible (right image). Neuritis 

of outgrowing HS cells are depicted in the right image (double arrows). Confocal image stacks were 

taken with a z-increment of 0.2 µm, a 63X objective and minimized pinhole. Composite images were 

generated by collapsing ~ 60images. Scale bar 50 µm 

 

In the next step, an appropriate heatshock protocol was established to ablate 

restrictively LPTCs based on previous developmental study (Fig. 52). Depending on 

the developmental stage and heat shock duration, it should be possible to control the 

number of ablated LPTCs. Heatshock treatment was also applied in later pupal 

stages and in adult flies, resulting in inefficient ablation of LPTCs. These experiments 

suggested that the flip-out does not work in post-mitotic cells. 

However, the ablation efficiency rate rose to 100 % when heatshock was induced at 

late 3rd instar stage. After one to two hours of heatshock treatment, larvae were 

taken out of the tubes and transferred into a vial containing fresh medium. Until the 

adult stage, the flies were kept at room temperature. For analysis of the ablation 

efficiency in flies that were treated in late instar larval stage, confocal images were 

taken in adult stages and the numbers of remaining LPTCs counted for each optical 

lobe. Here, the efficiency of cell ablation was extremely high. There were no flies with 

less than 50% loss of LPTCs in the expression pattern. Mostly 3-4 remaining LPTCs 

were detectable. Furthermore, in 30% of all observed optical lobes, no LPTCs were 

left at all (Fig. 53).  
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Fig. 53: Ablation efficiency of RicinA by heat shock induction in 3rd instar larvae. 

The scheme depicts the statistical distribution of the number of ablated LPTCs. In the examined flies, 

more than 40% of the examined flies showed a reduction of LPTCs down to 3-4 remaining LPTCs, 

around 20% possessed 1 or 2 and around 10% 5 or 6 remaining LPTCs. Around 30% had a total loss 

of LPTCs. None of the flies possessed more than 7 remaining LPTCs.  

 

Depending on the exact developmental stage when heatshock was given, which can 

vary between single late 3rd instar larvae up to 24 hours, the number of remaining 

LPTCs in each lobe (Fig. 54 A-C) was also very variable. Within a single fly, it was 

possible to observe different expression patterns in both hemispheres (Fig. 54 D).  

At first sight, remaining LPTCs did not reveal any obvious anatomical differences in 

terms of dendritic shape or neuronal size compared to wildtype morphological 

structures. Nevertheless, in order to prove this assumption, a cell vitality test was 

performed. Here, Propidium iodide (PI from Invitrogen) was used as a fluorescent, 

intercalating agent for DNA staining. In viable cells, PI cannot pass the cell 

membrane whereas, in dead cells or non-vital cells, the protein synthesis is 

interrupted and therefore PI is able to pass through the porous membrane.  

Adult brains were first dissected and then immediately incubated in PI solution 

(1:3000) for 1 minute without fixation. After several washing steps with PBS, confocal 

images were taken. PI was thereby excited with a 488 nm argon-ion laser light and 

detected by a 562-588 nm band pass filter. In the following step, a screen for PI 

positive LPTCs was done. In all tested brains, no overlap of PI with GFP positive 

LPTCs was observable, showing that the remaining neurons were not affected by 

RicinA expression (Fig. 55) in neighboring neurons.  
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Fig. 54: Comparison of the DB331 expression pattern after RicnA induction in late third instar 

larval stage. 

The images demonstrate the efficiency of RicinA ablation in LPTCs with the developed heatshock 

protocol. Depending on the cell type, progenitor cell or non-mitotic cell, in which RicinA is initially 

induced, the number of surviving LPTCs decreases to a single LPTC. In (A) only a small subset (VS1, 

VS2 and HSN) has remained whereas in (B) and (C) only HSS and HSN respectively escaped 

ablation. At first sight, the dendritic branching pattern does not obviously differ from those in control 

flies. The neurons are displayed in the relative position within the brain, i.e. left and right hemispheres 

are not oriented in the same direction. In (D) the differences in cell ablation efficiency within a single 

RicinA fly are illustrated. Here, both optical lobes within one specimen are shown. The left hemisphere 

possesses less remaining LPTCs than the right one. Confocal image stacks were taken with a z-

increment of 0.2 µm, a 63X objective and minimized pinhole. Composite images were generated by 

collapsing ~ 60 images. Scale bar 50 µm. 
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Fig. 55: Cell vitality test with Propidium Iodide reveals that remaining LPTCs are not affected 

from leaky RicinA expression. 

No Propidium Iodide (red) could be detected could be detected in any of the tested animals (n=7) 

within GFP labeled LPTCs (green). This suggests that cells are vital. Confocal image stacks were 

taken with a z-increment of 0.2 µm, a 63X objective and minimized pinhole. Composite images were 

generated by collapsing ~ 60 images. Scale bar 50 µm 

 

The timed ablation of neurons by RicinA expression represents a powerful tool for 

ablation of subgroups of cells without interfering with cell vitality of neighboring 

neurons. Here, a very narrow timeframe of 24 hours was defined in which heatshock 

treatment leads to effective ablation of LPTCs. Furthermore, it was possible to 

unravel some surprising developmental mechanisms in anatomy of LPTCs leading to 

the conclusion that single LPTCs formation of dendritic branching patterns does not 

depend on neighboring LPTCs. This method combined with the elaborated heatshock 

protocol makes it possible to understand the function and importance of individual 

LPTCs for optomotor response in future behavior experiments.  
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5.2.4 Transsynaptic retrograde labeling of neurons with Vesicular Stomatitis 

Virus in Drosophila 

Recent studies have demonstrated the manifold ways in which viruses for the 

transsynaptic retrograde labeling can be used to highlight cell morphology as well to 

identify presynaptic connected cells (Wickersham et al. 2007). However, the use of 

viral abilities has only been demonstrated in the mammalian model system. The aim 

of this study was to establish this labelling method in Drosophila melanogaster. The 

experiments were carried out in collaboration with Alexander Ghanem and Klaus 

Conzelmann who provided all viral stocks for following experiments.  

 

5.2.4.1 Pseudotyped VSVs infect efficiently Drosophila cells in culture 

As viral systems for the infection of neurons have not been established in Drosophila, 

the initial starting point of the project was to take the same virus that has been used 

in the mammalian system. However, feeding experiments of fly larvae with Rabies 

Viruses (RV) containing media demonstrated that they were not penetrating 

Drosophila tissue at all. We therefore continued to screen for a virus that was able to 

infect insect cells. It was known from previous studies that the Vesicular Stomatitis 

Virus (VSV) was capable of infecting and reproducing in S2 Schneider cell cultures 

(Moffat, KG. 2002). Here, this experiment was repeated whereby a massive infection 

of S2 cells by VSVeGFP viruses could be observed (Fig. 56). This virus strain was 

derived from the wildtype VSV strain. Within the VSV genome, an additional mRNA 

sequence encoding for enhanced GFP (eGFP) was inserted subsequently to the 

gene encoding the Glycoprotein (G-protein). A further recombinant virus strain was 

generated based on VSVeGFP in which the genomic G-protein sequence was 

deleted (DG) in order to trap the virus within the initial infected host cell (VSV DG 

eGFP). As the G-Protein was also absent within the initial VSV DG eGFP, the virus 

needed to be pseudotyped with its own G-Protein in order to be able to infect any 

host cells. Pseudotyping was the procedure where the virus was uniquely provided 

with a Glycoprotein in trans via host cells from which the virus was harvested. 

However, as these deletion viruses do not genetically encode for the G-protein 

themselves they were not able to spread to neighboring cells. This allowed the 

infection efficiency of VSVs to be determined and furthermore, based on this deletion, 
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mutant pseudotyping with either the own G-protein, VSV-G, or other coating proteins 

like Rabies Virus G- and Matrixproteins (M-protein) could be implemented. In order to 

pseudotype VSV DG deletion viruses, the virus was first pseudotyped with its own G-

protein and afterward within the host cells the corresponding Rabies proteins were 

provided in trans. One key point here was that VSVs were reported to spread through 

diffusion- The aim aim was therefore to transfer the ability of the Rabies virus to 

spread transsynaptically to VSV. The spreading behavior was characterized through 

the G-protein that differs between virus species. However, the M-protein was also 

speculated to play a role. 

 

 
Fig. 56: Infectivity of VSVeGFP and different pseudotyped VSV strains of Drosophila S2 cells. 

The image shows S2 cells infected with different genetically manipulated VSV strains. Infection 

(green) is detected under fluorescence stereomicroscope. Here, the number of infected cells does not 

give any conclusive results about infection efficiency, as different concentrations of the virus stocks 

were applied. All tested strains infect and replicate within S2 cells. The wildtype VSV strain with eGFP 

insertion is the only strain which can potentially “spread” to neighboring cells. The other strains 

possess a deletion (D) of the genomic Glycoprotein (G-protein) site and therefore are not able to 

process the budding step. However, through pseudotyping with either their own G-Protein or foreign 

G-Proteins like RV-G (Rabies Virus Glycoprotein), these deletion viruses are able to spread. All 

transfected cultures are positive for virus infection. Data was kindly provided by Alexander Ghanem. 

 

Therefore, we also tested VSVDG deletion strains which were pseudotyped with 

different Rabies Virus components and, indeed, both pseudotyped VSV strains, one 

with Rabies Virus G and M protein (VSV DG eGFP (RV-MG)) and the other only with 

G-protein (VSV DG eGFP (RV-G)) were able to infect S2 cells. However, the 

infection rate could not be compared between different VSV strains that were used, 

as the virus concentrations applied with the solution differed. Though the experiments 

with S2 cells provide initial evidence that VSV viruses might be used to infect 

Drosophila S2 cells, it was fully unclear whether the virus would enable retrograde 
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tracing. The main reason was that S2 cells were derived from late embryo stages 

non-neuronal cells and therefore do not possess synapses. In the next step, we 

applied the virus stock to intact fly brains.  

 

 

 

Fig. 57: Drosophila brains can be cultured ex vivo for more than 10 days. 

In the first row, wildtype brains are successively observed during a total incubation time of 10 days. 

The brains do not undergo any visible morphological changes or degradation during incubation time 

besides minimal flattening of the entire brain. For closer observation of the vitality, brains taken from 

the stock DB331-Gal4; UAS-mCD8::GFP are kept in culture (second row). Flies out of that stock 

possess a strong GFP expression pattern, which is observable under fluorescence microscope. After 

10 days, the GFP expression level is still maintained. In addition, at day 7, confocal images were taken 

of the entire LPTCs in the optical lobe, thereby revealing intact morphology in both dendritic and 

axonal parts within these neurons (second row, right). Stereomicroscope images were taken with a 

Leica M205 FA and full apochromatic zoom. Confocal image stacks was taken with a z-increment of 

0.5 µm, a 63X objective and minimized pinhole. Composite images were generated by collapsing ~ 60 

images. Scale bar 25 µm and 50 µm respectively 

 

In a recent publication from Ayaz et al. 2008, a protocol for culturing whole 

Drosophila brains was presented. In order to test whether this system would also 

work for viral infection, brains from adult wildtype flies as well as from the stock 

DB331-Gal4; mCD8::GFP were dissected and taken into culture. Anatomical 

observations of those brains throughout an incubation time of 10 days revealed no 

substantial change in the general appearance of the brain. Only a minor flattening of 

the brain was observable. No decrease in the GFP expression level was found (Fig. 
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57). Furthermore, to underline these findings confocal images were taken from 

DB331-Gal4; mCD8::GFP brains after 7 days of incubation. The LPTCs showed no 

differences in their anatomy. Even after 10 days' incubation, the brains appeared to 

be intact. 

 

 

 

Fig. 58: VSV-eGFP infects neurons in cultured Drosophila brains. 

An entire fly brain is shown in (A). Infection of VSV-eGFP (green) is most prominent in the right optical 

lobe. There are further single cells and small cell populations GFP labeled though the virus within the 

central brain that are labeled by GFP expression from the virus. The brain is incubated for 4 days with 

virus solution at 25°C. A close up at the infected optical lobe (40X objective) reveals labeling of 

neurons but also glia cells in the medulla (asterisk) and the lobula complex (triangle) which are 

distinguishable through their characteristic morphology. Brains were only fixed but not additionally 

immunolabeled. Confocal image stacks were taken with a z-increment of 0.2 µm, a 10X objective and 

40X objective with minimized pinhole. Composite images were generated by collapsing ~ 60images. 

Scale bar 50 µm 

 

As the replication of VSV takes only several hours at 37°C, the established culture 

was well suited for observing viral spread. In a next step, 1 µl of a solution containing 

VSVeGFP was applied to wildtype brains in culture. After 3 days, brains were fixed 

and confocal images were immediately taken without additional immunolabeling of 

GFP. Massive infection of the brains by VSVeGFP was detected (Fig. 58). Broad 

patches of GFP positive infected cells could be mainly observed. The infection 
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process of the deletion virus VSV DG eGFP (VSV-G) was also tested in brain culture. 

Consistent with previous studies, only single cells were infected and labeled (Fig. 59). 

After another two days, maximum infectivity was reached, i.e. no further neurons 

appeared GFP labeled, and confocal images were taken. Here, even the processes 

of single cells could be tracked due to decreased density of marked cells.  

Taken together, by comparing the observations made with VSV eGFP and VSV DG 

eGFP (VSV-G), it can be assumed that spreading occurred in the first case (Fig. 59). 

However, the patches did not in any way show that the virus was spreading within the 

brain whether through diffusion or throughout synaptic connections. Nevertheless, 

the cell types were both distinguishable, neurons and glia cells were equally infected 

leading to the question as to which cell type the virus preferred. 

 

 

Fig. 59: VSV DG eGFP deletion viruses are trapped within initially infected host cells. 

After 2 days' incubation time of the fly brains with VSV DG eGFP solution at 25°C, single infected 

neurons (triangle) as well as glia cells (double arrow) are GFP labeled (green) through the virus. 

Longer incubation time does not reveal any spreading of the virus throughout the initially infected cell. 

The brains were only fixed without additional immunolabeling. Confocal image stacks were taken with 

a z-increment of 0.5 µm, a 63X objective and minimized pinhole. Composite images were generated 

by collapsing ~ 20 images. Scale bar 25 µm. 

 

The same procedure was carried out with VSV DG eGFP RV (GM) and this time a 

general increase in the number of infected cells was observed accompanied by a 

pattern of GFP-positive cell patches. This finding suggests that pseudotyping VSV G-

protein deletion viruses with Rabies G- and M-protein enables VSV to spread beyond 

the initial infected cell (Fig. 60). However, it is still unclear whether the combined 
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expression of both proteins was needed for viral spread. These results lead to the 

assumption that recombinant VSV strains allow labeling of Drosophila cells by 

infection, replication, and spreading of the virus.  

 

 

 

Fig. 60: VSV DG eGFP pseudotyped RV (GM) infects cultured Drosophila brains. 

Deletion VSVs pseudotyped with rabies Matrix and Glycoprotein are able to infect Drosophila brains in 

culture. Three days after infection the first infected neurons are GFP labeled (green). In the left image, 

the left side of the fly brain is shown where VSV-positive cells are visible in the optical lobe (asterisk, 

left side of the dashed line) and the central brain (triangle, right side of the dashed line). The left image 

shows a close-up of a VSV labeled glia cell where the processes are labeled. Confocal image stacks 

were taken with a z-increment of 0.5 µm, 63X objective and minimized pinhole. Composite images 

were generated by collapsing ~ 60 images. Scale bar 50 µm and 25 µm, respectively. 

 

5.2.4.2 TVA/EnvA system for specific targeting of neurons 

Given that VSV might be useable for viral tracing of neuronal circuits, the next aim 

was to target the virus to neurons of interest. Therefore, an established two-

component system was chosen called TVA/EnvA system. One component, the TVA 

receptor was expressed by the host cell. Transgenic flies encoding the TVA 

sequence under control of the UAS promoter were generated. The construct was 

designed in such a way that dsRed was additionally translated as a marker protein 

however, independently from the TVA sequence. This was enabled through a linker 

called “2A like” which controls ribosome activity (Tang, W. 2009, Szymczak, AL. 2004) 

(Fig. 61) and leads to separation at protein synthesis level by causing a ribosomal 
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skip mechanism. The expression of UAS-TVA-2Alike-dsRed flies was tested by 

crossing them with DB331-Gal4. Already in early larval stages, dsRed expression 

was detectable under the fluorescence strereomicroscope. Expression strength was 

constant throughout the entire development (Fig. 62). Confocal images of fixed adult 

brains confirmed the expression of dsRed within the neurons of interest. Here, the 

main branches were strongly labeled whereas higher order branches were merely 

visible due to the cytoplasmic localization of the marker protein. This observation 

points to a separated translation of dsRed and TVA translation through the 2Alike 

sequence. 

 

 

Fig. 61: TVA-2Alike-dsRed integration into the pUAST vector. 

The sequence of the TVA-2Alike-dsRed construct is integrated into the pUAST-vector through the 

gateway cloning system. The pUAST destination vector depicted in (A) possesses attR1/attR2 

recombination sites which allow the integration of the TVA-2Alike-dsRed sequence that is flanked with 

attL1/attL2 recombination sites via enzymatic reaction (B). Original construct was kindly provided by 

Alexander Ghanem.   
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In parallel, VSV DG eGFP was pseudotyped with EnvA (VSV DG eGFP (EnvA)) 

forming the complementary partner to the UAS-TVA-2Alike-dsRed flies. For 

expressing TVA in LPTCs, we chose DB331-Gal4 as driver line. For testing whether 

this system really ensures infection specificity, brains dissected from adult TVA 

expressing flies were taken into culture and together incubated with VSV DG eGFP 

(EnvA) solution at 29°C. The temperature was increa sed in order to speed up the 

infection process. 24 hours later first neurons were labeled by viral infection and 

could be detected under fluorescence microscope. Moreover, some of the labeled 

neurons could be identified as vertical sensitive (VS) neurons belonging to the group 

of LPTCs (Fig. 63).  

 

 

Fig. 62: Expression pattern of DB331-Gal4; UAS-TVA-2Alike flies  

Expression of dsRed is observed under the fluorescence sterecmicroscope during larval stages (not 

shown) and throughout the entire development. (A: arrows). This is also true for adult flies (B). A 

strong expression level of dsRed was observable. Confocal images reveal the localization of dsRed 

within the entire cell structure like soma (arrow) and dendritic ramifications (triangle). Here, images 

were taken immediately after fixation. The confocal stack was taken with a z-increment of 0.5 µm, a 

63X objective and minimized pinhole. Composite images were generated by collapsing ~ 30 images. 

Scale bar 50 µm. 

 

Up to this stage, all experiments were performed in vitro in brain cultures. However, 

to allow labeling of presynaptic neurons and to preserve anatomical structures as 

well as health of infected neurons in long-term experiments, the virus needed to be 

applied to living animals. Furthermore, the incubation time of the virus can be 

expanded to the lifetime of the flies and thereby could be combined with 

electrophysiology as well as behavior assays in future experiments. Therefore, 
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recombinant VSVs were injected directly into the head of Drosophila. Here, VSV DG 

eGFP (EnvA) should have high target specificity towards TVA expressing neurons. 

 

 

Fig. 63: Targeted virus infection of LPTCs through the TVA/EnvA system. 

The image of one-half of a brain reveals that the TVA/EnvA system is working in flies and allows a 

specific targeting of the virus to LPTCs. Here, several neurons in the lobula plate (asterisk) are GFP 

labeled (triangle, arrows) through virus infection and even anatomically identifiable as vertical sensitive 

(VS) cells (arrows), whereas the dsRed expression shows the endogenous expression pattern of 

DB331-Gal4. However, the dsRed labeling is very weak compared to GFP expression. Nevertheless, 

GFP localization coincides with dsRed labeled cells revealing the efficiency of that system. Single 

image was taken from fluorescence microscope. Scale bar 50 µm. 

 

In the first application, a fluorescent dye, Alexa Fluor 488 (Invitrogen), was used 

instead of a transparent virus solution for determining the pressure with which the 

solution should be applied via the microinjector (Fig. 64 B, C). A minimum invasive 

procedure was thereby developed which allowed flies only to be anesthetized with 

carbon dioxide but not fixed during injection (s.Methods). The filled capillary was 

inserted into the back of the head close to the lobula plate (Fig. 64 A). Pressure was 

adjusted so that the volume of the injected solution (< 1µl) would only spread 

throughout the head but not the entire animal (Fig. 64 C). An increase in the injected 

solution volume was leading to death of the fly.  

P 
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Fig. 64: Injection of virus solution into living flies results in GFP labeling of infected cells. 

The injection procedure is shown with Alexa Fluor 488 under fluorescence microscope (A-C). Flies are 

anesthetized with carbon dioxide. The head of the fly is positioned with brushes and forceps so that 

the back of the head is exposed (A) and the loaded capillary can be inserted close to the lobula plate 

(A) (asterisk). Afterwards, a < 1µl is injected into the head via microinjector, leading to a concentration 

of around 100 viruses per injection (B).  Spreading of the virus throughout the hemolymph was 

determined under fluorescence microscope combined with bright field light (C). The same pressure is 

taken for injecting VSV DG eGFP (envA) solution into TVA expressing adult flies (DB331-Gal4/UAS-

TVA -2Alike-dsRed). 24 hours post injection, adult flies are decapitated, and brains dissected. Already, 

under fluorescence microscope, green-labeled cells equivalent to virus infection are observed (D) 

(arrows). Confocal images reveal an infection of a large number of cells within the optical lobe as well 

as the central brain (E). A close up image of infected glia cells in the Medulla region (arrow) 

demonstrates the detailed anatomical structure of those cells (F). Scale bars 50 µm (D/E) and 25 µm 

(F). 

 

Injection of VSV DG eGFP (envA) solution into the back of the head of DB331-Gal4; 

UAS-TVA-2Alike-dsRed adult flies showed that VSV was infecting a large number of 

cells (Fig. 64 E) and furthermore, that infected flies were surviving this procedure. 

Therefore, the next step was to generate transgenic flies that would produce viral G-

protein that would allow monosynaptic spreading. Therefore, six independent 

transgenic fly lines were generated encoding for G-proteins from different virus 

species (Fig. 65). 
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Fig. 65: Integration of viral Glycoproteins into the pUAST vector. 

The sequences of the G-protein constructs are integrated into the pUAST-vectors through the gateway 

cloning system. The pUAST destination vector possesses attR1/attR2 recombination sites, which 

allows the integration of the TVA-2Alike-dsRed sequence that is flanked with attL1/attL2 recombination 

sites through an enzyme-mediated process (s.methods). Original constructs were kindly provided by 

Alexander Ghanem.   

 

The G-proteins were put under control of the UAS promoter, thus the expression 

could be combined with that of the TVA receptor. First experiments made in brain 

culture did not lead to a conclusive result. In addition, immunolabeling of rabies virus-

G revealed non-specific localization or binding of the antibody (Fig. 66). However, 

previous studies have shown that ubiquitin-driven expression of pCVS-G vector in S2 

cells showed positive protein synthesis in Western Blot (not shown), thereby 

revealing that Drosophila cells were able to create viral Glycoproteins. Nevertheless, 

studies that are more conclusive are needed for testing the expression level of G-

proteins as well as functional aspects.  
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Fig. 66: Immunolabeling against rabies virus Glycoprotein reveals localization at the membrane 

surface of HS cells. 

Here, the UAS-CVS-G construct was expressed under control of G73-Gal4. This driver line includes 

HSN and HSE as well as some columnar neurons. For cell labeling, mCD8::GFP (green) was used as 

a marker. CVS-G was detected by immunolabeling with an antibody specifically targeted against 

rabies virus Glycoprotein (magenta).In (A) a close up section of the HSN dendritic area is depicted in 

green showing some colocalization (arrows) with expressed virus G-protein in magenta but much 

more non-specific localization of the antibody. Close up image of HSN dendrites (B) as well as 

overview image of the entire lobula plate (C) do not show any CVS-G detection in control flies, hence 

determine antibody specificity. The confocal stack was taken with a z-increment of 0.2 µm, a 63X 

objective and minimized pinhole. Composite image (B+C) was generated by collapsing ~ 120images. 

Scale bar 10 µm (A+B), 25µm (C). 

 

Here, the first steps towards a new method of labeling neuronal circuitries. Besides 

the identification of virus species that infect and reproduce in Drosophila 

melanogaster, a proof was provided that specific targeting to the neurons of interest 

can be achieved through the EnvA/TVA system. So far the method should be 

applicable in living animals and was therefore only temporally restricted through the 

lifetime of the specimen itself. The complementation with G-protein expressing flies 

has been started and needs to be tested for synaptic specificity.  
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6 Discussion 

6.1 Manipulation of the endogenous Dscam code in HS cells elicits different 

anatomical phenotypes 

In this study, we were able to provide strong evidence that HS cells possess an 

endogenous Dscam code. Immunostaining against the Dscam intracellular domain 

has revealed colocalization of the antibody with the GFP labeled HS cells. 

Furthermore, all Dscam null HS cells showed a strong self-crossing phenotype, which 

is due to the loss of any self-avoidance mechanism among sister dendrites. In 

addition, an increase in the number of higher-order branches was observable in 

Dscam null cells generated by site-directed recombination, whereas the dendritic 

fields remained unaltered. This Dscam null phenotype was highly reproducible and 

thus Flipase activity might have been strong enough to induce recombination in the 

entire expression pattern. In contrast to this, the attempt to create Dscam loss of 

function cells by deleting Exon 6 and gene silencing with RNAi turned out to be 

inaccurate. Although self-crossing events occurred in both cases as in Dscam null 

flies, the phenotypes were in general different from case to case and very 

inconsistent. This might be due to incomplete flip-out of the Exon 6 and incomplete 

silencing that could lead to either mosaic cells with and without Dscam code or cells 

with Dscam deficiency. The opposing phenotypes of Dscam null and Dscam 

deficiency cells are explained by the stochastic yet biased expression mechanism of 

Dscam isoforms in neurons. It has been shown that neurons largely express a 

nonspecific set of isoforms but some isoforms are needed for correct targeting and 

self-avoidance. Given the complexity of the Dscam locus, it is reasonable to expect 

that different roles for diversity will be observed in different cell populations or even 

different processes of a cell (Matthews et al. 2007). Deleting a subset of isoforms 

could therefore lead to errors in several developmental processes of HS cells, 

thereby eliciting other and more variable phenotypes than Dscam null is doing.  

Besides the dendritic ramifications in the lobula plate, the axonal terminals were also 

seriously impaired in pathway finding and ramification: They were innervating wrong 

areas in the central brain and their endings were fasciculating, forming clumps. 

Taken together, these observations support the model that HS cell self-avoidance, 

but not heteroneuronal tiling, may depend on Dscam. This is in line with previous 
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studies in the mouse retina in which DSCAM has been shown to mediate isoneuronal 

self-avoidance for arborization and heteroneuronal self-avoidance within specific cell 

types to prevent fasciculation and to preserve mosaic spacing of the mouse retina 

(Fuerst, PG. 2007). Furthermore, from a genetic mosaic screen, it has been found 

that a lethal mutation in Dscam specifically perturbs segregation of axonal branches 

in the mushroom bodies (Wang et al. 2002).  

Reduction of Dscam diversity by excision of Exon 2 led to variable phenotypes in the 

dendritic branching pattern of HS cells. Self-crossing events as well as decrease in 

the dendritic field were observable. The branching defects let us assume that, in HS 

cells, more than 1584 Dscam isoforms are needed for establishing wildtype 

branching pattern. Indeed, from mathematical modeling studies as well as from other 

Dscam deficiency studies, it is concluded that thousands of isoforms are essential to 

provide neurons with a robust discrimination mechanism to distinguish between self 

and non-self during self-avoidance (Hattori et al. 2009).  

The Dscam single isoform overexpression screen demonstrated a high variability in 

strength between each elicited phenotype. In two cases, Dscam +7.6.19.2 and 

+11.31.25.1, overexpression resulted in a strong anatomical alteration of HS cells. In 

+7.6.19.2 flies, the cells showed a strong decrease in higher-order branches in the 

dendritic regions with thinner main branches, whereas the axonal region appeared 

unaltered. Furthermore, in some cases the dendritic fields appeared to be smaller. 

The phenotype elicited by Dscam +11.31.25.1 tended to be similar, with a significant 

reduction of the dendritic fields especially in the distal area of the lobula plate, but the 

remaining branches appeared thicker compared to wildtype ones. In addition, the 

axonal terminals were also impaired. Both phenotypes possessed different 

penetrance rates, which also depended on the used driver lines: DB331-Gal4, G73-

Gal4, or GR104-Gal4. Nevertheless, the characteristics of the phenotype itself were 

consistent; i.e. Dscam +11.31.25.1 consequently elicited the same phenotypes in HS 

cell dendrites. In the Drosophila olfactory system, this uniqueness of overexpression 

phenotype has been described before as well as the variability of penetrance that 

might be due to the variability of the transgene expression level (Spletter et al. 2007, 

Zhu et al. 2006).  

Reconstruction of Dscam +11.31.25.1 cells revealed a strong reduction of spanning 

fields as well as overlapping areas between HSN and HSE. Furthermore, increased 

cell increment along with an enlargement of the entire lobula plate hull area suggests 
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Dscam-mediated heteroneural repulsion between HS cells and most probably 

columnar neurons as well as other LPTC subgroups. So far, it is known that Dscam 

promotes isoform-specific binding, and interactions between identical Dscam proteins 

seem to promote contact-dependent repulsion (Hughes et al. 2007). However, it is 

unclear whether interaction of the same Dscam isoform is able to elicit such a strong 

overall phenotype.  

The general reduction of higher order branches in the dendritic areas of HS cells was 

confirmed by immunostaining with α-Btx conjugated Alexa Fluor that suggests a 

decrease in density of nAchR in the observed lobula plate section. Furthermore, the 

receptor density seemed to be locally enhanced in +11.31.25.1 HS cells. This might 

point to a local agglomeration of synaptic input elements where presynaptic 

structures might follow their target structures despite their dislocation. Supporting this 

idea, the anatomical study of Dscam+11.31.25.1 driven by GR104-Gal4 showed that 

T4 and T5 cells were majorly mistargeting in the lobula plate region. Studies done by 

Zhu et al. (2006) have provided evidence in the olfactory system that positional shift 

of projection neuron dendrites causes a corresponding shift of its partner olfactory 

receptor neurons axons, thus maintaining the connection specificity. In HS cells, such 

a pre- and post-synaptic matching mechanism independent of precise dendritic 

positioning could be present. However, as quantification of the staining was not 

feasible and T4/T5 neurons are only shown to costratify in the LPTC layers without 

proof of synaptic connectivity, the conclusions are very speculative.  

A general open question is why Dscam +11.31.25.1 elicits a strong phenotype in the 

dendritic region of HS cells but not in the axonal terminals as this isoform possesses 

the transmembrane domain 2 which has been shown to be enriched in axons. In 

contrast to this, isoforms carrying the transmembrane domain 1 are supposed to be 

restricted in dendrites (Yang et al. 2008). 

MARCM experiments with Dscam +11.31.25.1 demonstrated that overexpression in 

single cells do not elicit altered morphology. In addition, neurobiotin injection in 

Dscam null flies revealed that wildtype cells, which were closely located to Dscam 

null neurons, also showed self-crossing phenotype despite their intact Dscam code. 

However, in case of MARCM, differences in expression levels intrinsic to the method 

are present and could decrease the penetrance rate. Nevertheless, the cell labeling 

result strongly suggests a non-cell-autonomous effect of Dscam +11.31.25.1. This 

conclusion also underlines previous findings in which Dscam mutant axons have 
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been shown to alter the projections of wild-type axons within the same mushroom 

body (Wang et al. 2002).  

Furthermore, we were able to determine a time point during the development of HS 

cells after which Dscam +11.31.25.1 induction did not elicit the phenotype anymore. 

The strength of Dscam +11.31.25.1 phenotype decreased gradually towards that 

time point. One explanation could be that Dscams are only needed during neurite 

outgrowth, but not in the mature neuron. Once the destination areas are innervated, 

the neuronal pattern is not changeable by Dscams anymore. Supporting this idea, 

previous developmental studies in the mushroom body have postulated that Dscams 

might be widely used to mediate various growth cone behaviors (Wang et al. 2002).  

Neurobiotin injection into HS cells displaying Dscam +11.31.25.1 phenotype revealed 

an intact electrical coupling despite reduced dendritic fields, which supports the 

hypothesis that heteroneuronal tiling does not depend on Dscams. 

Taken together, we have provided strong evidence that Dscam1 is required for 

appropriate patterning in HS neurons. We further investigated which functional 

consequences altered anatomy has on the functional role of HS cells. 

 

6.2 Electrophysiology analysis displays strong correlations between 

morphological changes and response properties of HS cells 

The entire electrophysiology study was performed by Bettina Schnell. 

Complementary to this, the anatomical structures of recorded cells were also 

examined due to the variability in penetrance of Dscam overexpression. In this study, 

two major aspects have been observed: contrast dependency and receptive field of 

single HS cells.  

Our studies revealed a strong reduction in the frontal receptive field of HS cells in 

Dscam +11.31.25.1 flies correlating with observed morphological changes. The 

smaller receptive fields were caused by the lack of dendritic trees in the distal areas, 

which correspond to the frontal visual field of the fly. In addition, in the proximal areas, 

the responses were slightly increased which supports the finding of receptor 

accumulation at the remaining branches. Contralateral responses were also slightly 

decreased. In the contrast dependency assay, cell performance was generally 

weaker than that of wildtype cells, reaching a lower saturation plateau. This 

phenomenon of gain control mechanism in EMDs has been examined in detail. It has 
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been postulated that the exact value of saturation in large-field motion detectors like 

HS cells is set by the activation ratio of their excitatory and inhibitory input elements. 

The reversal potentials and conductance of EMDs, as well as the absolute numbers 

of activated pairs (proportional to the pattern size), determine that value (Borst, A. 

1995). Therefore, with a decreased cell size the total number of input elements also 

decreased and with that the dendritic membrane potential as well as the saturation 

plateau. The observed impact of the response to contralateral stimuli might be 

assigned to the misdirecting of axonal terminals. In Calliphora, contralateral 

projecting H-cells have been described as providing information from the frontal 

visual field at the contralateral side (Haag and Borst 2001, 2008) 

Changing gear, we now focus on Dscam +7.6.19.2. Here, electrophysiological 

recordings revealed that in a few cases HS cells did not respond to ipsilateral 

stimulation at all whereas response to contralateral stimulation was unaltered. These 

results revealed a strong decrease or else loss of presynaptic columnar input to the 

HS cell dendrites, while information flow from contralateral projecting neurons was 

still maintained. Contrast dependence of those cells was similar to Dscam 

+11.31.25.1 HS cells showing weaker but not total loss of response to whole-field 

stimuli. By mere anatomical study, these functional errors were not predictable as the 

main branches were still present in Dscam +7.6.19.2 cells. Nevertheless, in general, 

we were able to determine a correlation between fluctuations in phenotypical 

penetrance and variations in individual cell performance; i.e., the stronger the elicited 

phenotype, the more the function of the cell was impaired.  

In this study, we were able to prove that Dscams are essential for guidance and 

functional branching of HS cell neurites. Furthermore, gain-of-function studies have 

elucidated for the first time the physiological significance of a precise branching 

pattern in HS cells. These results encouraged us to have a further look at the 

optomotor responses of Dscam overexpression flies. 

 

6.3 Behavioral analysis reveals strong correlations between morphological 

changes and optomotor response deficits 

This behavior study was carried out by Väinö Haikala. Complementary to this, the 

anatomical structures of HS cells were examined subsequently after the performance. 
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In this study, the yaw responses to three different stimuli were observed: elevation, 

contrast and azimuth dependency.  

This study revealed that overall there was a strong decrease of about 40% in 

optomotor response along all tested elevations compared to control flies. By 

presenting the moving stimulus at different heights, different parts of the visual field 

along the dorso-ventral axis were covered and hence the optomotor responses could 

be partially shown to be elicited by HSN, HSE or HSS due to their distinct receptive 

fields. However, detailed analysis suggests that there was indeed a direct coherence 

between HS cell anatomy and optomotor response; e.g., flies showing a strong 

Dscam +11.31.25.1 phenotype in HSN and HSE performed worse upon stimuli 

presented at northern and equatorial elevations than flies in which only HSN is mainly 

impaired. These observations underline the idea that HS cells are involved in the yaw 

torque response in flies (Pflugfelder and Heisenberg 1995). 

In line with the previous assay, the responses determined at the contrast dependency 

assay showed a significant decrease in response of about 50% for all tested contrast 

levels. This result is similar to the obtained physiology data and assumes that the 

same EMDs with altered gain control, which provide input to HS cells, might be also 

part of the optomotor pathway in the fly. Recently, the first premotor descending 

neurons connected to LPTCs have been identified in Calliphora (Haag et al. 2007; 

Wertz et al. 2009). 

The azimuth assay only showed a constant slight decrease of about 30% in response 

strength starting at 120° azimuth. Unfortunately, t here had been a gap of 30° at the 

frontal visual field, which would correspond to the distal receptive field missing in 

Dscam+11.31.25.1 HS cells. The optomotor responses had therefore not been 

obtained from that area. Nevertheless, the results provide strong evidence that HS 

cells are strongly involved in optomotor response. 

 

Taken together the findings, we were able to carry out a unique study on the function 

of Dscam1 in HS cells. Anatomical results were greatly complemented by 

reconstruction analysis and physiology as well as behavior studies. The results show 

that Dscams are necessary for correct pattern formation and target finding. Moreover, 

the anatomy of HS cells is pivotal for its function of motion detection and strongly 

affects the optomotor response of the fly.  
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6.4 Genetic tools for the manipulation and recording of neuronal function 

We generated several transgenic lines with the goal of directly monitoring or 

manipulating input activity. Genetically encoded calcium indicators have great 

potential for the recording of neuronal activity (Hires et al. 2008). We used a FRT 

flanked ‘Stop’ cassette for controlling translation activation of TN-XXL with Flipase 

activity and induced labeling only in small cell populations. In initial experiments, the 

generated UAS>Stop>TN-XXL transgenics allowed expression of the indicator to be 

restricted to only a few cells within the pattern of DB331. This allows unambiguous 

identification of the neurons from which activity is measured (Hou et al. 2009). 

However, we still need to test whether the expression level and affinity of the 

indicator is sufficient in live imaging experiments.  

The other approach we made for dissecting the input elements was to identify the 

neurons of the inhibitory pathway. We tried to do so by generating vGat-Gal4 flies. 

The vesicular GABA transporter is highly concentrated at the nerve endings of all 

GABAergic neurons. It mediates accumulation of the transmitter into synaptic 

vesicles. It is known that LPTCs receive inhibitory inputs from GABAergic neurons 

(Raghu et al. 2007). In trying to isolate the promoter region together with its 

enhancers, we were able to extract promising regions. We finally obtained one 

transgenic fly strain, vGat4kb-Gal4, giving expression in a subset of probably 

GABAergic neurons. Difficulties in generating driver lines covering the entire 

endogenous expression pattern have been reported before. In most cases, one 

promoter region can give different expression patterns depending on the flanking 

enhancer regions (Schwyter et al. 1995). Another approach could be to make a 

knock-in construct; i.e., to preserve the given intron exon structure by replacing the 

vGat gene region through the Gal4 coding sequence (Champtiaux and Changeux 

2004; Horn and Handler. 2005; Huang et al. 2009) in the Drosophila genome. In 

addition, we had to face the problem that the expression of marker genes was not 

strong enough to identify individual neurons. We will need to enhance the expression 

level with a UAS-Gal4 loop or change the construct itself with an additional Kozak 

consensus sequence. The strength of the Kozak sequence controls the amount of 

protein synthesized from a given mRNA (Kozak 2002).  

For manipulating the excitatory input system of LPTCs, we expressed α-Btx that 

binds and modulates nAchRs (Chen and Patrick 1997), the major excitatory input 

elements on their dendrites (Raghu et al. 2009). Experiments done with lynx-1, a 
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novel member of the same gene family, have shown that it is highly expressed in the 

Mammalian CNS, where it modulates nAChR activity. Lynx-1 enhances 

desensitization of nAchR, increases Ach-evoked currents, and protects against brain 

degeneration exacerbated by nicotine. As α-Btx needs to bind directly to nAChR in 

order to block channel activity, the protein must be in close proximity to the receptor. 

Therefore, the toxin was not directly fused to the membrane but had a linker 

sequence that allowed the toxin to act more flexibly. In addition, the secretory signal 

of lynx-1 was used to transport the toxin next to the receptors (Holford et al. 2009). 

Transgenic flies expressing membrane-bound α-Btx fused to EGFP revealed an 

inhomogeneous dotted distribution along the membrane surface of the entire cell and 

soma. Preliminary electrophysiological recordings were carried out by Bettina Schnell. 

For recording macroscopic currents in HS cells, a monocular large field stimulus 

moving in PD and ND direction was presented in the visual field of transgenic flies. 

The results revealed that HS cells coexpressing α-Btx-EGFP were showing a twice-

augmented response to ipsi- and contralaterally provided PD stimuli compared to 

wildtype flies. However, this enhancement is only observable at 100% pattern 

contrast. Responses at 20% contrast level are unaltered. The results are surprising 

as we expected a decreased response to PD stimuli as the toxin should block the 

entire channel activity. However, the opposite effect is elicited which is more similar 

to the effects which have been reported to be typical for lynx-1, namely a more 

homogeneous distribution of current amplitudes, with a shift to large-current 

amplitude (Ibanez-Tallon et al. 2002). It has been reported that Ach evoked 

macroscopic currents were enhanced by 30%-40% in in vitro assays (Miwa et al. 

1999). Coincident with the shift, an enhancement of desensitization occurs (Miwa et 

al. 2006). Hence, the stronger response to PD stimuli at 100% contrast might be 

elicited through binding of α-Btx to nAchR and resulting conformation changes 

instead of blockage of the receptors. At 20% contrast level, the concentration of the 

transmitter Acetylcholine might be too low for eliciting the toxin effect. It has been 

reported that, in the case of lynx1, the evoked effects only occur if the natural agonist 

is also present; thus lynx1 functions as an allosteric modulator of nAchR in vivo 

(Miwa et al. 2006). This is most probably also, how α-Btx modulates the function of 

the main excitatory input pathway in the observed transgenic flies. Furthermore, it 

has been reported that mutant flies without Dalpha7 nAChRs still revealed direction 

selectivity of VS and HS cells; and remaining nAChRs were labeled by α-Btx, 
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pointing to a robust cellular implementation of dendritic processing that warrants 

direction selectivity (Raghu et al. 2009). 

To summarize, we were able to generate UAS- α-Btx-EGFP flies which can be used 

modulate nAchR activity in specific neurons including LPTCs in Drosophila. The toxin 

has unexpectedly displayed similar effects like lynx1. It can therefore, be used to 

modify the function of ion channels like nAchRs in LPTCs. However, which 

underlying mechanisms are elicited by binding of α-Btx has yet to be unraveled. 

 

6.5 Ablation of LPTCs with RicinA gives insights into developmental 

processes 

The UAS>Stop>RicinA construct works very effectively for cell ablation. After 

induction of RicinA, LPTCs that are normally included in the DB331 expression 

pattern were missing and no remaining cell fragments were observable. Furthermore, 

cell vitality testing with propidium iodide demonstrated intact membranes of 

remaining GFP labeled LPTCs. This result is in line with previous experiences with 

temperature sensitive RicinA constructs (Moffat et al. 1996) in which RicinA 

expression was shown to be restricted to those cells in which it was induced. 

Therefore, the expression of RicinA under control of the Stop cassette is not leaky; 

i.e., does not affect neighboring cells without RicinA expression. Nevertheless, for 

successful and targeted cell ablation, a clearly defined time point of RicinA induction 

is essential. Beside the developmental time point, the duration of heatshock is a 

crucial factor in restricting the ablation pattern (Gomez and Alcorta 2008). Therefore, 

this time point had to be experimentally defined for each individual Gal4 line. In case 

of the DB331-Gal4 line, the time frame turned out to be the late 3rd instar which is a 

well-defined and recognizable stage when all larvae are attached to the walls of the 

vials. This protocol was extremely useful as in all flies LPTCs could be ablated. For 

avoiding or decreasing the number of ablated neurons other than LPTCs, heatshock 

induction at later stages might provide a solution. However, experiments in later pupa 

stages turned out to induce RicinA very inefficiently in LPTCs. One reasonable 

explanation could be developmental conditions protecting against heat influences like 

the pupa shell or the adult cuticula, which is more protective than larval skin and, 

therefore, might prohibit heatshock-induced Flipase activity in later stages. Another 

explanation could be molecular mechanisms like DNA condensations that build a 
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barrier against Flipase activity (Oudman 1991, Vermeulen and Loeschcke 2007, 

Overgaard and Sorensen 2008). Another theory for the lack of cell ablation in later 

stages could be a decrease in the number of mitotic dividing cells (Wu and Luo 2006). 

These results suggest that Flipase does not work in adult flies in which neurons are 

already differentiated.  

To our surprise, there was not only a difference in the RicinA-induced ablation pattern 

between different flies but also within the optical lobes of one single fly. Both optical 

lobes possess different numbers and types of remaining LPTCs. As inhomogeneous 

heatshock treatment can be excluded as the reason for the difference between both 

optical lobes, this result hints to a time difference in the developments of LPTC 

precursor cells in both lobes. Different patterns of remaining LPTCs in the two optic 

lobes offer the advantage of testing two scenarios but also decrease the probability of 

having the same set of remaining LPTCs in both hemispheres. This might complicate 

the interpretation of behavioral experiments beside the variety of factors like 

motivation, flight experience, etc., of tested flies. Furthermore, assuming that LPTCs 

would play a key role in optomotor behavior of the fly, then unbalanced ablation in 

both optic lobes would elicit a total misbalance in optic flow perception in both 

hemispheres. Considering network connectivity between both optical lobes that has 

been shown to exist but has not yet been identified (Schnell et al. 2010), 

disequilibrium might cause an unpredictable change in optomotor response. 

Nevertheless, experiments with laser ablation of single HS and VS precursor cells at 

an early larval stage in Musca have demonstrated that these animals show reduced 

response to large-field regressive ND stimuli whereas the response to progressive 

PD stimuli is only slightly affected. In addition, object response to a single stripe 

hardly differs from wildtype (Geiger and Nässel 1981, 1983). Due to the ablation 

differences in both optical lobes, responses must be measured monocularly in order 

to prove whether specific alterations in optomotor behavior can be correlated with the 

loss of specific LPTCs. In any case, it is necessary to analyze anatomically which 

LPTCs are missing, after each behavioral experiment.  

In addition, our study also shed light on the development of LPTCs. Remaining cells 

preserved normal dendrite branching patterns even in the absence of other LPTCs 

included in the expression pattern of DB331. Consistent with the observations made 

with RicinA, previous ablation studies of R7 photoreceptors have shown that the loss 

of cells does not interfere with outgrowth and target finding of neighbored 
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photoreceptor cells. However, the photoreceptors differentiate in a defined sequence 

where R7 is the last to be formed (Tomlinson 1988). Hence, it is unclear whether 

LPTCs either develop cell-autonomously or are guided through other RicinA 

unaffected neurons or molecular guidance cues. Columnar neurons presynaptic to 

LPTCs could still be intact in RicinA flies and thus guide outgrowing axonal and 

dendritic processes of remaining LPTCs to their target areas. On the other hand, 

mechanisms such as gradient cues could make single LPTCs independent of 

neighboring cells. It is well known that, during early development, gradients form 

guidance cues for embryonic development (Nüsslein-Volhard and Wieschaus 1980) 

and for axonal targeting like in the case of the robo/slit interaction (Kidd et al. 1999). 

The independent development of LPTCs is not surprising as motion detection is of 

vital importance for the fly and thus has to build upon mechanisms making this 

system less susceptible to perturbations.  

Preliminary optomotor studies with RicinA flies were done in collaboration with 

Steven Fry. In a wing-beat analyzer, the yaw torque of tethered flies was monitored 

and subsequently the anatomy of remaining LPTCs analyzed. However, more than 

50% of all tested flies were not flying or only flew briefly. Others seemed to be blind 

and did not show any escape behavior when held in the hand. This observation 

presumably results from loss of all LPTCs but can also have another reason such as 

loss of motor neurons in the ventral ganglion. As the entire expression pattern of 

DB331 has never been completely studied, both scenarios are possible. Furthermore, 

we could not distinguish between a lack of motivation and the inability to fly. One 

means of proving the functionality of motor neurons is a walking paradigm instead of 

tethered flight (Strauss and Heisenberg 1993). However, from previous studies, it has 

been reported that many factors including flight experience, habituation to the torque 

and general environmental factors influence the flight performance of flies 

(Hesselberg, T. 2009). By excluding flies with general gait impairment, all variations 

in the optomotor response can then be attributed to an altered motion detection 

system. 

 

6.6 Vesicular Stomatitis Virus used in Drosophila as a neuronal tracer 

Drosophila melanogaster is a model organism with a broad spectrum of established 

genetic tools. Yet a method is lacking which allows identification of presynaptic 
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neurons besides EM studies (Van Haeften and Wouterlood 2000). The unique 

advantages of viral tracers have been demonstrated in studies done in mammalian 

organisms like mus musculus (Card 1998, Wickersham et al. 2007). However, 

transferring this method to another organism that does not even belong to the same 

phylum was a great challenge. Usually, viruses are specific to certain replication 

machineries in the cells of their host animals. However, in our case, when we tried to 

infect Drosophila melanogaster with attenuated rabies viruses, the host specificity of 

the virus prohibited infection of cells. Our goal was to use EGFP encoding viruses for 

labeling and identifying columnar neurons that are presynaptically connected to 

LPTCs and, in long term, revealing all neurons involved in the motion detection 

network. This network has largely not been unraveled (Fischbach and Dittrich 1989, 

Bausenwein and Fischbach 1992) in flies but is essential for understanding the 

cellular mechanisms underlying motion detection. There has only been speculation 

about the role of T4/T5 cells, which are supposed to synapse onto LPTCs. In a single 

EM study, synaptic connectivity was reported to exist between these groups of 

neurons (Strausfeld and Lee 1991). However, since then there has not been any 

further proof for that kind of interaction. In this thesis, we tried to establish a new 

method for tracing presynaptic neurons. We showed for the first time that VSV 

viruses were not only able to infect S2 cells (van den Pol, AN. 2009) but also various 

other cell types in isolated Drosophila brain cultures (Ayaz et al. 2008). With the 

cultured brains, we showed that VSV could infect and replicate within Drosophila 

neurons ex vivo. Furthermore, our model organism also provides the replication 

system of VSV viruses. This conclusion we drew from the infection studies in brain 

culture where we monitored viral spread during several days of incubation (Klingen et 

al. 2008) and observed the replication behavior of deletion viruses and pseudotyped 

viruses ex vivo. These results are fundamental for future experiments as 

infectiousness, fertility, and vitality of the virus are necessary for successful targeting 

(De Clercq et al. 1973, Aderka et al. 1985, Granstedt et al. 2010, Lancaster and 

Pfeiffer 2010). As reported before in vertebrates, VSVdG does not spread beyond its 

primarily infected Drosophila host cell. This ability to predict and guide the targeting 

behavior of VSV viruses through genetic manipulations is an essential source for 

using them as tracer viruses in future experiments. Moreover, we revealed that the in 

vitro brain culture was an easy and efficient way to test those factors for different 

viruses before applying promising candidates to living animals. This method will allow 
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an easy but also safe way to make a preliminary screen of viruses for future 

experiments.  

In our brain culture experiments, we observed preferential infection of glia cells. 

Considering the native spreading behavior of VSV viruses through diffusion 

(Haseltine et al. 2008), this observation might be because excised brains were still 

covered by glia cells (Awasaki et al. 2008). As we wanted to keep the brains as intact 

as possible, we did not remove the glial neurolemma (Demerec 1994) and tried to 

preserve all air sacs and tracheas. Most probably, this was the reason for the high 

ratio of glia to neuron infection rate.  

All labeled cells revealed a high level of fluorescence after infection. Therefore, a 

high viral replication rate was present in the cells. In most cases, even small cellular 

structures like synaptic endings were completely invaded by virus particles. The 

resulting detailed resolution shown in confocal images is comparable to reported 

results (Granstedt et al.. 2009). This is the most important criteria as presynaptic cells 

can only be identified based on their unique branching patterns. Additionally, for 

specific targeting and retrograde spreading of VSV, we used the EnvA/TVA system 

(Balliet et al. 1999, Wickersham et al. 2007) within flies. Transgenic flies, which 

express the Rabies Virus G-protein and TVA receptors under the control of the UAS 

promoter, ensure the infection and spreading specificity. The G-protein should enable 

an exclusively retrograde transportation of the virus, once the target neuron is 

infected. However, it was unclear whether the M-protein is also needed. The TVA-

EnvA system should exclusively target the virus with EnvA shell to cells exposing 

TVA receptors on their membrane surface. The fly line UAS-TVA-2Alike-dsRed was 

successfully generated. The expression of TVA receptors was verified through the 

dsRed marker that is independently translated from the TVA due to the 2Alike 

sequence. This linker has been shown to allow both constructs TVA and dsRed to 

provide two major advantages. First, TVA and dsRed are translated with equal 

efficiency as ribosomes quit after TVA-mRNA translation and start translating the 

dsRed-mRNA independently from previous translated sequence. From other 

translation regulators like the IRES (internal ribosome entry sites) sequence, an 

uneven translation level of both components has been revealed as problematic 

(Gilberst et al. 2010). The second important issue is, dsRed is not directly tagged to 

the TVA receptor and hence does not interfere with it. However, it is unknown 

whether the cytoplasmic domain possesses any functional role in virus targeting. 



DDIISSCCUUSSSSIIOONN  

PPAAGGEE  115599  

Nevertheless, we demonstrated for the first time that the EnvA/TVA system is 

working in Drosophila melanogaster both in vitro and possibly with in vivo assays as 

well. The in vivo assay still needs to be refined but is providing the basis for the next 

step, the monosynaptic retrograde spread. In previous studies, the time frame 

starting from infection of the host cell by rabies virus until spreading to the 

presynaptic neurons was reported to be around 3-4 days at 37°C in mammalian slice 

culture (Ugolini 2010). However, for insects the optimum environmental temperature 

is 25°C that would result in an incubation time of 10-14 days. This time period is 

much too long for recording any spreading behavior in brain cultures. Therefore, we 

needed to establish an in vivo assay. The preliminary injection protocol was tested 

successfully but needs to be refined. Furthermore, all generated transgenic 

glycoprotein expressing flies need to be tested. We are still way apart from our goals 

but we made the first step towards a revolutionary technique in Drosophila enabling 

specific targeting of single neurons in living animals. Nevertheless, with the first part 

of the technique, the UAS-TVA-2Alike-dsRed flies, we opened up the possibility 

(using the virus as gene carrier) of studying the function of single neurons with TN-

XXL, silencing single neurons with RicinA or inducing neuronal activity with the split 

Gal4 technique.  

 



RREEFFEERREENNCCEESS  

PPAAGGEE  116600  

7 References 

Aderka D, Novick D, Hahn T, Fischer DG, Wallach D. 

Increase of vulnerability to lymphotoxin in cells infected by vesicular stomatitis virus 

and its further augmentation by interferon.  

Cell Immunol. 1985 May;92(2):218-25. 

 

Awasaki T, Lai SL, Ito K, Lee T. 

Organization and postembryonic development of glial cells in the adult central brain 

of Drosophila. 

J Neurosci. 2008 Dec 17;28(51):13742-53. 

 

Ayaz D, Leyssen M, Koch M, Yan J, Srahna M, Sheeba V, Fogle KJ, Holmes TC, 

Hassan BA. 

Axonal injury and regeneration in the adult brain of Drosophila. 

J Neurosci. 2008 Jun 4;28(23):6010-21. 

 

Balliet JW, Berson J, D'Cruz CM, Huang J, Crane J, Gilbert JM, Bates P. 

Production and characterization of a soluble, active form of Tva, the subgroup A 

avian sarcoma and leukosis virus receptor. 

J Virol. 1999 Apr;73(4):3054-61. 

 

Basler K, Hafen E. 

Dynamics of Drosophila eye development and temporal requirements of sevenless 

expression. 

Development. 1989 Dec;107(4):723-31. 

 

Bausenwein B, Wolf R, Heisenberg M. 

Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on 

wild-type and the mutant optomotor-blind H31. 

J Neurogenet. 1986 Mar;3(2):87-109. Erratum in: J Neurogenet 1986 Aug;3(4):247.  

 



RREEFFEERREENNCCEESS  

PPAAGGEE  116611  

Bausenwein B, Buchner E, Heisenberg M. 

Identification of H1 visual interneuron in Drosophila by [3H]2-deoxyglucose uptake 

during stationary flight. 

Brain Res. 1990 Feb 12;509(1):134-6. 

 

Bausenwein B, Dittrich AP, Fischbach KF. 

The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the 

medulla. 

Cell Tissue Res. 1992 Jan;267(1):17-28. 

 

Bausenwein B, Fischbach KF. 

Activity labeling patterns in the medulla of Drosophila melanogaster caused by 

motion stimuli. 

Cell Tissue Res. 1992 Oct;270(1):25-35. 

 

Benzer S. 

Genetic dissection of behavior. 

Sci Am. 1973 Dec;229(6):24-37. 

 

Blair SS. 

Genetic mosaic techniques for studying Drosophila development. 

Development. 2003 Nov;130(21):5065-72. 

 

Bohm RA, Welch WP, Goodnight LK, Cox LW, Henry LG, Gunter TC, Bao H, Zhang 

B. 

A genetic mosaic approach for neural circuit mapping in Drosophila. 

Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16378-83. Epub 2010 Sep 1. 

 

Borst A, Haag J. 

Neural networks in the cockpit of the fly. 

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Jul;188(6):419-37. 

Epub 2002 Jun 7. Review 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  116622  

Brand AH, Perrimon N. 

Targeted gene expression as a means of altering cell fates and generating dominant 

phenotypes. 

Development. 1993 Jun;118(2):401-15. 

 

Brunner A, Wolf R, Pflugfelder GO, Poeck B, Heisenberg M.  

Mutations in the proximal region of the optomotor-blind locus of Drosophila 

melanogaster reveal a gradient of neuroanatomical and behavioral phenotypes. 

J Neurogenet. 1992 Feb;8(1):43-55. 

 

Card JP. 

Exploring brain circuitry with neurotropic viruses: new horizons in neuroanatomy. 

Anat Rec. 1998 Dec;253(6):176-85. 

 

Champtiaux N, Changeux JP. 

Knockout and knockin mice to investigate the role of nicotinic receptors in the central 

nervous system. 

Prog Brain Res. 2004;145:235-51. Review. 

 

Chen BE, Kondo M, Garnier A, Watson FL, Püettmann-Holgado R, Lamar DR, 

Schmucker D. 

The molecular diversity of Dscam is functionally required for neuronal wiring 

specificity in Drosophila. 

Cell. 2006 May 5;125(3):607-20.  

 

Chen D, Patrick JW. 

The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain 

contains only the alpha7 subunit. 

J Biol Chem. 1997 Sep 19;272(38):24024-9. 

 

Conzelmann KK. 

NONSEGMENTED NEGATIVE-STRAND RNA VIRUSES: Genetics and Manipulation 

of Viral Genomes. 

Annu Rev Genet. 1998;32:123-62. 



RREEFFEERREENNCCEESS  

PPAAGGEE  116633  

Cummings RD and Etzler ME. 

Chapter 28 R-type lectins. 

Essentials of Glycobiology. 2nd edition. 

Varki A, Cummings RD, Esko JD, et al. 

Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009. 

 

Cuntz H, Forstner F, Borst A, Häusser M. 

One rule to grow them all: a general theory of neuronal branching and its practical 

application. 

PLoS Comput Biol. 2010 Aug 5;6(8). pii: e1000877. 

  

De Clercq E, Stewart WE 2nd, De Somer P. 

Increased toxicity of double-stranded ribonucleic acid in virus-infected animals. 

Infect Immun. 1973 Feb;7(2):167-72. 

 

Demerec M.  

Biology of Drosophila. 

 

Dickinson MH, Lehmann FO, Götz KG. 

The active control of wing rotation by Drosophila. 

J Exp Biol. 1993 Sep;182:173-89. 

 

Dobzhansky T. 

Genetics 23: 28-64, 1938 

 

Dvorak. D.R., Bishop, L.G., Eckert, M.E. 

On the identification of movement detectors in the fly optic lobe. 

J. comp. Physiol. 1975 100, 5 25  

 

Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR. 

gamma-Aminobutyric acid (GABA) signaling components in Drosophila: 

immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) 

receptor subunit RDL and a vesicular GABA transporter. 

J Comp Neurol. 2007 Nov 1;505(1):18-31. 



RREEFFEERREENNCCEESS  

PPAAGGEE  116644  

Etessami R, Conzelmann KK, Marion R, Tsiang H, Ceccaldi PE. 

Neuronal expression of foreign genes with recombinant rabies virus variants 

Rev Neurol (Paris). 2000 Mar;156(3):236-41.  

 

Farrow K, Borst A, Haag J. 

Sharing receptive fields with your neighbors: tuning the vertical system cells to wide 

field motion. 

J Neurosci. 2005 Apr 13;25(15):3985-93. 

 

Farrow K, Haag J, Borst A. 

Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive 

neuron. 

Nat Neurosci. 2006 Oct;9(10):1312-20. Epub 2006 Sep 10. 

 

Fischbach KF. 

Neural cell types surviving congenital sensory deprivation in the optic lobes of 

Drosophila melanogaster. 

Dev Biol. 1983 Jan;95(1):1-18. Review. 

 

Fischbach KF. und Dittrich A.P.M.  

The Optic Lobe of Drosophila melanogaster. Part I: A Golgi Analysis of Wild-Type 

Structure. 

Cell Tissue Res. 1989;258, 441-475 

  

Fuerst PG, Koizumi A, Masland RH, Burgess RW. 

Neurite arborization and mosaic spacing in the mouse retina require DSCAM. 

Nature. 2008 Jan 24;451(7177):470-4. 

 

Geiger G, Nässel DR. 

Visual orientation behavior of flies after selective laser beam ablation of 

interneurones. 

Nature. 1981 Oct 1;293(5831):398-9. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  116655  

Gomez-Diaz C, Alcorta E. 

Quantitative analysis of antennal mosaic generation in Drosophila melanogaster by 

the MARCM system. 

Genesis. 2008 Jun;46(6):283-8. 

 

Götz KG. 

Optomoter studies of the visual system of several eye mutants of the fruit fly 

Drosophila 

Kybernetik. 1964 Jun;2(2):77-92. 

 

Götz KG. 

Flight control in Drosophila by visual perception of motion. 

Kybernetik. 1968 Jun;4(6):199-208. 

 

Götz KG 

Course-control, metabolism and wing interference during ultralong tethered flight in 

Drosophila melanogaster. 

J Exp Biol. 1987 Oct;128: 35-48  

 

Granstedt AE, Szpara ML, Kuhn B, Wang SS, Enquist LW. 

Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing 

pseudorabies virus. 

PLoS One. 2009 Sep 9;4(9):e6923. 

 

Granstedt AE, Kuhn B, Wang SS, Enquist LW. 

Calcium imaging of neuronal circuits in vivo using a circuit-tracing pseudorabies virus. 

Cold Spring Harb Protoc. 2010 Apr;2010(4):pdb.prot5410. 

 

Graveley BR. 

Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing 

intronic RNA secondary structures. 

Cell. 2005 Oct 7;123(1):65-73. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  116666  

Grotewiel MS, Beck CD, Wu KH, Zhu XR, Davis RL. 

Integrin-mediated short-term memory in Drosophila.  

Nature. 1998 Jan 29;391(6666):455-60. 

 

Haag J, Borst A. 

Recurrent network interactions underlying flow-field selectivity of visual interneurons. 

J Neurosci. 2001 Aug 1;21(15):5685-92. 

 

Haag J, Borst A. 

Dendro-dendritic interactions between motion-sensitive large-field neurons in the fly. 

J Neurosci. 2002 Apr 15;22(8):3227-33. 

 

Haag J, Borst A. 

Electrical coupling of lobula plate tangential cells to a heterolateral motion-sensitive 

neuron in the fly. 

J Neurosci. 2008 Dec 31;28(53):14435-42. 

 

Haag J, Denk W, Borst A. 

Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise 

ratio. 

Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16333-8. Epub 2004 Nov 8. 

 

Haag J, Wertz A, Borst A. 

Integration of lobula plate output signals by DNOVS1, an identified premotor 

descending neuron. 

J Neurosci. 2007 Feb 21;27(8):1992-2000. 

 

Hardie RC, Raghu P 

Visual transduction in Drosophila. 

Nature. 2001 Sep 13;413(6852):186-93. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  116677  

Haseltine EL, Lam V, Yin J, Rawlings JB. 

Image-guided modeling of virus growth and spread. 

Bull Math Biol. 2008 Aug;70(6):1730-48. Epub 2008 Apr 25. 

 

Hattori D, Demir E, Kim HW, Viragh E, Zipursky SL, Dickson BJ. 

Dscam diversity is essential for neuronal wiring and self-recognition. 

Nature. 2007 Sep 13;449(7159):223-7. 

 

Hattori D, Millard SS, Wojtowicz WM, Zipursky SL. 

Dscam-mediated cell recognition regulates neural circuit formation. 

Annu Rev Cell Dev Biol. 2008;24:597-620. 

 

Hattori D, Chen Y, Matthews BJ, Salwinski L, Sabatti C, Grueber WB, Zipursky SL. 

Robust discrimination between self and non-self neurites requires thousands of 

Dscam1 isoforms. 

Nature. 2009 Oct 1;461(7264):644-8. 

 

Hausen K, Wehrhahn C. 

Neural circuits mediating visual flight control in flies. I. Quantitative comparison of 

neural and behavioral response characteristics. 

J Neurosci. 1989 Nov;9(11):3828-36. 

 

Hausen K. 

Functional characterization and anatomical identification of motion sensitive neurons 

in the lobula plate of the blowfly Calliphora erythrocephala. 

Z. Naturforsch.C31 629–633 

 

Heisenberg M, Wonneberger R, Wolf R. 

Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons  

J. comp. Physiol.124, 287-296 (1978) 

  



RREEFFEERREENNCCEESS  

PPAAGGEE  116688  

Heisenberg M, Borst A, Wagner S, Byers D. 

Drosophila mushroom body mutants are deficient in olfactory learning. 

J Neurogenet. 1985 Feb;2(1):1-30. 

 

R. Hengstenberg, K. Hausen und B. Hengstenberg 

The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly 

Calliphora erythrocephala 

Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and 

Behavioral Physiology; Volume 149, Number 2, 163-177 

 

Hesselberg T, Lehmann FO. 

The role of experience in flight behavior of Drosophila. 

J Exp Biol. 2009 Oct;212(Pt 20):3377-86. 

 

Hires SA, Tian L, Looger LL. 

Reporting neural activity with genetically encoded calcium indicators. 

Brain Cell Biol. 2008 Aug;36(1-4):69-86. Epub 2008 Oct 22. 

 

Holford M, Auer S, Laqua M, Ibañez-Tallon I. 

Manipulating neuronal circuits with endogenous and recombinant cell-surface 

tethered modulators. 

Front Mol Neurosci. 2009;2:21. Epub 2009 Oct 30. 

 

Horn C, Handler AM. 

Site-specific genomic targeting in Drosophila. 

Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12483-8. Epub 2005 Aug 22. 

 

Hou BH, Takanaga H, Griesbeck O, Frommer WB. 

Osmotic induction of calcium accumulation in human embryonic kidney cells detected 

with a high sensitivity FRET calcium sensor.  

Cold Spring Harb Protoc. 2010 Apr;2010(4):pdb.prot5410. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  116699  

Howerth EW, Stallknecht DE, Dorminy M, Pisell T, Clarke GR. 

Experimental vesicular stomatitis in swine: effects of route of inoculation and steroid 

treatment. 

J Vet Diagn Invest. 1997 Apr;9(2):136-42. 

 

Huang J, Zhou W, Dong W, Watson AM, Hong Y. 

From the Cover: Directed, efficient, and versatile modifications of the Drosophila 

genome by genomic engineering. 

Proc Natl Acad Sci U S A. 2009 May 19;106(20):8284-9. Epub 2009 May 8. 

 

Hughes ME, Bortnick R, Tsubouchi A, Bäumer P, Kondo M, Uemura T, Schmucker D. 

Homophilic Dscam interactions control complex dendrite morphogenesis. 

Neuron. 2007 May 3;54(3):417-27. 

 

Ibañez-Tallon I, Miwa JM, Wang HL, Adams NC, Crabtree GW, Sine SM, Heintz N. 

Novel modulation of neuronal nicotinic acetylcholine receptors by association with the 

endogenous prototoxin lynx1. 

Neuron. 2002 Mar 14;33(6):893-903. 

 

Joesch M, Plett J, Borst A, Reiff DF. 

Response properties of motion-sensitive visual interneurons in the lobula plate of 

Drosophila melanogaster. 

Curr Biol. 2008 Mar 11;18(5):368-74. 

 

Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A. 

ON and OFF pathways in Drosophila motion vision. 

Nature. 2010 Nov 11;468(7321):300-4. 

 

Kidd T, Bland KS, Goodman CS. 

Slit is the midline repellent for the robo receptor in Drosophila. 

Cell. 1999 Mar 19;96(6):785-94. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  117700  

Klingen Y, Conzelmann KK, Finke S. 

Double-labeled rabies virus: live tracking of enveloped virus transport. 

J Virol. 2008 Jan;82(1):237-45. Epub 2007 Oct 10. 

  

Kozak M. 

Pushing the limits of the scanning mechanism for initiation of translation. 

Gene. 2002 Oct 16;299(1-2):1-34. 

 

Kunes S, Steller H. 

Ablation of Drosophila photoreceptor cells by conditional expression of a toxin gene. 

Genes Dev. 1991 Jun;5(6):970-83. 

 

Lancaster KZ, Pfeiffer JK. 

Limited trafficking of a neurotropic virus through inefficient retrograde axonal 

transport and the type I interferon response. 

PLoS Pathog. 2010 Mar 5;6(3):e1000791. 

 

Lee T, Luo L. 

Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural 

development. 

Trends Neurosci. 2001 May;24(5):251-4.  

 

Llewellyn ZN, Salman MD, Pauszek S, Rodriguez LL. 

Growth and molecular evolution of vesicular stomatitis serotype New Jersey in cells 

derived from its natural insect-host: evidence for natural adaptation. 

Virus Res. 2002 Oct;89(1):65-73. 

 

Luan H, Peabody NC, Vinson CR, White BH. 

Refined spatial manipulation of neuronal function by combinatorial restriction of 

transgene expression. 

Neuron. 2006 Nov 9;52(3):425-36. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  117711  

Lue NF, Chasman DI, Buchman AR, Kornberg RD. 

Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. 

Mol Cell Biol. 1987 Oct;7(10):3446-51. 

 

Ly A, Nikolaev A, Suresh G, Zheng Y, Tessier-Lavigne M, Stein E. 

DSCAM is a netrin receptor that collaborates with DCC in mediating turning 

responses to netrin-1. 

Cell. 2008 Jun 27;133(7):1241-54. 

 

Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, 

Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O. 

A genetically encoded calcium indicator for chronic in vivo two-photon imaging. 

Nat Methods. 2008 Sep;5(9):805-11. 

 

Matthews BJ, Kim ME, Flanagan JJ, Hattori D, Clemens JC, Zipursky SL, Grueber 

WB. 

Dendrite self-avoidance is controlled by Dscam. 

Cell. 2007 May 4;129(3):593-604. 

 

Mebatsion T, Konig M, Conzelmann KK. 

Budding of rabies virus particles in the absence of the spike glycoprotein. 

Cell. 1996 Mar 22;84(6):941-51. 

 

Meigen JW.  

Volume 6 of his substantial treatise on the Diptera of Europe 

Wiley. 1830. 

 

Meijers R, Puettmann-Holgado R, Skiniotis G, Liu JH, Walz T, Wang JH, Schmucker 

D. 

Structural basis of Dscam isoform specificity. 

Nature. 2007 Sep 27;449(7161):487-91. Epub 2007 Aug 26. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  117722  

Merriam JC, Lyon HS, Char DH. 

Toxicity of a monoclonal F(ab')2:ricin A conjugate for retinoblastoma in vitro. 

Cancer Res. 1984 Aug;44(8):3178-83. 

 

Miwa JM, Ibanez-Tallon I, Crabtree GW, Sánchez R, Sali A, Role LW, Heintz N. 

lynx1, an Endogenous Toxin-like Modulator of Nicotinic Acetylcholine Receptors in 

the Mammalian CNS 

Neuron. 1999 May;23(1):105-14. 

 

Miwa JM, Stevens TR, King SL, Caldarone BJ, Ibanez-Tallon I, Xiao C, Fitzsimonds 

RM, Pavlides C, Lester HA, Picciotto MR, Heintz N. 

The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal 

activity and survival in vivo. 

Neuron. 2006 Sep 7;51(5):587-600. 

 

Moffat KG, Gould JH, Smith HK, O'Kane CJ. 

Inducible cell ablation in Drosophila by cold-sensitive ricin A chain. 

Development. 1992 Mar;114(3):681-7. 

 

Morgan TH. 

The Mechanism of Mendelian Heredity.  

New York: Henry Holt. 

 

Morgan TH. 

Sex-limited inheritance in Drosophila. 

Science. 1910 Jul 22;32(812):120-2. 

 

Muqit MM and Feany MB 

Modeling neurodegenerative diseases in Drosophila: a fruitful approach? 

Nat Rev Neurosci. 2002 Mar;3(3):237-43. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  117733  

Nässel DR, Geiger G, Seyan HS. 

Differentiation of fly visual interneurons after laser ablation of their central targets 

early in development. 

J Comp Neurol. 1983 Jun 1;216(4):421-8. 

 

Neves G, Zucker J, Daly M, Chess A. 

Stochastic yet biased expression of multiple Dscam splice variants by individual cells. 

Nat Genet. 2004 Mar;36(3):240-6. Epub 2004 Feb 1. 

 

Nüsslein-Volhard C, Wieschaus E. 

Mutations affecting segment number and polarity in Drosophila. 

Nature. 1980 Oct 30;287(5785):795-801 

 

Oudman L. 

A locus in Drosophila melanogaster affecting heat resistance. 

Hereditas. 1991;114(3):285-7. 

 

Overgaard J, Sørensen JG. 

Rapid thermal adaptation during field temperature variations in Drosophila 

melanogaster. 

Cryobiology. 2008 Apr;56(2):159-62. Epub 2008 Jan 18. 

 

Pierantoni R. 

A look into the cock-pit of the fly. The architecture of the lobular plate. 

Cell Tissue Res. 1976 Aug 16;171(1):101-22. 

 

Pflugfelder GO, Heisenberg M. 

Optomotor-blind of Drosophila melanogaster: a neurogenetic approach to optic lobe 

development and optomotor behaviour. 

Comp Biochem Physiol A Physiol. 1995 Mar;110(3):185-202. Review. 

Raghu SV, Joesch M, Sigrist SJ, Borst A, Reiff DF. 

Synaptic organization of lobula plate tangential cells in Drosophila: Dalpha7 

cholinergic receptors. 

J Neurogenet. 2009;23(1-2):200-9. 



RREEFFEERREENNCCEESS  

PPAAGGEE  117744  

Raghu SV, Joesch M, Borst A, Reiff DF. 

Synaptic organization of lobula plate tangential cells in Drosophila: gamma-

aminobutyric acid receptors and chemical release sites. 

J Comp Neurol. 2007 Jun 1;502(4):598-610. 

 

Reichardt W: 

Processing of optical information by the visual system of the fly. 

Vision Res. 1986;26(1):113-26.  

 

Reiff DF, Plett J, Mank M, Griesbeck O, Borst A. 

Visualizing retinotopic half-wave rectified input to the motion detection circuitry of 

Drosophila. 

Nat Neurosci. 2010 Aug;13(8):973-8. Epub 2010 Jul 11. 

 

Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky 

SL. 

Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular 

diversity. 

Cell. 2000 Jun 9;101(6):671-84. 

 

Schmucker D. 

Molecular diversity of Dscam: recognition of molecular identity in neuronal wiring. 

Nat Rev Neurosci. 2007 Dec;8(12):915-20. 

 

Schmucker D, Chen B. 

Dscam and DSCAM: complex genes in simple animals, complex animals yet simple 

genes. 

Genes Dev. 2009 Jan 15;23(2):147-56.  

 

Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF. 

Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. 

J Neurophysiol. 2010 Mar;103(3):1646-57. Epub 2010 Jan 20. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  117755  

Schnitzlein WM, Reichmann ME. 

Characterization of New Jersey vesicular stomatitis virus isolates from horses and 

black flies during the 1982 outbreak in Colorado. 

Virology. 1985 Apr 30;142(2):426-31. 

 

Schwyter DH, Huang JD, Dubnicoff T, Courey AJ. 

The decapentaplegic core promoter region plays an integral role in the spatial control 

of transcription. 

Mol Cell Biol. 1995 Jul;15(7):3960-8. 

 

Spletter ML, Liu J, Liu J, Su H, Giniger E, Komiyama T, Quake S, Luo L. 

Lola regulates Drosophila olfactory projection neuron identity and targeting specificity. 

Neural Dev. 2007 Jul 16;2:14. 

 

Spradling AC, Rubin GM.  

Transposition of cloned P elements into Drosophila germ line chromosomes. 

Science. 1982 Oct 22;218(4570):341-7. 

 

Strausfeld NJ, Lee JK. 

Neuronal basis for parallel visual processing in the fly. 

Vis Neurosci. 1991 Jul-Aug;7(1-2):13-33. 

 

Strauss R, Heisenberg M. 

A higher control center of locomotor behavior in the Drosophila brain. 

J Neurosci. 1993 May;13(5):1852-61. 

 

Struhl G, Basler K. 

Organizing activity of wingless protein in Drosophila. 

Cell. 1993 Feb 26;72(4):527-40. 



RREEFFEERREENNCCEESS  

PPAAGGEE  117766  

Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA. 

Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-

based retroviral vector. 

Nat Biotechnol. 2004 May;22(5):589-94. Epub 2004 Apr 4. 

 

Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T. 

Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. 

Neurosci Res. 2000 Nov;38(3):231-6. 

 

Tang W, Ehrlich I, Wolff SB, Michalski AM, Wölfl S, Hasan MT, Lüthi A, Sprengel R. 

Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile 

and reliable method for manipulating brain circuits. 

J Neurosci. 2009 Jul 8;29(27):8621-9. 

 

Tomioka R, Rockland KS. 

mproved Golgi-like visualization in retrogradely projecting neurons after EGFP-

adenovirus infection in adult rat and monkey. 

J Histochem Cytochem. 2006 May;54(5):539-48. Epub 2005 Dec 12. 

 

Tomlinson A. 

Cellular interactions in the developing Drosophila eye. 

Development. 1988 Oct;104(2):183-93. Review.  

 

Tully, T. and Quinn, WG. 

Classical conditioning and retension in normal and mutant Drosophila melanogaster. 

J Comp Physiol A. 1985 Sep;157(2):263-77. 

 

Ugolini G. 

Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from 

hypoglossal motoneurons to connected second-order and higher order central 

nervous system cell groups. 

J Comp Neurol. 1995 Jun 5;356(3):457-80. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  117777  

Ugolini G. 

Advances in viral transneuronal tracing. 

J Neurosci Methods 2010 Jan 5. 

 

Van den Pol AN, Ozduman K, Wollmann G, Ho WS, Simon I, Yao Y, Rose JK,  

Ghosh P. 

Viral strategies for studying the brain, including a replication-restricted self-amplifying 

delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can 

generate a multicolor golgi-like expression. 

J Comp Neurol. 2009 Oct 20;516(6):456-81.  

 

Van Haeften T, Wouterlood FG. 

Neuroanatomical tracing at high resolution.  

J Neurosci Methods. 2000 Nov 15;103(1):107-16. 

 

Vermeulen CJ, Loeschcke V. 

Longevity and the stress response in Drosophila. 

Exp Gerontol. 2007 Mar;42(3):153-9. Epub 2006 Nov 15. Review. 

 

Wang J, Zugates CT, Liang IH, Lee CH, Lee T. 

Drosophila Dscam is required for divergent segregation of sister branches and 

suppresses ectopic bifurcation of axons. 

Neuron. 2002 Feb 14;33(4):559-71.  

 

Warzecha AK, Borst A, Egelhaaf M. 

Photo-ablation of single neurons in the fly visual system reveals neural circuit for the 

detection of small moving objects. 

Neurosci Lett. 1992 Jul 6;141(1):119-22. 

 

Wertz A, Borst A, Haag J. 

Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the 

fly. 

J Neurosci. 2008 Mar 19;28(12):3131-40. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  117788  

Wickersham IR, Finke S, Conzelmann KK, Callaway EM. 

Retrograde neuronal tracing with a deletion-mutant rabies virus. 

Nat Methods. 2007 Jan;4(1):47-9. Epub 2006 Dec 10. 

 

Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA, 

Callaway EM. 

Monosynaptic restriction of transsynaptic tracing from single, genetically targeted 

neurons. 

Neuron. 2007 Mar 1;53(5):639-47. 

 

Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC. 

Dscam generates axon guidance receptors that exhibit isoform-specific homophilic 

binding. 

Cell. 2004 Sep 3;118(5):619-33. 

 

Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL. 

A vast repertoire of Dscam binding specificities arises from modular interactions of 

variable Ig domains. 

Cell. 2007 Sep 21;130(6):1134-45. 

 

Wu JS, Luo L. 

A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. 

Nat Protoc. 2006;1(6):2583-9. 

 

Yamakawa K, Huot YK, Haendelt MA, Hubert R, Chen XN, Lyons GE, Korenberg JR. 

DSCAM: a novel member of the immunoglobulin superfamily maps in a Down 

syndrome region and is involved in the development of the nervous system. 

Hum Mol Genet. 1998 Feb;7(2):227-37. 

 

Yang JS, Bai JM, Lee T. 

Dynein-dynactin complex is essential for dendritic restriction of TM1-containing 

Drosophila Dscam. 

PLoS One. 2008;3(10):e3504. Epub 2008 Oct 23. 

 



RREEFFEERREENNCCEESS  

PPAAGGEE  117799  

Zeidler MP, Tan C, Bellaiche Y, Cherry S, Häder S, Gayko U, Perrimon N. 

Temperature-sensitive control of protein activity by conditionally splicing inteins. 

Nat Biotechnol. 2004 Jul;22(7):871-6. Epub 2004 Jun 6. 

 

Zhan XL, Clemens JC, Neves G, Hattori D, Flanagan JJ, Hummel T, Vasconcelos ML, 

Chess A, Zipursky SL. 

Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom 

bodies. 

Neuron. 2004 Sep 2;43(5):673-86. 

 

Zhu H, Hummel T, Clemens JC, Berdnik D, Zipursky SL, Luo L 

Dendritic patterning by Dscam and synaptic partner matching in the Drosophila 

antennal lobe. 

Nature Neuroscience 9: 349-355. 



  

 

Acknowledgement 
I would like to express my gratitude to all those who enabled me to finish this thesis. 

I owe my deepest gratitude to Alexander Borst who enabled and allowed me to work 

in a unique laboratory environment where scientific questions can be approached in 

an amazing broad spectrum. I appreciated him very much as my doctor thesis 

adviser with whom I always could discuss about scientific and personal topics. He 

has always been guidance for me both, in research, and in social aspects. 

Furthermore, I thank Dierk Reiff who instructed me in all the projects I presented in 

this thesis. He was a great supervisor with many inspiring ideas for new experiments 

making his support available in a number of ways. I also would like to thank Karl 

Friedrich Fischbach, a friend and member of my thesis committee for giving 

outstanding support in all aspects. I am indebted to my many of my colleagues and 

collaboration partner: Väinö Haikala, Bettina Schnell, Friedrich Förstner and 

Alexander Ghanem for great support. They opened up new dimensions in the 

projects and allowed me to look beyond my own backyard. I would like to show my 

gratitude to Klaus Conzelmann for collaboration in the virus project and for all 

insights about this alien system. Furthermore, I would like to thank Shamprasad 

Raghu for our intense discussions about project design and experiments. He helped 

me a lot in interpreting results and answering questions. I also enjoyed him very 

much as supervisor of the vGat project. Special thanks to our technicians Christian 

Theile and Wolfgang Eßbauer for taking care of the fly stocks, which was 

fundamental work for the success of all experiments. Thanks go also to the people in 

P1 for providing a nice atmosphere at my working place. I am indebted to my many 

of my colleagues to support me and therefore, would like to thank the entire Borst 

group for the wonderful time that I was able to spend in this lab. 

Finally yet importantly, I want to thank my parents and my fiancé. They were very 

patient and supportive during the entire PhD time.  

 


