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The Neolithic is a key period in the history of the European
settlement. Although archaeological and present-day genetic data
suggest several hypotheses regarding the human migration
patterns at this period, validation of these hypotheses with the
use of ancient genetic data has been limited. In this context, we
studied DNA extracted from 53 individuals buried in a necropolis
used by a French local community 5,000 y ago. The relatively good
DNA preservation of the samples allowed us to obtain autosomal,
Y-chromosomal, and/or mtDNA data for 29 of the 53 samples
studied. From these datasets, we established close parental rela-
tionships within the necropolis and determined maternal and
paternal lineages as well as the absence of an allele associated
with lactase persistence, probably carried by Neolithic cultures of
central Europe. Our study provides an integrative view of the
genetic past in southern France at the end of the Neolithic period.
Furthermore, the Y-haplotype lineages characterized and the study
of their current repartition in European populations confirm a greater
influence of the Mediterranean than the Central European route in
the peopling of southern Europe during the Neolithic transition.

The Neolithic expansion was a major event in the European
settlement and its impact on the European gene pool is still

highly debated in terms of genetic flow and dispersal routes (i.e.,
Mediterranean vs. Central European) (1–4). In this context,
molecular analyzes of ancient human populations of the end of
the Neolithic are crucial to understand the origin and genetic
structure of the European population. Because DNA is a very
fragile molecule, rarely well preserved in ancient European
specimens, only few molecular analyzes have been carried out on
Neolithic remains, and they have often been limited to the study
of mtDNA (4–9). The few published studies on nuclear DNA
concern a small number of individuals (10–13). In the present
work, the particularly good preservation of DNA in the samples
excavated from a collective burial of the end of the Neolithic
period (3000 B.C.) (14) allowed us to perform a study of short
tandem repeats (STRs) and/or SNPs located on the nuclear
DNA (Y-chromosome and autosomes) and mitochondrial DNA.
Concretely, we analyzed DNA extracted from 53 individuals
buried in Cave I of Treilles located in the Grands Causses region,
at Saint-Jean-et-Saint-Paul, Aveyron, France (Fig. 1). TheTreilles
cultural group is a well identified archeological complex of the
late Stone Age period, preserved of any major late Neolithic
population movements as suggested by the absence of the Bell–
Beaker culture influence in the second part of the third millen-
nium B.C. The study of this cultural group should give a snapshot
of the local genetic pool of the end of the Neolithic period in
southern France before all recent migrations.
The two main objectives of this ancient DNA work were (i) to

understand the structure of the Treilles community and its funeral
practices by determining the sex of the individuals buried as well as
putative close familial relationships; and (ii) to estimate the bio-
geographical origins of the specimens under study, and to infer the
patterns of peopling of the region in this transitional period. To
trace back the maternal and paternal lineages, we determined both
mtDNA and Y-chromosomal haplogroups. We also typed a partic-

ular polymorphism associated with lactase persistence (i.e., ability to
digest raw milk at adulthood) probably carried in western Europe
with the Linearbandkeramic culture during the Neolithic (15).

Results
Necropolis Recruitment. Partial autosomal profiles were obtained
for 24 of the 53 specimens under study (Table S1). The amelo-
genin locus indicates that 22 individuals were male and two were
female (subjects 573 and 614). For five samples (samples 571,
581, 603, 609, and 637), the molecular sex could not be de-
termined. Autosomal STR kinship analyzes highlighted at least
three close familial relationships within the necropolis: individ-
uals 604 and 636 have a 99,9979% probability to have a father/
son relationship [likelihood ratio (LR), 48,400]. Individuals 612
and 583 could be siblings (LR, 66,400), with a probability of
99.9985%, and subject 612 could also be the father of 616, with
a probability of 99.9995% (LR, 22,4000).

Mitochondrial Results. Reproducible HVI sequences were ob-
tained for 29 of the 53 individuals tested. They were classified
into 13 different haplotypes, which yielded a relatively high hap-
lotype diversity (H) of 0.8966 ± 0.0354. All the haplogroups
inferred by HVI sequencing were confirmed by typing of the
mitochondrial coding region SNPs, for which the typing rate was
as high as 98% (Table S2). Thanks to these coding region posi-
tions, the 13 haplotypes previously found could be classified in 11
different haplogroups or subhaplogroups: H1, H3, HV0, V, K1a,
T2b, U, U5, U5b1c, X2, and J1.
Analysis of the FST genetic distances based on HVI variation

showed that the Treilles specimens were genetically close to all
current European populations. Indeed, FST values were between
0 and 0.06 for all populations included in the database (Table S3
and Figs. S1 and S2). The study of shared lineages showed fur-
thermore that the Treilles maternal lineages are found in all
present-day European populations with percentages as high as
nearly 18% (Fig. 2 and Table S4).

Nonrecombining Region of Y-Chromosome Results. From the 22
ancient male specimens studied, three complete and 18 partial
Y-STR-haplotypes were obtained (Table S5). Although all loci
could not be clearly amplified for all specimens, most of the
ancient individuals’ Y-STR haplotypes seem closely linked. This
explains the very low average gene diversity over all loci obtained
(H, 0.361664 ± 0.196576). Only individuals 577 and 596 seemed
different from the other ones. Among the six nonrecombining
region of Y-chromosome (NRY) SNPs typed to confirm the af-
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filiation to haplogroups previously deduced from STR hap-
lotypes, only three gave workable results (P15, M438, and P37.2).
Nevertheless, the 22 male individuals were confirmed to belong
to the Y-haplogroup previously inferred. As expected from Y-
STR data, all samples were found to belong to Y-haplogroup
G2a except samples 577 and 596, which belong to haplogroup
I2a. Cross-population comparison tests showed a great or very
great genetic differentiation between Treilles male samples and
current western Eurasian populations (FST values >0.15 and as
high as >0.45) except for Basque and Spanish populations, with
FST values of 0.0014 and 0.007, respectively (Table S6 and Figs. S3
and S4). The analysis of shared lineages showed that the Treilles
haplotypes are rarely observed in current western European
populations: among the 4,791 haplotypes carried by the 10,488
European individuals included in the databases, the Treilles
haplotypes were observed only 11 times (Table S7). The highest
percentage of shared lineages were found mainly in Mediterra-
nean populations: 2.06% in Cypriot, 1.98% in Portuguese, 0.7%
in Turkish, 0.38% in Italian, and 0.35% in Lebanese populations
(Fig. 3).

To evaluate the molecular affinity between the G2a haplotypes
from the Treilles samples and current G2a haplotypes found in
European populations, we constructed a median-joining network
of the G2a paternal haplogroup frequently observed in our an-
cient samples. The Treilles G2a haplotypes are located at the
periphery of the network in a particular branch, suggesting that
they are probably not the ancestral haplotypes (Fig. S5). Fur-
thermore, they are located on a Mediterranean branch clearly
differentiated from the Caucasian G2a, in which G2a is currently
the most frequent in Europe, as high as approximately 30% (16).

Lactase Persistence Results. The LP-13910-C/T SNP associated
with lactase persistence was successfully typed for 26 of the 29
ancient samples tested. All were homozygous C/C for this marker,
which suggests that the ancient Treilles individuals were probably
not able to digest fresh milk.

Discussion
Authenticity of Results. The main issues in ancient DNA studies is
to avoid contamination by modern DNA templates and to pro-
duce authentic data. During all the steps of this study, extensive
precautions were taken to avoid the amplification of contami-
nating contemporary DNAmolecules (SI Materials and Methods).
Despite the fact that not all of the classical authenticity criteria
(17) could be satisfied, the following data support the authenticity
of the results: (i) extraction controls, PCR blanks, and amplified
products from animal remains were always negative; (ii) auto-
somal profiles were different from each other and different from
those of researchers recently in contact with the samples; (iii)
there was an inverse relationship between the amplification ef-
ficiency and length of the amplification products, especially with
STR markers, which is characteristic of ancient degraded DNA;
(iv) results of amplifications performed several times on various
extractions were always concordant between each others; (v)
results of SNP genotyping were also 100% concordant with mi-
tochondrial and Y-chromosome haplotypes previously deduced
from HVI sequencing and Y-STRs analysis; and (vi) results
obtained are consistent with what can be expected on European
ancient remains, as all samples were unambiguously affiliated to
European haplogroups.

Fig. 1. Location of the Grands Causses region (bounded by square) and of
cave I of Treilles at Saint-Jean-et-Saint-Paul (France).

Fig. 2. Map showing mitochondrial lineages shared between Treilles indi-
viduals and current European populations. Crosses denote the location of
modern-day populations used in the analysis. The gray gradient indicates the
percentage of shared lineages between modern local populations and ancient
samples: the highest percentages are in black and the weakest are in gray.

Fig. 3. Map showing the Y-lineages shared between Treilles individuals and
current European populations. Crosses denote the location of modern-day
populations used in the analysis. The gray gradient indicates the percentage
of shared lineages between modern local populations and ancient samples:
the highest percentages are in black and the weakest are in gray.
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Social and Burial Implication. According to molecular data, 22
individuals weremale and twowere female.Morphometric analysis
on 30 well preserved hipbones (not included in the analysis) also
showed an imbalance of sex ratio: 20 male and 10 female (14).
Furthermore, in the Treilles samples, a very low gene diversity was
calculated fromY-haplotypes (H, 0.361664 ± 0.196576), combined
with a high gene diversity from HVI haplotypes (H, 0.8966 ±
0.0354). We can thus hypothesize that the necropolis was only
dedicated to male specimens of the same paternal lineage (18).
In present-day populations, this particular sex-specific genetic

structure often involves a limited gene flow within the male
component of the populations and suggests that the communities
are patrilocal (19). In our ancient samples, this genetic structure
suggests that the community that used this burial cave was pat-
rilocal, or that it reflects a particular funeral rite.

Maternal and Paternal Origins. The results of the mitochondrial
and Y-chromosome analyzes suggest that the maternal and pa-
ternal biogeographical origins of the Treilles samples might be
substantially different.
Concerning the maternal origin, the gene pool of the Treilles

samples seems to reflect a combination of the main events of the
settlement of southwest Europe. Most of the mitochondrial
haplogroups have an ancient ancestry consistent with the oldest
episodes of settlement of western Europe from the Near East
during the upper Paleolithic (52% of individuals are U, U5, HV0,
X2, K1a, or T2b) (20–22) or from the Franco-Cantabrian region
during the late glacial recolonization of the continent after the
late glacial maximum (28% of individuals are H1, H3, V, or
U5b1c) (23–25). A frequent haplogroup in Neolithic samples (4,
5, 8), haplogroup J1, found in six of 29 of the Treilles individuals,
indicates also a Neolithic contribution of approximately 20% in
the gene pool of our ancient samples (24, 26). The great haplotype
diversity of the U5 cluster, one of the most ancient haplogroups
found in Europe and very frequent in Neolithic and Mesolithic
specimens (20), confirms moreover that part of the maternal
lineage of Treilles samples is probably very ancient, originating
from the upper Paleolithic. Similarly, the lack of haplotype di-
versity within haplogroup J1 confirms a probable recent origin of
this haplogroup in the genetic pool of the Treilles samples.
On the contrary, similarly to southern Europe Neolithic spec-

imens (4), there is no evidence in the Treilles samples of the N1a
haplogroup, which was highly present in central Europe and At-
lantic coast Neolithic cultures (6, 8). According to mitochondrial
data, the Neolithic wave in the Treilles genetic pool is thus more
likely to be Mediterranean than central European in origin.
The biogeographical origin of male samples appears less di-

verse. Treilles males belong to only two different haplogroups:
I2a and G2a. In the Y phylogeny, haplogroup I is widespread
over Europe but virtually absent elsewhere (27). Subclade I2a
(formerly I1b1) probably originated in southern Europe during
the Ice Age. Haplogroup G may represent a male contribution to
a demic diffusion of farmers (1) from the Middle East to Europe
(16, 28). G2a (formerly G2) is the major subclade of haplogroup
G (29). Its origin in Europe is still unclear, but it could be a good
marker for the Neolithic migrations of farmers into Europe (30).
The low percentage (<2%) of shared lineages between Treilles

and current populations, and the fact that the ancestral and
current G2a haplotypes do not seem related, imply that the G2a
lineage of Treilles was probably lost between the end of the
Neolithic and today. Few ancient data are currently available on
Y-haplogroups to confirm this hypothesis, but G2a haplotypes
have been found in other prehistoric remains; two ancient DNA
studies revealed the presence of G2a in the Czech Republic
during the seventh century (31) and in a German sample of a
central European Neolithic culture (13), whereas this haplogroup
is very rare in these places nowadays (32).
Anyway, even if the lineages shared between Treilles individ-

uals and present-day populations are small, their location along
the Mediterranean coast is consistent with an origin of part of the
males’ gene pool in the Mediterranean Neolithic expansion (33).

Recent studies on modern samples link the geographical dis-
tribution of the R1b-M269 haplogroup to its spread from the
Near East during the Neolithic (34). More specifically, subclade
R1b-S116 has been linked with the early north-central European
plain colonization (35). This haplogroup was not found in the
Treilles samples. The Treilles group is strongly structured by
paternal lineage, implying a low diversity among paternal line-
ages. The absence of the R1b haplogroup in the ancient samples
could be linked to this particular genetic structure but it could
also be caused by the absence of a Danubian route influence in
the southwestern Mediterranean male gene pool. The latter
hypothesis is highly compatible with shared lineages distribution.
In summary, even if the maternal lineages seem to have more

diversified origins in time and space, both mitochondrial and NRY
studies reveal a contribution of the Neolithic wave in the gene
pool of the Treilles specimens. Furthermore, our results also show
that, at least for the gene pool of the male samples, the Neolithic
dispersals had to take place along the Mediterranean route.

Lactase Persistence in the Treilles Individuals. The allele T located at
position 13,910 bp upstream of the lactase gene is a polymorphism
strongly associated with the ability to produce lactase, an in-
testinal enzyme that aids the digestion of untransformed milk.
Largely widespread in northern and western current Europe, the
13910T allele is present in 43% of the present French population
(36). This polymorphism is very rare or absent in Mesolithic
Scandinavian samples and in early Neolithic Europeans (10, 12).
According to a recent study, the T allele probably appeared in
Europe in a region between the Balkans and central Europe and
spread with the dissemination of the Linearbandkeramic culture
over central Europe (15). This allele was not found in Treilles
samples. This suggests that the Treilles individuals probably
did not directly acquire the possibility to digest fresh milk from
the farming communities of central Europe. This could also
imply that the Treilles community was closer to the Mediterra-
nean agropastoral cultures, which have an economy based on
farming of sheep/goat and consumption of fermented milk (15)
than to central European cultures, which practiced dairy farming.
This finding also suggests that the peopling of southern France
during the Neolithic expansion is more likely to have originated
from the Mediterranean Sea than the central European plains.

Conclusion
All three systems used in this work to estimate the genetic origin
of the Treilles samples (mtDNA, NRY, and lactase persistence
SNP) are consistent with a substantial contribution of the Medi-
terranean Neolithic spread into the gene pool of ancient speci-
mens. The absence of the mitochondrial haplogroup N1a and
of the R1b Y-chromosomal haplogroup, both potentially asso-
ciated with the spread of a Neolithic culture in Central Europe,
confirms moreover the probable heterogeneity of Neolithic dis-
persals into Europe.
However, data obtained on the Y-chromosome suggest that

the Treilles group was strongly structured by paternal lineage,
and thus these data provide information on only a limited part of
all of the existing lineages of southern European populations
living nearby at the same period. New ancient Y-chromosomal
studies from adjacent ancient populations will be needed in the
future to give a complete overview on the Neolithic male diffu-
sion through the Mediterranean route.

Materials and Methods
Samples. The cave of Treilles is a collective burial site containing a minimum
number of 149 individuals buried over a period of one or two centuries (14).
Babies and young children were less represented than would be expected
from the natural mortality of a community (63 children and subadults and 86
adults), and the adults’ bodies were partially disarticulated, a widespread
ritual in the French Neolithic (37). Consequently, to sample each individual
only once, we used mandibular teeth without carious lesions and still fixed
to the mandible. All mandibles still bearing teeth were collected. Molecular
analyzes were thus performed on teeth from 53 individuals. Sampling was
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done by two laboratory members at the Natural History Museum of Tou-
louse (France), where the bone collection is preserved.

DNA Extraction. The teeth were first decontaminated with bleach, rinsed with
ultrapure water, exposed to UV light (254 nm) on each side during 30 min,
and powdered in a grinder mill under liquid nitrogen. Two hundred mill-
grams of the tooth powder were suspended in an extraction buffer and
incubated overnight at 50 °C. Purification and concentration steps were then
performed as previously described (38). Between three and six extractions
were carried out for each individual, depending on the powder quantity
retrieved from each tooth.

Nuclear Quantification. For one DNA extract per sample, a nuclear quantifi-
cation was performed on an ABI Prism 7000 Sequence Detection System by
using the Quantifiler Human DNA Quantification Kit (Applied Biosystems)
according to the manufacturer’s protocol.

Autosomal Analysis. Sixteen autosomal STR loci were analyzed using the
AmpFiSTR Identifiler Plus and the MiniFiler PCR Amplification Kits (Applied
Biosystems). Capillary electrophoreses were performed on a 3500 Genetic
Analyzer and the STRs profiles were analyzedwith GeneMapper 4.1 software.
Two amplifications were performed on three or four different DNA extracts
for each sample.

mtDNA Analysis. Mitochondrial haplogroups were determined for each an-
cient sample on the basis of the HVI haplotype and of SNPs chosen on the
mtDNA coding region according to the latest mtDNA phylogeny (39). Three
hundred eighty-one base pairs of the HVI region of the mtDNA were am-
plified and sequenced in two overlapping fragments (40). Twenty-one di-
agnostic SNPs of the mitochondrial coding region were typed to clarify the

haplogroup status inferred from HVI sequences. Typing was performed us-
ing the iPLEX Gold technology (Sequenom) as described by Mendisco et al.
(38). Two multiplexes containing a total of 28 SNPs located on mtDNA, the
NRY, and the MCM6 gene were designed with MassArray Assay design
software (version 4.0). The typing reactions were performed twice on two
different DNA extracts.

Y-Chromosomal Analysis. Y-chromosomal analyzes were made on the 22
ancient male samples. Haplotypes were obtained from the analysis of 17
Y-STRs loci using the AmpFiSTR Yfiler PCR Amplification Kit (Applied Bio-
systems). Haplogroups deduced with the haplogroup predictor software
(41) were then tested by SNP typing by using iPLEX Gold technology
(Sequenom). We chose the six Y-SNP markers characteristic of the hap-
logroups and subhaplogroups G (M201), G2 (M287) and G2a (P15) (42), and
I (M170), I2 (M438), and I2a (P37.2) (43) to confirm the assignment to the
haplogroups initially inferred.

Lactase Persistence Typing. One SNP located in the MCM6 gene and found to
be associate with hypolactasia, more commonly known as lactose in-
tolerance in European Caucasian populations, was added into the multiplex
2 of the SNP typing (LP-C/T13910; Rs4988235).

Statistical Analysis. All statistical analyses performed on the Treilles data are
detailed in SI Materials and Methods.
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SI Materials and Methods
Ancient DNA Procedures. Drastic precautions were taken to avoid
contaminations by modern DNA templates (1): pre-PCR and
post-PCR procedures were carried out in two separate labora-
tories located on two separate floors. Pre-PCR procedures were
performed in a dedicated laboratory under laminar flux. Work-
benches, surfaces, and all equipment were systematically wiped
with bleach, rinsed with ultrapure water, and irradiated for at
least 2 h with UV light before each manipulation. Laboratory
access was limited to authorized personnel only who always wore
gloves, overshoes, laboratory coats, and face masks. Pipettes,
plastic ware, and aerosol-resistant tips were sterile and used ex-
clusively for ancient DNA work. DNA from people handling the
anthropological material (members of the museum and labora-
tory staff) was also analyzed to rule out recent contamination.
DNA extracted from sheep or goat bone fragments also retrieved
in the ossuary were used as a negative control to detect potential
contamination that could have occurred during excavation.

Statistical Analyses. To study putative genetic relationships be-
tween individuals from the ossuary, kinship was determined from
autosomal STR profiles with ML-Relate software (2) and con-
firmed with DNA•VIEW Software (3), with which the LR was
calculated assuming a prior probability of 0.5.
Human specimens from necropoles cannot be of course con-

sidered as a population in a statistical sense. Furthermore an-
cient DNA data could not be obtained for all the specimens
buried, and Y-haplotypes were not determined for all male
individuals. However, to try to characterize affinities between the
ancient Treilles specimens and current European populations, we
performed cross-population comparisons from HVI sequences
and partial Y-chromosomal haplotypes with the ARLEQUIN 3.1

software (4). Two databases were compiled for both uniparental
markers. The mtDNA database comprises 14,699 HVI hap-
lotypes associated with their corresponding haplogroup. The
NRY database comprises 49 European populations representing
10,488 Y-STR profiles. References used to compile these data-
bases are available in Table S8. For maternal lineages, compar-
isons were based on HVI haplotypes, and for paternal lineages,
they were based on seven STR markers (DYS19, DYS389a,
DYS389b, DYS390, DYS391, DYS393, and DYS439) and on the
seven male individuals for whom complete datasets were ob-
tained (195, 575, 584, 596, 615, 616, and 636). The pattern of
genetic differentiation was visualized by multidimensional scaling
plot (XLstat, version 7.5.2) and by plotting on amap all FST values
obtained in the comparison between the Treilles population and
each population in the database, using Surfer software (version
8.0; Golden Software).
The percentage of shared lineages between Treilles and each

present-day population in the databases was graphically also
plotted on a map by using Surfer software (version 8.0; Golden
Software).
A haplotype network was generated for NRY haplogroupG2a*

from the Treilles data and all European data via the median-
joining algorithm of Network, version 4.5.1.6. To obtain the most
parsimonious networks the reticulation permissivity was set to
zero. Datasets were preprocessed using the star contraction
option in Network, version 4.5.1.6 (5). Because of the high level
of reticulation in the G2a* sample, Y-STR loci were subdivided
into two mutation rate classes based on observed STR allelic
variance and weighted as follows: 2 (low) for DYS391 and
DYS392 and 1 (high) for DYS389I, DYS389II, DYS19, DYS393,
and DYS390 (6).

1. Keyser C, et al. (2009) Ancient DNA provides new insights into the history of south
Siberian Kurgan people. Hum Genet 126:395–410.

2. Kalinowski S, Wagner A, Taper M (2006) ML-Relate: a computer program for maxi-
mum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:
576–579.

3. Brenner CH (1997) Symbolic kinship program. Genetics 145:535–542.

4. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software
package for population genetics data analysis. Evol Bioinform Online 1:47–50.

5. Forster P, Torroni A, Renfrew C, Röhl A (2001) Phylogenetic star contraction applied to
Asian and Papuan mtDNA evolution. Mol Biol Evol 18:1864–1881.

6. Tishkoff SA, et al. (2007) History of click-speaking populations of Africa inferred from
mtDNA and Y chromosome genetic variation. Mol Biol Evol 24:2180–2195.

Fig. S1. Spatial distribution of the genetic matrilineal distances between Treilles samples and modern Western Eurasian populations.
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Fig. S2. Multidimensional scaling plot of genetic distances calculated for mtDNA data. The red square represents Treilles samples.

Fig. S3. Spatial distribution of the genetic patrilineal distances between Treilles male samples and modern Western Eurasian populations.
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Fig. S4. Multidimensional scaling plot of genetic distances calculated for Y-chromosomal data. The red square represents Treilles samples.
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Fig. S5. Median joining network of Y-G2a haplotypes in current western European populations and in the Treilles male specimens (in red).
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Table S3. FST values calculated between Treilles and modern Western Eurasian population data

Population FST P value

Middle East
Iranians 0.00338 0.25225 ± 0.0353
Saudi Arabians 0.02746 0.00000 ± 0.0000
Syrians 0.00588 0.14414 ± 0.0309
Iraqis 0.01515 0.07207 ± 0.0227
Druze 0.02639 0.00000 ± 0.0000
Yemenis 0.06229 0.00000 ± 0.0000
Kurds 0.01418 0.04505 ± 0.0203
Dubai 0.02235 0.00901 ± 0.0091
Palestinians 0.01156 0.02703 ± 0.0139
Turks 0.00216 0.27027 ± 0.0303

North Caucasus
Russian Caucasians 0.0157 0.01802 ± 0.0121
Western Russians 0.01538 0.01802 ± 0.0121
Other North Caucasus populations 0.00965 0.05405 ± 0.0201

South Caucasus
Georgians 0.00712 0.10811 ± 0.0264
Armenians 0.00719 0.05405 ± 0.0201
Azerbaijanis 0.01911 0.01802 ± 0.0121

Northwestern Europe
British 0.02286 0.00000 ± 0.0000
Bretagne 0.01955 0.02703 ± 0.0139
Normandie French 0.02691 0.01802 ± 0.0121
Perigord-Limousin French 0.02691 0.00000 ± 0.0000
Var French 0.03602 0.00000 ± 0.0000
Welsh 0.02329 0.00901 ± 0.0091
Cornish 0.00762 0.17117 ± 0.0286
Irish 0.02224 0.00000 ± 0.0000

North Central Europe
Germans 0.00461 0.13514 ± 0.0365
Danish 0.00769 0.11712 ± 0.0273
Czechs 0.01481 0.03604 ± 0.0148
Polish 0.00255 0.27027 ± 0.0470
Slovakians 0.01472 0.02703 ± 0.0194
Swiss 0.00295 0.27928 ± 0.0394
Austrians −0.00027 0.43243 ± 0.0485
Latvians 0.03072 0.00000 ± 0.0000
South Tyrol Ladins 0.01427 0.03604 ± 0.0201
South Tyrol Germans 0.00664 0.20721 ± 0.0430
South Tyrol Italians 0.00259 0.23423 ± 0.0364

Scandinavia
Norwegians 0.01138 0.06306 ± 0.0237
Finns 0.01576 0.25225 ± 0.0353

Southeastern Europe
Bulgarians 0.00002 0.32432 ± 0.0473
Hungarians 0.03682 0.00000 ± 0.0000
Bosnians 0.00675 0.15315 ± 0.0305
Serbians 0.01092 0.06306 ± 0.0139
Romanian −0.00144 0.54054 ± 0.0664

Western Mediterranean
North Portuguese 0.00582 0.07207 ± 0.0227
Central Portuguese −0.00126 0.53153 ± 0.0417
South Portuguese 0.00832 0.09009 ± 0.0271
Galicians 0.01786 0.02703 ± 0.0139
Spanish Catalans −0.00049 0.43243 ± 0.0466
Andalusians 0.00766 0.11712 ± 0.0237
Balearic islanders −0.00189 0.52252 ± 0.0297
Basques 0.00884 0.07207 ± 0.0297

Central Mediterranean
Northeastern Italians 0.00767 0.12613 ± 0.0242
Tuscans 0.00231 0.25225 ± 0.0445
Acone Italians −0.00272 0.57658 ± 0.0278
Bologna Italians −0.00108 0.51351 ± 0.0526
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Table S3 Cont.

Population FST P value

Modena Italians 0.0145 0.05405 ± 0.0201
Pavia Italians 0.01635 0.09009 ± 0.0303
Roma Italians 0.01064 0.08108 ± 0.0286
Turino Italians 0.00218 0.32432 ± 0.0546
Terni Italians −0.00498 0.58559 ± 0.0530
Molisio-Abruzzo-puglia Italians 0.01832 0.02703 ± 0.0139
Campania Italians 0.01079 0.13514 ± 0.0311
Sicilians 0.00451 0.17117 ± 0.0212
Corsicans 0.02365 0.00000 ± 0.0000
Sardinians 0.00736 0.15315 ± 0.0273
Slovenians 0.00745 0.16216 ± 0.0353
Croatians 0.00696 0.18919 ± 0.0212

Eastern Mediterranean
Macedonians 0.00487 0.23423 ± 0.0411
Albanians 0.0018 0.35135 ± 0.0515
Cretans 0.00892 0.13514 ± 0.0203
Cypriots 0.01888 0.02703 ± 0.0139
Northern Greek −0.00061 0.45946 ± 0.0286
Central Greeks 0.00043 0.36036 ± 0.0664
Southern Greeks 0.00867 0.07207 ± 0.0182

FST values calculated between mtDNA for Treilles (29 samples, 13 haplotypes) and modern Western Eurasian
populations data (14,699 HVI haplotypes).
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Table S4. Shared mitochondrial lineages between Treilles and modern Western Eurasian
populations

Population

Shared lineages, %

No mismatches allowed One mismatch allowed

Middle East
Iranians 2,448 4,196
Saudi Arabians 1,198 2,994
Syrians 4,444 10,000
Iraqis 1,961 9,804
Druze 3,810 7,619
Yemenis 2,985 10,448
Kurds 3,448 8,621
Dubai 1,829 4,878
Palestinians 3,030 7,071
Turks 1,961 3,922

North Caucasus
Caucasian Russians 2,970 8,911
Western Russians 2.778 6.481
Other North Caucasus populations 1,765 4,706

South Caucasus
Georgians 2,732 5,464
Armenians 1,613 5,914
Azerbaijanis 5,556 13,889

Northwestern Europe
British 3,896 11,688
Bretagne French 7.5 12.5
Normandie French 6.667 11,111
Perigord-Limousin French 6.667 11,111
Var French 9.091 22,727
Welsh 17,391 30,435
Cornish 16,667 29,167
Irish 2,564 6,410

North-central Europe
Germans 2,564 4,029
Danish 2,857 5,714
Czechs 3,125 5,208
Polish 1,527 3,308
Slovakians 5,185 8,148
Swiss 4,651 8,527
Austrians 7,463 11,940
Latvians 2.941 5.882
South Tyrol Ladins 10,204 16,327
South Tyrol Germans 12,000 16,000
South Tyrol Italians 9,756 19,512

Scandinavia
Norwegians 3,306 8,264
Finns 3,822 7,006

South Eastern Europe
Bulgarians 12,500 29,167
Hungarians 3,623 7,246
Bosnians 3,497 6,993
Serbians 4,348 10,870
Romanian 5,000 12,500

Western Mediterranean
Northern Portuguese 3.681 5.521
Central Portuguese 4.070 6.395
Southern Portuguese 5.298 7.285
Galicians 5.882 12.941
Spanish Catalans 7,527 10,753
Andalusians 4,000 10,000
Balearic islanders 7,317 24,390
Basques 8,602 12,903

Central Mediterranean
Northeastern Italians 5,357 9,821
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Table S4 Cont.

Population

Shared lineages, %

No mismatches allowed One mismatch allowed

Tuscans 3,139 5,381
Acone Italians 9,091 18,182
Bologna Italians 11,111 25,000
Modena Italians 6,061 24,242
Pavia Italians 11,429 20,000
Roma Italians 3,797 10,127
Turino Italians 4,444 17,778
Terni Italians 10,000 30,000
Molisio-Abruzzo-puglia Italians 4,348 8,670
Campania Italians 2,564 12,821
Sicilians 4,587 7,339
Corsicans 9,677 19,355
Sardinians 3,822 7,006
Slovenians 7,813 14,063
Croatians 8,333 16,667

Eastern Mediterranean
Macedonians 4,242 5,455
Albanians 4,225 11,268
Cretans 5,769 10,577
Cypriots 3,333 13,333
Northern Greek 2,885 4,327
Central Greeks 14,286 28,571
Southern Greeks 2,830 5,660

Mitochondrial shared lineages between Treilles (29 samples, 13 haplotypes) and modern Western Eurasian
populations (14,699 HVI haplotypes). Analyses were performed for 0 or 1 mismatch.
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Table S6. FST values calculated between Y-chromosomal data of Treilles’ samples and modern
Western Eurasian population data (49 populations representing 10,488 Y-STR profiles)

Population FST P value

Middle East
Iranians 0.29758 0.00000 ± 0.0000
Bakhtiari 0.32066 0.00000 ± 0.0000
Gilaki 0.32231 0.00000 ± 0.0000
Mazandarani 0.32759 0.00000 ± 0.0000
Syrians 0.28712 0.00000 ± 0.0000
Druze 0.28894 0.00000 ± 0.0000
Palestinians 0.27848 0.00000 ± 0.0000
Lebanese 0.27520 0.00000 ± 0.0000
Turks 0.26764 0.00000 ± 0.0000

North Caucasus
Abazinians 0.42472 0.00000 ± 0.0000
Abkhazians 0.44302 0.00000 ± 0.0000
Chechenians 0.42307 0.00000 ± 0.0000
Darginians 0.39692 0.00000 ± 0.0000
Ingushians 0.45255 0.00000 ± 0.0000
Kabardinians 0.31682 0.00000 ± 0.0000

South Caucasus
Georgians 0.30749 0.00000 ± 0.0000
Armenians 0.29941 0.00000 ± 0.0000
Azerbaijanis 0.31764 0.00000 ± 0.0000
Lezginians 0.40088 0.00000 ± 0.0000
Ossetians 0.35485 0.00000 ± 0.0000

Northwestern Europe
French 0.32143 0.00000 ± 0.0000
Irish 0.28895 0.00000 ± 0.0000
Belgians 0.28996 0.00000 ± 0.0000
Dutch 0.30891 0.00000 ± 0.0000

North central Europe
Germans 0.26655 0.00000 ± 0.0000
Danish 0.27898 0.00000 ± 0.0000
Polish 0.27598 0.00000 ± 0.0000

Scandinavia
Norwegians 0.26608 0.00000 ± 0.0000

Southeastern Europe
Hungarian 0.26761 0.00000 ± 0.0000
Serbian 0.28178 0.00000 ± 0.0000
Serbian Romanian
Montenegrin 0.27567 0.00000 ± 0.0000

Western Mediterranean
Portuguese 0.27854 0.00000 ± 0.0000
Spanish 0.00724 0.00000 ± 0.0000
Basque 0.01392 0.00000 ± 0.0000

Central Mediterranean
Italians 0.26635 0.00000 ± 0.0000

Eastern Mediterranean
Maltese 0.37106 0.00000 ± 0.0000
Cypriots 0.29806 0.00000 ± 0.0000
Northern Greeks 0.28846 0.00000 ± 0.0000
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Table S7. Shared Y- lineages between Treilles andmodernWestern
Eurasian populations (49 populations representing 10,488 Y-STR
profiles)

Population Shared lineages, %

Middle East
Iranians 0
Syrians 0
Druze 0
Palestinians 0
Lebanese 0.355
Turks 0.699

North Caucasus
Other North Caucasus populations 0

South Caucasus
Georgians 0
Armenians 0
Azerbaijanis 0
Other South Caucasus populations 0

Northwestern Europe
French 0
Irish 0
Belgians 0
Dutch 0

North Central Europe
Germans 0.226
Danish 0
Polish 0

Scandinavia
Norwegians 0

Southeastern Europe
Hungarians 0
Serbians 0
Serbian Romanians 0
Montenegrins 0

Western Mediterranean
Portuguese 1.980
Galician 0
Catalan 0
Other Spanish 0.248
Basque 0

Central Mediterranean
Italians 0.385
Sicilians 0
Sardinians 0

Eastern Mediterranean
Maltese 0
Cypriots 2.062
North Greeks 0
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Table S8. References of the populations included in the databases

Population (size) References HVS-I Population (size) References Y-STR

Middle East (n = 2,689) Middle East (n = 2,482)
Iranians 1, 2 Iranians 3
Saudi Arabians 4–6
Syrians 2, 7 Syrians 8
Iraqis 9
Druze 10, 11 Druze 11
Yemenis 12
Kurds 2, 13
Dubai 14
Palestinians 2 Palestinians 8

Lebanese 15
Turks 2, 16-20 Turks 21, 22

North Caucasus (n = 594) North Caucasus (n = 78)
Caucasians Russians 2
Western Russians 23
Other North Caucasus

populations
10, 19, 24, 25 Other North Caucasus

populations
26

South Caucasus (n = 652) South Caucasus (n = 424)
Georgians 13, 19, 27, 28 Georgians 26
Armenians 2, 27, 29 Armenians 26
Azerbaijanis 27 Azerbaijanis 3, 26

Other South Caucasus
populations

26

Northwestern Europe (n = 783) Northwestern Europe (n = 408)
British 30
French 31 French 32
Welsh 20
Cornish 20
Irish 20, 33 Irish 34

Belgians 35
Dutch 36

North-Central Europe (n = 3,239) North-Central Europe (n = 1,695)
Germans 20, 23, 37-39 Germans 36, 40
Danish 2, 20 Danish 41
Czechs 42
Polish 23, 43, 44 Polish 45
Slovakians 29, 46
Swiss 20, 47, 48
Latvians 49
Austrians 50
South Tyrol Ladins 51, 52
South Tyrol Germans 51
South Tyrol Italians 51
Scandinavia (n = 712) Scandinavia (n = 1,967)
Norwegians 53 Norwegians 54
Finns 55–57

Southeastern Europe (n = 909) Southeastern Europe (n = 1,078)
Bulgarians 16
Hungarians 58–60 Hungarians 61
Bosnians 62, 63
Serbians 62 Serbians 64
Romanian 65 Serbian Romanians 66

Montenegrins 64
Western Mediterranean (n = 1,625) Western Mediterranean (n = 1,442)
Portuguese 67, 68 Portuguese 69
Galicians 68, 70 Galicians 69, 71
Spanish Catalans 72, 73 Spanish Catalans 69
Andalusians 72, 74, 75
Balearic islanders 75

Other Spanish 69, 71, 76, 77
Basques 2, 72, 78-80 Basques 69

Central Mediterranean (n = 2,040) Central Mediterranean (n = 562)
Northeastern Italians 52, 81-84 Northern Italians 85

Lacan et al. www.pnas.org/cgi/content/short/1100723108 14 of 16

www.pnas.org/cgi/content/short/1100723108


Table S8 Cont.

Population (size) References HVS-I Population (size) References Y-STR

Tuscanians 75, 86, 87
Other Italians: Acone,
Bologna, Firenze,
Modena, Pavia,
Roma, Turino,
Terni, Molisio-
Abruzzo-puglia, Campania

84, 88, 89

Southern Italians 71
Sicilians 88, 90 Sicilians 71, 91
Corsicans 92
Sardinians 20, 75, 93, 94 Sardinians 95
Slovenians 63
Croatians 62

Eastern Mediterranean (n = 1,298) Eastern Mediterranean (n = 404)
Macedonians 65, 88, 96, 97
Albanians 65, 98
Cretans 7, 88, 99 Maltese 8
Cypriots 100 Cypriots 8
Northern Greek 97, 100 Northern Greeks 101
Central Greeks 88, 97
Southern Greeks 83, 88, 97
Other Greeks 65
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