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Plant–microorganism interactions differ strikingly in

the nature of the relationships that are finally

established. For instance, host–pathogen

interactions are detrimental to one of the two

organisms involved. In a compatible interaction,

plant disease develops. In an incompatible

interaction, a resistant host plant establishes a set of

different defence mechanisms directed against the

pathogen, such as cell wall fortification, the

generation and accumulation of reactive oxygen

species (ROS) and phenylpropanoids, including

phytoalexins, as well as the expression of pathogen-

related (PR) proteins [1,2]. By contrast, symbiotic

interactions are beneficial to both partners. An

ecologically and agronomically important symbiosis

occurs between leguminous plants and rhizobia,

involving the de novo development of a specialized

plant organ, the root nodule [3]. In the nodules,

rhizobia fix dinitrogen into ammonia, which is

assimilated by the host plant, and, in turn, rhizobia

are supplied with carbon compounds. Collectively,

these soil-borne bacteria, which belong to the 

genera Azorhizobium, Bradyrhizobium,

Mesorhizobium, Sinorhizobium and Rhizobium, 

are called rhizobia.

The nodulation process in rhizobia–legume

symbiosis requires a sequence of highly regulated and

coordinated events, initiated by an exchange of

specific signalling compounds between both 

partners [4–6]. Subsequently, rhizobia invade the

host by means of an infection thread formed from

curled root hairs that grows towards an emerging

meristematic nodule zone in the root cortex. 

Enclosed by the host-derived peribacteroid

membrane, bacteria are released into the 

nodule cells and eventually transform into

dinitrogen-fixing bacteroids [3].

Symbiosis and defence responses

During nodulation, the colonization of host plant 

root tissue by homologous rhizobia does not elicit

plant defence reactions normally induced by invading

microorganisms, although at some stages the

infection resembles a pathogenic interaction [7–9].

However, under certain circumstances, 

various defence reactions might take place in

legume–rhizobia interactions. The most extreme 

of which is the abortion of the infection [10]. For

instance, in a ground-breaking study it was shown

that during the homologous Sinorhizobium

meliloti–alfalfa (Medicago sativa) interaction, the

plant controlled the extent of infection by initiating

defence, suggesting that there is a mechanism in the

plant that regulates nodule number [10]. This plant

response was characterized by a termination of

infection in necrotic cells, concomitant with an

accumulation of phenolic compounds and PR

proteins. In other studies, also using wild-type

rhizobia strains for infection, similar but less

dramatic results have been obtained: for example,

in the S. meliloti–Medicago truncatula symbiosis,

proteins (MtN1 and MtN13) structurally related 

to defence proteins are expressed, or in

S. meliloti–alfalfa relationships ROS is 

generated [11,12].

Even more pronounced defence reactions have

been described in some ineffective (Fix−)

associations of legumes with rhizobia. These are

often accompanied by non-developed, non-functional

pseudonodules [13–15], supposedly as a result of

numerous elicited plant defence responses. Evidence
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obtained by cytological examinations of the infected

plant tissue in the Rhizobium leguminosarum

bv. viciae strain 3841–pea (Pisum sativum)

associations, as well as in S. meliloti–alfalfa

interactions, suggested defence-related cell wall

alterations such as callose deposits and incrustation

with phenolic compounds [14,16]. A closer look

revealed the induction of mRNA encoding different

isoforms of phenylalanine ammonia lyase (PAL) and

chalcone synthase (CHS) during the inoculation of

soybean with either a Fix− mutant or a wild-type

strain of Bradyrhizobium japonicum [17]. Both PAL

and CHS are involved in the biosynthesis of

phenylpropanoids, including phytoalexins

(glyceollin). Moreover, a pronounced accumulation of

glyceollins has been found in nodules in response to

infection with ineffective Bradyrhizobium strains

[18–20]. These results indicate that legumes are

able to induce defence reactions during associations

with rhizobia. Thus, to establish a successful

symbiosis, it is generally assumed that rhizobia

must suppress or avoid host defence responses [7–9].

Therefore, what are the underlying mechanisms 

for ‘no defence’?

The basic question that needs to be answered is

whether the invading rhizobia are recognized as

putative pathogens or not. As suggested by

David Smith, enclosing the rhizobia with an infection

thread or with the peribacteroid membrane might

prevent the rhizobia from being perceived [21]. It is

also conceivable that the host recognizes the bacteria

as ‘self ’ because the surface determinants might be

similar to structures on the plants’ cell surface [22].

In both cases, there is no obvious reason for the 

plant to induce defence. However, the invaders are

probably perceived as ‘non-self ’, and a decision is

made to tolerate or eliminate the microorganisms.

Thus, the presence of specific rhizobia-derived

compounds counteracting the elicitation of 

defence in the plant tissue might allow the host 

to be colonized.

Role for rhizobial polysaccharides in symbiosis

Bacterial cell surface components, such as oligo- and

polysaccharides, are now acknowledged to be crucial

signals for many microorganism–host relationships,

including those in animals [1,2,5,23]. Symbiotically

relevant carbohydrates of rhizobia include

exopolysaccharides (EPS), lipopolysaccharides

(LPS), and cyclic β-glucans (Fig. 1). A series of studies

of different rhizobia–legume associations has shown

that mutants defective in the synthesis of any of

these carbohydrates are unable to infect the host

successfully and/or to form effective dinitrogen-fixing

nodules. This was accompanied by plant defence

reactions [5,14–16,24–26]. These results indicate

that the rhizobial poly- and oligosaccharides might

play an important role in the nodulation process,

probably as signals to the host plant. Whereas the

absence of LPS and cyclic β-glucans, correlating with

ineffective, non-functional nodules, supports this

hypothesis, the data obtained with EPS are even

more dramatic. EPS I, also known as succinoglycan,

and EPS II represent the major classes of EPS in

wild-type S. meliloti Rm1021. EPS I is composed of

repeating subunits of octasaccharides modified with

one acetyl, one succinyl and one pyruvyl substituent

per subunit (Fig. 1a). Both a high molecular weight

(HMW) and a low molecular weight (LMW, up 

to three subunits) form of succinoglycan are

produced. The LMW fraction, in particular the

trimer, is of particular interest because it has been

reported to restore nodule invasion capability of 

S. meliloti mutants defective in exopolysaccharide 

synthesis [27,28]. This effect relies on the particular

EPS structure because non-succinylated EPS I does

not repair nodulation deficiency nor does a EPS

derivative produced by Rhizobium sp. strain

NGR234 (Fig. 1a) [27]. Moreover, a LMW fraction of

EPS II (Fig. 1a), consisting of 15–20 disaccharide

subunits, substitutes succinoglycan when nodulated

by S. meliloti [29,30]. EPS II was not required if

EPS I was present [31].

All these observations suggest an essential role for

EPS, LPS and cyclic β-glucans, or molecules derived

from these carbohydrates, as signalling compounds,

possibly acting as suppressors of plant defence

reactions in symbioses. Although the effects seem to

be specific and probably restricted to distinct

rhizobia–host interactions, this model would imply

the existence of specific plant receptors involved in

the recognition of the signals.

Agonist–antagonist-based defence suppression

Putative (lipo)oligosaccharide receptors in plants are

described for both pathogenic (e.g. β-glucans, oligochitin)

and symbiotic relationships (Nod-factors) [32,33].

However, experimental evidence of binding sites or

receptors for either EPS or LPS is needed.

Interestingly, the cyclic β-(1,3)-β-(1,6)-glucans from

the soybean (Glycine max) symbiont B. japonicum

USDA110 share some structural features with

non-cyclic β-glucans carrying the hepta-β-(1,3)-

β-(1,6)-glucan motif (hepta-β-glucoside, Fig. 1b)

derived from the cell wall of the phytopathogenic

oomycete Phytophthora sojae. The hepta-β-glucoside

elicitor is well characterized with regard to its

biological activities, such as the induction of early and

late cellular defence responses in differentiated plants

and cell cultures, and to the biochemical properties of

the receptor–ligand interactions [2,32]. Recently, the

cloned hepta-β-glucoside-binding proteins from

soybean and French bean (Phaseolus vulgaris) have

been identified as members of a putative receptor

family in legumes [34].

In contrast to the P. sojae β-glucan-elicitor, which

induces processes that eventually inhibit

microorganism invasion, B. japonicum cyclic 

β-glucans are essential in establishing a symbiotic

relationship with soybean plants [15,35]. To
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understand this striking pathogenic versus

symbiotic dichotomy, the plant responses to these

glucans have been investigated. Surprisingly,

bradyrhizobial cyclic β-glucans were found not to

induce but to suppress typical soybean host 

defence reactions challenged by P. sojae elicitor

treatment [36,37], including different elements of

the putative signal transduction cascade, as well as

phytoalexin accumulation. However, the generation

of the ROS hydrogen peroxide was not inhibited but

stimulated [38]. By contrast, in alfalfa, LPS from

S. meliloti suppresses yeast extract-elicited ROS

production [39]. However, effective nodules do

produce considerable amounts of ROS and overcome

this problem by highly efficient antioxidative

activities [40]. Thus, ROS have been suggested to be

a control element rather than a crucial defence

component in rhizobia–legume symbioses [12].

Suppression of receptor-mediated cellular

responses is well described in animal cells [41,42].

The molecular basis of this effect ranges from

inhibition of signalling cascade elements or

transcription factors to a direct interaction with the

receptor. In direct interaction with the receptor, the

suppressing factor might either block the interaction

of the receptor with the subsequent signal

transducer or interfere directly with the receptor

binding site, substituting the activating compound,

the agonist, which initiates the full response. 

In contrast to the agonist, a suppressing 

antagonist binds to the receptor without causing 

any response (Fig. 2).

The ability of the cyclic β-glucans to compete

efficiently with the hepta-β-glucoside for the same

receptor binding site (IC
50

7.3 µM, [20]) reveals an

agonist–antagonist-based mechanism underlying the

decision for or against plant defence responses in the

B. japonicum–soybean symbiosis [20,36]. Thus,

whether defence is induced or suppressed might be

regulated by the ratio of receptor occupancy by the

two signalling compounds involved.

Because cyclic β-glucans are produced even by

bacteroids during symbiosis, they could be employed

to maintain suppression of plant defence in a

functional nodule [43]. This might explain why in

nodules formed by wild-type B. japonicum, the

amount of phytoalexins is significantly lower than in

ineffective nodules obtained after infection with

B. japonicum mutant strains defective in the

synthesis of cyclic β-(1,3)-β-(1,6)-glucans [20].

Conclusion and perspectives

At present, we do not understand the mechanisms

underlying the discrimination between friend and

foe in plants. Because it is risky for the host plant to

let invaders go unperceived and unaffected, the

existence of various receptor–ligand-based

recognition systems that initiate plant defence

responses is likely. In symbiosis, suppressor-

mediated masking of the receptor to achieve its

downregulation is one way to avoid defence

activation. To date, naturally occurring

soybean–pathogen and soybean–symbiont

associations are the only example for which, on the

molecular level, all protagonists are known: the

chemically defined structures of the agonist 

(hepta-β-glucoside elicitor) and the antagonist

(cyclic β-(1,3)-β-(1,6)-glucan suppressor), and their

corresponding receptor binding site. In soybean

signal transduction, which is elicited by the 

hepta-β-glucoside motif, cyclic β-glucans of

B. japonicum play a key role as negative 

regulators. However, an important question

remains: what is the role of the cyclic β-glucans in

B. japonicum–soybean associations, where no

P. sojae-derived elicitor is present? The presence of

such suppressor activity in B. japonicum only

makes sense if defence responses induced by

unknown signalling compounds from B. japonicum

acting as elicitor(s) must be suppressed. At 

present, there is a lack of experimental evidence 

for the existence of rhizobial elicitors. Thus, the

isolation and identification of such compounds,

including appropriate agonists of other putative
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Fig. 2. Model of agonist and antagonist dependent signal transduction at the plasma membrane. 
(a) Simplified numbers of elements involved in a ligand–receptor-mediated signal transduction
cascade leading to specific cellular effects: agonist (depicted in green) and antagonist (depicted in
purple) representing specific ligands of a receptor binding site, a receptor transducing element being
part of or connected to the receptor, a (cytosolic) signal transduction chain. (b) Effective
agonist–receptor interaction leading to specific cellular effects. (c) Ineffective antagonist–receptor
interaction blocking the activation of the connected signalling cascade.

Fig. 1. Chemical structures of various relevant oligo- and polysaccharides in rhizobia–legume
symbiosis. (a) Repeating units of rhizobial exopolysaccharides from Sinorhizobium meliloti Rm1021
(EPS I, EPS II); exopolysaccharide from Rhizobium sp. strain NGR234 (EPS NGR234); core structure of
the lipopolysaccharide from Rhizobium etli (LPS). Substituents are indicated by colours: acetyl
(green), pyruvyl (red), and succinyl (blue). (b) Cyclic β-(1,3)-β-(1,6)-glucans from Bradyrhizobium
japonicum USDA110 (cyclic β-glucan); hepta-β-(1,3)-β-(1,6)-glucan from the oomycete Phytophthora
sojae (hepta-β-glucoside). The β-(1,3)-bound glucose units are indicated in black, the β-(1,6)-bound
glucose units are indicated in red (in the case of the cyclic-β-glucan, only the ring structure has been
considered with respect to its biosynthesis).



suppressor molecules, such as LPS and EPS, is 

an important goal for the future. Moreover,

biochemical studies on putative binding-sites for

EPS and LPS could substantiate their role as

signalling molecules.

The main goal must be the identification of

receptors, as well as the elucidation of subsequent

signal transduction events involved in the 

onset of plant defence for both rhizobial elicitors 

and suppressors. This is a prerequisite for

understanding the molecular mechanisms

underlying the control of defence in symbioses in

general. The whole succession to develop and

maintain a functional symbiosis probably does not

depend on just one mechanism responsible for

defence suppression. Different suppressor molecules

might act by the same and/or distinct modes. 

Because of the ongoing genome projects and the

highly developed techniques for genetic analyses of

the model legumes M. truncatula and Lotus

japonicus, associations of these plants with

microorganisms should be valuable systems to work

on. It will be interesting to discover the impact of

agonist–antagonist-based defence regulation in the

finely tuned balance of a relationship between host

plants and symbionts and to analyse whether this

represents a common mechanistic concept to

establish symbioses.
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