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Tensor models and, more generally, group field theories are candidates for higher-dimensional quantum

gravity, just as matrix models are in the 2D setting. With the recent advent of a 1=N expansion for colored

tensor models, more focus has been given to the study of the topological aspects of their Feynman graphs.

Crucial to the aforementioned analysis were certain subgraphs known as bubbles and jackets. We

demonstrate in the 3D case that these graphs are generated by matrix models embedded inside the tensor

theory. Moreover, we show that the jacket graphs represent (Heegaard) splitting surfaces for the

triangulation dual to the Feynman graph. With this in hand, we are able to reexpress the Boulatov model

as a quantum field theory on these Riemann surfaces.
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I. INTRODUCTION

Group field theories [1] and tensor models are higher-
dimensional analogs of matrix models [2]. Matrix integrals
have been shown to provide a natural framework within
which to frame a multitude of physical and mathematical
questions ranging through the fields of statistical and con-
densed matter physics all the way to the more abstract
enumeration of virtual knots and tangles. This highlights
how apparently disparate physical and mathematical phe-
nomena in fact share certain universal features.

One particular facet that sparked considerable interest
was the realization that matrix models could give a non-
perturbative definition of 2D quantum gravity [3]. One
considers a statistical ensemble of N � N (oftentimes
Hermitian) matrices. The Feynman graphs arising in the
perturbative expansion of the free energy describe discrete
Riemann surfaces. Remarkably, the expansion can be
ordered in powers of 1=N labeled by their topological
invariant, the Euler characteristic. In the large-N limit,
the 2-sphere dominates and moreover, one can tune the
coupling constant so that in a double scaling limit one
describes a continuum theory of 2D quantum gravity.

Tensor models hope to reproduce the same successes
that matrix models have enjoyed, with the ultimate aim of
being viable candidates for quantum theories of gravity in
higher dimensions. A stumbling block seemed to be that
they generated a plethora of unwanted structures; not only
simplicial manifolds, but simplicial pseudomanifolds [4].
Recently, after much work [5,6], a promising step has been
made in that direction with the construction of a
1=N-topological expansion [7–9] for the so-called colored
tensor models [10,11]. In that context, it was shown that
for arbitrary dimension d, only graphs corresponding to
d spheres arise at leading order in the 1=N expansion.
Central to this construction were the ribbon graphs asso-
ciated with the Feynman graphs of the tensor model. These

ribbon graphs are algebraic objects that capture the topo-
logical properties of the Feynman graphs. They contain
two classes of subgraphs, known as bubbles [10] and
jackets [6], which are of particular significance. While
bubbles are easily identified as Riemann surfaces em-
bedded in the dual triangulation, the topological properties
of the jackets have remained more obscure.
We shall clarify these issues in the 3D scenario by

identifying matrix models embedded in the tensor struc-
ture, which generate the bubbles and jackets.
First, this shows that both the bubbles and jackets may

be identified with Riemann surfaces embedded in the dual
triangulation. With this dual picture for the jackets we can
establish some interesting properties. In the case in which
the Feynman graph corresponds to a manifold, we show
that the jackets correspond to Heegaard surfaces. In the
case in which the Feynman graph corresponds to a pseu-
domanifold, the jacket still splits the 3D triangulation into
two components. These are no longer handle bodies but
rather more general objects, which we shall describe in
more detail later.
Secondly, we have now recast the theories in terms of

matrix models, so it opens up the avenue to analyze these
models using matrix model techniques.
We shall present most of the analysis within the frame-

work of the independent identically distributed (i.i.d.)
tensor model [9,12]. Near the end, we shall switch to the
Boulatov model [13], which has attracted a lot of interest
since it has a manifest connection to 3D gravity. We shall
recast this as a field theory on the jackets. Interestingly for
future work, it has an unmistakeable similarity to the so-
called dual weighted matrix models considered in [14].
To summarize the contents, we shall begin by describing

the basic i.i.d. tensor model, after which we shall introduce
the colored formalism, including an explanation of the
fundamental objects of interest, the bubbles and jackets.
We shall subsequently enter into the main part of the
paper—detailing the matrix models which generate the
embedded Riemann surfaces corresponding to the bubbles*james.ryan@aei.mpg.de
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and jackets. We are then in a position to establish the
‘‘splitting’’ properties of the jackets. Before we conclude,
we describe our reformulation of the Boulatov model, in
light of the previous analysis.

II. TENSOR MODELS

Tensor models are higher-dimensional generalizations
of matrix models. In 3D, the fundamental object is
a complex 3-tensor �: Z�3

N ! C such that ðg1; g2; g3Þ !
�g1;g2;g3 which is subjected to some potential, for example:

V�½�� ¼ �

4!

X
gi2ZN

Re½�gc;gb;ga�g1;ga;g2�g2;gb;g3�g3;gc;g1�:

(1)

We consider the free energy of a statistical ensemble of
such tensors with respect to the potential (1):

F � ¼ ln
Z

d�½��eV�½�� ¼ X
�

1

jAut½��jZ�;�: (2)

We have used a normalized Gaussian measure on the space
of complex 3-tensors:

d�½�� ¼ 1

�4N3

Y
gi

½dRe½�gi�dIm½�gi��e
�P

gi

j�gi
j2

(3)

with the Lebesgue measure for each of the tensor compo-
nents. In the perturbative expansion, � are the connected
4-valent Feynman graphs, jAut½��j is the order of the
discrete automorphism group of �, andZ� is the amplitude
associated with �, which we shall presently construct.
From a field theoretic perspective, one associates with
the graph the following propagator (coming from the mea-
sure) and vertex operator:

P gi; �gi ¼ �g1;ĝ1�g2;ĝ2�g3;ĝ3 ;

V gi;ĝi ¼
�

4!
�g1;ĝ1�g2;ĝ2�g3;ĝ3�g4;ĝ4�g5;ĝ5�g6;ĝ6 ;

(4)

where � is the Kronecker-� on ZN . Supplementing this
with the obvious summation of group variables, one has the
complete set of Feynman rules. But the peculiar coupling
of tensor components in the potential hints that the theory
knows more about the topological structure of the
Feynman diagram than just its 1-skeleton. One would
like to make this property more transparent. To that effect,
one ‘‘fattens’’ each Feyman diagram � to an associated
ribbon graph r½��. More precisely, one replaces each of its
lines with three strands which are rerouted at the vertex
according to the Kronecker-� weights; see Fig. 1.

With rð�Þ at our disposal, we see that the tensor theory
knows about the 2-skeleton of �, that is, the vertices, edges,
and faces, which are just the closed loops in rð�Þ.

Z �;� ¼ �jv�jNjf�j (5)

with jv�j and jf�j representing the total number of vertices
and faces in �, respectively. This amplitude may be re-
interpreted as coming from the quantization of gravity in
the dynamical triangulation approach. One interprets the
Feynman graph as the dual to an equilateral 3D triangu-
lation �. We denote the vertices, edges, triangles, and
tetrahedra of � as v�, e�, f�, and t�, while the vertices,
edges, faces, and 3-cells of � are denoted by v�, e�, f�, and
b�. The two structures are dual in the sense that there is a
one-to-one correspondence: v� � t�, e� � f�, f� � e�,
and b� � v�. Then, by substituting

lnN ¼ a=8G; ln� ¼ � a3

6
ffiffiffi
2

p �� 3a

8�G
arccos

1

3
;

(6)

the amplitude takes the form:

Z �;� ¼ e�S�;DT ; (7)

where S�;DT is the Regge action for an equilateral trian-

gulation of edge length a, and � and G are the bare
cosmological and gravitational constants, respectively. A
similar model to that above was proposed and studied in
[12] (the 3-tensors satisfied a condition analogous to
Hermiticity in matrix models, ��g1;g2;g3 ¼ �g3;g2;g1 , along

with invariance under even permutations). The authors
ultimately drew a number of negative conclusions.
Notably, the potential is fourth order and unbounded
from below. Therefore, the free energy is divergent for
all � � 0 and the perturbative expansion is at most a
formal object. Moreover, the model does not have a well-
behaved large-N limit: 1=G diverges as N ! 1. They also
expressed concern that the Feynman graphs are not generi-
cally dual to simplicial manifolds but to a more general
class of objects known as simplicial pesudomanifolds.
Recently, more light has been shed on these issues with
the advent of colored group field theories.

III. COLORED TENSOR MODELS

A nifty addition to the tensor program, known as color-
ing, has recently been proposed [10]. One replaces the
complex 3-tensor of the previous section with four such

FIG. 1. Ribbon graph components associated with elementary
graph operators.
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objects �ðiÞ: Z�3
N ! C, i 2 f0; 1; 2; 3g, subjected as usual

to one’s favorite (colored) potential, for example:

V�½�ðiÞ� ¼ 2�ffiffiffiffiffiffi
N3

p X
gi2ZN

Re½�ð0Þ
gc;gb;ga�

ð1Þ
g1;ga;g2�

ð2Þ
g2;gb;g3�

ð3Þ
g3;gc;g1�:

(8)

With respect to a Gaussian measure on each of the fields,
one finds that the Feynman amplitudes of this model are

Z � ¼ �jv�jNjf�j�ð3=2Þjv�j; (9)

where jv�j and jf�j are the total number of vertices and
faces, summing over colors. The only change is the rescal-
ing of the coupling constant. The boon is that one has more
control over the type of diagram arising.

A. Boundedness of the potential

To commence, let us investigate the boundedness of the
potential. At first sight, the situation might seem even more
hopeless, since we have four independently fluctuating
fields. But, at least for the free energy, one can integrate

out the �ð0Þ field to get an effective potential:

V�½�ðiÞ� ¼ �2

N3

X
ga;b;c

��������X
g1;2;3

�ð1Þ
g1;ga;g2�

ð2Þ
g2;gb;g3�

ð3Þ
g3;gc;g1

��������2

(10)

for the remaining fields that is manifestly bounded from
below. Thus, one may hope that the perturbative expansion
is better defined than for the noncolored case.

B. Scaling of the coupling constant

The importance of the fact that the coupling constant

scales as �=
ffiffiffiffiffiffi
N3

p
has been stressed in [6] and subsequently

in [9], where the relevant details are expressed. To explain
briefly, consider two graphs �1 and �2 in the expansion,
such that �2 is just �1 supplemented with a single insertion
of Fig. 2 along some edge. �1 and �2 have the same
topology but for a general scaling �=N�, the amplitudes
are related by Z�2

¼ ð�2=N2��3ÞZ�1
. Thus, it is only for

� ¼ 3=2 that the 1=N-topological expansion could make
sense.

C. Tracking information

Since we are dealing with colored complex fields and the
potential given above, we find that the vertices, edges,
faces, and 3-cells of � come in a variety of types. The

vertices come in two types, corresponding to the two
potential terms. The edges are maximally connected sub-

graphs of one color and thus come in four types eðiÞ� , where

i 2 f0; 1; 2; 3g. This is evident because the fields are col-
ored. Faces are maximally connected subgraphs of two
colors. They are formed from loops of edges alternating

between any two colors, that is, they come in six types fðijÞ� ,

where i, j 2 f0; 1; 2; 3g and i � j. The 3-cells are maxi-
mally connected subgraphs of three colors. They come in
four varieties depending on which color is not present.

Thus, the 3-cells bðiÞ� are formed by deleting all edges eðiÞ�
from �.
As one might imagine, the subcells of the dual triangu-

lation inherit the coloring. Thus, each 3-cell bðiÞ� encloses a

vertex vðiÞ
� , each face fðijÞ� loops around an edge eðijÞ� , and

each edge eðiÞ� pierces a triangle fðiÞ� .

D. Bubbles and jackets

The bubbles BðiÞ
� of � [10] are defined as the maximally

connected subgraphs of r½�� with three colors and are thus
the ribbon graphs associated with the 3-cells bðiÞ� , that is,

BðiÞ
� ¼ r½bðiÞ� �.
A jacket r½Jðij;îjÞ� of � [6] is defined as the ribbon graph

obtained from r½�� by deleting all the faces fðijÞ� and fðîjÞ�

where îj ¼ f0; 1; 2; 3gnfi; jg. There are clearly three jackets
for each � depending on whether one chooses ðijÞ ¼ ð01Þ,
(02), or (03). (The other three choices are equivalent to one
of those mentioned.)
We illustrate using the traditional and simplest example

in Fig. 3.
Wewish to highlight that all the ribbon graphs appearing

here have two strands. One knows well that these are
exactly the kind of graphs arising in the study of matrix
models. Later, we shall identify the matrix models em-
bedded in the tensor model that generate exactly these
bubbles and jackets.

FIG. 2. Topologically trivial edge insertion. FIG. 3. � with its bubbles and jackets.
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E. 1=N expansion and large-N behavior

Recently, Gurau identified certain core graphswhich are
homeomorphic to the original � and entirely encode their
scaling with respect to N [7]. We shall not present the
details here, but the results of his analysis establish that
at leading order in 1=N only graphs corresponding to the
3-sphere arise. This result was extended to arbitrary
dimension [8] and later more refined details on the
suppressed terms were uncovered [9].

While a 1=N expansion is now possible, the large N
behavior of this particular model is still not suited to
describing gravity for the same reason as in the noncolored
case. Luckily this analysis has been also completed for the
Boulatov model, which has a less opaque connection to 3D
quantum gravity. Here, we shall focus on investigating the
bubbles and jackets.

IV. REVISITING BUBBLES AND JACKETS

The algebraic objects of the previous section have a
fundamental importance in classifying the properties of
tensor models. The topological properties of the bubbles
are fairly transparent; they correspond to embedded
Riemann surfaces surrounding vertices of �. We shall
see that for each color, there is an embedded matrix model,
which generates bubbles of that color. Furthermore, we
shall perform the same analysis for the jackets, attempting
in the process to make their topological properties as
manifest as possible, with the hope that it will provide
yet another tool with which to tackle this class of theories.

A. Bubbles

For this analysis, we shall first perform the perturbative

expansion, integrating with respect to �ð1;2;3Þ and leaving

�ð0Þ untouched. To illuminate our reasoning, let us rein-

terpret the tensors �ð1;2;3Þ as a set of 3N complex N � N

matrices: ½�ð1;2;3Þ
ga �g1;g2 ¼ �ð1;2;3Þ

g1;ga;g2 . Moreover, we shall

briefly view t ¼ �ð0Þ as a coupling parameter. Thus, the
potential (8) takes the form:

V�½t;�ðiÞ� ¼ �ffiffiffiffiffiffi
N3

p X
ga;b;c

Re½tgc;gb;gað�ð1Þ
ga �

ð2Þ
gb �

ð3Þ
gc Þ�; (11)

where the trace is over the N � N matrices. The free
energy can be reexpressed as

F � ¼
Z

d�½t�eF �½t�; (12)

where F �½t� is the free energy of the matrix model with
potential (11):

F �½t� ¼ ln
Z

d�½�ðiÞ�eV�½t;�ðiÞ� ¼ X
bð0Þ

Zbð0Þ;�½t�
jAut½bð0Þ�j : (13)

The amplitude associated with a Feynman graph bð0Þ of this
matrix model is

Z bð0Þ;�½t� ¼ �jv
bð0Þ jNjf

bð0Þ j�ð3=2Þjv
bð0Þ jObð0Þ ½t�; (14)

where jvbð0Þ j and jfbð0Þ j are, respectively, the total number

of vertices and faces of bð0Þ. By construction, we have a
multimatrix model with cubic potentials. Thus, each
Feynman graph is a trivalent graph dual to a triangulation
of a connected orientable Riemann surface. As expected,

one gets a factor of N for every face of bð0Þ and �=
ffiffiffiffiffiffi
N3

p
for ever vertex of bð0Þ. The final factor Obð0Þ ½t� is a

polynomial in t and �t based on the graph bð0Þ. In effect,

t and �t label the vertices of bð0Þ, while their components
label the edges:

O bð0Þ ½t� ¼
�Y
e
bð0Þ

X
ge

bð0Þ

��Y
v
bð0Þ

tge
bð0Þ@v

bð0Þ

�
; (15)

where ebð0Þ are the edges of bð0Þ and ebð0Þ@vbð0Þ are the
three edges incident at vbð0Þ . There is a further admissi-
bility condition: for a vertex labeled by t, the adjacent
vertices must be labeled by �t and vice versa. This observ-
able in t is very familiar from the spin foam framework; it
is the evaluation of a product of tensors assigned to the

(spin-network) graph bð0Þ.
At this intermediate position, let us say a word or

two on the role these Riemann surfaces play within the
context of the tensor model. Note that in moving to the
matrix model (11), we have reinterpreted the strands

coupling �ð0Þ to �ð1Þ, �ð2Þ and �ð3Þ as different species
of matrix. Therefore, they are deleted from the ribbon
graph of the tensor model to get the ribbon graph of
the matrix model. But these are exactly the bubbles

Bð0Þ ¼ r½bð0Þ�.
Let us describe Zbð0Þ;�½t� from the dual 2D and 3D

perspectives. Remember that � is dual to a triangulation

� and we shall denote the dual to the bð0Þ as �½bð0Þ�. In the
2D setting, the matrix model glues collections of triangles

to form triangulated Riemann surfaces �½bð0Þ� whose tri-
angles are weighted by the tensor t and have edges colored

eð1Þ
�½bð0Þ�, e

ð2Þ
�½bð0Þ�, and e

ð3Þ
�½bð0Þ�. Remember that integrating with

respect to �ð1;2;3Þ in the 2D picture is equivalent to inte-

grating with respect to �ð1;2;3Þ in the 3D picture. In the 3D
setting, one has a collection of tetrahedra, with triangles

colored fð0Þ� , fð1Þ� , fð2Þ� , and fð3Þ� . As a result, one glues

tetrahedra along triangles of color (1), (2), and (3), leaving
the triangles of color (0) open. This generates a triangu-

lated (pseudo)manifold H ð0Þ, the boundary of which is a

triangulated Riemann surface @H ð0Þ identical to �½bð0Þ�.
The vertices of @H ð0Þ are all of type vð1Þ

� , vð2Þ
� , and vð3Þ

� ,

while there is one interior vertex of type vð0Þ
� .H ð0Þ forms a
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neighborhood of vð0Þ
� and thus when @H ð0Þ is a surface of

nonzero genus, one has a topological singularity at vð0Þ
� .

See Fig. 4 for an illustration.
To calculate the free energy of the tensor theory (12),

we must integrate the partition function of the matrix
model with respect to the couplings t. In the matrix
model partition function, we shall have multicomponent

graphs or in other words, collections of bubbles fBð0Þg.
Integrating with respect to t reintroduces strands among
the bubbles necessary to reconstruct a 3D ribbon graph
r½��.

Once again, from the 3D dual perspective, after the first

step, we generated triangulated pseudomanifolds H ð0Þ
with boundary. A typical contribution to the tensor model
free energy comes from gluing a collection of these pseu-

domanifolds fH ð0Þg. Integrating with respect to the mea-
sure �½t� essentially completely glues these handle bodies
together to form a closed 3D triangulation. The gluing
procedure is completely standard from the topological
point of view. One repeatedly identifies pairs of disks (in
this case triangles) on the boundaries of the pseudomani-
folds and forms the connected product. Of course, in the
end, one can index these 3D structures by their constituent
bubbles and the gluing maps.

To describe the reconstruction of the amplitude for � in
words is somewhat cumbersome, but it is possible to keep
track of the factors of N and arrive back at (9).

Note that there are four distinct redefinitions of the

form (11), yielding matrix models that generate bð1Þ, bð2Þ,
and bð3Þ graphs, respectively, at the intermediate stage.

Although pseudomanifolds are suppressed in the
1=N expansion of this model, one might have retained
some hope that they could be removed completely by
some restriction on the tensor model. Our analysis here
serves to highlight just how drastic a restriction this would
be. In order for a triangulation to be a manifold, one must
ensure that all bubbles (of every color) are spherical. But
one sees that bubbles arise from matrix models embedded
inside the tensor model. Thus higher order bubble top-
ologies are abundant and completely natural from this
point of view. In fact, to restrict sharply to just the spherical
topology is in many ways the antithesis of matrix model
ideology.

B. Jackets

To make the construction of jackets manifest at the
level of the action, one chooses a different redefinition.

We reinterpret the tensors �ð0;1;2;3Þ as a set of 4N complex
N � N matrices in the following way:

½�ð0Þ
ga �g1;g2 ¼ �ð0Þ

g1;ga;g2 ; ½�ð1Þ
ga �g1;g2 ¼ �ð1Þ

ga;g1;g2 ;

½�ð2Þ
ga �g1;g2 ¼ �ð2Þ

g1;ga;g2 ; ½�ð3Þ
ga �g1;g2 ¼ �ð3Þ

g1;g2;ga :
(16)

With this redefinition, the potential (8) takes the form:

V�½�ðiÞ� ¼ 2�ffiffiffiffiffiffi
N3

p X
ga;gb

Re½trð�ð0Þ
ga �

ð1Þ
gb �

ð2Þ
ga �

ð3Þ
gb Þ�: (17)

Clearly, we have a complex multimatrix model, albeit a
very unusual one, since the number of species of matrix is
coupled to the size of the matrices. In the perturbative
expansion of the free energy, one generates 4-valent graphs
J dual to quadrangulations of connected oriented Riemann
surfaces. Extra degrees of freedom propagate along the
surface, corresponding to the multitude of species of ma-

trix. In any case, note that it is the strand coupling�ð0Þ and
�ð2Þ and the strand coupling �ð1Þ to �ð3Þ that become the

various species of matrices�ðiÞ
g . They are deleted from the

ribbon graph r½�� of the tensor model to get the ribbon
graphs r½J� of the matrix model above. As we anticipated,

this matrix model generates exactly the jackets r½Jð02;13Þ�
and we see that it is dual to a Riemann surface embedded
inside �; see Fig. 5.
The amplitude for a given jacket takes the form:

Z �;Jð02;13Þ ¼ �jvJjNjfJ j�ð1=2ÞjvJ jþjcJj; (18)

where jvJj and jfJj are the total number of vertices and
faces of the Feynman graph. Note that the vertices of J are
in one-to-one correspondence with the vertices of �, while
the faces of J are in one-to-one correspondence with the
faces of �which are not of color (02) or (13). From this 2D
perspective, jcJj arises because we have 4N species of
matrix. But of course we already know that it is the
cardinality of the set of loops we deleted from the ribbon

graph r½�� to get r½Jð02;13Þ�: jcJj ¼ jf�j � jfJj � jv�j.

FIG. 4. The correspondence between the tensor and matrix
pictures.

FIG. 5. The correspondence between the tensor and matrix
descriptions.
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To finish, just as there are three jackets for each graph �,
there are three distinct redefinitions of the form (16) at the
level of the action, each one generating a different jacket.

C. Jackets as Heegaard surfaces

Here we shall show that the Riemann surfaces corre-
sponding to the jackets are in fact Heegaard surfaces.

Formally, a Heegaard splitting of a compact connected
oriented 3-manifold M is an ordered triple
ð�;H 1;H 2ÞM. � is a compact connected oriented sur-
face, while H 1 and H 2 are handle bodies. All three are
embedded inM such that� ¼ @H 1 ¼ @H 2.� is known
as a Heegaard surface.

A spine of a handle body H is a (piecewise linear)
graph K embedded in H such that H nK is homeomor-
phic to @H � ð0; 1�. Moreover, if one has a piecewise
linear graph K and H is the closure of a regular neigh-
borhood of K, then K is a spine of H .

Let us consider the colored triangulation dual to � and

define KðijÞ ¼ fvðiÞ
� ; vðjÞ

� ; eðijÞ� g, that is, the set of all

ðiÞ vertices, all ðjÞ vertices, and all ðijÞ edges in �.

Lemma.—KðijÞ is a connected piecewise linear graph

in �. KðijÞ and KðîjÞ are disjoint graphs.
This is rather evident from the construction of the 3D

triangulation.

Let us define h½Jðij;îjÞ� as the quadrangulation corre-

sponding to the jacket r½Jðij;îjÞ� andH ðijÞ as the closure of
a neighborhood of KðijÞ.

Theorem.—Let us consider the ordered triple

ðh½Jðij;îjÞ�;H ðijÞ;H ^ðijÞÞ�:
(i) if � is a manifold, then it constitutes a Heegaard

splitting of �;
(ii) if � is a pseudomanifold, it splits � into two com-

ponents, which in general fail to be handle bodies;
they may contain a finite number of topological
singularities in their interior.

Proof.—H ðijÞ is defined as the closure of a neighbor-

hood of KðijÞ in �. Let us examine the part of this neigh-
borhood inside a given tetrahedron.

As illustrated in Fig. 6, the neighborhoods of KðijÞ and
KðîjÞ can be extended as far as some intermediary surface,
which is homeomorphic to a quadrangular disk in

h½Jðij;îjÞ�. Furthermore, gluing tetrahedra around an edge

of � causes no problems. As expected, however, problems
could arise at the vertices of �. To see this, let us examine

Fig. 7. Within each tetrahedron, we split H ðijÞ into three

segments, one which touches vðiÞ
� , one which touches vðjÞ

� ,

and one which touches neither, just the edge eðijÞ� . Upon

gluing the tetrahedra, the segments which touch a given vðiÞ
�

glue to become the neighborhood in � of vðiÞ
� , with bound-

ary homeomorphic @H ðiÞ (defined in the section on bub-
bles). Meanwhile, after gluing the tetrahedra, the segments

touching just eðijÞ� form a fat disk.

With this decomposition of H ðijÞ, one sees that if one

attempts to perform a deformation retraction ofH ðijÞ onto
KðijÞ, one hits an obstruction unless all the bubbles enclos-
ing the vertices are balls, in which case � is a manifold.
When � is a manifold, the deformation retraction can be

performed, H ðijÞ is a regular neighborhood of KðijÞ, and
H ðijÞ is a handle body with KðijÞ as a spine. The same

holds forH ðîjÞ. Moreover,h½Jðij;îjÞ� ¼ @H ðijÞ ¼ @H ðîjÞ,
from which the result follows.
When � is a pseudomanifold (and not a manifold), we

cannot perform a deformation retraction of H ðijÞ onto

KðijÞ. We hit an obstruction due to possible topological

singularities at various vertices. Thus, KðijÞ is no longer a

spine forH ðijÞ. It is clear from the argument, however, that

h½Jðij;îjÞ� still splits � into two components H ðijÞ and

H ðîjÞ, satisfying h½Jðij;îjÞ� ¼ @H ðijÞ ¼ @H ðîjÞ. The dif-

ference is that H ðijÞ and H ðîjÞ are no longer handle
bodies. j
It is rather straightforward to show a relation between

the Euler character of the jackets and the bubbles.
Corollary.—The following relation holds:

�ðh½Jðij;îjÞ�Þ ¼ X
bðiÞ

�ð�½bðiÞ�Þ þX
bðjÞ

�ð�½bðjÞ�Þ � 2jeðijÞ� j:

Proof.—First of all, consider the case where � is a mani-
fold. In that case, we can count the number of loops lKðijÞ of

the spine KðijÞ using the formula:

lKðijÞ ¼ jeðijÞ� j � jvðiÞ
� j � jvðjÞ

� j þ 1: (19)

FIG. 6. The intersection of the spines, handle bodies, and
splitting surface with a single tetrahedron. FIG. 7. Splitting HðijÞ into three parts in each tetrahedron.

JAMES P. RYAN PHYSICAL REVIEW D 85, 024010 (2012)

024010-6



Moreover,H ðijÞ is a regular neighborhood ofKðijÞ, which
leads to gJ ðij;îjÞ ¼ lKðijÞ , where gJ ðij;îjÞ is the genus of the

Riemann surface h½J ðij;îjÞ�. From here, it is straightfor-
ward to generalize to the case of � a pseudomanifold. In

that case, H ðijÞ is no longer a regular neighborhood of

KðijÞ and so we must add to the existing expression, the

geni of the bubbles surrounding the vertices vðiÞ
� and vðjÞ

� :

gJ ðij;îjÞ ¼
X
bðiÞ

gbðiÞ þ
X
bðjÞ

gbðjÞ þ jeðijÞ� j � jvðiÞ
� j � jvðjÞ

� j þ 1:

(20)

The result follows after rearrangement.

V. ZN BOULATOV MODEL

Interest in tensor models was first reignited with
Boulatov’s modification [13]. Significantly, the space of
fields occurring in (8) is projected down to those invariant
under the following symmetry:

�ðiÞ
g1;g2;g3 ¼ �ðiÞ

g1h;g2h;g3h
for all h 2 ZN; (21)

known as a diagonal shift symmetry. We can impose this
symmetry by explicitly averaging over noninvariant

fields ~�:

�ðiÞ
g1;g2;g3 ¼

1

N

X
h

~�ðiÞ
g1h;g2h;g3h

: (22)

This modifies the operators to

P gi;ĝi ¼
1

N

X
h

�g1h;ĝ1�g2h;ĝ2�g3h;ĝ3 ;

V gi;ĝi ¼
�ffiffiffiffi
N

p
N4

X
ha;b;c;d

�g1ha;ĝ1hd�g2ha;ĝ2hc�g3ha;ĝ3hb

� �g4hb;ĝ4hc�g5hb;ĝ5hd�g6hc;ĝ6hd : (23)

One notes that there are a number of ZN averages
taking place in the above operators and this reflects
the property (21). Moreover, the appropriate scaling of

the coupling constant in this case is �=
ffiffiffiffi
N

p
[6]. The

graph amplitude now takes the form:

Z � ¼ �jv�j

Nje�jþ1
2jv�j

�Y
eðiÞ
�

X
he

�Y
fðijÞ
�

�

� X
e�@f

h�ðe;fÞe

�
; (24)

where jv�j and je�j are the total number of vertices and
edges of � of all colors and �ðe; fÞ ¼ �1 depending on

the relative orientation of eðiÞ� and fðijÞ� . Thinking of the

group elements he as representing a ZN-valued connec-
tion on �, then the face weight just enforces the
ZN flatness of this ZN connection. Such an amplitude
arises in the quantization of ZN BF theory on a 3D
triangulation [15]. (ZN BF theory on a 3-dimensional
manifold is a topological field theory whose action is

comprised of a ZN-valued 1-form B and the curvature
F of a ZN-valued connection.)
One can simplify the amplitude [13]

Z �;BF ¼ �jv�jNjb�j�ð1=2Þjv�jþb2½��; (25)

where b2½�� ¼ rankðH2½��Þ is the rank of the second ho-
mology group on � [16]. Thus, the BF amplitude is almost
a topological invariant. Its relation to gravity comes about
when one changes to a field SU(2) �: SUð2Þ�3 ! C. The
resulting SU(2) BF amplitude is known to arise as a
quantization of a first order form of 3D gravity on the
graph �. Furthermore, moving to a non-Abelian (Lie)
group introduces many subtleties in placing the amplitude
in a form similar to (25), but this has been successfully
accomplished in a series of works [17].
We would like to express the theory as a matrix model

for the jacket, but at the outset the symmetry (21) seems to
spoil this possibility. To circumvent this problem, we start
by gauge fixing the symmetry. It turns out that there are
several gauge fixings which are trivial in the sense that one
can show easily that one obtains the same graph amplitudes
in the perturbative expansion. These gauge fixings have
been used before [18], but we shall take them in a new
direction. First, the symmetry essentially projects the do-
main of the field� onto Z�2

N , which we shall make explicit

by introducing new fields ’ðiÞ: Z�2
N ! C such that

’ð0Þ
g1g

�1
a ;g2g

�1
a

¼ �ð0Þ
g1g

�1
a ;1;g2g

�1
a
;

’ð1Þ
g1g

�1
a ;g2g

�1
a

¼ �ð1Þ
1;g1g

�1
a g�1

a ;g2
;

’ð2Þ
g1g

�1
a ;g2g

�1
a

¼ �ð2Þ
g1g

�1
a ;1;g2g

�1
a
;

’ð3Þ
g1g

�1
a ;g2g

�1
a

¼ �ð3Þ
g1g

�1
a ;g2g

�1
a ;1

:

(26)

Note the similarity between this redefinition and that
in (16). In essence, we use the symmetry to fix one of the
tensor components of each of the fields, in such a way that
only degrees of freedom propagate along the jackets. The
potential now takes the form:

V�½’ðiÞ� ¼ �ffiffiffiffiffiffi
N3

p X
g;gi

Re½’ð0Þ
g1;g2’

ð1Þ
g2g;g3g’

ð2Þ
g3;g4’

ð3Þ
g3g;g1g� (27)

and the Gaussian measure on each of the fields is1

d�½’ðiÞ� ¼ 1

�4N2

Y
ga

½dRe½’ðiÞ
ga�dIm½’ðiÞ

ga��e
�P

ga

j’ðiÞ
ga j2

: (28)

Although we have it in a purely matrix format, we
would like to represent potential as a trace. This can be

1Note that we rescaled the fields ’ðiÞ ! ’ðiÞ=
ffiffiffiffi
N

p
to put the

potential and measure in that form. This leads to the �=
ffiffiffiffiffiffi
N3

p
factor.
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accomplished if we perform a discrete Fourier decompo-
sition on the tensor components:

’ð0;2Þ
g1;g2 ¼

X
xi2ZN

~’ð0;2Þ�x1;�x2e
ð2�i=NÞðx1g1þx2g2Þ;

’ð1;3Þ
g1;g2 ¼

X
xi2ZN

~’ð1;3Þ
x1;x2e

ð2�i=NÞðx1g1þx2g2Þ:
(29)

In other words, this Fourier transform maps from ZN to its
dual, which also happens to be ZN . We shall choose the
group product on the dual ZN to be the additive one. We
define the Fourier modes in two different fashions to save
us from yet more field redefinitions later. Then, the poten-
tial takes the form:

V�½~’ðiÞ�¼ �ffiffiffiffiffiffi
N3

p X
g

Re½trð~’ð0ÞBg ~’ð1ÞBg ~’ð2ÞBg ~’ð3ÞBgÞ�;

(30)

where Bxy ¼ eð2�i=NÞx�x;y. We now have the Boulatov

model written explicitly as a matrix model. From the
redefinition of the fields (26), one sees that this matrix
model generates the jackets associated with the 3D
Feynman graphs. The diagonal shift symmetry has modi-
fied the model, in the sense that one does not have a set of
4N complex N � N matrices, but rather just four such
matrices. They are, however, subjected to a potential with
N terms. The insertions B are somewhat familiar from
matrix models with dually weighted graphs [14]. These
models have been used to study the statistics of branched
coverings of Riemann surfaces. While that work is not
directly applicable here, it provides a new avenue to ex-
plore in group field theories.

The peculiar dual weighting that one has here is perhaps
easiest to see if one explicitly sums over g in the potential
(30). One loses again the ability to express the potential as
a trace, but the potential now takes the form:

V�½~’ðiÞ�¼ �ffiffiffiffiffiffi
N3

p X
g;gi

Re½~’ð0Þ
x1;x2 ~’

ð1Þ
x2;x3 ; ~’

ð2Þ
x3;x4 ~’

ð3Þ
x3;x1�x1þx2þx3þx4;0�:

(31)

The propagator and vertex operator look remarkably
simple:

P xi;x̂i ¼ �x1;x̂1�x2;x̂2 ;

V xi;x̂i ¼
�ffiffiffiffi
N

p �x1;x̂1�x2;x̂2�x3;x̂3�x4;x̂4�x1þx2þx3þx4;0:
(32)

The degrees of freedom are attached to the faces of the
jacket, with the constraints residing at the vertices:

Z Jðij;îjÞ ¼
�
�ffiffiffiffi
N

p
�jvJj�Y

fðklÞJ

X
xf

�Y
v2J

�

�X
f@v

xf

�
(33)

and once again ðklÞ � ðijÞ or ðbijÞ. If the degrees of
freedom were attached to the edges and one had a
closure constraint, one could solve the constraint by a
change of variables. Not surprising, this is not the case
here, since the amplitude captures the topology of the
ambient 3D triangulation. In some sense the best way to
solve the constraint is to reconstruct the 3D manifold
and perform the analysis of [17]. Having said that, the
power behind the reformulation is that the Boulatov
model can now be expressed at the level of the action
as a quantum field theory with support on the jackets.
As mentioned before, there are three jackets on which
one might develop a quantum field theory. We picked

one class of jacket, Jð02;13Þ, for the analysis above, but
the other two classes are just different gauge fixings of
the Boulatov action and give the same amplitudes.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have shown that the bubbles and jackets
occurring in the construction of the 1=N expansion are in
fact generated from matrix models embedded inside the
tensor model. In fact, they constitute all the possible em-
bedded matrix models for this potential.
In the case of bubbles, we showed clearly that it is

rather unnatural, from the tensor model point of view,
to hope that one can excise a priori pseudomanifolds
from the expansion. The case of jackets is yet more
interesting. We showed that they correspond to splitting
surfaces of the triangulation. When � is a manifold,
they are indeed Heegaard surfaces and split the mani-
fold into two handle bodies. With this property in hand,
it is now possible to utilize the extensive results on
Heegaard and splitting surfaces with respect to a 3-
manifold analysis. To finish, we used our result to
express the Boulatov model as a dually weighted matrix
model on these Riemann surfaces.
Importantly, we have now a reason to study these em-

bedded matrix models with the array methods already
available in the field of matrix models. In coming work,
we shall investigate the solvability of these models using
standard matrix model techniques [19]. Moreover, we are
interested in extending the analysis from finite to Lie
groups [20] since the SU(2) Boulatov group field theory
has a direct relation to 3D quantum gravity.
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