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Abstract
Spinfoam models provide a covariant formulation of the dynamics of loop
quantum gravity. They are non-perturbatively defined in the group field theory
(GFT) framework; the GFT partition function defines the sum of spinfoam
transition amplitudes over all possible (discretized) geometries and topologies.
The issue remains, however, of explicitly relating the specific form of the GFT
action and the canonical Hamiltonian constraint. Here, we suggest an avenue
for addressing this issue. Our strategy is to expand GFTs around non-trivial
classical solutions and to interpret the induced quadratic kinematical term as
defining a Hamiltonian constraint on the group field and thus on spin-network
wavefunctions. We apply our procedure to Boulatov GFT for 3D Riemannian
gravity. Finally, we discuss the relevance of understanding the spectrum of this
Hamiltonian operator for the renormalization of GFTs.

PACS numbers: 04.60.Pp, 04.60.Ds

(Some figures may appear in colour only in the online journal)

Introduction

The spinfoam program [1] was originally developed in order to implement the dynamics
of loop quantum gravity [2, 3] in a covariant, sum-over-histories fashion and, moreover, to
compute transition amplitudes between spin-network states of quantum geometry. However,
the spinfoam formalism was later found to have a much greater applicability, being intimately
tied to the quantization of topological field theories (of background field (BF) type) and sitting
very naturally even in a lattice gauge theory context. The basic setting is that the spacetime
structure is described by an abstract cellular 2-complex dressed with algebraic data. These
data are given by representations and intertwiners (invariant tensors) of the gauge group
(usually SU (2) or the Lorentz group spin(3, 1) for quantum gravity). A spinfoam model
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defines a probability amplitude for each such discrete spacetime structure. In most models, the
cellular complexes are (topologically) dual to spacetime triangulations. Thus, spinfoams can be
interpreted as quantized simplicial geometries. From this point of view, spinfoam amplitudes
are closely related to discretized general relativity and Regge calculus [1]. In fact, the relation
between spinfoam amplitudes and simplicial gravity path integrals has been known from early
on [1], and was recently clarified further [9–12]. Finally, the full spinfoam quantum dynamics
is defined as the sum over all possible 2-complexes. A non-perturbative definition of this sum
is provided by the group field theory (GFT) formulation [4–6].

A GFT is a field theory on a group manifold (the product of a number of copies of the
relevant gauge group) and with a peculiar type of non-local interaction. It is a rather rich
theory but we shall list here some of its main characteristics. To begin, its Feynman diagrams
can be mapped onto 2-complexes and the associated Feynman amplitudes define the spinfoam
amplitude of the corresponding 2-complex. Furthermore, the perturbative expansion of the
GFT partition function defines the sum over all (admissible) 2-complexes weighted with the
spinfoam amplitude in question. From this perspective, GFT can be considered as a generalized
matrix/tensor model [7, 8], which generates triangulations of spacetime as Feynman diagrams
(see the cited literature for further details). Nevertheless, the particularity of GFT is that it is a
field theory in its own right, and we can use standard field theory techniques to investigate and
analyze its properties and its quantization (in particular, tools from perturbative renormalization
[26, 14] of quantum field theory, QFT). In fact, whatever its historic origin, one may take GFT
as an independent arena for research in its own right. It is in this vein that a large portion of
research on the subject is done nowadays [14]. Of course, the original motivations still stand
and, with this in mind, we shall attempt here to refocus on one of the initial goals: to provide
a consistent quantum dynamics for canonical loop quantum gravity states.

Indeed, we propose to interpret the kinetic term of the GFT as a Hamiltonian constraint
acting on the group field and more generally on spin-network states. Of course, this is not the
kinetic term related to the trivial solution of the GFT but rather that related to the effective
dynamics around a non-trivial background solution. The rationale for this proposal lies in the
fact that GFTs can be interpreted as a second quantized approach to spin-network dynamics,
and therefore, in the spirit of ‘third quantizations’ of gravity [5, 6, 15]. As such, one expects the
dynamics of the first quantized theory, here canonical loop quantum gravity, to be encoded in
the classical action of the second quantized theory, here GFT. Moreover, in such a framework,
one expects that both the geometry and topology of spacetime to be fully dynamical.

GFTs fulfil these expectations. In their perturbative expansion, they incorporate both a sum
over all 2-complexes/triangulations of given topology and a sum over all topologies. However,
they do so in a peculiar way. In the GFT action, a trivial kinetic term is usually chosen, so
the whole quantum dynamics of both geometry (Hamiltonian constraint) and topology are
encoded in the interaction term of the theory. Treating this interaction term as an operator on
spin-network states, and allowing it to act repeatedly on them, generates both a graph-changing
evolution of geometry and a change in the underlying topology of space.

We would like to separate geometrical evolution from topology change. More precisely,
we wish to reformulate the action so that it contains a non-trivial kinetic term that could
be held responsible for the dynamics of geometry, leaving the change of topology confined
to the GFT interaction. Recall also that, from the point of view of spin-network states, the
geometrical dynamics can be defined either in terms of graph-changing or non-graph-changing
Hamiltonian operators [2]. Obviously, one should not neglect the possibility that the interaction
term provides additional contributions to the dynamics of geometry (see [15] for a discussion
of this issue). We achieve this proposal here for the effective GFT dynamics. Moreover, we
see that the effective Hamiltonian constraint is of a non-graph-changing type.
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The effective GFT vacuum is a non-perturbative configuration, from the point of view
of standard GFT. It encodes infinitely many fundamental excitations around the φ = 0
configuration. Thus, in principle, it is a manifestation of a continuum space comprised of an
infinity of fundamental simplices. This is in contrast to the φ = 0 vacuum, which is a state
corresponding to ‘no space’. It is only after we possess this continuum picture that we expect
the dynamics of fluctuations to reproduce the quantum dynamics of continuum geometry.

Let us also mention that the exploration of the non-perturbative sector of GFT models,
and of their effective dynamics around background configurations, has already proceeded
along different directions, recently [13, 18–22]. In some works [13, 18–21] the idea being
investigated was that some simplified GFT perturbations around classical solutions could be
interpreted as emergent (non-commutative) matter fields. Another possibility being explored
[22] was to obtain effective equations for geometry from the GFT equations of motion, as
conditions for a given background configuration to define a solution of the same, in the spirit
of mean field theory in Bose condensates. Here we explore the other logical possibility that the
dynamics of geometry should be looked for in the effective dynamics of generic perturbations
around background solutions.

There are two main ingredients to our proposal.
First, we focus on the free GFT defined by the quadratic part of the GFT action. The

equation of motion of this free GFT is a linear equation of the type Ĥ φ = 0, where φ is the
field and Ĥ can be interpreted as a Hamiltonian constraint. However, the standard formulation
of GFTs uses a trivial kinetic term and is of the type

SGFT[φ] = 1

2

∫
φ2 − λ

∫
V [φ], (1)

where V[φ] defines the interaction term. Obviously, the free GFT defined as such is trivial.
Our strategy here is to follow the procedure first used in [13]. We can expand the GFT around
φ = φ0, a non-trivial classical solution to its full equation of motion:

φ0 = λ
δV
δφ

[φ0]. (2)

This classical solution defines a background structure for the GFT3, and we can define an
(effective) action describing the field variations around φ0 (instead of describing its variations
around the ‘no-space’ state φ = 0):

Sφ0 [φ] ≡ SGFT[φ0 + φ] − SGFT[φ0] = 1

2

∫
φĤφ0φ + · · · . (3)

The kinetic term is then non-trivial and provides us with a tentative Hamiltonian constraint
for our proposal. This operator Ĥφ0 depends on the background structure defined by the field
φ0, which encodes some non-trivial dynamical information, since its definition involves the
fundamental interaction term V .

The second ingredient is to view spin-network functionals ψ as multi-particle states of
the GFT. They are indeed constructed as the group-averaged tensor product of group fields, as
we will explain in more detail:

ψ ∼ φ ⊗ · · · ⊗ φ.

From this point of view, the Hilbert space of spin networks can be seen as a Fock space of
the quantized GFT. Then the linear operator Ĥφ0 acts on states ψ and we can investigate its
spectrum on spin-network states.

3 Note that generically these solutions are purely non-perturbative configurations as is testified by their dependence
on the GFT coupling constant.
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Finally, we have underlined the interpretation of the free GFT and the role of the kinetic
term Ĥφ0 as defining a constraint operator acting on the group field φ and spin-network
functionals ψ . However, more generally, Ĥφ0 defines the (inverse of the) propagator for the
point of view of QFT and it is crucial to understand its properties and spectrum for the
computation of the GFT correlations (which define the spinfoam transition amplitudes) and
the renormalization of the GFT (which reflects the coarse-graining of spinfoam models).
In fact, as natural in field theory context, and in third quantized gravity [15], the presence
of interactions will necessarily involve excitations of quantum geometry outside the space
of solutions of the Hamiltonian constraint (‘virtual’, ‘off-shell’ geometries akin to virtual
particles in ordinary field theory), and their understanding requires then a control over the full
spectrum of the Hamiltonian constraint.

The present paper consists of two parts. The first section will review the basics of the
GFT formalism. We shall introduce its expansion around non-trivial classical solutions and
discuss how to define spin-network functionals as multi-particle states. In the second section,
we shall explicitly apply our program to Boulatov’s GFT for the Ponzano–Regge spinfoam
model of 3D quantum gravity. We expand it around the flat solutions introduced in [13] and
analyze the spectrum of the induced Hamiltonian constraint. We compare it to the known
Hamiltonian constraint of topological BF theory, and we will see that it can be interpreted as
a Klein–Gordon-like operator with a spectrum of the type ‘p2 − m2’. Finally, we shall discuss
the relevance of our procedure to the study of GFTs and their interpretation as quantum gravity
models.

1. Group field theory for spinfoams

1.1. Generating the spinfoam partition function

A GFT is defined by the choice of a gauge group G and an action of the form

Sλ[φ] = 1

2

∫
[dga][dg̃a] φσ (ga) K(ga, g̃a) φσ̃ (g̃a) − λ

∫ ( m∏
a=1

[dgab] φσa (gab)
)
V({gab}),

(4)

where φ is a real (or complex)-valued function acting on n copies of the group manifold G:

φ : G⊗n → R (or C); (g1, . . . , gn) → φ(g1, . . . , gn) =: φ(ga). (5)

The label σ ∈ Sn denotes the action of the permutation group on the arguments of the field:

φσ (ga) := φ(gσ (a)). (6)

Also, let us remark that there is no summation over permutations here or elsewhere in the
paper. All permutations, when stated, are fixed. Thus, there is no permutation symmetry
present. Moreover, [dga] is shorthand for the normalized measure on G⊗n, while K and V are
the kinetic and potential operators, respectively. We further require the invariance of the field
under the following action of the gauge group:

φ(ga) → φ(gag) = φ(ga), ∀g ∈ G. (7)

One can realize this symmetry explicitly in a neat fashion by a simple group averaging:

φ(ga) :=
∫
G

dg ϕ(gag), (8)

where ϕ is an auxiliary non-invariant field.

4
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We define the partition function based on this action in the straightforward way4:

Z =
∫

Dφ e−Sλ[φ] =
∑

N

∑
�N

λN

sym[�N]
Z[�N], (9)

where in the second equality we have performed a perturbative expansion in λ. In that case,
N is the order in λ, �N denotes the Feynman diagrams with N vertices, while sym[�N] is the
symmetry factor associated with �N .

The Feynman diagrams are identified as 2-complexes defining spacetime triangulations (or
more generally cellular decompositions). As in matrix models, the interaction term generates
the fundamental building blocks of the discrete manifold, while the propagator glues them
together along their boundary. Then, for a given Feynman diagram �, its evaluation Z[�]
defines the spinfoam amplitude associated with the corresponding triangulation.

It is illuminating to illustrate these general concepts in terms of a specific model: the GFT
for topological BF theory in n-dimensions. This is highly relevant to the spinfoam program
because topological BF theory is the starting point of the whole construction of spinfoam
models. Indeed, the spinfoam models for BF theory are the only ones which have been shown
to provide a consistent and correct quantization of the theory. Moreover, 3D gravity is exactly
a topological BF theory, while 4D general relativity can be formulated as a BF theory with
non-trivial potential.

Thus, for BF theory, the interaction term generates n-simplices, while the propagator glues
them together along the shared (n − 1)-simplices. The fundamental operators are

K(ga, g̃a) =
∫

dg
n∏

a=1

δ(g̃−1
ῑ(a)gag),

V({gab}) =
∫

[dga]
n∏

a=1

∏
b:b>a

δ
(
g−1

ba gbg−1
a gab

)
.

(10)

These choices for K and V are usually referred as ‘trivial’ in the GFT framework. For instance,
K is simply the projector on gauge-invariant fields, that is, the identity on the space of gauge-
invariant fields (7). This choice is appropriate for topological models (of BF type), and it is a
widely used one also in non-topological models based on constraining/deforming topological
ones. The interaction term V here simply identifies the group elements gab and gba up to gauge
transformations. In this sense, we can call it trivial. The standard prescription for GFTs is to
keep a trivial propagator K, while encoding all the non-trivial information and dynamics in
the interaction vertex V .

With these definitions, the propagator is P := K−1 = K and the amplitude for a specific
Feynman graph is

Z[�] =
∫

[dg]
∏

e

P
∏
v

V =
∫ ∏

e

dge

∏
l

δ(Gl ). (11)

In the final expression, l denotes the loops in the Feynman graph, which are dual in the
topological sense to the (n−2)-simplices of the discrete manifold. Moreover, Gl ≡ ∏

e∈l gε(e,l)
e ,

where ε(e, l) = ±1 depends on the relative orientation of e and l. In the end, we recognize
the discretized quantum amplitude for BF theory, in its lattice gauge theory formulation, as
expected.

4 Here we have taken e−S in the path integral as in statistical physics, but we can also define the partition function
with eiS which would truly quantize the GFT and which would be more natural from a ‘third quantization’ point of
view. Using one or the other depends on the purpose of the partition function. Although this is an important question
for the interpretation of GFT in general, this issue is not relevant to the discussion in this paper.

5
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So, in this BF case, the free theory has trivial dynamics and it does not contain any
interesting information on the behavior of the full theory. In particular, the only classical
solution is φ = 0, i.e. the ‘no-spacetime’ configuration. As noted earlier, the entire non-trivial
dynamics of the theory lies in the GFT interaction term, that is, it imposes the (Hamiltonian)
flatness constraint (as a graph-changing operator) on geometry and at the same time governs
topology changing processes. For this reason, we shall study the variations of the GFT field
around non-trivial classical solutions of the full GFT. We shall see that the effective kinetic term
defining the new free theory actually carries non-trivial information about the GFT dynamics;
moreover, it defines a graph-preserving, and thus topology-preserving, quantum dynamics for
geometry, leaving graph-changing and topology-changing processes to be generated by the
(effective) interaction term.

1.2. Spin network observables

For field theories in general, physical observables are deemed to be functions of the fields that
are invariant under the (gauge) symmetries of the theory. In the class of GFT models dealt with
above, the fundamental field is a scalar φ, which is invariant under the action of the symmetry
(rather then covariantly transforming with respect to it). Thus rather arbitrary functions of the
field suffice to encode acceptable physical observables.

Consider an arbitrary product of V fields:

ψ
{φv}
{σv} (gvw) =

V∏
v

φσv

v (gvw). (12)

This tensor product ψ {φv} = ⊗
v φv represents an arbitrary multi-particle state for the GFT.

There is a neat graphical interpretation of such an entity: a vertex v describes the field, while
the edges vw incident at that vertex denote the arguments of this field. Thus, one views each
φσ

v (g1, . . . , gn) as an n-valent vertex. The element σ ∈ Sn defines an ordering of the edges
around the vertex (as when projected onto a plane). Moreover, there is no coupling among
the fields; thus, there is no sense in which these vertices are connected to each other in any
manner. The index w merely denotes the open end of the edge vw.

Then, from the quantum gravity viewpoint, a particularly interesting subclass of
observables are those that can be labeled by connected graphs �:

ψ
{φv}
�,{σv}(Ge) =

∫
[dgvw]

∏
v

φσv

v (gvw)
∏

e

δ(g−1
t(e)i(e)gs(e)i(e)G

−1
e ). (13)

We note that the first product is exactly that occurring in the observable ψ {φv} above. The
second product serves to couple these fields, in effect by gluing pairs of edges at their a priori
free endpoints. More precisely, s(e) and t(e) denote the source and target vertices of the edge
e in the graph �. The index i(e) is the intermediate index of the group elements at the vertices
s(e) and t(e) which allows us to glue the group elements along the edge e. It can be thought
of as an intermediate vertex along the edge e.5 This can be seen in figure 1. Ultimately, in the
language of quantum gravity, the coupling term imposes that the holonomies along the two
segments of the edge compose (under group multiplication) to form a holonomy Ge for the
whole edge.

5 One can also define a slightly different but equivalent gluing procedure, giving the same spin-network functionals
from products of GFT fields. Instead of inserting a delta function per edge constraining the arguments of the GFT
fields, one can impose, by projection, an extra ‘gluing symmetry’ by considering only those products of fields whose
arguments referring to the (would be) same edge e of the closed spin-network graph are invariant under translations
by the same group element hi(e).

6
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Figure 1. The functional ψ {φv } consisting of group fields ϕv at unrelated vertices v and the
functional ψ

{φv }
� constructed by gluing these vertices along the edges of a graph �. For a given

edge e, the two group field living at the source vertex s(e) and target vertex t(e) are glued by an
intermediate (fiducial) vertex i(e).

From the form of the observable, the symmetry of the field φ under the diagonal action
of the group ensures the following symmetry for ψ�,φ :

ψ
{φv}
� (Ge) = ψ

{φv}
�

(
hs(e)Geh−1

t(e)

)
, (14)

where we have removed the subscripts {σv} to lighten the notations. Reversely, any function
satisfying this gauge invariance can be written as a multi-particle states (13) of the GFT.

This symmetry is very familiar from the spin-network observables arising in the spinfoam
approach. In that context, one has gauge invariant functions of the connection with support
on graphs, that is, functions of the form ψ�(Ge) with the same symmetry (14). Here, one
has gauge invariant functionals of the connection with support on graphs. What is even more
appealing is that in the quantum gravity setting, these spin-network functions form a basis for
the kinematical state space. Indeed, the GFT functionals can be expanded in terms of these
spin-network functions. In other words, the GFT observables may be viewed as functionals of
these states, i.e. functionals of the same wavefunctions defining quantum states of geometry
in canonical loop quantum gravity. This is in agreement with the interpretation of GFTs as
second quantizations of canonical loop quantum gravity [5, 6, 15].

Following this, we can introduce a natural set of observables for the GFT:

ψ�[φ](Ge) =
∫

[dgvw]
∏
v

φσv (gvw)
∏

e

δ
(
g−1

t(e)i(e)gs(e)i(e)G
−1
e

)
, (15)

which is a polynomial function of the group field φ.
These observables have a natural field theoretic interpretation, namely that

〈ψ�[φ](Ge)〉 = 1

Z

∫
Dφ ψ�[φ](Ge) e−Sλ[φ],

〈
ψ�1 [φ]

(
G1

e

)
ψ�2 [φ]

(
G2

e

)〉 = 1

Z

∫
Dφ ψ�1 [φ]

(
G1

e

)
ψ�2 [φ]

(
G2

e

)
e−Sλ[φ], etc.

(16)

define the probability amplitude for the boundary state ψ�(Ge) and the transition amplitude
between two spin-network states ψ�1 (G1

e ) and ψ�2 (G2
e ), respectively. Indeed, if we expand

these correlations perturbatively in the coupling λ, we recover the standard sum over all
spinfoam structures compatible with the boundary graph(s) (see e.g. [4, 16] for more details).
Here, we parameterize the boundary data with a graph � and group elements Ge (up to gauge
transformations) on the graph edges. If we want to go to the standard spin-network basis, we

7
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just have to carry out harmonic analysis on the group G and go to boundary data labeled by
representations and intertwiner states6.

Finally, we note that all the terms in the GFT action are given as spin-network observables
of the above type. For the GFT formulation of BF theory, the kinetic term corresponds to
the �-graph (made up of two vertices), while the potential corresponds to an n-vertex graph
(corresponding to an n-simplex). More precisely, the kinetic and potential terms are given by
the evaluation of the corresponding spin-network functionals at the identity Ge = I. Under
renormalization, we may expect effective terms of the type ψ�[φ](Ge) for other graphs �

to enter the effective GFT action as quantum corrections (or counter-terms). Of course, we
expect terms given by the evaluation at the identity Ge = I as before, but effective terms with
evaluations on more general group elements or derivative terms would be probably a sign of
non-trivial curvature corrections.

1.3. Non-trivial backgrounds and effective action

As mentioned earlier, the standard GFT action is usually prescribed with a trivial kinetic
operator and hence propagator. It does not contain any derivative terms and is a simple mass
term. The induced equation of motion is

δSλ[φ]

δφ(ga)
= φ(ga) − λ

∫
[dgab]

δ

δφ(ga)

( m∏
a=1

φσa (gab)
)
V({gab}) = 0. (17)

The trivial classical solution is obviously φ = 0. This is to be compared to the equation of
motion of the free theory defined by solely considering the kinetic term (and discarding the
interaction term)

δS free[φ]

δφ(ga)
= φ(ga) = 0. (18)

Thus, for the free theory, the only classical solution is φ = 0.
To go further, it is rather convenient to rescale the field so that λ disappears from the

equations of motion: φ → λ− 1
m−2 φ. The action, under this redefinition, transforms as

Sλ[φ] → Sλ[λ− 1
m−2 φ] = λ− 2

m−2 S[φ]. (19)

To maintain a certain level of generality, let us assume that we have some non-trivial solution:
φ = φ0 such that δS

δφ

∣∣
φ0

= 0. Then one may rewrite any field configuration as φ = φ0 + ϕ.
Now we can substitute this decomposition into the action to obtain (schematically)

λ− 2
m−2 S[φ] = λ− 2

m−2

[
S[φ0] + δS

δφ

∣∣∣∣
φ0

ϕ + 1

2

δ2S
δφ2

∣∣∣∣
φ0

ϕ2 +
m∑

a=3

1

m!

δaS
δφa

∣∣∣∣
φ0

ϕa

]
. (20)

Naturally, the S[φ0] term may be dropped since it is constant and does not affect the classical
dynamics. What is more, in the quantum theory, it cancels the evaluation of normalized
correlation functions. The second term is zero since φ0 is a classical solution. So, it is the third
term and onward that contain the effective dynamics of the field ϕ:

Sφ0 [ϕ] := λ− 2
m−2

[
1

2

δ2S
δφ2

∣∣∣∣
φ0

ϕ2 +
m∑

a=3

1

m!

δaS
δφa

∣∣∣∣
φ0

ϕa

]
. (21)

This is just a simple recasting of the theory in terms of different variables, i.e. we are not
changing the non-perturbative dynamics of the model. However, the power and motivation of

6 One can also use a spinorial representation of the same functions [28], or go to a triad (flux) representation [29],
using the non-commutative group Fourier transform [23, 24]

8
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the approach, it amounts to considering, in perturbation theory, the dynamics around a new,
non-trivial phase of the theory, and one that can be reached only non-perturbatively, from the
point of view of the ‘no-space’ vacuum φ = 0. This simply follows from the fact that the field
ϕ is a perturbation around the classical background solution φ0.

Let us start with analyzing at the free theory. Looking at just the quadratic term, one notes
immediately that it now contains a non-trivial kinetic operator. Thus, now even in the free
theory, one has non-trivial propagation. Thus, in analogy with other field theories it is tempting
to consider it as the Hamiltonian operator for the corresponding single particle theory or, in
the context of gravity, as the Hamiltonian constraint operator:

S free
φ0

[ϕ] =
∫

ϕ Ĥ ϕ, where Ĥ = δ2S
δφ2

∣∣∣∣
φ0

. (22)

This operator Ĥ not only contains the trivial contribution coming from the original kinetic
term, but more importantly it also contains a non-trivial contribution coming from the original
interaction term of the GFT action. Thus it carries non-trivial information about the full
dynamics of the theory. The equation of motion of this free theory is now simply Ĥ ϕ = 0
and, thus, at this level, we are interested in the zero modes in the spectrum of Ĥ.

One can also go further and let Ĥ act on the multi-particle states of the theory, that is, on
the spin-network states:

Ĥ � ψ
{φv}
�,{σv}(Ge) =

∫
[dgvw]

∑
a

[
Ĥ � ϕσa

a (gaw)
∏

v:v 
=a

ϕσv

v (gvw)

]
×

∏
e

δ
(
g−1

t(e)i(e)gs(e)i(e)G
−1
e

)
. (23)

Still looking for the zero modes of this operator, this means that we have defined a constraint
operator acting on spin-network states. This is our proposal to define a tentative Hamiltonian
constraint for LQG’s spin networks from GFT. In order to assert the physical relevance of our
procedure, we would have to test it on some specific spinfoam model(s). This is what we will
do in the following section, where we will apply it to the GFT for 3D quantum gravity.

Let us stress that this procedure for extracting an effective Hamiltonian constraint for
spin-network states has one obvious advantage and one possible limitation. The advantage is
that it allows us to separate clearly and rather easily the contribution to the quantum dynamics
coming from topology change (encoded in the GFT interaction) from the purely geometric
ones encoded in the GFT kinetic term. The limitation that is intrinsic to our procedure is that
it can only result in non-graph-changing Hamiltonian constraints, if these are to be read out of
the GFT kinetic term. In the canonical quantum gravity literature, the question of whether the
quantum Hamiltonian constraint acting on spin-network states should be graph changing or not
does not have a unique and definite answer [2, 3], and different definitions have been proposed
and explored. Therefore, it remains unclear, at present, whether the formal limitation of our
procedure corresponds to a physical one or not. It remains true, as we stressed already, that
further contributions to the dynamics of quantum geometry are also encoded in the effective
GFT interaction, so these will also have to be studied.

Next, we need to investigate the full theory, beyond its kinetic term. From this more
general perspective, Ĥ−1 defines the propagator of the GFT, which enters the evaluation of the
Feynman diagrams for the perturbative expansion of the path integral of the theory. Thus, we
are interested in the interacting theory in the complete spectrum of Ĥ, as we expect states to be
allowed to go ‘off-shell’ with respect to the constraint. Moreover, as we know from standard
QFT, it is essential to know the full spectrum of the propagator in order to study the properties
of the field theory and its renormalization.

9
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2. The 3D GFT formulation of topological BF theory

2.1. The Boulatov model and flat Solutions

Now, it is time to specialize to an explicit example to see how our strategy plays out. We shall
apply it to Boulatov’s GFT for quantum BF theory in three dimensions with the gauge group
SU (2) [17] (equivalently, 3D Riemannian quantum gravity), whose Feynman amplitudes give
the spinfoam amplitudes of the Ponzano–Regge model.

We choose a compact semi-simple Lie group G and consider invariant fields on G×3:

φ(g1, g2, g3) = φ(g1g, g2g, g3g), ∀g ∈ G.

Explicitly, the action for Boulatov’s GFT is

Sλ[φ] = 1

2

∫
[dg] φ(g1, g2, g3)φ(g3, g2, g1) − λ

4!

∫
[dg] φ(g1, g2, g3)φ(g3, g5, g4)

×φ(g4, g2, g6)φ(g6, g5, g1). (24)

The equations of motion δS
δφ

= 0 take the form

φ(g3, g2, g1) − λ

3!

∫
[dg]φ(g3, g5, g4)φ(g4, g2, g6)φ(g6, g5, g1) = 0. (25)

To this equation, there exists a family of classical solutions labeled by functions f : G → R

identified in [13], namely

φ f (g1, g2, g3) =
√

3!

λ

∫
dh δ(g1h) f (g2h)δ(g3h), provided

∫
dg f (g)2 = 1. (26)

There exists of course other classical solutions (see e.g. [25]) as well as approximate solutions
[22], but we will focus on the family of solutions defined above and referred to as ‘flat
solutions’.

Let us point out that these flat solutions are not normalizable in the sense that the evaluation
of the action on them goes as δ(I) and is thus infinite. From this point of view, defining the
effective action Sφ f involves subtracting the infinite constant term S[φ f ] [13]. This trivial
divergence is due to the translational symmetry satisfied by the flat solutions φ f [25] and it
will not play any role in the procedure and results presented here.

With these solutions at our disposal, we may perturb around them as specified earlier
using φ = φ f + ϕ. The effective action for the field ϕ is

Sφ f [ϕ] = 1

2

∫
[dg]3ϕ(g1, g2, g3)ϕ(g3, g2, g1)

−
∫

[dg]4 f
(
g2g−1

1

)
f
(
g5g−1

1

)
ϕ(g1, g2, g6)ϕ(g6, g5, g1)

− 1

2

∫
[dg]4 f

(
g2g−1

1

)
ϕ(g1, g5, g4) f

(
g2g−1

4

)
ϕ(g6, g5, g1)

−
√

λ√
3!

∫
[dg]5 f

(
g2g−1

3

)
ϕ(g3, g5, g4)ϕ(g4, g2, g6)ϕ(g6, g5, g3)

− λ

4!

∫
[dg]6ϕ(g1, g2, g3)ϕ(g3, g5, g4)ϕ(g4, g2, g6)ϕ(g6, g5, g1), (27)

where the corrections to the kinetic term and the new cubic interaction come from the original
interaction vertex of the GFT. Focusing on the kinetic term, we see that the free theory does
not depend on the coupling λ at all and is given by the quadratic action

S free
φ f

[ϕ] = 1

2

∫
[dg] ϕ(g1, g2, g3)H(g1, g2, g3; g̃1, g̃2, g̃3)ϕ(g̃1, g̃2, g̃3), (28)

10
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with the kinetic operator

H(ga; g̃b) = δ
(
g3g̃−1

1

) [
δ
(
g2g̃−1

2

) − δ
(
g2g̃−1

2

) ∫
dh f

(
hg−1

1 ) f (hg−1
3

) − 2 f
(
g2g−1

1

)
f
(
g̃2g−1

1

)]
× δ

(
g1g̃−1

3

)
. (29)

2.2. The spectrum of the propagator

We define the operator Ĥ acting on invariant fields following the formula for the free theory
given above:

Ĥϕ(g1, g2, g3) = ϕ(g1, g2, g3)

(
1 −

∫
dh f

(
hg−1

1

)
f
(
hg−1

3

))
(30)

− 2 f
(
g2g−1

3

) ∫
dg̃2ϕ(g1, g̃2, g3) f

(
g̃2g−1

3

)
.

With the standard scalar product, 〈ϕ|ϕ̃〉 = ∫
[dg]3ϕ(ga) ϕ̃(ga), it is straightforward to check

that this operator is Hermitian (since f is a real function). Moreover, for a field satisfying
the reality condition ϕ(g1, g2, g3) = ϕ(g3, g2, g1), the kinetic term (28) of the free theory is
exactly given by the scalar product 〈ϕ|Ĥ|ϕ〉. Thus the equation of motion of our free theory
defined by the quadratic term of the effective action Sφ f is simply Ĥ ϕ = 0. We will now look
for the eigenstates satisfying Ĥ ϕ = μϕ and fully diagonalize the operator Ĥ.

We consider the action of the operator Ĥ on the space on invariant fields, ϕ(g1, g2, g3) =
ϕ(g1g, g2g, g3g) for all g ∈ G. Such invariant functions can be looked at as functions of the
gauge invariant combinations g1g−1

3 and g2g−1
3 . Thus, we are acting with Ĥ on the Hilbert

space L2(G×3/G) ∼ L2(G2). A basis of functions on L2(G2) is given by tensor product states
such ϕ(g1, g2, g3) = ρ(g1g−1

3 )A(g2g−1
3 ) or in short ϕ = ρ ⊗ A. It turns out that such simple

states already diagonalize Ĥ. We distinguish two cases as follows.

• A⊥ f . if 〈 f |A〉 = ∫
dh f (h)A(h) = 0, the action of Ĥ on ϕ(g1, g2, g3) = ρ

(
g1g−1

3

)
A
(
g2g−1

3

)
simplifies to

Ĥρ
(
g1g−1

3

)
A
(
g2g−1

3

) = ρ
(
g1g−1

3

)
A
(
g2g−1

3

) (
1 −

∫
dh f (h) f

(
hg1g−1

3

))
. (31)

From this, it is clear that taking ρ(g) = δG(g) = δ(gG−1) for a fixed group element G ∈ G
will diagonalize this action. Then the tensor product states ϕ = δG ⊗ A with A⊥ f being
eigenstates of Ĥ:

Ĥδ
(
g1g−1

3 G−1
)
A
(
g2g−1

3

) =
(

1 −
∫

dh f (h) f (hG)

)
δ
(
g1g−1

3 G−1
)
A
(
g2g−1

3

)
. (32)

The corresponding eigenvalues are μ = (1 − ∫
dh f (h) f (hG)) and do not depend on

the choice of the function A. Since
∫

f 2 = 1 is normalized, the Cauchy–Schwarz
inequality ensures that

∫
dh f (h) f (hG) is bounded by 1 in the absolute value; thus we have

μ ∈ [0,+2].
The lowest eigenvalue μ = 0 is reached when saturating the Cauchy–Schwarz

inequality, that is, for G = I. In that case, the eigenvector ϕ(g1, g2, g3) = δ(g1g−1
3 )A(g2g−1

3 )

is just the flat classical solution φA (up to a proportionality factor).
• A ∝ f . In the case that A = f (since the operator is linear, the proportionality factor is

irrelevant here), the action also simplifies:

Ĥρ
(
g1g−1

3

)
f
(
g2g−1

3

) = ρ
(
g1g−1

3

)
f
(
g2g−1

3

) (
1 −

∫
dh f (h) f

(
hg1g−1

3

) − 2
∫

dh f (h)2

)
.

(33)

11
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Using the normalization
∫

f 2 = 1 and once again taking the ansatz ρ(g) = δG(g), we obtain
the remaining eigenstates:

Ĥδ
(
g1g−1

3 G−1
)

f
(
g2g−1

3

) = −
(

1 +
∫

dh f (h) f (hG)

)
δ
(
g1g−1

3 G−1
)

f
(
g2g−1

3

)
, (34)

which gives eigenvalues μ = −1 − ∫
dh f (h) f (hG) ∈ [−2, 0].

All the eigenvalues in this sector are lower than in the previous section A⊥ f . And once again,
the lowest eigenvalue is reached for G = I and ρ = δ, whose corresponding eigenstate of
our Hamiltonian constraint Ĥ is the state ϕ(g1, g2, g3) = δ(g1g−1

3 ) f (g2g−1
3 ), which is (up

to an irrelevant factor) the initial flat solution φ f around which we have expanded the GFT.

To summarize, we have checked that the spectrum of our (Hermitian) constraint operator
H is bounded both from the above and below; the eigenvalues are ±1 − ∫

dh f (h) f (hG) and
are thus parameterized, as the corresponding eigenfunctions, by an arbitrary group element G;
the spectrum is therefore generically continuous and it depends explicitly on the background
classical solution φ f defined by the function f .

It is also interesting to compare the constraint operator we have obtained, and its spectrum,
to the standard p2 − m2 of a scalar field theory. Indeed, the quantity − ∫

dh f (h) f (hG) can
be roughly identified as the momentum squared p2. This was already noted in [13] where the
kinetic operator of the effective non-commutative field theory for a scalar field coupled to 3D
quantum gravity (as derived in [23]) can be in such a fashion.

More precisely, let us take the gauge group G = SU (2) and assume that f is a central
function, f (hgh−1) = f (g). Then f can be expanded over the characters χ j of the irreducible
representations of SU (2) labeled by the spin j ∈ N/2:

f (g) =
∑

j

f jχ j(g),
∑

j

f 2
j = 1,

∫
dh f (h) f (hG) =

∑
j

f 2
j

χ j(G)

d j
, (35)

where the coefficients f j are real and the factors d j = χ j(I) = (2 j + 1) are the dimension of
the SU (2) representation of spin j. A simple manipulation allows one to write

−
∫

dh f (h) f (hG) = −1 +
∑

j

f 2
j

(
1 − χ j(G)

d j

)
,

due to the normalization condition
∑

j f 2
j = 1. Now, since the characters reach their absolute

maximum in the identity, χ j(I) = d j by definition, then the series in the equation above is
always positive and vanishes at the identity G = I. Thus we can write

−
∫

dh f (h) f (hG) = P2(G) − 1 with P2(G) ≡
∑

j

f 2
j

(
1 − χ j(G)

d j

)
, (36)

where the shift −1 can be interpreted as a mass term. This kinetic term can truly be
written through a (group) Fourier transform as a Laplacian operator (corresponding to an
actual 3-momentum) acting on the non-commutative R

3 dual to the group manifoldG = SU (2)

[23, 24].
Thus, through our procedure we have recovered a non-trivial kinetic term which can be

interpreted and used in analogy with the usual (p2−m2) of standard QFT. This is also interesting
when one recalls that the Hamiltonian constraint of geometrodynamics takes the form of a
(functional) Klein–Gordon-type quadratic operator on superspace. However, this analogy must
be taken with care because the situation is different in three spacetime dimensions. (This is
actually the case we are dealing with here.) With this point being understood, the main interest
in the above result is that it confirms that the kinetic operator we have defined is non-trivial

12
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Figure 2. The �-graph with two vertices and three edges linking them: the two possibilities for
defining the spin network functional made from φ f group field insertions at the two vertices but
with different choices of permutations at each vertex.

but manageable, and that the corresponding propagator has a non-trivial spectrum and it
is thus directly amenable to more standard constructive techniques in the context of GFT
renormalization [26].

2.3. The effective Hamiltonian constraint

We are ready to realize the action of this effective Hamiltonian constraint on a generic spin-
network state for the graph �, given, as we have seen, by the tensor product of the group field
ϕv associated with each of the vertices v of the graph:

ψ�(Ge) =
∫

[dgvw]
∏
v

ϕσv (gvw)
∏

e

δ
(
g−1

t(e)i(e)gs(e)i(e)G
−1
e

)
, (37)

so that a spin-network state is interpreted as a multi-particle state (in the Fock space) of the
GFT. Then we let the linear operator Ĥ act as expected on the tensor product ψ� = ⊗

v ϕv as
earlier in (23):

Ĥ � ψ�(Ge) =
∫

[dgvw]
∑

a

[
Ĥ � ϕσa (gaw)

∏
v:v 
=a

ϕσv (gvw)

] ∏
e

δ
(
g−1

t(e)i(e)gs(e)i(e)G
−1
e

);
(38)

ψ� is therefore an eigenstate of Ĥ if (and only if) the fields ϕv are all eigenvectors of the
Hamiltonian operator.

For any choices of ϕv , it is straightforward to compute the associated spin-network
functional by explicitly performing the integrals over the gauge group G. Here we focus on
identifying and interpreting the state corresponding to the lowest eigenvalue of the effective
Hamiltonian constraint operator, which we call for simplicity the ‘ground state’.

For instance, the ground state on a graph � will be given by taking the ground state of
the group field everywhere, i.e. ϕv = φ f for all vertices v as we have derived in the previous
section. A minor point is that the eigenvalue of Ĥ associated with ϕ = φ f is −2, so that it might
be a better convention to shift Ĥ by 2 in order to define the ground state as having vanishing
eigenvalue (then, solutions of the Hamiltonian constraint equation would have eigenvalue 2).

Computing the integrals of the product
∏

v ϕv , we will get a certain combination of δ

functions and convolutions of f of every loop of the graph �. Let us compute this explicitly
for the �-graph, made up of two vertices and three edges linking them. The group field
ϕ = φ f = ∫

δ f δ has three legs with which are associated twice the δ-distribution and once
the function f . Thus, we have two possible configurations on the �-graph depending on the
choice of permutations σv: either the two f -insertions are on the same edge (let us say 1)
or they are on different edges (let us say 1 and 2). These two possibilities are illustrated in
figure 2.
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Figure 3. The oriented tetrahedron graph with its four vertices and six edges and a particular choice
of permutations at the four vertices in order to define the spin-network functional.

Figure 4. The tetrahedron graph (faithfully) embedded on the 2-torus with the edges 2 and 5
wrapped around the two cycles.

The corresponding spin-network states are easy to compute:

ψ
(1)
� (Ga) = δ

(
G2G−1

3

) ∫
dh f (h) f

(
hG1G−1

2

) = δ
(
G2G−1

3

)
f ◦ f

(
G1G−1

2

)
,

ψ
(2)
� (Ga) = f

(
G1G−1

3

)
f
(
G2G−1

3

)
,

where we have assumed that f is central7 for simplicity’s sake.
As expected, these are gauge-invariant functionals invariant under the action of G at each

vertex of the graph. They assign a certain convoluted power δ or f or f ◦ f or more generally
f ◦n to each loop depending on the number of f -insertions along that loop. When we have the
δ-distribution, we are imposing that the holonomy along that loop is trivial and thus that the
connection is flat. When we have a non-trivial power f ◦n on a loop, it can be interpreted on
the other hand as a topological defect or a non-trivial cycle of the space topology.

To assert this interpretation, let us have a try at the tetrahedron graph and consider
the choice of permutations as depicted in figure 3. The corresponding spin-network state is
straightforward to compute

ψT (Ga) = δ
(
G4G−1

3 G1G−1
6

)
f ◦ f

(
G4G−1

3 G2
)

f ◦ f
(
G6G5G−1

4

)
, (39)

which is interpreted as a flat state on the 2-torus (figure 4) or the 2-sphere with two punctures
(topological defects).

Finally, we can also play with the choice of the classical solution φ f . Indeed, the ground
state and, more generally, all the eigenstates depend on the choice of the function f . For

7 For the gauge group G = SU (2), if the function f is invariant under conjugation, f (g) = f (hgh−1), then it
is automatically invariant under inversion f (g) = f (g−1). Then ◦ is simply the conventional convolution product
between functions over SU (2).
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instance, if we take the (ill-defined) limit f → δ/
√

δ(I), then the ground state becomes the
completely flat state imposing that the holonomies are trivial along all the loops of the graph.
This correctly corresponds to the physical state of topological BF theory for a trivial topology
of space. On the other hand, as soon as f is different from the δ-distribution, holonomies
become non-trivial and are interpreted as a non-trivial space topology (or topological defects).
This describes the ground state of our Hamiltonian constraint. Then we can see that excited
states will introduce more and more topological defects and curvature.

3. Conclusion

Within the framework of spinfoam models for quantum gravity, we proposed to focus on the
free theory defined by the quadratic term of the group field theory (GFT) and to interpret
the kinetic operator as a Hamiltonian constraint. This Hamiltonian constraint Ĥ defines the
classical equation of motion of the free theory and acts on the GFT field ϕ, which represents a
single intertwiner of a spin-network state for loop quantum gravity. Nevertheless, we have also
shown to interpret general spin-network states as multi-particle states of the GFT, as tensor
products of the initial field ϕ. Then we have a natural action of the Hamiltonian operator Ĥ
on spin networks.

A standard prescription for GFTs is to start with a trivial propagator (but see the last
reference of [26]) and to encode all the dynamics (of both geometry, thus the Hamiltonian
constraint, and topology) in the interaction term. Nevertheless, even in this case, we follow the
proposal from [13] to expand the GFT around a non-trivial solution of its classical equations
of motion. This background classical solution contains dynamical information from the full
theory, since it depends on the original interaction term. Then we have shown that the effective
GFT describing the field variations around that background acquires a non-trivial kinetic term,
which we can then interpret as defining an effective Hamiltonian constraint for loop quantum
gravity.

We have applied this program explicitly to Boulatov’s GFT for 3SD quantum gravity
[17]. We expanded it around the flat classical solutions introduced in [13] and analyzed in
detail the spectrum of the induced Hamiltonian constraint operator. We have seen that it can
be interpreted as a kinetic operator of the (p2 − m2) type. This not only supports the physical
relevance of our procedure but also supports the idea that GFT can be understood (at least in
certain phases, or for certain perturbation fields) as the momentum representation of a field
theory on an actual spacetime manifold, which would be obtained through a Fourier transform
[11, 20, 25].

More work is certainly needed. In particular, one should investigate different choices of
background GFT configurations around which to expand, since this determines a big deal of
the effective Hamiltonian constraint.

Having a non-trivial propagator of the GFT of the (p2 − m2) type, thus with a more
standard scale dependence, opens the door to an easier use of standard QFT tools to study
GFT renormalization; in particular, it would be interesting to see how our procedure can be used
within the tentative framework that has been recently developed [26]. We should also apply
our program to spinfoams for 4D quantum gravity and see if we can extract some interesting
and physically relevant effective Hamiltonian constraint from the EPRL-FK spinfoam models
for instance [30–33].

Finally, we believe that it would also be interesting to investigate the group Fourier
transform [23, 24] of all our procedure. This can be given two possible interpretations: it
may mean going from the momentum representation given by our GFT on a group manifold
to a (non-commutative) field theory on a spacetime manifold, if the non-commutative dual
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variables are interpreted directly as coordinates on it [25, 20], or it could mean simply re-
writing the same field theory of geometry from connection to triad/flux variables [11, 12, 29].
In both readings, it would certainly help to understand the physical and geometrical meaning
of the induced propagator and effective Hamiltonian constraint.
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