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Abstract
As part of a wider study of coherent states in (loop) quantum gravity, we
introduce a modification to the standard construction, based on the recently
introduced (non-commutative) flux representation. The resulting quantum
states have some welcome features, in particular, concerning peakedness
properties, when compared to other coherent states in the literature.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

PACS number: 04.60.Pp

(Some figures may appear in colour only in the online journal)

1. Introduction

Coherent states are an essential tool in the study of any quantum system, being best suited to
study the correspondence with the underlying classical description of the same system, and
the role of quantum fluctuations that modify it. A general review of coherent states, applied
to a variety of physical phenomena, can be found in [1]. In a quantum gravity context, when
a concrete definition of the (kinematical) state space of the theory is available, they are then
the natural tool for testing the semi-classical limit. Indeed, in the context of loop quantum
gravity (LQG) [2], they have been used extensively both in the canonical [3, 4, 6, 7] and in
the spin foam (see, for example, [9, 11]) settings, where they define boundary states that can
approximate discrete classical geometries.

LQG states are generically given by superpositions of states which have support on
graphs, which can be thought of as embedded in a smooth spatial manifold or not, depending
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on the context3; each graph represents a truncation of the geometric degrees of freedom of
the full, continuum theory. Looking at the classical phase space of the theory, this comes
about as follows (we refer to [2] for more details). The continuum canonical phase space is
parametrized by a pair of fields (e(x), A(x)), representing the triad field and the (Ashtekar)
connection field. In order to pass to a set of variables with better transformation properties
under gauge transformations and easier to deal with from the analytic point of view, one then
considers all possible piecewise-analytic paths γ and 2-surfaces S embedded in the spatial
manifold and smeared canonical variables given by the parallel transports hγ (path-ordered
exponentials) of the connection along the paths, and fluxes ES, i.e. integrals of the (dualized
and densitized) triad field over the surfaces. The resulting commutation relations are very
complicated in general, as one has to keep track of the intersections between paths and
surfaces. Still one recognizes in them the conjugate nature of holonomies of the connection
and fluxes of triad. Also, one sees that the flux variables do not (Poisson) commute, indicating
the fundamental non-commutative nature of such variables already at the classical level, which
should then be taken into account in the quantum theory [12]. This is the classical motivation
for the non-commutative flux representation [23] for LQG quantum states we use in this paper
(and used in a spin foam and group field theory (GFT) [17] context in [18, 19]). From generic
paths embedded in the spatial manifold, one then passes to graphs formed by such paths
and their intersection points, which allows us to have a better control over the local gauge
transformations acting on the canonical variables (which act, indeed, at such intersection
points). With each such graph (with N links) one then associates the Hilbert space, in the
connection representation L2(SU(2)×N/SU(2)×V ) defined by dividing by the action of the
internal group on the nodes V of the graph. The canonical structure simplifies when one
considers individual links of the graphs and elementary surfaces intersecting such links at
single points (so that there is a 1–1 correspondence between the link e and surface S). In this
case, the canonical brackets become

[ Êi
e, ĥe] = i�(8πGγ )Ri � ĥ,[

Êi
e, Ê j

e′
] = i�(8πGγ )ε

i j
k δe,e′ Êk

e ,

[ĥe′ , ĥe] = 0,

where �(8πGγ ) = 8π l2
pγ has the dimension of a length squared4. One recognizes the

(quantization of) the canonical brackets of the cotangent bundle of SU(2), T ∗SU(2), for
each link e of the graph.

Given that we work with functions and operators on functions defined on group manifolds
without connecting them to physical measurements, at least at this level, it is convenient to
work with dimensionless variables, reabsorbing the dimensionful quantity 8πGγ � into the
definition of dimensionless flux operators, which will still be denoted as Êi

e, in such a way that
the fundamental algebra reads

[Êi
e, ĥe] = iωRi � ĥ,[

Êi
e, Ê j

e′
] = iωε

i j
k δe,e′ Êk

e ,

[ĥe′ , ĥe] = 0,

where ω is an arbitrary dimensionless parameter.

3 The canonical approach starts off in a continuum setting, and works with embedded graphs, even though most of the
embedding, continuum information is then removed by the imposition of diffeomorphism invariance. The spin foam
formulation is usually framed in a simplicial context, where the graphs used are dual to simplicial decompositions
of a spatial manifold, but no embedding is assumed; often they are also interpreted as abstract, purely combinatorial
graphs. These different interpretations and settings do not affect our analysis, which applies to all of them.
4 We use units in which c = 1.
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The construction of coherent states in such a setting has then as the main goal the
identification of kinematical states that are semi-classical in the sense that they peak, with
minimal uncertainties, around classical phase space points of the continuum theory. It is
then clear that one has to face several conceptual and technical issues, among which are the
following: (a) the detail of the approximation of continuum geometries by data associated with
graphs and thus approximating at best discrete truncation of the same continuum geometries;
(b) the definition of coherent states for such discrete geometries; (c) the role and treatment of
the sum over graphs to recover continuum configurations; (d) the role of several approximation
scales in the same procedure; (e) the identification of the appropriate set of observables with
respect to which the approximation is best obtained; (f) the construction of quantum states
that are coherent with respect to such observables. The list is not exhaustive. Many such issues
are discussed in [3, 4, 6, 7]. However, because of the structure of the kinematical state space
of LQG, the construction of coherent states for quantum gravity necessarily has as a starting
point the study of suitably defined semi-classical states for the degrees of freedom associated
with individual edges of the graphs on which such states are based, that is, for coherent states
based on a T ∗SU(2) phase space.

More precisely, the standard construction is based on work by Hall [5], who defines a
coherent state transform for compact Lie groups, in analogy to the Segal–Bargmann transform
for the real line. One then lifts this construction to theories of connections based on graphs
by taking tensor products of Hall states, one per edge of the graph, as explained in [6]. The
properties of those states have been extensively studied in a series of papers [3, 4, 7]. The
essential properties are already present when restricting to a single edge, and we will focus on
this case for most of this paper. We leave the next steps in the construction of proper coherent
states for quantum gravity, based on complete graphs and superposition thereof, and on more
interesting and complicated observables, to future publications.

We then start our analysis by reviewing the construction of coherent states on a single copy
of T ∗SU(2). As we will see, the definition of a coherent state involves two main ingredients:
(1) the choice of a Gaussian on the group manifold, peaked on the origin of the phase space
T ∗SU(2), and (2) a procedure for shifting the peak to a generic point in the same phase space,
while maintaining the coherence properties. Our construction will be mostly generic on the
first ingredient, even if we will refer often to the heat kernel states used by Hall in [3] as a
specific example, while it will define a new procedure for what concerns the second ingredient,
based on the flux representation of LQG states.

In order to appreciate these ingredients and to warm up for the forthcoming discussion,
let us briefly recall the simple example of a coherent state for a particle on the real line, thus
with phase space R × R. The straightforward Gaussian

ψ t
(0,0)(x) = (2πt)−1/2 e−x2/2t, (1)

with t the semi-classicality parameter5, is a good coherent state peaking at the origin
(x0, p0) = (0, 0) of phase space and has the further good property of having as Fourier
transform a similar Gaussian in momentum representation6. In order to peak at a generic point
in phase space, one first translates the above Gaussian from x to x − q, obtaining a coherent

5 Throughout we use dimensionless coordinates and thus t is also dimensionless.
6 Note that the Fourier transform has to be defined by

F (ψ)(k) = 1√
2πt

∫
dx eikx/tψ(x).
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state peaked at (x0, p0) = (q, 0), and finally analytically continues q to z = q − ip. The
resulting coherent state peaked at a phase space point (q, p) is defined as

ψ t
z (x) = (2πt)−1/2 e−(x−z)2/2t . (2)

In this case, moreover, one can also understand the analytic continuation as equivalent to a
translation in momentum space with the parameter p, or which is the same (up to constants)
as multiplying the Gaussian peaked on (q, 0) by a phase eixp/t (the plane wave defining the
Fourier transform). Indeed

(2πt)−1/2 e−(x−z)2/2t = (2πt)−1/2 e(p2+2ipq)/2t e−(x−q)2/2t e−ixp/t, (3)

where the terms that do not depend on x are absorbed in the normalization.
It is this second way of shifting the peak of the coherent state peaked on the identity that

we adopt in this paper, as an alternative to Hall’s analytic continuation.
After reviewing the standard construction (section 2), we introduce the non-commutative

flux representation for states on a single edge (section 3), based on the group Fourier transform
[13]. We will then be ready to construct new types of coherent states and to study their
peakedness properties (section 4).

2. Hall states

We start now with Hall’s coherent state transform. We stress once more that this is currently the
template for all coherent states defined in a quantum gravity context, if the Casimir operator is
chosen as ‘complexifier’ [3, 7], as we recall at the end of this section. The idea is to generalize
the Segal–Bargmann transform for the real line to compact groups.

As we have seen, one has to first define a good notion of the Gaussian on the group
manifold. Hall’s choice for the Gaussian is the solution to the heat kernel equation on the
group,

dψ t

dt
= 1

2
�ψ t, (4)

where ψ t is a function on a Lie group K, such that ψ0(h) = δ(h), h ∈ K, and � is (up to
a sign) the Casimir (Laplace) operator on the group. Following Peter–Weyl’s theorem, the
solution can be written in terms of a sum over representations as

ψ t (h) =
∑

j

d j e−tCj/2χ j(h). (5)

j labels the irreducible representations of K. While this is general, from now on we will restrict
the discussion to the case of K = SU(2). Consequently, j is a half-integer, d j = 2 j + 1 is
the dimension of the representation j, Cj = j( j + 1) is the value of the Casimir on this
representation and χ j(h) is the character in the representation j. This state is peaked on the
identity on the group and on the zero value for the conjugate flux variable, that is, on the origin
of the classical phase space. To peak outside the identity in configuration space (holonomy),
one simply translates using the group multiplication

ψ t
h0

(h) =
∑

j

d j e−tCj/2χ j
(
hh−1

0

)
. (6)

The second ingredient is the analytic continuation; as we have seen, this is needed to peak the
coherent state on a value E0 for the conjugate variable (flux) different from zero. To do this,
consider the complexification KC of K. An element g ∈ KC can be written as g = eiyh, where
h ∈ K and y is in the Lie algebra of K, that we denote as l. Parametrizing like that we see that
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KC is identified with the cotangent bundle over the group T ∗(K) ∼ K × l, and the phase space
point is labeled by the pair (h, y) ∈ K × l. The analytic continuation is then defined by the
formula

ψ t
(h0,y0 )(h) =

∑
j

d j e−tCj/2χ j
(
hh−1

0 e−iy0
)
. (7)

The character is still the one for K, evaluated on analytic continued group elements. Note
also that the analytic continuation of SU(2) is the group SL(2, C), so that the variables
(h0, y0) define an element H0 = h0eiy0 ∈ SL(2, C) in the Cartan decomposition. This analytic
continuation is proved to be unique in [5]. This defines coherent states for a single copy of the
group.

The main properties satisfied by such states, among others [3, 5, 7], which make them
good candidates for being (building blocks of) quantum gravity coherent states, are as follows.

(1) Peakedness properties: they peak on the appropriate points of the classical phase space:〈
ψ t

(h0,y0 )

∣∣Êi
∣∣ψ t

(h0,y0 )

〉 = y0 + O(t),
〈
ψ t

(h0,y0 )

∣∣ĥi
∣∣ψ t

(h0,y0)

〉 = (h0)
i + O(t), (8)

where Ê is the flux operator (left-invariant vector field on the group manifold) and ĥ is an
appropriate operator identifying the holonomy, for example, a set of coordinates on the
same group manifold (we will come back to the issue of choosing such operators in the
following).

(2) Saturation of the (unquenched) Heisenberg uncertainty relations for the fundamental
operators: the states should minimize uncertainties in both the fundamental conjugate
variables.

(3) Overcompleteness: the coherent states should form an overcomplete basis for the Hilbert
space of states; this also means that the coherent state transform from generic states to
coherent states is a unitary map.

A comment is in order to qualify better these properties. In principle, the spread t and the
parameter ω appearing in the algebra of the operators we are working with are two independent
parameters. However, in order for the saturation of the Heisenberg relations to be properly
satisfied with minimal fluctuations, the choice t = ω has to be made. This is the choice that we
make from now on, and therefore t should not be thought of as a free independent parameter,
being essentially determined by the choice of the fundamental algebra of operators.

Concerning the analytic continuation, the fact that, in the simple case of phase space
R × R, this is equivalent to a translation in momentum space suggests an alternative to
the usual procedure, based on the properties of the Fourier transform of functions on SU(2).
Indeed, we will take this fact as our guiding principle to introducing the momentum dependence
on the coherent state. We will also show that our alternative construction leads to coherent
states satisfying the same main properties listed above, and, besides aesthetic appeal and
convenience in formal manipulations, improves on the standard construction by achieving a
better peakedness property in the flux observables, in the sense that the new states will peak
exactly on the corresponding classical flux, with no corrections of order t, contrary to Hall’s
states.

Before moving on to our new construction, let us recall briefly the relation between Hall
states and other coherent states used in the quantum gravity literature. The coherent states
used in the spin foam context, e.g. for calculations of lattice correlators [10], are Gaussians in
the SU(2) representations (spin) j peaked on some classical large value j0 with spread t (up
to constant factors) and with a phase factor ei jθ0 , where θ0 represents the class angle of the
SU(2) group element (connection) on which the state peaks. The representation parameter j0
has the interpretation of the eigenvalue for the modulus of the flux (area of elementary surface

5
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associated with the link). The dependence on the remaining components of the flux is encoded
in a function of the representation j and of a vector �n ∈ S2 labeling an overcomplete basis
of states in the representation space corresponding to j. It is easy to show [11] that the Hall
coherent state reduces to the states defined this way for large values of the peak area j0, i.e.
in a semi-classical limit. The vectors | j,�n〉 entering the same construction, in turn, are the
Perelomov coherent states [24] for SU(2) and define a good approximation to the flux vectors,
for a given modulus (area), for large values of the same. As recalled in the introduction, starting
from these building blocks, one then constructs coherent states associated with vertices of a
graph, and then to the whole graph, by tensoring coherent states associated with links and
imposing gauge invariance on the vertices of the graph. The result is the complexifier coherent
states [3, 7] if one starts from Hall states, the most general ones, in which one sees clearly
the geometry behind the state and the point in the classical phase space one is peaking at,
the so-called coherent spin networks [11], used as said in many spin foam computations (in a
simplicial setting), in turn based on the so-called Livine–Speziale coherent intertwiners [25],
obtained as gauge-invariant tensors of Perelomov coherent states.

3. Non-commutative group Fourier transform and flux representation of LQG

We now review briefly the (non-commutative) Fourier transform for the group SU(2) [13],
which is the basis of the non-commutative flux representation of loop quantum gravity [23].

The goal is to define a transform F mapping isometrically L2(SU(2), μH ), where μH

is the Haar measure on the group, onto a space L2
�(R

3, dx) of functions over R
3 ∼ su(2)

equipped with a non-commutative �-product and the Lebesgue measure. As we anticipated,
the interpretation of the Lie algebra elements conjugate to the group elements is that of
elementary fluxes (smeared triad fields, conjugate to holonomies of the Ashtekar connection).
The first ingredient is the definition of the plane waves:

eκ
g : R

3 × SU(2) → U(1), eκ
g (x) := exp

(
i

κ
ξg · x

)
, (9)

where ξg := (ξ 1
g , ξ 2

g , ξ 3
g ) is a choice of coordinates on the group manifold and x = xiσi is a

Lie algebra element. More precisely, we choose coordinates on the group as follows:

ξ i
g = − 1

2 Tr(|g|iσ i), |g| := sign(Tr g)g. (10)

Parametrizing a group element by g = eiθσ ·n̂ = cos θ + i sin θ σ · n̂, one has that

ξ i
g = ε sin θ n̂i, (11)

where ε = sign(Tr g) = sign(cos θ ).
It is clear therefore that the definition of plane waves depends on a specific choice of

coordinates on the group. The immediate consequence is that, for topological reasons, the
group Fourier transform we are about to introduce will not be defined (as an invertible map) on
the whole SU(2), as it is impossible to cover the whole group manifold by a single coordinate
patch. We will discuss below how to overcome this limitation. The plane wave is labeled by a
parameter κ that will be related, later on, to the spread of the semiclassical states, denoted by
t. Indeed, from the algebra of fundamental operators in LQG, one can already expect t = κ .
We will provide below a motivation for this identification. In order not to overload notations,
we will anyway leave it implicit for most of the equations.

Some relations for the plane waves will be useful later on:

eh(x) = eh(−x) = eh−1 (x). (12)

6
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The group Fourier transform is then defined as

F ( f )(x) :=
∫

dgeg(x) f (g). (13)

Note that the plane waves so-defined do not distinguish between g and −g. As a consequence,
the above Fourier transform is not invertible for functions on SU(2), but only for functions on
SU(2) that are also invariant under the same discrete symmetry. These can be identified with
functions on SO(3)	SU(2)/Z2, for which the above is a proper Fourier transform.

The definition of the plane wave induces a natural algebra structure on the image of the
Fourier transform. The product is defined on plane waves by

eg1 � eg2 := eg1g2 . (14)

The scalar product in L2
�(R

3, dx) is defined by

〈u, v〉� := 1

8π

∫
dx3(ū � v)(x), (15)

and the inverse Fourier transform is given by

f (g) = 1

8π

∫
dx3(F ( f ) � eg−1 )(x). (16)

Normalizations are for SO(3), in which case ε is always equal to 1. One can show [23] that with
this scalar product, the Fourier transform defines a unitary map between the spaces L2

�(R
3, dx)

and L2(SO(3)). The same can be extended to generic cylindrical functions associated with an
arbitrary graph embedded in a 3-manifold, and thus to the whole kinematical Hilbert space
of LQG (restricted to SO(3)), in a way that, moreover, preserves cylindrical consistency
requirements [23].

The restriction to SO(3) is somewhat unsatisfactory for some applications, and it is useful
to lift it, especially for a proper comparison between our construction and the usual coherent
states previously defined in the literature, in particular, Hall coherent states, which use the
full SU(2) manifold. This generalization can be achieved in more than one way [14-16]. We
describe here, briefly, the extension defined in [14], to which we refer for more details.

Given that the main obstruction to a 1–1 map between SU(2) and R
3 is topological,

we define three subsets of SU(2) 	 S3, corresponding to its northern hemisphere U+,
southern hemisphere U− and equator U0: Uε = {g(�Pg, P0

g ) ∈ SU(2)|sign(P0) = ε}, with
�Pg = ε�ξg = sin θ �n, P0

g = cos θ and sign(0) = 0 (this is the standard coordinate system on the
3-sphere embedded in R

4, with (�P, P0) such that P2
0 + P2

1 + P2
2 + P2

3 = 1). In other words, we
decompose the space of generalized functions on SU(2) into subspaces:

C(SU(2))∗ 	 C(U+)∗ ⊕ C(U−)∗ ⊕ C(U0)

so that, for any f ∈ C(SU(2))∗, f = f+ ⊕ f− ⊕ f0, with f±,0 = f I±,0, where I±,0 are
characteristic functions on U±,0. Clearly, the elements of C(U0) have necessarily distributional
nature (with respect to the Haar measure). Therefore, ordinary functions on SU(2) have
only components in C(U±). The decomposition is characterized by projections that can be
associated with polarization vectors:

ξ+ = 1 ⊕ 0 ⊕ 0, ξ− = 0 ⊕ 1 ⊕ 0, ξ0 = 0 ⊕ 0 ⊕ 1.

The Fourier transform F that is bijective on the full C(SU(2))∗ and respects the above
decomposition is then defined in terms of the plane waves (generalizing the above ones):

eκ
g,ε : R

3 × SU(2) → U(1), eκ
g,ε (x) := exp

(
i

κ
Pg · x

)
ξε, (17)

7
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and maps the generalized functions f = f+ ⊕ f− ⊕ f0 on SU(2) into a multiplet of functions
F ( f ) = f̃ = f̃+ ⊕ f̃− ⊕ f̃0 on su(2) 	 R

3, which can be denoted as Cκ (su(2)).
For ordinary functions on SU(2), it looks simply as

f̃±(x)ξ± =
∫

U±
dg f±(g) exp

(
i

κ
Pg · x

)
ξ±

=
∫

d3 �Pg
1

2
√

1 − |�P2
g |

f

(
�Pg,±

√
1 − |�Pg|2

)
exp

(
i

κ
Pg · x

)
ξ±. (18)

The function f̃0 can be obtained similarly by integration over the equator of SU(2), as discussed
in [14].

This map from C(SU(2))∗ and C(R3)∗κ is invertible and the inverse map can be expressed
using a �-product [14].

The �-product between the plane waves eg(x), inducing a product on general elements of
C(SU(2))∗ by linearity, takes into account the decomposition of the domain and target spaces
of the Fourier transform, and is defined as(

eg1,ε1 � eg2,ε2

)
(x) = exp

(
i

κ
Pg1 · x

)
ξε1 � exp

(
i

κ
Pg2 · x

)
ξε1

≡ exp

(
i

κ
Pg1g2 · x

)
ξε12 = eg1g2,ε12 (x), (19)

where explicitly [14]

�Pg1g2 = ε2

√
1 − (κ|�Pg2 |)2 �Pg1 + ε1

√
1 − (κ|�Pg1 |)2 �Pg2 + κ �Pg1 ∧ �Pg2 (20)

ε12 = sign(ε1ε2

√
1 − (κ|�Pg1 |)2

√
1 − (κ|�Pg2 |)2 − κ �Pg1 · �Pg2 ). (21)

The �-product between two arbitrary functions �1,2 = F (φ1,2) is defined to be dual to the
convolution product ◦ for functions on the group, and then implicitly defined by the formula

�1 � �2 = F (F−1(�1) ◦ F−1(�2)), (22)

which can in turn be expressed as a nonlocal integral as [14]

(�1 � �2) (x) =
∑
ε1,ε2

∫
R3

dy dz Kε1ε2 (x, y, z) �y,z �1ε1 (y)�2ε2 (z), (23)

with

Kε1ε2 (x, y, z) =
∫

SU(2)

dg1 dg2 ei(P(g1 )·y+P(g2 )·z+P(g1g2)·x)ξε12 .

Another useful property, following from the above definition, is that∫
dx (�1 � �2) (x) =

∫
dx (�1+ξ+ � �2+ξ+ + �1−ξ− � �2−ξ−) (x) =

∫
dg (�1�2) (g).

(24)

More details on this �-product for generic functions can be found in [14]. One main feature
of this definition of Fourier transform on SU(2) is that it is covariant under the standard
linear action of DSU(2), the Drinfeld double, a quantum group deformation of the 3D
Euclidean Poincaré group. In particular, this allows a good definition of (non-commutative)
translation in the su(2) algebra for C(R3), a feature that we exploit in the following. This is
the main advantage of this particular definition, with respect to other proposals in the literature

8
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[15, 16], besides the role it plays in the applications to spin foam models and group field
theories [18–20]. While the split into subregions of SU(2), and thus the use of a multiplet
structure for the target functions, is quite natural from the topological point of view, one may
still want, instead of such multiplets, a unique function on R

3 as a target. This is what, for
example, the definition of [16] achieves.

In any case, using this definition of Fourier transform, the split of the SU(2) manifold
into subspaces is needed in order to define, via the above procedure, an invertible Fourier
map, at the cost of complicating slightly the notation (with polarization vectors, characteristic
functions, etc). Therefore, in the following we will make use of it whenever calculations are
performed and reported in the non-commutative Fourier space. For standard manipulations of
functions on SU(2), instead, we will stick to the usual, simpler notation.

4. A modified construction of coherent states on SU(2)

We now proceed, using also the flux (Lie algebra) representation introduced above, to give
a modified definition of coherent states peaked on an arbitrary point of the phase space
T ∗SU(2) 	 su(2) × SU(2). The starting point is a Gaussian state on SU(2) that is peaked at
the origin (p0, h0) = (0, e).

One good choice is, as for the Hall state, the heat kernel on SU(2), that we already
introduced, decomposed in representations as

ψ t (h) =
∑

j

d je
−tCj/2χ j(h).

Its Gaussian form in group space is made apparent by its expression in coordinates on SU(2):

ψ t (h) = −1

(4πt)
3
2

∞∑
n=−∞

(
θ (h) + 4πn

2 sin( θ(h)

2 )
exp

[
− 1

2t

(
θ (h) + 4πn

)2 − t

8

])
, (25)

where the sum is over geodesics over the group manifold, connecting the relevant point to the
‘north pole’ (group identity), and is required to ensure the correct periodicity [21].

Using the noncommutative Fourier transform introduced in the previous section, one can
make apparent also its Gaussian form in Lie algebra (flux) space. To show this, let us use the
mentioned split of the SU(2) manifold into upper and lower hemispheres (each isomorphic to
the SO(3) group manifold: ψ t = ψ t

+ξ+ + ψ t
−ξ−). The restriction ψ t

±(h) of the heat kernel
to each such hemisphere gives then the heat kernel on SO(3), also obtained from the one on
SU(2) as ψ t

+(θ ) = ψ t (θ ) + ψ t (2π − θ ) [21]. The Fourier transform of this function is then
computed as

F[ψt](x) =
∑

ε

F[ψt,ε](x)ξε =
∑

ε

∫
SU(2)

dgψ t
ε (g) e

i
κ

Pg·xξε. (26)

A simple calculation (see [15]7) shows that the resulting function on the algebra is

F[ψt,ε](x) = e
− t

4κ2 x�2

� = e
− t

4κ2 x�x
� , (27)

where the non-commutative exponential is defined (see also [22]) by power series expansion
into �-products of the coordinate functions, and the dependence on t and κ suggests to identify
the two (possibly up to constants), as we will in fact motivate further in the following. We
see, therefore, that the heat kernel on the group is indeed the obvious Gaussian in Lie algebra
space, centered again on the phase space point (x0, h0) = (0, e).

7 In the same paper, it is also shown that the same result is obtained by solving directly the Lie algebra expression
for the heat kernel equation, which one can also see as the definition of a Gaussian function on Lie algebra space.

9
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Another possible Gaussian, defined in [15], that would lead to a different definition of
coherent states, and that should be kept in mind for an alternative concrete implementation of
our construction, is given by

gt
I
(h) := exp

(
2

t
χ(h)

)
. (28)

Having defined a suitable Gaussian state centered at the origin of the classical phase space,
the task becomes that of defining from it a new state centered around an arbitrary phase space
point. In order to center it around an arbitrary value of the classical holonomy, one can use the
translation on the group manifold, as in the standard LQG definition of coherent states, and as
is suggested by the very definition of the classical phase space (see also [22]).

One gets then again to the state

ψ t
h0

(h) = ψ t
(
hh−1

0

) =
∑

j

d j e−tCj/2χ j
(
hh−1

0

)
. (29)

The expression of the same state in Fourier space further elucidates the relation between the
translations on the group manifold and the plane waves:

ψ̃ t
h0

(x) =
∑

ε

ψ̃ t
h0,ε

(x)ξε =
∑

ε

F
[
ψ t

h0
Iε

]
(x)ξε =

∑
ε

∫
dh

(
ψ t (·h−1

0 )Iε (·)ξε(·)
)
(h) e

i
κ

P(h)·x

=
∑

ε

∫
dh

(
ψ t (·h−1

0 )Iε (·)ξε(·)
)
(hh0) e

i
κ

P(hh0 )·x

=
∑

ε

∫
dhψ t (h)Iε (hh0)ξε(hh0) e

i
κ

P(hh0 )·x

=
∑

ε

∫
dhψ t (h)Iε (hh0) e

i
κ

P(h)·xξε(h) � e
i
κ

P(h0 )·xξε(h0) =
∑

ε

(
ψ t � eκ

h0,ε0

)
ε
(x)ξε

= (
ψ t � eκ

h0

)
(x) = ψ t (x) � e

i
κ

P(h0 )·x. (30)

Indeed, it is given by the �-multiplication of the state centered at (0, e), which we have seen
to be the natural Gaussian state at the origin, by the plane wave (phase) corresponding to the
argument (conjugate variable) h0.

Apart from its re-expression in non-commutative flux variables, if one chooses the heat
kernel on the group manifold as an initial Gaussian, the above state is the usual (complexifier)
coherent state used in LQG [3, 7], for zero flux. The next task is to shift the location of the peak
of the coherent state from the origin of the Lie algebra (flux) coordinates to a generic flux. As
we have discussed, this step is achieved in the usual construction by analytic continuation of
the peak group element h0 from SU(2) to SL(2, C).

The alternative we propose is the one that is naturally suggested by the non-commutative
flux representation itself and amounts to performing a simple translation in Lie algebra space.
This is achieved by multiplying the original state, expressed in group variables, by a plane
wave with the Lie algebra argument −x0, if x0 is the value on the algebra where we want our
new state to be peaked.

Denoting ψ t
(h0,x0)(h) := ψ t

h0
(h)eh(−x0) and going to Fourier space, one has

F (ψ t
(h0,x0 ))(x) =

∑
ε

∫
dh eh(x)eh(−x0)

(
ψ t

h0
Iε

)
(h)ξε

=
∑

ε

∫
dh eh(x − x0)ψ

t
h0

(h)Iε (h)ξε = F
(
ψ t

h0

)
(x − x0). (31)

10
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The same state can be written, with a certain suggestive abuse of notation, as

F (ψ t
(h0,x0 ))(x) ∝ e

− t
4κ2 (x−x0 )2

∗ � e
i
κ

P(h0 )·x (32)

indicating once more its natural construction as a coherent state on phase space (as it is
obvious, we have dropped, in the above formula, a factor function of h0, x0 and κ , to highlight
the dependence on x only).

We have thus shown that our general procedure produces at least one very reasonable
candidate for a coherent state on a single edge of the group, very closely related to, but still
different from, the standard complexifier coherent state of Thiemann and collaborators. We
will now analyze the general properties of the coherent states so constructed. Some of them
would follow quite generically from the construction itself, and will not depend on specific
examples. Others would instead rely on specific choices. When a specific choice has to be
made to carry out the calculation, we will choose the one illustrated in detail above.

4.1. Expectation values

Let us now compute the expectation value of the flux operator on this state. Note that we use
dimensionless operators. The action of the flux operator on group space is given by

Êi � f (g) = itRi � f (g) = it
d

ds
f (eisσ i

g)

∣∣∣∣
s=0

. (33)

t comes from the commutator

[Êi, ĥ] = itRi � ĥ. (34)

On Fourier space this action is given by

F (Êi � f )(x) = F
(∑

ε

(Êi � f )ε

)
(x) ξε = it

∑
ε

∫
dg

d

ds
f (eisσ i

g) Iε (g) eg(x) ξε(g)

∣∣∣∣
s=0

= it
∑

ε

d

ds

∫
dgIε (e

−isσ i
g) ee−isσ i g(x)ξ

ε(e−isσ i g)
f (g)

∣∣∣∣
s=0

= it
∑

ε

∫
dg Iε (e

−isσ i
g)

d

ds
ee−isσ i g(x)ξ

ε(e−isσ i g)

∣∣∣∣
s=0

f (g)

= it
∑

ε

∫
dg Iε (e

−isσ i
g)

d

ds
ee−isσ i (x) ξ

ε(e−isσ i
)

∣∣∣∣
s=0

� eg(x) ξε(g) f (g)

= i
t

κ

∑
ε

∫
dg Iε (g) (−ixi) � eg(x) f (g)ξε(g)

= t

κ

∑
ε

xi � F ( fε )(x) ξε = t

κ
xi � F ( f )(x), (35)

which justifies the choice κ = t, which we make from now on.
The expectation value is then computed on Fourier space8:〈

ψ t
(h0,y0 )

∣∣Êi
∣∣ψ t

(h0,y0)

〉 =
∫

dxF
(
ψ t

(h0,y0 )

)
(x) � xi � F

(
ψ t

(h0,y0)

)
(x)

=
∫

dxF
(
ψ t

h0

)
(x − y0) � xi � F

(
ψ t

h0

)
(x − y0)

8 Recall that F ( f )(x) is always intended to be defined as F ( f )(x) = ∑
ε F ( fε )(x)ξε , and that the integral of the

�-product of two functions is a sum over the integrals of the product of their positive and negative components, with
no mixed terms, as shown in the previous section.
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=
∫

dxF
(
ψ t

h0

)
(x) � (x + y0)

i � F
(
ψ t

h0

)
(x)

= yi
0||ψ t

h0
||2 +

∫
dxF

(
ψ t

h0

)
(x) � xi � F

(
ψ t

h0

)
(x)

= yi
0

∥∥ψ t
h0

∥∥2 + 〈
ψ t

h0

∣∣Êi
∣∣ψ t

h0

〉
. (36)

Remarking that ||ψ t
h0

||2 = ||ψ t
(h0,y0)||2, we see that the condition for the expectation value

being equal to the classical value y0 is that it is zero for the original Gaussian. Let us see what
properties of the Gaussian ensure that this condition is satisfied. From the already assumed
property ψ t

h0
(h) = ψ t

I
(hh−1

0 ), it follows that, since the action of Êi is right invariant, it
commutes with right translation on the group and the condition on the expectation value can
be asked for the state peaked on the identity〈

ψ t
(h0,0)

∣∣Êi
∣∣ψ t

(h0,0)

〉 =
∫

dh ψ t
(e,0)

(
hh−1

0

)
Êiψ t

(e,0)

(
hh−1

0

)
=

∫
dh ψ t

(e,0)
(h)Êiψ t

(e,0)(h) = 〈
ψ t

(e,0)

∣∣Êi
∣∣ψ t

(e,0)

〉
. (37)

Finally, assuming that this state is a class function, which implies that it is a function on the
characters on the group, finally implies that the expectation value of Êi is zero.

Those conditions are met, for example, by the heat kernel used to define the Hall states,
as well as by the alternative Gaussian state mentioned in the previous section. Once more, we
will keep the discussion as general as possible, assuming the conditions described above, and
restrict to a specific Gaussian only when necessary.

As a welcome result, these states are then peaked exactly on the classical value of the flux
that is used to define the state itself.

The next task is to compute the expectation value, in our coherent states, of the conjugate
operator to the flux. As stated, this is an ill-posed question, because there is no operator
defined in the kinematical Hilbert space of LQG, whose commutation relations with the flux
are exactly canonical. The natural conjugate operators are however the holonomies of the
Ashtekar connection along the same link of the graph, whose commutator with the flux is
proportional to the holonomy itself. Still, the question remains to be better defined, as one has
to choose a specific function on the group to represent the holonomy at the quantum level. Any
such function will act by multiplication in the connection representation and by (generalized)
translation in the flux representation [23]. The usual choice is to consider characters of the
group element representing the holonomy, in the fundamental representation. Here we make
a different choice and consider instead coordinate functions on the group manifold as the
appropriate operators to be used to represent holonomies at the quantum level. We need first
to choose a good coordinate system for the group manifold. A natural one is given by equation
(10). As we have already pointed out, since those coordinates are related to SO(3) and will be
insensitive to the fact that the configuration space is indeed SU(2), it will be more convenient
to use instead the Ps defined as

Pi(h) = − i

2
tr(hσ i) = sin θ ni, (38)

with the label of the corresponding hemisphere being controlled by

P0(h) = cos θ. (39)

In this way, all the integrations can be straightforwardly performed on SU(2).
For the following calculations, it is useful to remind the composition formula for the

coordinates

Pi
hh0

= cos θ0Pi
h + cos θPi

h0
− εi jkP j

h Pk
h0

. (40)

12
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Let us then compute 〈P̂i
h〉 for a normalized state:〈

ψ t
(h0,y0 )

∣∣P̂i
h

∣∣ψ t
(h0,y0 )

〉 =
∫

dh ψ t
(h0,y0 )

(h)Pi
hψ

t
(h0,y0 )(h)

=
∫

dh ψ t
h0

(h)Pi
hψ

t
h0

(h) =
∫

dh ψ t
I
(h)Pi

(hh0 )ψ
t
I
(h)

=
∫

dh |ψ t
I
(h)|2Pi

(hh0 ) =
∫

dh |ψ t
I
(h)|2(Ph ⊕ Ph0 )

i

=
∫

dh |ψ t
I
(h)|2 (

cos(θ )Ph0 + cos θ0Ph − Ph ∧ Ph0

)i

=
(∫

dh |ψ t
I
(h)|2 cos θ

)
Pi

h0
. (41)

Here we use the fact that, due to the symmetry properties9 of the heat kernel (and as an explicit
integration can easily show),∫

dh
∣∣ψ t

I
(h)

∣∣2
Pi

h = 0. (42)

The net result is that〈
Pi

h

〉 = a(t)Pi
h0

, −1 < a(t) = 〈cos(θ )〉 = 〈
P0

h

〉
< 1, (43)

as follows from the analyticity properties of the heat kernel (we will describe the behavior of
a(t) when dealing with the fluctuations).

Therefore, the expectation value cannot be exactly equal to the classical value unless
h0 = I, even though one can make it arbitrarily close to it, by making the semiclassical
parameter t small enough. To correct this behavior, in particular, the fact that the expectation
value in the state ψ t

h0
depends on the parameter t, one needs to use different coordinates on

the group.
It is instructive to see how generic this result is. In evaluating the expectation value of

a certain function of the holonomy, O(h), that we assume to be regular enough to admit a
Peter–Weyl decomposition in representations

O(h) =
∑

j

d j(Oj)
a
b(D

j(h))b
a, (44)

the result is, straightforwardly,

〈O(h)〉h0 =
∑

j

d j(Oj)
a
b

∫
dh |ψ t

I
(h)|2(Dj(hh0))

b
a =

∑
j

d j(Oj)
a
b(T

j)b
c(D

j(h0))
c
a,

(T j)b
a =

∫
dh |ψ t

I
(h)|2(Dj(h))b

a. (45)

Now, if the Gaussian chosen to build the state is a class function (and hence more general than
the heat kernel), this integral is left invariant by the adjoint action of the group SU(2):

(T̃ j)c
d = (D†

j (g))c
b(T

j)b
a(Dj(g))a

d =
∫

dh |ψ t
I
(h)|2(Dj(g†hg))c

d = (T j)c
d, (46)

9 The result can be obtained observing that, the heat kernel being a class function, the expectation value

vi =
∫

dh |ψ(h)|2Pi(h) =
∫

dh |ψ(g−1hg)|2Pi(h) =
∫

dh′ |ψ(h′)|2Pi(ghg−1) = Ri
j(g)v j

is an invariant vector under the adjoint action of the group (that is, due to definition (38), SO(3) rotations), and hence
it must be the null vector.

13



J. Phys. A: Math. Theor. 45 (2012) 244004 Review

which implies that

(T j)a
b = I j(t)δ

a
b, I j(t) = 1

d j

∫
dh |ψ t

I
(h)|2χ j(h) = 1

d j
〈χ j(h)〉. (47)

Therefore, the expectation value reads

〈O(h)〉h0 =
∑

j

d jI j(t)(Oj)
a
b(D

j(h0))
b
a = Õt (h0), (48)

which states that the expectation value is a function of the position of the peak in the SU(2)

configuration space, but that it is a different function, which, in addition, depends on t. This
should not come as a surprise. Indeed, for the particular Gaussians given by the heat kernel
coherent state [7], it has been shown that the state is an eigenstate of an annihilation operator

Â = exp

(
+ t

2
�

)
h exp

(
− t

2
�

)
, (49)

which is a nonpolynomial function of the holonomies and fluxes. Therefore, there is no
guarantee that the expectation values of holonomy operators match the value of the operator
evaluated on the peak, a result that holds only for polynomial functions of the creation and
annihilation operators.

However, it might be possible to introduce operators (functions of the holonomy) whose
expectation values are given by the corresponding classical phase space function the SU (2)

element specifying the peak. To show this, it is convenient to consider functions of the
coordinates Pi

h that we have introduced before. We will try to find operators such that

〈ϕi(h)〉h0 ≈ ϕi(h0) + O
(
P2

h0

)
, |Ph0 | � 1, (50)

which is the kinematical regime in which the holonomies are close to the identity matrix.
Physically, this regime might correspond to a low-curvature region (or to a very fine grained
decomposition of a generically curved space).

We start from an ansatz

ϕi(Ph) = f
(
P2

h

)
Pi

h. (51)

The form is completely dictated by the tensorial structure: we do not have enough vectors to
construct anything else.

Under composition,

Ph → cos(θ0)Ph + cos θPh0 − (
Ph ∧ Ph0

)
. (52)

Now, working at first order in θ0,

Ph → Ph + cos θPh0 − (
Ph ∧ Ph0

)
, (53)

whence∫
dh

∣∣ψ t
h0

(h)
∣∣2

f
(
P2

h

)
Pi

h ≈
∫

dh |ψ t
I
(h)|2 (

f
(
P2

h

)
Pi

h + f
(
P2

h

)[
cos θPi

h0
− (Ph ∧ Ph0 ))

i
]

+ 2 f ′(P2
h

)
Pi

hP j
h [cos θPj

h0
− (Ph ∧ Ph0 )

j]
)

. (54)

Expanding the products, the first and third terms average to zero, the second gives a contribution
proportional to Ph0 , as the fourth, though the tensorial structure is a bit less trivial. The fifth
term is obviously identically zero. Define the following integrals:∫

dh |ψ t
I
(h)|2 f

(
P2

h

)
cos θ = J1(t) (55)

2
∫

dh |ψ t
I
(h)|2 f ′(P2

h

)
Pi

hP j
h cos θ = J2(t)δ

i j (56)
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J2 = 2

3

∫
dh |ψ t

I
(h)|2 f ′(P2

h

)
P2

h cos θ. (57)

These are the only integrals contributing to the result, at this order in the expansion in θ0 ≈ |Ph0 |.
At first order in θ0, we obtain∫

dh |ψ t
h0

(h)|2 f
(
P2

h

)
Pi

h ≈ 0 + (J1(t) + J2(t))P
i
h0

(58)

and we want it to be equal to

f
(
P2

h0

)
Ph0 ≈ f (0)Ph0 (59)

at this order, and with f (0) independent of t. This implies, as a first condition, that

d

dt
(J1(t) + J2(t)) = 0, (60)

which is a complicated integro-differential equation for f . While giving a necessary and
sufficient condition for f to be a solution of this equation clearly stands beyond the scope of
this paper, we can provide a sufficient condition of the form

f (x) + 2

3
x f ′(x) = λ√

1 − x
, (61)

which comes from the requirement that the integrand of J1 + J2 is just the modulus square of
the (normalized!) Gaussian, up to an arbitrary constant, λ (independent of t). The only solution
to this differential equation regular at x = 0 is

f (x) = 3λ

(
arcsin(

√
x) − √

x(1 − x)

2x3/2

)
. (62)

Taylor-expanding around the origin, we obtain

f (x) ≈ λ
(
1 + 3

10 x + O(x2)
)
, f (0) = λ. (63)

A function like this10 satisfies, at small angles, the requirement

〈ϕi(h)〉h0 = ϕi(h0) (64)

by construction.
In fact, these operators are much more interesting. Indeed, when we look for the

commutation with the fluxes, we can fix λ such that

[Ri, ϕ j(Ph)] = Ri � ϕ j(Ph) = δi j + O(|Ph|2), (65)

where Ri is the right-invariant vector field on the group.
Expanding (65), we obtain

Ri � ϕ j(ξh) = 1

2i

d

ds
ϕ j(tr(�σeisσ i

h))|s=0 = 1

2i
∂kϕ

j(h)tr(σ kiσ ih)

= ∂kϕ
j(δki cos θ − εki

lP
l
h). (66)

Using ansatz (51) with result (62), the commutation relation with the fluxes is

[Ri, ϕ j(h)] = (
f
(
P2

h

)
δ

j
k + 2 f ′(P2

h

)
Pj

h Pk
h

) (
δik cos θ − εki

jP
l
h

) ≈ λδi j + O
(
P2

h

)
. (67)

Consequently, by asking that the holonomies are close to the identity, we put ourselves
in the regime where the coordinates ϕi are the canonically conjugated variables to the fluxes
(choosing λ = 1).

10 In fact, a one-parameter family of functions controlled by λ.
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It is interesting then to look at the behavior of the expectation value of this commutator.
The calculation is straightforward but tedious. We report only the result

〈[Ri, ϕ j(h)]〉h0 ≈ (J1(t) + J2(t))δ
i j + ε

i j
l f

(
P2

h0

)
Pl

h0
, (68)

where we recognize the integrals J1(t) and J2(t) which we have already introduced.
Remembering that we have designed the function f (x) in such a way that

J1(t) + J2(t) = f (0) = λ = 1, (69)

and that the flux is related to the right-invariant vector field by

Êi = itRi, (70)

we conclude that, for small t, θ0

〈[Êi, ϕ j(h)]〉h0 ≈ it
(
δi j + ε

i j
l f

(
P2

h0

)
Pl

h0

) + O
(
θ2

0

)
. (71)

Furthermore, they have the correct expectation values and hence they really represent
a serious definition for (approximate) canonically conjugated variables to the fluxes (even
though only in the regime where the holonomies are close to the identity). As we have already
said, this is not extendible to a statement over the entire phase space and holds only in certain
special circumstances which, nonetheless, are physically relevant.

4.2. Fluctuations

Let us now look at the fluctuations. We recall that the fluctuations of both flux and
holonomy operators are nicely saturating the uncertainty relations for the Hall states. We
start with the fluctuation for the momentum variables. It is enough to compute the fluctuation
�E := ∑

i〈(Êi)2 − 〈Êi〉2〉 = 〈Ê2〉 − 〈Ê〉2. Again working in Fourier space, and under the
same assumptions used to compute the expectation value of the flux operator, we have (the
�-products are all with respect to the variable x)

〈Ê2〉 = 〈
ψ t

(h0,y0 )

∣∣Ê2
∣∣ψ t

(h0,y0 )

〉 =
∫

dxF (ψ t
(h0,y0)

)(x) � x2 � F (ψ t
(h0,y0 ))(x)

=
∫

dxF
(
ψ t

h0

)
(x − y0) � x2 � F

(
ψ t

h0

)
(x − y0)

=
∫

dxF
(
ψ t

h0

)
(x) � (x + y0)

2 � F
(
ψ t

h0

)
(x)

= y2
0||ψ t

h0
||2 + 2yi

0

〈
ψ t

h0

∣∣Êi
∣∣ψ t

h0

〉 + 〈
ψ t

h0

∣∣Ê2
∣∣ψ t

h0

〉
= y2

0 + 〈
ψ t

h0

∣∣Ê2
∣∣ψ t

h0

〉
, (72)

which implies

�E = 〈
ψ t

h0

∣∣Ê2
∣∣ψ t

h0

〉 = 〈
ψ t

I

∣∣Ê2
∣∣ψ t

I

〉
, (73)

the same as was found for the state peaked on the identity. We know already [3, 7], then, that
the choice of ψ t

h0
as the heat kernel state leads to fluctuations of order t, for t small.

To compute the fluctuations for the holonomy, we need to compute the diagonal matrix
element

mi j = 〈
ψ t

(h0,y0)

∣∣Pi
hP j

h

∣∣ψ t
(h0,y0 )

〉 =
∫

dh
∣∣ψ t

h0
(h)

∣∣2
Pi

hP j
h =

∫
dh

∣∣ψ t
I
(h)

∣∣2
Pi

hh0
Pj

hh0
. (74)

Define the following integrals (remember that we are working with normalized states):

I1(t) :=
∫

dh
∣∣ψ t

I

∣∣2
cos θ = a(t) (75)
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Figure 1. Left panel: I1(t). Right panel: I2(t), with the asymptotic value 1/4 highlighted.

I2(t) :=
∫

dh
∣∣ψ t

I

∣∣2
cos2 θ (76)

I3(t) :=
∫

dh
∣∣ψ t

I

∣∣2(
Pz

h

)2
. (77)

Remembering that

cos2 θ = 1 − P2
h , (78)

we find an obvious relation between I2 and I3:

I2 = 1 − 3I3. (79)

These integrals are easily estimated. First of all, from analytic considerations,

−1 < a(t) < 1, 0 < I2(t) < 1, (80)

and

lim
t→0

I1(t) = 1, lim
t→0

I2(t) = 1, (81)

since for t → 0 the heat kernel reduces to a Dirac delta, while

lim
t→∞ I1(t) = 0, lim

t→∞ I2(t) = 1
4 , (82)

since for large times the heat kernel reduces to a constant function on SU (2). A numerical
integration (see figure 1) shows that the functions I1(t) and I2(t) are monotonically decreasing
as t increases, the decrease being essentially exponential and the behavior near t = 0 being
well approximated by a linear function

Ia(t) ≈ 1 − μat, μa = O(1), a = 1, 2. (83)

The desired correlators can be written in terms of these integrals. It is easy to see that, for
rotational invariance (but it can be checked with a direct computation),∫

dh
∣∣ψ t

I

∣∣2
Pi

hP j
h = I3(t)δ

i j. (84)

After straightforward manipulations, we obtain

mi j = (I2 − I3)P
i
h0

Pj
h0

+ I3δ
i j = 4I2 − 1

3
Pi

h0
Pj

h0
+ (1 − I2)

3
δi j. (85)

Given that〈
ψ t

(h0,y0 )

∣∣Pi
h

∣∣ψ t
(h0,y0 )

〉 = I1(t)P
i
h0

, (86)
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we see that the correlations are

〈Pi
hP j

h 〉 − 〈Pi
h〉〈Pj

h 〉 =
(

4I2 − 1

3
− I2

1

)
Pi

h0
Pj

h0
+ (1 − I2)

3
δi j. (87)

The dependence on t is hidden in the integrals I1, I2, I3. However, we can say that, for h0 close
to the identity, or, equivalently, θ0 � 1, the correlation can be well approximated by

〈Pi
hP j

h 〉 − 〈Pi
h〉〈Pj

h 〉 ≈ (1 − I2)

3
δi j + O

(
θ2

0

)
. (88)

This approximation is valid for any value of t. However, if we use the behavior of the function
near t = 0,

〈Pi
hP j

h 〉 − 〈Pi
h〉〈Pj

h 〉 ≈ μ2

3
tδi j + O

(
θ2

0

) + O(t2), (89)

matching the fact that, for small t, the state is well peaked around the mean value.
We might also compute the fluctuations for the coordinates introduced in the previous

subsection. We will have to deal with the following integral:

Mi j =
∫

dh |ψ t
I
(hh0)|ϕi(Ph)ϕ

j(Ph) =
∫

dh |ψ t
I
(hh0)| f 2(Ph)P

i
hP j

h . (90)

Expanding again for small θ0, we obtain

Mi j ≈
∫

dh |ψ t
I
(h)| f 2(Ph)P

i
hP j

h +
∫

dh |ψ t
I
(h)| f 2(Ph)

(
Pi

hδPj
h + Pj

hδPi
h

)
+ 4

∫
dh |ψ t

I
(h)| f (Ph) f ′(Ph)P

i
hP j

h Pk
hδPk

h . (91)

Let us consider the term

Pi
hδPj

h = Pi
h

(
cos θPj

h0
− ε jrsP

r
hPs

h0

)
. (92)

The first term averages to zero, under integration, while the second gives rise to a contribution
of the form H(t)δirε jrsPs

h0
. However, this term cancels with the one coming from the evaluation

of the integral with Pj
hδPi

h.
Finally, the last term involves

Pi
hP j

h Pk
hδPk

h = Pi
hP j

h Pk
h

(
cos θPk

h0
− εkrsP

r
hPs

h0

)
. (93)

Both of them give zero contribution, for symmetry arguments. Therefore, the fluctuation is
entirely determined by the first integral∫

dh |ψ t
I
(h)| f 2(Ph)P

i
hP j

h = J(t)δi j, J(t) = 1

3

∫
dh |ψ t

I
(h)| f 2(Ph)P

2
h . (94)

Of course, given that we are truncating at the linear order in θ0, this is the only contribution to
the fluctuation in the new variables ϕ(Ph). Again, note that, for small t, this is of order t.

This integral is clearly different from I1, I2, I3 introduced previously (see figure 2 for
the plot of a numerical estimate). However, for small values of t, the difference disappears:
for small t, the Gaussians tend to the common behavior of a Dirac delta, and hence only
the domain of integration near the identity gives a significant contribution. In this domain,
the difference between the coordinate Ph and the operators ϕ(Ph) tends to zero (of course, if
λ = 1), and J(t) → I3(t). Given that, in this regime, the fluctuation of the new coherent states
is identical to those of the Hall states, we can say that the fluctuations will be minimal as well.

These results collected so far tell us that, for states peaked on holonomies close to the
identity (physically relevant situation for low-curvature geometries), the statistical properties
are essentially determined by the statistical properties of the coherent states constructed with
the heat kernel, and hence show that the coherent states introduced here are indeed another
(related) class of states that can be of interest for the investigation of the semiclassical limit of
LQG.
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Figure 2. Plot of J(t).

4.3. Resolution of the identity

We now want to show that the coherent states we have constructed define an (over)complete
basis for the space L2(G, dμ(g)), and thus give a resolution of the identity.

That is, we would like to ask the following condition:∫
SU(2)×R3

μ(h0, y0) ψ t
(h0,y0 )

(h) �y0 ψ t
(h0,y0 )(h̃) = |ψ t

I
|2δ(h, h̃), (95)

for a certain measure on the classical phase space to be defined.
Recalling that

ψ t
(h0,y0 )(h) =

∑
ε

ψ t
(h0,0)(h)eh(y0)Iε (h)ξε(h)

and expanding the expression on the lhs of (95), we have (we neglect the characteristic
functions from the expression for better simplicity of notation)∫

SU(2)×R3
μ(h0, y0) ψ t

(h0,y0 )
(h) �y0 ψ t

(h0,y0)(h̃)

=
∫

μ(h0, y0) eh(−y0)ξε(h) �y0 eh̃(−y0)ξε(h̃)
ψ t

(h0,0)
(h)ψ t

(h0,0)(h̃)

=
∫

μ(h0, y0)eh−1h̃(y0)ξε(h−1h̃)
ψ t

(e,0)
(hh−1

0 )ψ t
(e,0)

(
h̃h−1

0

)
, (96)

where we have assumed once more that ψ t
(h0,0)(h) = ψ t

(e,0)(hh−1
0 ).

We now make, for the measure on phase space, the natural assumption μ(h0, y0) =
dh0 dy0, with the standard Haar and Lebesgue measures on SU(2) and R

3, respectively.
This gives the desired result∫

SU(2)×R3
μ(h0, y0) ψ t

(h0,y0 )
(h) �y0 ψ t

(h0,y0)(h̃)

=
∫

μ(h0, y0)eh−1h̃(y0)ξε(h−1h̃)
ψ t

(e,0)
(hh−1

0 )ψ t
(e,0)

(
h̃h−1

0

)
=

∫
SU(2)

dh0 δ(h−1h̃)ψ t
(e,0)

(
hh−1

0

)
ψ t

(e,0)

(
hh−1

0

) = δ(h−1h̃)
∣∣ψ t

(e,0)

∣∣2
. (97)

Note that this result, with the given measure on phase space, holds for any choice of Gaussian
and is a direct consequence of the choice of Fourier transform defining the coherent states.
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It is interesting to compare this result with the corresponding analysis of the resolution
of the identity for the Hall states. There, in the case of states on SU(2) analytically continued
to SL(2, C), the measure on the Lie algebra su(2) is not simply the Lebesgue measure on R

3

as in this case, but has to be supplemented by an additional factor (see especially the second
paper in [7], equation (4.82)),

2
√

2e−t/4

(2πt)3/2

sinh ||y||
||y|| exp

(
−y2

2

)
, (98)

so that the overcompleteness relation can be recovered. The crucial difference between these
two cases is that, while in the case of Hall states all the functions involved are seen as ordinary
functions on R

3 (isomorphic to the Lie algebra as vector space), the coherent states that we
propose here are noncommutative functions on the Lie algebra.

Incidentally, the integration on the algebra of the star product of two functions can be seen
as the ordinary integration on R

3, provided that the (nonlocal) differential operator
√

1 + ∇2

is inserted, ∫
d3x f (x) � g(x) =

∫
d3x f (x)

√
1 + ∇2g(x). (99)

All these observations also imply that, when seen as ordinary functions on R
3, our

coherent states are very different, especially in their asymptotic behavior, with respect to the
(analytically continued) Hall states, also used in LQG11.

4.4. Overlap

Another important property12 needed for the characterization of the coherent states is the
behavior of the overlap between two states peaked on different phase space points. For this,
we need to consider whether they satisfy

|〈ψ t
(x1,h1 )|ψ t

(x2,h2 )〉|2
||ψ t

(x1,h1 )
||2||ψ t

(x2,h2 )
||2 ≈

{
1 (x1, h1) ≈ (x2, h2),

0 (x1, h1) �= (x2, h2),
(100)

i.e. that, while two coherent states might have a large overlap when the peaks are sufficiently
close, their scalar product becomes smaller and smaller (and, ideally, goes to zero) as the
distance between the peaks increases.

Before proving the statement, let us remark that the reasoning will hold for any choice of
x1, x2 and, consequently, of �x = x2 − x1.

As said, we need to understand the behavior of∣∣ ∫ dh ψ t
(x1,h1 )

(h)ψ t
(x2,h2 )(h)

∣∣2( ∫
dh |ψ t

(x1,h1 )
(h)|2)( ∫

dh |ψ t
(x2,h2 )

(h)|2) . (101)

It turns out that, if we construct our states with Hall coherent states on the group, the
denominator of this expression is a constant independent from (x1, h1) and (x2, h2). For
instance, in considering the norm of the first state, the multiplication of the plane wave with
its complex conjugate leads to an expression independent from the Lie algebra element x1,∫

dh |ψ t
(x1,h1 )(h)|2 =

∫
dh

(
ψ t

I

(
hh−1

1

))2
, (102)

11 We would like to thank J P Gazeau and an anonymous referee for pointing this out to us.
12 We would like to thank an anonymous referee for this point.

20



J. Phys. A: Math. Theor. 45 (2012) 244004 Review

which, in turn (using the fact that the heat kernel is a class function and that it has good
behavior under convolution) leads to∫

dh
(
ψ t

I

(
hh−1

1

))2 =
∫

dh ψ t
I

(
hh−1

1

)
ψ t

I
(h1h−1) = ψ2t

I
(I). (103)

Consequently, we will need just to address the behavior of the numerator of the overlap.
Let us start by considering the case in which h1 and h2 are very different (with respect to

the scale set by t). In this case, we can use an estimate for the numerator of (100):∣∣∣∣
∫

dh eh(x1)ψ
t
I

(
hh−1

1

)
eh(x2)ψ

t
I

(
hh−1

2

)∣∣∣∣ � 2
∫

dh ψ t
I

(
hh−1

1

)
ψ t

I

(
hh−1

2

) = ψ2t
I

(
h1h−1

2

)
, (104)

where we have used the fact that the Gaussian that we use is the heat kernel on SU(2), its reality
and the convolution property. Therefore, if h1h−1

2 is sufficiently far away from the identity of
SU(2), with respect to the (angular) scale set by the parameter t, the decay of the heat kernel
ensures that the overlap goes to zero as we increase the angle θ12 (measuring the separation
on the sphere S3 of the two group elements h1 and h2).

The only nontrivial case, then, is when the two group elements h1 and h2 are similar. In
this case, we need to massage the integrals in a different way. First of all,∫

dh eh(x1)ψ
t
I

(
hh−1

1

)
eh(x2)ψ

t
I

(
hh−1

2

) =
∫

dh eh
(
�x

)
ψ t

I
(hh−1

1 )ψ t
I

(
hh−1

2

)
, (105)

where �x = x2 − x1. The fact that we now consideri the regime h1 ≈ h2 allows us to use the
estimate

ψ t
I
(hh−1

1 ) ≈ ψ t
I

(
hh−1

2

)
. (106)

Therefore, our integral becomes∫
dh eh

(
�x

)(
ψ t

I

(
hh−1

1

))2 =
∫

dh ehh1

(
�x

)
(ψ t

I
(h))2 (107)

after a change of variable of integration. Following the definition

ehh1

(
�x

) = exp(iPi(hh1)�xi), (108)

and remembering that

Pi(hh1) = Pi(h) cos θ1 + Pi(h1) cos(θ ) − εi jkPj(h)Pk(h1), (109)

we obtain

ehh1

(
�x

) = exp(iPi(hh1)�xi) = exp(iP(h1) · �x cos(θ )) exp(iv(�x, h1) · P(h)), (110)

where we have introduced the vector

vi(�x, h1) = (
cos θ1δi j + εi jkPk(h1)

)
�x j. (111)

Note that it is independent from the variable of integration. At this point, we can proceed with
the integration, by choosing Euler angles on S3 in such a way that the integral reduces to

I = 1

8π

∫
dθ dφ dψ sin2 θ sin φ exp(iP(h1) · �x cos(θ )) exp(i||v|| sin θ cos φ)F2

t (cos(θ )),

(112)

where we have used the fact that the heat kernel is a class function, ψ t
I
(h) = Ft (cos(θ )).

Performing the integration on the angles φ and ψ, one obtains

I = 2

π

1

||v||
∫

dθ sin θ exp(−iP(h1) · �x cos(θ )) sin(||v|| sin θ )Ft (cos(θ ))2. (113)
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The remaining integral can be bounded, in modulus, by a positive function f (t). Hence, for
our purposes, it is enough to examine the prefactor 1/||v||. From the general expression of the
vector v, it is clear that, if we assume that h1 = cos θ1I + iPi(h1)σi, with θ1 � 1,

|I| � f (t)

||�x|| + O(sin2 θ1), (114)

where we neglect corrections (also depending on �x) that would be anyway proportional to
sin2 θ1, and hence negligible provided that h1 is not too far away from the identity of SU(2).
Therefore, while this result does not hold for generic h1, h2 in SU(2), it is valid in the regime
in which we are interested, given that it is the only region in which holonomies and fluxes can
approximately be considered as a pair of canonical variables.

In conclusion, the overlap decreases with the inverse of the square of the separation ||�x||
of the position of the peaks in the Lie algebra. Combining this result with the previous one
and with the observation that, for the case in which the two peaks coincide, the overlap is
obviously 1, we get that the states that we present here are indeed characterized by an overlap
that generically decreases with the increase in the distance between the points in the classical
phase space associated with the peaks of the states themselves, at least in the regime in which
we are interested (small holonomies but generic fluxes).

Together with the right peakedness properties on phase space, the minimization of the
fluctuations of fundamental operators and the resolution of the identity, this last property
completes the minimal set of requirements we see fulfilled by our new coherent states based
on the flux representation of LQG.

5. Conclusion

We have proposed an alternative definition of coherent states on the cotangent bundle of
a compact group, in particular for the SU(2) case, T ∗SU(2), of direct interest for quantum
gravity. In fact, this work is a contribution to the ongoing, crucial efforts to develop appropriate
tools to study the continuum and semi-classical approximation of quantum gravity states
defined by (superpositions of) discrete structures labeled by pre-geometric, algebraic data.
While the idea behind this is more general, if the starting point is a specific choice of Gaussian
on the group manifold given by the heat kernel, it amounts to a simple modification of Hall’s
construction based on the analytic continuation of group coordinates to peak at generic phase
space points.

Using the non-commutative flux representation for the relevant Hilbert space, we propose
instead to use non-commutative translations on the Lie algebra to achieve the same result. For
the new type of coherent states, we have then shown several welcome properties, in particular,
sharp peakedness with respect to classical phase space points, at least in the very specific
regime of holonomies close to the identity. On this point, the improvement with respect to
standard Hall states is represented by expectation values that are exactly equal to the classical
values in the flux/Lie algebra variable, and that are close to them in a way that is independent
of the semi-classicality parameter in the holonomy/group variables (when specific coordinates
on the group are chosen).

Besides the improvement of the expectation values, the fluctuations of the operators
around their mean values also display very good properties. We have shown that, for t small,
�ϕ(Ph) ∼ t and that the relation with the heat kernel states ensures automatically that �E ∼ t,
a result that has been established for these special states. Putting these results together with
the evaluation of the expectation value (71) of the commutator between the fluxes and the
coordinates ϕ, we see that the states we have introduced have fluctuations whose behavior
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closely resembles that of ordinary coherent states (in particular, the simultaneous minimality
of these fluctuations), even with respect to the Heisenberg uncertainty relations

(�E�ϕ(P))1/2 ∼ t ∼ |〈[E, ϕ]〉|. (115)

In addition to these results concerning the statistical properties (mean values and fluctuations
of the basic operators), we add the proof that they define a resolution of the identity and
thus an overcomplete basis for the Hilbert space; we can conclude that the states that we
have introduced here are indeed compelling candidates to be used for the construction of
semiclassical states for LQG.

Indeed, in a LQG context, the states so-defined correspond to building blocks of generic
states associated with graphs, obtained by tensoring them according to the combinatorics
of the graph edges and imposing gauge invariance (Gauss constraint) on the vertices of the
graph. The definition of semi-classical states which moreover approximate continuum phase
space points involves then much more than the definition of semi-classical states associated,
say, with edges of such graphs, or even to complete graphs. It implies learning to deal with
superpositions of graphs or the coarse graining of the same, defining states which are semi-
classical with respect to collective observables, rather than ‘fundamental’ ones, to define a
precise correspondence between discrete and smooth manifolds, and between discrete pre-
geometric data and continuum phase space points, even at the classical level, and so on. Many
of these issues have been dealt with, to some extent, in the literature [3, 7, 8]. It is clear,
therefore, that our results constitute only a first step toward the stated goal, and a basis for the
next steps, that will be the subject of future work.
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