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We present an approximate solution to the minimally coupled Einstein–Dirac equations. We interpret
the solution as describing a massive fermion coexisting with its own gravitational field. The solution is
axisymmetric but is time dependent. The metric approaches that of a flat spacetime at the spatial infinity.
We have calculated a variety of conserved quantities in the system.

© 2011 Published by Elsevier B.V.
1. Introduction

Explicit solutions in General Relativity (coupled to matter) and
in supergravity theories play a significant role in the study of
quantum gravity. Several important progresses (for example, [1–
4]) have been achieved with the help of some concrete solutions.
Due to the weakness of the gravitational interaction, most of the
phenomenologically interesting solutions describe physics at the
astronomical scale, such as black holes, p-branes, black rings [5]
and so on.

From the theoretical point of view, however, it is also interest-
ing to look for exact solutions at the microscopic scale. Quantum
field theory (QFT) in flat spacetime tells us that if the zero-point
energy gravitates, then extreme fine tuning is needed to render
the cosmological constant to its currently observed value. There
have been a lot of effort towards solving the problem, but with-
out too much success [6]. The zero-point energy is a byproduct
of the quantization of fields in flat spacetime. When it comes to
curved spacetime, the situation is much more complicated (see,
e.g. [7]). As implied by the Unruh effect [2], even the notion of
particle is no longer fundamental, but depends on the observer. It
is our hope that an exact solution to gravity coupled to quantum
matter may help us better understand the nature of QFT in curved
spacetime, and offer some clue to the persisting problem of the
cosmological constant. When a spacetime is flat at the spatial in-
finity, the usual notion of particle is still useful for an observer
far away from the distribution of matter. One can imagine a sce-
nario where the observer sees nothing but a single particle at the
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center. It is then interesting to ask how the wave function of the
particle (such as a neutrino or electron) behaves under its own
gravity. To find this, we will also need an exact solution to classical
gravity coupled with quantum matter. More recently, the develop-
ment in non-Fermi liquid and holographic superconductors [8–10]
has also made it interesting to study gravitational solutions with
back reaction from spinor fields [11]. In this work, we will present
an approximate solution to the Einstein–Dirac system. It describes
how a fermion exists, under its own gravity, in a flat spacetime
background.

Compared with the long list of literature on other systems,
there have been relatively fewer work on solutions to the Einstein–
Dirac system (for examples, see [12–26]). Most of the existing
effort came after Brill and Wheeler’s 1957 paper [12]. An early
review of works focused on neutrinos can be found in [13]. Some
of the solutions describe ghost spinors (see, e.g., [14]). Solutions in
dimensions other than four can be found in [15,16]. Particle-like
solutions have been previously studied in [25].

Apart from the complexity of the calculation, the reason dis-
couraging people from dealing with the spinor field might be its
anti-commutative nature upon quantization. Here we will treat the
spinor field as a quantum mechanical wave function, but not as a
quantized field operator. The reason is the following. For a bosonic
field, the wave-function treatment can be justified in the low en-
ergy limit, when there is no particle production. On the other
hand, a spinor field is often believed to be intrinsically quantum,
and one should always quantize it first before using it. However,
the problem with gravity is that there is NO known ways to quan-
tize the spinor field that is completely satisfactory. There is always
a negative energy associated with the un-quantized spinor field.
In the usual QFT treatment, this negativeness is shifted to hide in
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the zero-point energy, rendering it physically irrelevant [27]. But in
theories with gravity, the problem reappears in the form of a too
large contribution to the cosmological constant. In this sense, the
cosmological constant problem is essentially the negative energy
problem. So when there is gravity, the usual way of quantizing the
spinor field is no longer a good fix of all the problems. Our hope
is that, an exact particle-like solution to the Einstein–Dirac system
(but with an un-quantized spinor field) may offer some hint on
how to correctly quantize the spinor field with gravity.

Due to the complexity of the coupled Einstein–Dirac equations,
we start by looking for an approximate solution to the system. We
expand the solution in terms of the radial coordinate, and our so-
lution is approximately valid at the spatial infinity. At the present
stage, it is very difficult to discuss the stability of the solution.1 In
fact, it is not even clear if our approximate solution comes from
a well behaved full solution or not. On the other hand, it is al-
ready non-trivial to find an ansatz (such as (12) and (13)) which
allows for an approximate solution to exist.2 So as a first step to-
wards finding an exact particle-like solution to the Einstein–Dirac
system, we will be content with the approximate solution for now,
but will try to solve all the remaining problems in future works.

I will present the solution in next section. Then I will discuss
some of the (approximately) conserved quantities. A short sum-
mary is at the end.

2. The solution

The action of the Einstein–Dirac system is given by

S =
∫

dnx
√|g|

{
R − 2Λ

16πG(n)

− i

2
ψ̄γ μDμψ

+ i

2
(Dμψ̄)γ μψ − iμψ̄ψ

}
, (1)

where G(n) is Newton’s constant in n spacetime dimensions, Λ is
the cosmological constant, and μ is the mass of the spinor field.
The signature of the metric is mostly positive. It is often conve-
nient to use the Planck mass M2

p = 1
8πG(n)

in place of Newton’s

constant. We will let 16πG(n) = 1 from now on. The notations re-
lated to the spinor field are

Dμψ =
(

∂μ + i

2
wabμγ ab

)
ψ, ψ̄ = ψ†γ 0,

Dμψ̄ = ∂μψ̄ − i

2
wabμψ̄γ ab, γ ab = − i

4

[
γ a, γ b]

{
γ a, γ b} = 2ηab, gμν = ηabeaμebν, γ μ = γ aea

μ,

wabμ = (
Γ

ρ
μνeaρ − ∂μeaν

)
eb

ν = −(∇μeaν)eb
ν . (2)

Note γ 0 in ψ̄ is defined in the vielbein basis. The equations from
(1) are

0 = γ μDμψ + μψ = −(Dμψ̄)γ μ + μψ̄, (3)

Rμν = i

8
ψ̄(γμDν + γν Dμ)ψ − i

8
(Dμψ̄γν + Dνψ̄γμ)ψ

+ 2

n − 2

(
Λ + i

4
μψ̄ψ

)
gμν. (4)

We will work in four spacetime dimensions (n = 4) from now on
and will take Λ = 0. As a matter of choice, the gamma matrices in
the vielbein basis are taken to be

1 I thank the referee for raising up this point.
2 For example, the counterpart of (12) and (13) allow for no solution when there

is an arbitrary cosmological constant.
γ 0 = i

(
12

12

)
, γ 1,2,3 = i

(
σ 3,1,2

−σ 3,1,2

)
, (5)

where 12 is the two-dimensional unit matrix and σ 1,2,3 are the
usual Pauli matrices. The corresponding charge conjugating opera-
tor is C = γ 3.

We are interested in an axisymmetric spacetime. The ansatz for
the metric is given by

ds2 = − f 2
t (dt + f z dφ)2 + f 2

x dx2 + f 2
y dθ2

+ ( f p dφ − f̃ z dt)2, (6)

where | ft | > | f̃ z| in general. We expect x to be the asymptotic
radial coordinate, θ the latitudinal angle, t the time and φ the az-
imuthal angle. It is convenient to write the vierbeins as

e0 = ft (dt + f z dφ), e1 = fx dx,

e2 = f y dθ, e3 = f p dφ − f̃ z dt. (7)

One can always set f̃ z = 0 by using the following local Lorentz
transformation

(
Λa

b

) = 1√
1 − ( f̃ z/ ft)2

⎛
⎜⎝

1 f̃ z/ ft

0
0

f̃ z/ ft 1

⎞
⎟⎠ . (8)

So (6) and (7) are equivalent to the following,

ds2 = − f 2
t (dt + f z dφ)2 + f 2

x dx2 + f 2
y dθ2 + f 2

p dφ2, (9)

e0 = ft (dt + f z dφ), e1 = fx dx,

e2 = f y dθ, e3 = f p dφ. (10)

We take the spinor field to be

Ψ =
⎛
⎜⎝

ψ1a + iψ1b
ψ2a + iψ2b
ψ3a + iψ3b
ψ4a + iψ4b

⎞
⎟⎠ , (11)

where all the functions ψia and ψib (throughout the Letter, the
index i = 1, . . . ,4) are real.

Given (9) and (11), it is difficult to solve (3) and (4) directly.
In this work, we will focus on a spacetime that is flat at the spa-
tial infinity (x → +∞). Our strategy is to expand the functions in
terms of the radial coordinates x and obtain an approximate solu-
tion to the equations when x → +∞. We will assume that all the
unknown functions depend on x, θ and t only. Our ansatz for the
functions are

ft = 1 + t1

x
+ t2

x2
+ O

(
1

x3

)
,

f z = z1

x
+ z2

x2
+ O

(
1

x3

)
,

fx = 1 + x1

x
+ x2

x2
+ O

(
1

x3

)
,

f y = x + y0 + y1

x
+ y2

x2
+ O

(
1

x3

)
,

f p = sin θ

[
x + p0 + p1

x
+ p2

x2
+ O

(
1

x3

)]
, (12)

ψia = ai1

x
+ ai2

x2
+ O

(
1

x3

)
,

ψib = bi1 + bi2
2

+ O
(

1
3

)
, i = 1, . . . ,4, (13)
x x x
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where x1,2,... , t1,2,... , z1,2,... , y0,1,2,..., p0,1,2,... , ai1,i2,... and bi1,i2,...

are polynomials of trigonometric functions of x, θ and t . The ex-
pansion in (12) guarantees that (9) approaches the metric of a flat
spacetime as x → +∞.

Given (12) and (13), the leading contribution to (3) is of the
order O( 1

x ). The equations are given by

μb31 − (∂x − ∂t)a11 = 0, μa31 + (∂x − ∂t)b11 = 0,

μb41 + (∂x + ∂t)a21 = 0, μa41 − (∂x + ∂t)b21 = 0,

μb11 + (∂x + ∂t)a31 = 0, μa11 − (∂x + ∂t)b31 = 0,

μb21 − (∂x − ∂t)a41 = 0, μa21 + (∂x − ∂t)b41 = 0. (14)

These equations can be completely solved by

ai1 = ai1a(θ) cos(wt) cos(kx) + ai1b(θ) cos(wt) sin(kx)

+ ai1c(θ) sin(wt) cos(kx) + ai1d(θ) sin(wt) sin(kx), (15)

where i = 1, . . . ,4 and w2 = k2 + μ2. bi1’s are solved in terms of
ai1’s in an obvious way. The leading contribution to (4) is of the
order O(x). The equations are given by
(
∂2

x − ∂2
t

)
y0 = (

∂2
x − ∂2

t

)
p0 = 0. (16)

They do not depend on the spinor field. The solutions are

y0 = y0y(θ) + y01(θ, x − t) + y02(θ, x + t),

p0 = p0y(θ) + p01(θ, x − t) + p02(θ, x + t). (17)

It is hard to see how can functions of wt ± kx and x ± t co-
exist with each other in the case w �= k. So we will assume
y01 = y02 = p01 = p02 = 0 when μ �= 0 (in fact, our solution ex-
ists only when μ �= 0). Note the leading order equations (14) and
(16) are independent of each other.

To the order O( 1
x ) of (4), one has equations that determine

z1, t1, x1, y1 and p1, in terms of ai1 and bi1. The assumption about
the functions z1, t1, x1, y1 and p1 impose extra constraints on the
structure of ai1 and bi1. For example, two of the equations are

∂x∂yt1 = − 1

4
√

1 − y2

[
a11b21∂x ln

(
a11

b21

)
+ a21b11∂x ln

(
a21

b11

)

− a31b41∂x ln

(
a31

b41

)
− a41b31∂x ln

(
a41

b31

)]
, (18)

∂y∂t x1 = − 1

4
√

1 − y2

[
a11b21∂t ln

(
a11

b21

)
+ a21b11∂t ln

(
a21

b11

)

− a31b41∂t ln

(
a31

b41

)
− a41b31∂t ln

(
a41

b31

)]
. (19)

Using (15), one can find that the right-hand side of (18) does not
depend on x, while that of (19) does not depend on t . To be consis-
tent with the assumption that t1 and x1 only depend on x or t in
the form of trigonometric functions, the right-hand sides of both
(18) and (19) must vanish. This condition constrains both t1, x1
and ai1,bi1. As a special case that satisfies this condition, we let

b11 ∼ a21, b21 ∼ a11, b31 ∼ a41, b41 ∼ a31, (20)

up to some constant factors. This will reduce (15) to a much sim-
pler form.

The equations from higher orders of the expansion are more
complicated and we will only summarize some of the main fea-
tures here. There are eight equations at each order O(1/xn) of (3).
These equations are just enough to determine ain and bin in terms
of ai,n−1, bi,n−1, xn−1, yn−1, pn−1, tn−1, zn−1 and lower order func-
tions. On the other hand, the equations at the order O(1/xn) of
(4) determine xn−1, yn−1, pn−1, tn−1 and zn−1 in terms of ai,n−1,
bi,n−1, xn−2, yn−2, pn−2, tn−2, zn−2 and lower order functions.
What’s more, there are always two equations that involve zn , tn ,
xn , yn , pn , ain and bin at each order O(1/xn) of (4), while the rest
only involve lower order functions. These equations can always be
solved together with those from the order O(1/xn+1) of (4). Be-
cause of the constraints from equations like (18) and (19), it is not
guaranteed that one can find a self-consistent solution to all orders
in 1

x . We have done the calculation up to the order O(1/x2) for
both (3) and (4), and still we do not see any true obstacle (other
than the tediousness) to push the calculation to higher orders. This
is an encouraging sign that (12) and (13) might be the right ansatz
to give us a consistent solution.

At the moment, we will be content with the solution approx-
imate up to the order O(1/x2). Even at this stage, the full result
is already very unwieldy and contains many free parameters and
functions. Presumably these free functions and parameters should
be determined by equations from higher orders of the expansion.
But for the purpose of giving an accessible example, we have (not
so rigorously) chosen the parameters and functions in such a way
that the solution has a simpler structure. One cannot expect to get
the correct approximation to some exaction solution (if it exists) in
this way. But the solution so obtained is still approximately valid
in its own right, in the sense that it solves (3) and (4) up to the
order O(1/x2).

For the metric, we find that

ft = 1 − N2 w cos θ

4kμx
+ O

(
1/x3), f p = sin θ f y,

fx = 1 − N2 w3 cos θ

4k3μx
+ N2k sin(2wt − 2ζ ) sin θ

4w2μx2
+ O

(
1/x3),

f y = x + N2 w(2k2 + w2) cos θ

4k3μ
− N2k sin(2wt − 2ζ ) sin θ

4w2μx

+ N4(2k2 − w2) sin(2wt − 2ζ ) sin 2θ

16k2 wμ2x2
+ O

(
1/x3),

f z = + N2[6w cos(2kx) sin2 θ + k sin(2kx) sin(2wt − 2ζ ) sin(2θ)]
8k2μ2x2

− N2 w sin(2kx) sin2 θ

2kμ2x
+ O

(
1/x3). (21)

For the spinor field, we find

ψ1a = N
√

sin θ

x
√

w − k

[
cos(wt + kx − ζ )

− N2(4k − w)w cos θ cos(wt + kx − ζ )

8k2μx

+ (2k + w) cot θ sin(wt − kx − ζ )

4k(w + k)x

]
+ O

(
1/x3),

ψ1b = N
√

sin θ

x
√

w + k

[
cos(wt − kx − ζ )

− N2(4k + w)w cos θ cos(wt − kx − ζ )

8k2μx

+ (2k − w) cot θ sin(wt + kx − ζ )

4k(w − k)x

]
+ O

(
1/x3),

ψ2a = N
√

sin θ

x
√

w − k

[
cos(wt − kx − ζ )

− N2(4k − w)w cos θ cos(wt − kx − ζ )

2
8k μx
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+ (2k + w) cot θ sin(wt + kx − ζ )

4k(w + k)x

]
+ O

(
1/x3),

ψ2b = N
√

sin θ

x
√

w + k

[
cos(wt + kx − ζ )

− N2(4k + w)w cos θ cos(wt + kx − ζ )

8k2μx

+ (2k − w) cot θ sin(wt − kx − ζ )

4k(w − k)x

]
+ O

(
1/x3),

ψ3a = − N
√

sin θ

x
√

w − k

[
sin(wt − kx − ζ )

− N2(4k − w)w cos θ sin(wt − kx − ζ )

8k2μx

+ (2k + w) cot θ cos(wt + kx − ζ )

4k(w + k)x

]
+ O

(
1/x3),

ψ3b = N
√

sin θ

x
√

w + k

[
sin(wt + kx − ζ )

− N2(4k + w)w cos θ sin(wt + kx − ζ )

8k2μx

+ (2k − w) cot θ cos(wt − kx − ζ )

4k(w − k)x

]
+ O

(
1/x3),

ψ4a = − N
√

sin θ

x
√

w − k

[
sin(wt + kx − ζ )

− N2(4k − w)w cos θ sin(wt + kx − ζ )

8k2μx

+ (2k + w) cot θ cos(wt − kx − ζ )

4k(w + k)x

]
+ O

(
1/x3),

ψ4b = N
√

sin θ

x
√

w + k

[
sin(wt − kx − ζ )

− N2(4k + w)w cos θ sin(wt − kx − ζ )

8k2μx

+ (2k − w) cot θ cos(wt + kx − ζ )

4k(w − k)x

]
+ O

(
1/x3), (22)

where w2 = k2 + μ2, N is a dimensionless normalization constant
and ζ is an arbitrary phase. For the results given above, it is possi-
ble to set ζ = 0 by a shift in t . The function cot θ appearing in (22)
indicates that the solution is divergent at sin θ = 0. This could be
a big problem. But such divergence could also be an artifact of the
expansion in (12) and (13). For example, something like (a and b
are constants)

a

b + x sin θ

is obviously regular at sin θ = 0, but it diverges at sin θ = 0 if firstly
expanded around x → +∞. For (22), it is possible to get rid of the
divergence in a similar fashion.

We have found (21) and (22) by assuming that ain and bin are
polynomials of {cos(kx), sin(kx)} and {cos(wt), sin(wt)} up to the
(2n − 1)’th power, and zn , tn , xn , yn and pn are polynomials of
{cos(kx), sin(kx)} and {cos(wt), sin(wt)} up to the 2n’th power. The
dependence on θ appears as coefficient functions of the polynomi-
als. This assignment is inspired by the structure of (15), (17) and
that of the equations from different orders of (3) and (4). After
solving equations up to the order O(1/x2), we find that many co-
efficient functions are still undetermined. What’s more, we have
also found a lot integration constants in the process. Although
these functions and constants are arbitrary at the order O(1/x2),
one should expect many further constraints to arise from higher
order equations in the expansion. So presumably these functions
and constants should be determined by pushing the calculation to
higher orders, which is currently a daunting task. In reaching (21)
and (22), we have thrown away most of the functions that do not
depend on the strength of the spinor field (i.e. N) in an obvious
way. These functions may be important when one wants to go to
higher orders. As a result, (21) and (22) may not be the correct ap-
proximation to an exact solution of (3) and (4). On the other hand,
(21) and (22) is still a valid approximate solution, good to the or-
der O(1/x2).

3. Conserved quantities

From (3), one can derive a conserved current of the spinor field,

J μ = ψ̄γ μψ �⇒ DμJ μ = 0. (23)

If there is a time-like Killing vector ξ , then one can write down
the probability density of the spinor field as

ρ = J · ξ. (24)

For the energy density of the spinor field, there are two possibili-
ties. One is by using the energy–momentum tensor,

ρ1 = ξμξν Tμν, Tμν = Rμν − R

2
gμν. (25)

The other is by using the energy–momentum four-vector,

ρ2 = P · ξ, Pμ = −1

2
ψ̄ Dμψ + 1

2
Dμψ̄ψ. (26)

It can be checked that ∇μ Pμ = 0. We will see that ρ1 and ρ2 are
quantitatively vastly different.

From (21), one can find an approximate time-like Killing vector
ξ = ∂t − ∂t y1

x ∂x at the spatial infinity x → +∞,

Lξ gμν =

⎛
⎜⎜⎜⎜⎝

· − ∂θ ∂t y1
x · − ∂2

t y1
x

− ∂θ ∂t y1
x

2∂t y2
x · ·

· · 2 sin2 θ∂t y2
x ·

− ∂2
t y1
x · · ·

⎞
⎟⎟⎟⎟⎠

+ O
(

1

x2

)
, (27)

where μ,ν = {x, θ,φ, t}, and y1, y2 can be read of (12) and (21).
Now the probability density of the spinor field (24) can be calcu-
lated as

ρ = M2
p

2
· 4N2 w sin θ

μ2x2
+ O

(
1

x3

)
. (28)

Here we have restored the Planck mass to make the dimension
of the density manifestly correct. If we interpret the solution as
describing a particle with its center of mass located at x = 0, and
if we suppose that the chance of finding the particle far away from
x = 0 is �, then

� ≈
∮

dV ρ ≈ 2π2M2
p N2 wL

μ2
�⇒ N2 ≈ μ2�

2π2M2
p wL

, (29)

where

∮
dV =

L∫
dx

π∫
dθ

2π∫
dφ x2 sin θ. (30)
0 0 0
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The integral (29) is divergent over the whole space, so we have
introduced a cutoff L to regularize the divergence. Now if the full
wave function is finite near the center, then we must have � = 1.
This is because the distribution probability is then dominated by
the divergent integral in (29). We will keep � explicit to cover the
possibility that the wave function may actually diverge at x = 0. In
this case, a significant portion of the probability may be distributed
near the center.

Let’s now turn to the energy of the spinor field. The energy
densities (25) and (26) are found to be

ρ1 ≈ M2
p

2
· N2 w cos θ[2μ + 3N2k sin(2wt − 2ζ ) sin θ]

2kμ2x3

+ O
(
1/x4),

ρ2 ≈ M2
p

2
· 4N2 w sin θ

μx2
+ O

(
1/x3). (31)

Here we have again restored the Planck mass to make the dimen-
sions manifestly correct. It is obvious that the two energy densities
are very different. While the nature of ρ1 is not very clear, we will
take ρ2 to be the true energy density of the spinor field at places
far away from the center. In fact, it is easy to see that

ρ2 = ρμ + O
(
1/x3). (32)

The contribution of ρ2 to the total energy is

E =
∮

dV ρ2 = �μ. (33)

In the case � = 1, ρ2 dominates the contribution to the spinor
energy. We see that the total amount is exactly μ. This is as
expected: the solution describes a particle without an apparent ki-
netic energy, and so the total energy is nothing but the mass of
the particle. However, there is a puzzle. In the solution the wave
function fluctuates in both space and time, and the frequency w
is apparently larger than the mass. We must have a non-vanishing
wave number (k �= 0) for the solution to exist. But it is still unclear
how k is related to the particle mass μ. One may need to know
the full solution to answer this question.

On the geometry side, the Ricci scalar of (21) is

R = 2N2k sin(2wt − 2ζ ) sin θ

μx2
+ O

(
1/x3). (34)

It is obvious that the curvature can be both positive and negative,
and oscillates with a frequency of 2w . Since the spacetime is flat
at the spatial infinity, one can use the Komar formula to calculate
the energy stored in the geometry [28,29],

M = M2
p

∫
x=L

∗dξ = − M2
pπ

2kN2L

μ
sin(2wt − 2ζ )

= −�

2

kμ

w
sin(2wt − 2ζ ). (35)

This energy fluctuates in time as well and it also goes negative for
half of the time. We do not have a good explanation to this result
at the moment. For an answer, one may have to better understand
how gravity is coupled to quantum matter.

Similar to (35), one can try to calculate the angular velocity of
the geometry,

J = − M2
p

2

∫
∗d(∂φ) = 4M2

pπ wN2L

3μ2
cos(2kL) ≈ 0. (36)
x=L
It will be interesting to compare this result with the angular mo-
mentum of the spinor field. By analogy with the result in a flat
spacetime, we look at the quantity

Sμ = i

2
εμ

νρσ ξνψ̄γ ρσ ψ, with |εμνρσ | = √|g|. (37)

We find that all the components vanishes as in (36). If this result
is also true for the full solution, then it means that the particle
described by the solution does not have a fixed axis of spin.

4. Summary

We have presented an approximate solution to the Einstein–
Dirac system. It solves the coupled Einstein–Dirac equations up to
the order O(1/x2), with x being the radial coordinate. The solution
can be interpreted as describing a single Dirac fermion coexisting
with its own gravitational field. The metric approaches that of a
flat spacetime at the spatial infinity. If one assumes that the full
wave function is everywhere regular in the whole space, then the
total energy in the spinor field is just the mass of the particle. The
energy in the geometry fluctuates in time, and it is negative for
half of the time. For the solution to exist, we also need a non-
vanishing wave number k in the radial direction. The value of the
wave number is undetermined and we still know very little about
its significance.

A natural generalization of the present work is to include a cos-
mological constant in the spacetime background. We will leave this
to future works.
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