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We establish a mapping between fractional and noncommutative spacetimes in configuration
space. Depending on the scale at which the relation is considered, there arise two possibilities.
For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental
scale determining the log-period coincides with the non-rotation-invariant but cyclicity-preserving
measure of κ-Minkowski. At scales larger than the log-period, the fractional measure is averaged
and becomes a power-law with real exponent. This can be also regarded as the cyclicity-inducing
measure in a noncommutative spacetime defined by a certain nonlinear algebra of the coordinates,
which interpolates between κ-Minkowski and canonical spacetime. These results are based upon a
braiding formula valid for any nonlinear algebra which can be mapped onto the Heisenberg algebra.
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I. INTRODUCTION

Despite the advanced level of mathematical tools devel-
oped to construct quantum theories of spacetime and ge-
ometry, field theory-based models remain the most suit-
able frameworks wherein to extract effective physics and
making predictions that could be of direct relevance for
phenomenology. Indeed, approaches such as group field
theory [1, 2], loop quantum gravity [3, 4], spin foams
[5, 6], and simplicial quantum gravity [7–11], among oth-
ers, have been accumulating results but they still strug-
gle to get in touch with observations. Part of the dif-
ficulty is structural. Several such theories aim at ex-
plaining the very origin of the continuum spacetime we
are accustomed to, and thus are based on pre-geometric,
pre-spacetime, and usually discrete structures from which
the usual description of physics has to emerge in terms
of continuum spacetime and geometry (and its General
Relativistic dynamics). Beside the conceptual aspects,
this ambitious goal is obviously technically challenging
and no set-up can claim definite success. This, of course,
makes it very difficult also to extract effective dynamical
models for both spacetime geometry and matter based
on a continuum formalism, and possibly on a field theory
language, or to make direct contact with existing effective
frameworks.
Conversely, approaches like asymptotically safe gravity

[12–15], Hořava–Lifshitz gravity [16, 17], and noncommu-
tative spacetimes [18–21] (whether seen as fundamental
or effective) are framed in a field-theoretical language
which is more familiar and under control, and thus closer
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to phenomenological applications.

In this second group of proposals, noncommutative
field theories (NCFT) have been extensively studied for
more than a decade. These models turned out to emerge,
in one form or another, in a variety of contexts, from
string theory [22, 23] and loop quantum gravity [24, 25]
to heuristic approaches to “quantum spacetime” [26, 27]
and “deformations” of relativistic symmetries [28, 29].
Perhaps, the most striking appearance of a noncommu-
tative space is in the less exotic context of classical 2+ 1
dimensional Einstein gravity coupled to point particles
[30]. Since the theory is topological, the latter are intro-
duced as topological defects on the spacetime manifold
[31]. Gravitational interactions turn out to affect pro-
foundly the structure of the particle phase space, leading
to group-valued momenta and a nonzero Poisson bracket
between the particle spacetime coordinates. When one
considers the corresponding field theory, plane waves la-
belled by group-valued momenta naturally lead to a non-
commutative field theory in configuration space [30, 32].
Because of this feature, this class of noncommutative ge-
ometries is also the most likely one to be related to ap-
proaches like loop quantum gravity, spin foam models
or group field theory, heavily involving group-theoretic
structures describing quantum spacetime at the funda-
mental level.

Another field theory aiming to unify different ap-
proaches under the same phenomenology, but which is
much more recent than NCFTs, can be formulated in
fractional spacetimes [33–38]. These are continuum mod-
els where the measure in the action is not the usual
D-dimensional Lebesgue measure dDx, but a Lebesgue–
Stieltjes measure d̺(x) whose form is dictated by argu-
ments taken from fractal geometry. If spacetime is as-
sumed not to be a continuous differentiable manifold but
a fractal, then the measure distribution must be modi-
fied accordingly. If, moreover, one desires to keep a dif-
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ferentiable structure (which is absent in the most general
disconnected fractal constructions), the measure and the
differential structure can be determined by the rules of
fractional calculus under certain regimes. These mod-
els are interesting also because they could be emerging
from the pre-geometric, quantum structures identified by
quantum gravity approaches, as an intermediate stage
before the usual smooth spacetime is recovered.
Exotic measures in effective actions can arise in quite

different contexts, but a striking similarity was noticed
between fractional measures in a certain limit [36, 38]
and the configuration-space, cyclic-invariant measure of
κ-Minkowski [39]. Also, the spectral dimension on κ-
Minkowski turns out to be smaller than four in the ul-
traviolet [40], giving a further hint that noncommutative
spacetimes may show “fractal” features. However, the
relation between these features and noncommutativity of
the coordinates are presently unclear, and information on
the spectral dimension alone is not sufficient to describe
the geometry of a non-Riemannian space [37, 38]. Also,
it would be interesting to know whether the correspon-
dence between the κ-Minkowski measure and a particular
limit of fractional measures extends to the large class of
real-order fractional measures, which are power-law dis-
tributions in the coordinates.
The aim of this paper is to discuss for the first time

the relation between spacetimes based on fractional cal-
culus and on noncommutative differential calculus. As
anticipated, we focus here only on some limited aspect
of the definition of an effective field theory, that is the
form of the effective measure. Thus, we focus on (some
of) the geometric properties of such spacetimes only. We
do not touch on their symmetry structures nor on the
kinematical space of fields or on their actual dynamics.
The correspondence sketched in [36, 38], however, will be
studied at length and we shall provide a general mapping
between real-order fractional measures and noncommu-
tative spaces.
The resulting physical picture is the following.

1. Noncommutative spaces with fractal properties.

One of the tools of noncommutative field theories
consists in extracting an effective measure for an
action defined on the classical, commutative con-
figuration space. Certain noncommutative (and,
in general, nonlinear) algebras give rise to effec-
tive measures which correspond to certain classical
fractal spacetimes. Thanks to the correspondence
between the effective measure in the noncommuta-
tive actions and in this class of fractal theories, we
can study in detail these noncommutative theories
in the language of fractal geometry.

2. Fractal spaces. In fractal field theories, classical
spacetime is conjectured to have a genuine fractal
structure, perhaps totally disconnected. At some
fundamental length scale ℓ∞, which we identify
with the Planck length ℓPl, one can approximate
this structure via a complex fractional measure,

and a formalism on the continuum becomes avail-
able. Due to the presence of discrete symmetries
at ultra-microscopic scales, the geometry of these
spaces is radically different from that of ordinary
smooth spaces, up to the point where one may ques-
tion the distinction between classical and quantum.
This is in agreement with the existence of the map-
ping with noncommutative theories: quantum and
fractal properties are intimately related, and one
can describe the same space in different languages.

3. Scale hierarchy. Near ℓ∞ = ℓPl, the geometry of
spacetime is κ-Minkowski. At larger scales, the co-
ordinates obey a nonlinear “fractional” noncommu-
tative algebra of order α, corresponding to a frac-
tal geometry with anomalous measure and nonin-
teger Hausdorff and spectral dimensions. Different
values of the real parameter α constitute a multi-
fractal regime which interpolates between ℓPl and
macroscopic scales, where ordinary commutative
(or canonical, depending on the details of the frac-
tional algebra) four-dimensional spacetime is recov-
ered.

We develop this scheme first by reviewing some ba-
sic results in the recently proposed fractional space-
times (Sec. II) and in noncommutative theories (Sec. III).
Then, we obtain a braiding formula essential for deal-
ing with generic nonlinear noncommutative algebras of
coordinates (Sec. IV). This formula is crucial for our
main twofold result, presented in Sec. V: (i) the map-
ping between fractional spaces at a certain scale and
κ-Minkowski and (ii) the explicit relation between real-
order fractional spaces and a new specific type of non-
linear noncommutative algebra. Section VI collects some
concluding remarks.

II. MULTIFRACTIONAL SPACETIMES

When dealing with fractal sets [41], ordinary differen-
tiability is given up in favour of other geometric tools. In
fact, a fractal (or a multifractal, if its dimension changes
with the scale [42]) is a set too “irregular” to be described
by smooth geometry, and even the notion of continuum
must be replaced by a description in terms of discrete
symmetries. Under certain conditions, however, random
and deterministic fractals admit a continuum approxi-
mation based upon fractional calculus [43, 44]; this ap-
proximation scheme [45, 46] was reviewed in [37]. Here
it is sufficient to recall that, for all practical purposes in
physical applications, sets described by fractional oper-
ators can be also regarded as full-fledged multifractals
(rather than approximations of certain fractals), because
they share the main properties by which fractals are char-
acterized. Namely, they are endowed with a discrete scale
symmetry [36, 38] and their dimension(s) can be nonin-
teger [36, 37] and varying with the scale [36, 38].
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A. Definition

Multifractional Euclidean [37] and Minkowski [38]
spaces are the simplest applications of multifractal ge-
ometry to spacetime itself. In the following we refer to
[36–38] for all details. The main building block is frac-
tional Minkowski spacetime MD

α of order α, defined by
an embedding Minkowski spacetimeMD with D topolog-
ical dimensions, some calculus rules Calcα = {∂α, Iα, dα}
(for derivatives ∂α, integrals Iα, and external differen-
tials dα), a complex measure ˜̺α with a given support, a
natural norm ‖ · ‖, and a Laplacian K:

MD
α = (MD, Calcα, ˜̺α, ‖ · ‖, K) . (1)

We first specify the complex measure. A complex mea-
sure ̺ is such that ̺(∅) = 0, ̺(∪nUn) =

∑

n ̺(Un) for
a sequence of disjoint sets, and ̺(U) ∈ C. On the other
hand, a real measure (or simply a measure) takes only
real nonnegative values, ̺(U) ≥ 0, while the output of a
signed measure is a real number but of any sign. ˜̺α is
characterized by a real parameter 0 ≤ α ≤ 1 and a set of
nonnegative modes ω ≥ 0, such that ˜̺α is a linear com-
bination of complex measures ̺α,ω, ˜̺α =

∑

ω ̺α,ω. For
each mode ω, the measure can be specified by complex
fractional calculus. Without loss of generality, one can
take the support of the measure to be the positive semi-
axis for each direction x = xµ, so that ̺α,ω is a linear
combination of power laws with complex exponents:

̺α,ω =
xα

Γ(α+ 1)
+A

xα+iω

Γ(α+ iω + 1)
+A∗ xα−iω

Γ(α− iω + 1)
.

(2)
The complex coefficient A can be chosen to be real, so
that the measure is real-valued (then, we say the measure
is self-conjugate). Writing xiω = exp(iω lnx) and noting
that

1

Γ(α± iω)
= Re

[
1

Γ(α+ iω)

]

± iIm

[
1

Γ(α+ iω)

]

=: RΓ(α+ iω)± iIΓ(α + iω) , (3)

for each direction in spacetime we eventually have

̺α,ω(x) =
xα

Γ(α + 1)

[

1 +Aα,ω cos

(

ω ln
x

ℓ∞

)

+Bα,ω sin

(

ω ln
x

ℓ∞

)]

, (4)

where

Aα,ω = 2AΓ(α+ 1)RΓ(α+ iω + 1) , (5)

Bα,ω = 2AΓ(α+ 1)IΓ(α+ iω + 1) (6)

are real and ℓ∞ is a fundamental scale introduced to make
the arguments of the trigonometric functions dimension-
less.
At the classical level, the fact that the measure has sup-

port only in the orthant xµ ≥ 0 does not lead to any con-
sequence, at least at large-enough scales and away from

the boundary (in the bulk, microphysics is described by
local equations). The extension to the whole Minkowski
embedding can be done only in the infrared limit of inte-
ger calculus. At the quantum level, the boundary affects
the vacuum state(s) of the theory like, e.g., in the Unruh
effect. These aspects have not been studied in [37, 38]
and should deserve further attention.
Notice that ̺α,ω is a signed measure but not a mea-

sure, because of the oscillations. Adding points to a set
may result to a decrease of the output value of a signed
measure. Then, neither volumes nor the Hausdorff di-
mension can be defined. In this sense, the oscillatory
regime is “pre-geometric,” even if a geometry does ex-
ist. This is not an issue since, on one hand, complex and
signed measures are well-defined mathematical objects
and, on the other hand, the notions of volume and Haus-
dorff dimension admit suitable extensions to oscillating
measures [38]. In the following, we shall continue to call
˜̺α (and its multifractional generalization) a “measure”
with this distinction in mind. Denote with α0 the frac-
tional parameter (or “fractional charge”) attached to the
time direction, and assume that spatial coordinates have
the same charge α. In general, α0 6= α; if α0 = 1, there
are no oscillations in time. The logarithmic oscillations
are governed by a dimensionless scale

λω = exp(2π/ω) . (7)

The oscillatory part of Eq. (4) is log-periodic under the
discrete scaling transformation

ln
x

ℓ∞
→ ln

x

ℓ∞
+

2πn

ω
, n = 0,±1,±2, . . . , (8)

implying an invariance (up to an overall rescaling of ̺α,ω)
under the dilation

x → λnωx , n = 0,±1,±2, . . . . (9)

The characteristic (as opposed to fundamental) physical
scale associated with λω is

ℓω = λωℓ∞ > ℓ∞ . (10)

The next step is to sum over all ω, which gives the mea-
sure on MD

α . However, we are mainly interested in mul-
tifractional Minkowski spacetime MD

∗ , where one also
sums over all possible α’s. At any given scale, a “snap-
shot” ofMD

∗ shows the structure ofMD
α , and as the scale

changes so does α. The range of α can be determined
by requiring that the natural norm on the “snapshots”
MD

α always respects the triangle inequality, which im-
plies 1/2 ≤ α ≤ 1. The total integration measure reads

d̺(x) =
∑

α

gα
∑

ω

∏

µ

d̺α,ω(x
µ) , (11)

where gα are some dimensionful coefficients and the sum
over α may also mean integration. Equation (11) is the
definition of multifractional measure. The differential
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structure of (multi)fractional spaces is determined by the
choice of calculus or, in other words, of the derivative op-
erator. In the presence of a nontrivial metric, one would
also have a determinant factor in front of

∏

µ d̺α,ω(x
µ),

with implicit arbitrary dependence on the coordinates.
Metric and Lebesgue–Stieltjes measure structures are in-
dependent, the former being specified by a two-form gµν
and the latter by a differential structure [37]. As one can
see in the tetrad formalism, the total measure (i.e., the
volume form) is made of both ingredients just like in or-
dinary geometry: the calculus and the metric determine,
respectively, the external differential and the contraction
rule of two vielbeins.
The calculus of variations immediately shows that in a

given theory there appear two different derivatives, one
depending on the boundary at xµ = 0 and the other on
the boundary at xµ = +∞. We have showed elsewhere
[37, 38] that the above measure is associated with the left
Caputo derivative

(∂αf)(x) :=
1

Γ(1− α)

∫ x

0

dx′

(x− x′)α
∂x′f(x′) , (12)

and the Weyl derivative

(∞∂̄
αf)(x) := −

1

Γ(1− α)

∫ +∞

x

dx′

(x′ − x)α
∂x′f(x′) .

(13)
The functions f belong to the space of absolutely con-
tinuous functions on R+. From these definitions, one
can construct external differentials and forms just like
in ordinary calculus. We show these expressions for com-
pleteness, although we shall not need them in the present
work. The Laplacian K is a second-order operator in
fractional or integer derivatives, depending on the for-
mulation of the theory.
A field theory on multifractional spacetime is described

by the action

S =

∫

d̺(x)L , (14)

where all coordinates with fractional charge α 6= 1 run
from 0 to +∞, while the time coordinate runs over the
whole axis if α0 = 1. From the perspective of field the-
ory, the coefficients gα in Eq. (11) are coupling constants
attached to different operators, and the total multifrac-
tional action coincides with what one would get from
renormalization group arguments [38].

B. Properties and scale hierarchy

Multifractional field theories undergo a sequence of
regimes according to the scale ℓ probed by the observer
[36, 38]. At scales ℓ < ℓ∞, the nonsmooth geometric
and topological structure of the underlying multifractal
begins to emerge (what we called “boundary effects” in
[38]) and the continuum picture breaks down. Starting

from scales just at this threshold, ℓ ∼ ℓ∞, we can em-
ploy the fractional formalism. Expanding Eq. (4) around
x/ℓ∞ ∼ 1 and summing over α and ω we have, up to a
finite normalization constant,

d̺(x) ∼ dDx vBE(x) := dDx t−ǫ0

D−1∏

j=1

x−1
j , (15)

where ǫ0 = 1 if α0 6= 1 and ǫ0 = 0 if α0 = 1. The
subscript BE stands for “boundary effect” regime.
In the range ℓ∞ < ℓ ≪ ℓ∗, where ℓ∗ is some other

scale specified below, one should take the full form of
Eq. (11). The Hausdorff and spectral dimensions are
defined as averaged quantities over a logarithmic period
[38]. The symmetry of the theory is Eq. (9), called dis-
crete scale invariance (DSI), which appears in a number
of chaotic systems with fractal properties [47]. Despite
the model being continuous, the presence of a DSI at
small scales makes it an interesting candidate for an ef-
fective description of a discrete-to-continuum spacetime
transition. To get the continuum limit in a formal way,
one should send the frequency to zero from above, so that
the length cut-off vanishes: ℓω → 0 as ω → 0+. How-
ever, at mesoscopic spacetime scales much larger than
the period, ℓω ≪ ℓ . ℓ∗, one can take the average of the
measure [38],

̺α(x) := 〈̺α,ω(x)〉 ∝
∏

µ

(xµ)α , (16)

so that the effective measure weight in d̺α(x) =
dDx vα(x) is

vα(x) = tα0−1
D−1∏

i=1

xα−1
i , (17)

up to a proportionality constant. The average of the
oscillations is zero and one remains only with the zero
mode. This corresponds to randomize the fractal struc-
ture. The total integration measure is

d̺(x) ∼
∑

α

gα d̺α(x) , ℓω ≪ ℓ . ℓ∗ . (18)

The Euclidean volume of a D-ball of radius R scales
as V ∼ RdH , where dH is the Hausdorff dimension of
spacetime. For a fixed α,

dH = α0 + (D − 1)α . (19)

On the other hand, the spectral dimension (i.e., the di-
mensionality felt by a test particle diffusing in fractional
spacetime) is

dS = Dα , (20)

which is smaller than or equal to dH if α ≤ α0. If α > α0,
fractional spacetime cannot be considered a fractal [37].
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In this phase, continuous symmetries emerge. The
zero mode in the measure (the surviving part after av-
eraging) breaks ordinary Poincaré invariance, but it is
invariant under nonlinear transformations of the embed-
ding coordinates xµ which preserve the fractional line
element [37, 38]. Defining the geometric coordinates
qµ(x) := ̺α(x

µ), the measure ̺α(x) is invariant under

q′
µ
(x) = Λ̃µ

ν q
ν(x) , qµ(x) :=

(xµ)α

Γ(α+ 1)
, (21)

where Λµ
ν , satisfying Λ̃µ

ν Λ̃
ρ
µ = δρν , are Lorentz matrices. If

α0 6= α, there is a length scale hidden in these matrices.
These symmetries, or their ordinary Lorentz version with
α = α0 = 1, can be imposed to the Lagrangian density L
in order to define a field theory and constrain the allowed
operators.

Clearly, this modification of standard flat spacetime
symmetries is another important aspect of fractional
spaces, with potential phenomenological consequences.
Deformations of Poincaré symmetries also characterize
noncommutative spacetimes and are the basis of much of
their associated phenomenology. An important direction
of work in trying to relate these two effective quantum
gravity frameworks would be to do so at the algebraic
level of their characteristic symmetries. We do not pur-
sue this direction here, but we stress it would be comple-
mentary to our approach and similar in motivations.

In a multifractional setting, the dimension and the
symmetries change with the scale, implicit in α = α(ℓ).
The UV and infrared Hausdorff dimensions of spacetime
are tightly related to each other. When α0 = α, the
theory has a a critical point at α = α(ℓ∗) = 2/D, corre-
sponding to dH = 2. If α(ℓ∗) is also the lowest possible α,
where dimensional flow stops, then one must haveD = 4,
otherwise the triangle inequality with be violated during
the flow. Thus, four dimensions are selected by geom-
etry arguments. This is no longer true if α0 = 1. In
general, for a given topological dimension D ≥ 1, not all
fractional measures are possible. Hausdorff dimensions
dH = α0 + (D − 1)α are associated with well-defined
norms only if α, α0 ≥ 1/2. If α0 = α, this implies [38]

D ≤ 2dH , (22)

while for α0 = 1 one has

D ≤ 2dH − 1 . (23)

Finally, at scales much larger than the characteristic
scale ℓ∗ at which the UV critical point is attained, or-
dinary field theory on Minkowski spacetime is recovered,
̺(x) ∼ ̺1(x) = x. The theory is Poincaré invariant in the
standard sense, and the Hausdorff and spectral dimen-
sions of spacetime are close to the topological dimension,
dH = dS = D − ǫ, where D = 4 and ǫ≪ 1.

III. NONCOMMUTATIVE SPACETIMES

After this brief overview of multifractional geometries,
we introduce the basics of noncommutative spacetimes.
These spacetimes emerge in several contexts as a practi-
cal tool to go beyond the realm of ordinary (quantum)
field theory. In the spirit of noncommutative geometry
[18, 20, 21], the algebra of functions on spacetime, includ-
ing coordinate functions, becomes the central object. As
a result, the picture of the underlying spacetime arena as
an ordinary differentiable manifold is now lost, and it be-
comes meaningful only in the limit in which the ordinary
Abelian product on the algebra of functions is recovered.
The introduction of the non-Abelian ∗-product is remi-

niscent of the Moyal product in the Weyl quantization ap-
proach [48, 49] to ordinary nonrelativistic quantum me-
chanics. Indeed, the study of field theories on noncommu-
tative spacetimes is greatly simplified by the introduction
of a Weyl map [50–52], which is nothing but the general-
ization to field theory of the linear map from the classical
phase-space functions to functions of quantum operators,
first used in Weyl quantization. In other words, this map
encodes the choice of quantization prescription for non-
commuting variables, and thus it determines an operator
ordering. As such, it is not invertible strictly speaking
(there are many quantum theories for any given classical
theory). However, by introducing the noncommutative ∗-
product on a space of functions of classical coordinates,
one defines a new space of such functions that can be put
in one-to-one correspondence with the space of functions
of quantum operators, with the ∗-product reproducing, in
the space of functions of commuting variables, the quan-
tum noncommutativity of functions of operators. If one
then interprets the Weyl map as acting on such extended
space of classical functions endowed with a noncommu-
tative ∗-product, the map becomes invertible. Let Ω be
an invertible Weyl map. Focusing on plane waves (the
basic building blocks of a field theory), Ω relates classi-
cal plane waves1 eik·x and noncommutative plane waves,
generically denoted as wk(X):

Ω(eik·x) = wk(X) , (24)

where k · x = kµx
µ = −k0t + · · · + kD−1x

D−1 in D
topological dimensions [we use the mostly-plus signature
(−,+, · · · ,+)], x are classical coordinates of the space
equipped with the ∗-product, k are momenta, and X are
elements of the noncommutative algebra.
The ∗-product is defined on the composition of plane

waves, so that

eik·x ∗ eip·x := Ω−1 [wk(X)wp(X)] . (25)

In general, to construct a field theory on noncommuta-
tive spacetimes one must define a spectral theory via the

1 They are classical in the sense of being functions of commut-
ing coordinates, even though they themselves multiply via star
multiplication.
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eigenfunctions of the generators of translations, that is,
the plane waves themselves. In other words, one needs
an invertible transformation from configuration to mo-
mentum space and to know how plane waves compose.
If plane waves are phases, this corresponds to finding
the non-Abelian composition law for momenta associated
with the exponentiated elements of the ∗-algebra. On the
classical and on the noncommutative space one will have,
respectively,

eik·x ∗ eip·x = C(k, p)eiγ(k,p)·x , (26a)

wk(X)wp(X) = C(k, p)wγ(k,p)(X) , (26b)

where γµ(k, p) is a vector function of the momenta de-
termined by the algebra and C(k, p) is some momentum-
dependent scalar. The problem will be to find a map-
ping Ω realizing Eqs. (25) and (26). As we will see in
the examples below, in certain cases γµ(k, p) and C(k, p)
can be calculated once a normal ordering prescription
for the factors of noncommuting plane waves is given. In
this case, the calculation boils down to a derivation of a
braiding relation of the type

eik0T eipjX
j ?
= eg(Xi,pi,k0)eik0T , (27)

where Latin indices run over spatial directions and g is
some function of the spatial coordinate operators, the
associated momenta, and k0. Before embarking ourselves
in the detailed calculations it will be of help to recall a
particularly useful integral representation of the Baker–
Campbell–Hausdorff (BCH) formula [53, Theorem 5.5].
We need the special function

ψ(z) :=
z ln z

z − 1
= 1−

+∞∑

n=1

(1− z)n

(n+ 1)n
, (28)

which is called the generating function for the Bernoulli
numbers Bn. In fact,

ψ(e−y) =
y

ey − 1
=

+∞∑

n=0

Bn
yn

n!
, (29)

where we use the minus-sign convention for B1: B0 = 1,
B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, and so

on. Also, given an operator T̃ in an algebra, the linear
adjoint action adT̃ through T̃ is adT̃ X̃ := [T̃ , X̃], for any

X̃ in the algebra. Thus, one can use the notation

eadT̃ X̃ :=

+∞∑

n=0

1

n!
[T̃ , [T̃ , · · · [T̃
︸ ︷︷ ︸

n times

, X̃]] · · · ] (30)

to indicate an infinite sum of nested commutators. By
using some elementary properties of composite operators,
it is not difficult to prove that the BCH formula can be
written as

ln
(

eT̃ eX̃
)

= T̃ +

∫ 1

0

dsψ
(
eadT̃ esadX̃

)
X̃ . (31)

This formula should be intended as a very compact nota-
tion for a multiple series of nested commutators (acting

on X̃) given explicitly by the binomial series and the se-
ries expansions of Eqs. (28) and (30), everything under
integration. For algebras of the form

[X̃, T̃ ] = iλF (X̃) , (32)

where λ > 0 is a constant, Eq. (31) drastically simpli-
fies. In fact, the action of esadX̃ is trivial and one can
drop both that operator and the integration. Then, us-
ing Eq. (29), we arrive at

ln
(

eT̃ eX̃
)

= T̃ + ψ
(
eadT̃

)
X̃

=
+∞∑

n=1

Bn
(−1)n

n!
[T̃ , [T̃ , · · · [T̃
︸ ︷︷ ︸

n times

, X̃]] · · · ]

+T̃ + X̃ . (33)

To compare this relation with its counterparts where T̃
and X̃ are exchanged in the left-hand side, one should
recalculate Eq. (31); however, now the above simplifi-
cations do not take place. The procedure can be quite
difficult for a general algebra (32), and Eq. (27) seems
a hard goal to achieve. On top of that, it is not at all
guaranteed that the most convenient Weyl mapping from
classical to operator space will select phases as the nat-
ural plane waves. This is true, as we will see below, for
canonical and κ-Minkowski spacetimes, where the direct
verification of Eq. (27) is straightforward, but it may
not be the case for the nonlinear algebras we shall con-
sider. Therefore, we will adopt a very economic strat-
egy based upon the simple properties of canonical non-
commutative spacetimes. To begin with, let us discuss
briefly the two most studied examples of noncommuta-
tive spacetimes, the canonical or Moyal spacetime and
κ-Minkowski spacetime.

A. Canonical spacetime

Moyal space is the simplest example of noncommuta-
tive spacetime. The commutator of spacetime coordi-
nates can be seen as a generalization of the Heisenberg
algebra

[Xµ, Xν ] = iθµν , (34)

where θµν is a constant antisymmetric matrix. Interest
in this type of noncommutative spacetime was at first
triggered by its appearance in the context of string theory
[22, 23] and some years later for its relation to a quantum
deformation of the Poincaré algebra in which θµν plays
the role of a deformation matrix [54, 55].
We focus here on the case in which only the space/time

components of the deformation matrix are nonvanishing
and are given by θ0i = −λ. For this particular choice,
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we will call Qi the spatial coordinates. The spacetime
algebra is

[Qi, T ] = iλ , [Qi, Qj] = 0 , (35)

with X0 = T , which corresponds to the case F (Q) = 1
in Eq. (32). Given a function f(x) in ordinary spacetime
and its Fourier transform

f̃(k) =

∫ +∞

−∞

dDx e−ik·xf(x) , (36)

the canonical Weyl map is defined as

Ωq(f) :=
1

(2π)D

∫ +∞

−∞

dDk eik·Qf̃(k) , (37)

where the Q := (T,Q)t (t denotes transpose) in the in-
tegral are noncommuting objects. To calculate the com-
position law of plane waves, define

T̃ := −ik0T , Q̃j = ipjQj , (38)

so that the new coordinates obey [Q̃j, T̃ ] = iλ̃j , where

λ̃j := k0pjλ . (39)

For this canonical algebra and for a fixed j, application
of the BCH formula is straightforward. From Eq. (33),
one has

exp(T̃ ) exp(Q̃j) = exp(T̃ + Q̃j) exp

(

−
iλ̃j
2

)

.

Switching T̃ with Q̃j in the left-hand side of Eq. (31)

eventually yields the same formula with λ̃j → −λ̃j , so
that we obtain

exp(T̃ ) exp(Q̃j) = e−iλ̃j exp(Q̃j) exp(T̃ ) .

From Eq. (38) and extending to D dimensions,

exp(−ik0T ) exp(ipjQ
j) = e−iλk0

∑
j
pj exp(ipjQ

j) exp(−ik0T ) , (40)

where upper and lower indices are summed over. Thus, the exchange of time and space exponentials generates an
extra constant (with respect to spacetime coordinates) phase, and there is no issue of operator ordering in Eq. (37).
Using Eq. (40), we can combine two noncommutative plane waves and, by the inverse Weyl map, we obtain the
following ∗-product:

eikµq
µ

∗q e
ipµq

µ

= Ω−1
q [exp(ikjQ

j) exp(−ik0T ) exp(ipjQ
j) exp(−ip0T )] = ei(kµ+pµ)q

µ

e−iλk0

∑
j
pj . (41)

The action functional of noncommutative field theory
is a linear map from noncommutative spacetime to C.
In order to remove ambiguities in the definition of in-
teraction terms in the action functional, it is customary
to impose the cyclic property [39, 56]. In the ∗-product
formalism, the latter can be written as

I([f̂ , ĝ]) :=

∫

dDx v(x)[f, g]∗ = 0 , (42)

where [f, g]∗ = f ∗ g− g ∗ f and v(x) is a measure weight
that assures the requested feature when combined with
the star-commutator of any two test functions f and g.
In the canonical case, it is well known that the trivial

measure vc(q) = 1 satisfies Eq. (42). However, simply
by imposing condition (42), one can get a whole class of
cyclicity-inducing measures.
Given that the functions qn := qn0

0 ...q
nD−1

D−1 form a basis
for any f and g, we can rewrite the Eq. (42) as

∫

dDq vc(q)[q
n
j , g(q)]∗q

= 0 , (43a)

∫

dDq vc(q)[t
n, g(q)]∗q

= 0 , ∀ n ∈ N. (43b)

Now, taking g(q) = eip·q, we want to formulate the ∗-
product as a pseudodifferential operator starting from
the following observation:

qj ∗q e
ip·q = lim

k→0
(−i∂kj eik·q ∗q e

ip·q)

= lim
k→0

[−i∂kjei(k+p)·qe−iλk0

∑
j
pj ] , (44a)

t ∗q e
ip·q = lim

k→0
(i∂k0eik·q ∗q e

ip·q)

= lim
k→0

[i∂k0ei(k+p)·qe−iλk0

∑
j
pj ] . (44b)

Therefore, we can write the star-commutators as

[qnj , e
ip·q]∗q

= (−i)n lim
k→0

∂nkj [ei(k+p)·qe−iλk0

∑
j
pj

−ei(k+p)·qe−iλp0

∑
j
kj ]

= {qnj − [qj − (D − 1)λp0]
n}eip·q , (45a)

[tn, eip·q]∗q
= in lim

k→0
∂nk0 [ei(k+p)·qe−iλk0

∑
j
pj

−ei(k+p)·qe−iλp0

∑
j
kj ]

=
[(

t+ λ
∑

j

pj

)n

− tn
]

eip·q , (45b)
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so that

[qnj , e
ip·q]∗q

= {(−i∂pj
)n − [−i∂pj

− (D − 1)λp0]
n}eip·q ,

(46a)

[tn, eip·q]∗q
=
[(

i∂p0
+ λ

∑

j

pj

)n

− (i∂p0
)n
]

eip·q .

(46b)

At this point, we extend the result to any function
by linearity with Fourier analysis and, integrating over
momenta, we gain the differential form of the star-
commutators for any function g:

[qnj , g(q)]∗q
= {qnj − [qj + i(D − 1)λ∂t]

n}g(q) ,(47a)

[tn, g(q)]∗q
=
[(

t− iλ
∑

j

∂j

)n

− tn
]

g(q) . (47b)

Substituting these expressions in Eq. (43) and integrating
by parts, we get the cyclicity-inducing equations

∂tvc(q) = 0 , (48a)
∑

j

∂jvc(q) = 0 . (48b)

Their solutions are all the measures assuring the cyclic
property of the canonical action functional. As we could
expect, the trivial measure vc = 1 is a solution of the
latter equations. This particular solution is the measure
we have for a commuting spacetime and it coincides with
the Lebesgue measure. More general cyclicity-inducing
measures vc(q) 6= 1 are

vc(q) = exp



a

D−1∑

j=1

qj −
a(D − 1)

b
ln





D−1∑

j=1

ebqj







 ,

(49)
for any real a and b 6= 0.

B. κ-Minkowski spacetime

Noncommutative spacetimes in which the coordinates
close a Lie algebra are of particular interest. As dis-
cussed in the Introduction, they emerge in the descrip-
tion of point particles coupled as topological defects to
three-dimensional Einstein gravity, and are also the type
of effective noncommutative spaces most easily related
to or derived from group field theories [57–59]. In such
theories, momentum space is described by the Lie group
associated with the spacetime Lie algebra. Moreover, in
all known examples there exists a notion of deformed
relativistic symmetries in which the parameter provid-
ing the dimension of length for the structure constants of

the Lie algebra plays the role of a deformation parameter.
The particular example of κ-Minkowski space [28, 60, 61]
is one of the best studied models of Lie-algebra noncom-
mutative spacetime. It is characterized by the κ-Poincaré
algebra [61], a type of deformation of relativistic symme-
tries which became popular as an example of relativistic
symmetries incorporating an invariant energy scale, and
with interesting phenomenological implications [62, 63].
The commutators for κ-Minkowski space are given by

[Xi, T ] = iλXi , [Xi, Xj ] = 0 , (50)

where λ = 1/κ > 0 has now the dimension of
length/inverse energy. We look again at the composition
of plane waves and the braiding relation for noncommut-
ing exponentials. In this case we employ the BCH for-
mula (33) for

T̃ := −ik0T , X̃j := ipjXj . (51)

For a κ-Minkowski algebra, [F (X) ∝ X in Eq. (32)],
Eq. (33) is still fully resummed:

exp(T̃ ) exp(X̃) = exp

(

T̃ +
iλ̃

eiλ̃ − 1
X̃

)

, (52)

where

λ̃ := −ik0λ . (53)

Exchanging T̃ with X̃ in the left-hand side of (31) and

recalculating, one finds Eq. (52) with T̃ and X̃ flipped

in the left-hand side and λ̃→ −λ̃ in the right-hand side;
rescaling X̃, one gets

exp(T̃ ) exp(X̃) = exp
(

e−iλ̃X̃
)

exp(T̃ ) ,

so that

exp(−ik0T ) exp(ipjX
j) =

exp
(
ie−λk0pjX

j
)
exp(−ik0T ) . (54)

Equipped with this relation, one can derive the explicit
group-law addition of momenta from the composition of
plane waves. We take a particular choice of normal or-
dering with the time variables always appearing to the
right,

ΩR(f) :=
1

(2π)D

∫ +∞

−∞

dDk eikiX
i

e−ik0T f̃(k) , (55)

so that

eik·x ∗R e
ip·x := Ω−1

R [exp(ikjX
j) exp(−ik0T ) exp(ipjX

j) exp(−ip0T )]
(54)
= eiγR(k,p)·x (56)
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where γR(k, p) = (k0 + p0, kj + e−λk0

pj)t. From a
deformed-symmetry point of view, such relation im-
plies that the generators of translations (of which plane
waves are eigenfunctions) exhibit a nontrivial coproduct
[64, 65]. From a geometrical point of view, Eq. (56) can
be interpreted in terms of the Maurer–Cartan connection
naturally defined on the momentum space group mani-
fold [66–68].
Fields on κ-Minkowski space are more difficult to han-

dle than their counterparts defined on canonical space-
times [64, 69–72]. One difficulty one immediately faces is
that the cyclicity property is lost if one assumes the triv-
ial measure vκ = 1. It is therefore necessary to find the
appropriate cyclicity-inducing equations from the gen-
eral condition (42). These were found in [39], following
the same procedure we outlined in the previous Section.
The resulting equations, for the choice of normal order-
ing just discussed above, are (1 − e−inλ∂t)vκ(x) = 0 and
∂j [x

jvκ(x)] = 0, equivalent to

∂tvκ(x) = 0 , ∂j [x
jvκ(x)] = 0 . (57)

Effective measures do not need to respect the same sym-
metries of the algebra.2 In [39], the rotation-invariant
solution vκ(x) = |x|1−D was chosen, but it is clear we
could pick other cyclicity-inducing measures that break
rotation symmetry, such as

vκ(x) =

D−1∏

j=1

|xj |
−1 . (58)

The time-to-the right normal ordering in Eq. (55) is
not the only possibility. One can symmetrize the time
dependence as

ΩT (f) :=
1

(2π)D

∫ +∞

−∞

dDk e−
i
2
k0T eikiX

i

e−
i
2
k0T f̃(k) ,

(59)
or simply take the symmetric Weyl map

ΩS(f) :=
1

(2π)D

∫ +∞

−∞

dDk eikµX
µ

f̃(k) . (60)

Explicit lengthy calculations show that these alternatives
still yield the same solutions [39]. As we show later, one
can find a cyclicity-inducing measure following a different
and simpler procedure based on a coordinate transforma-
tion.

2 One could also try to obtain symmetry-preserving measures by
dropping the cyclicity requirement, at the cost of having to deal
with ordering ambiguities in the definition of the Lagrangian den-
sity, or try to preserve both by modifying some other ingredient
of the theory. This issue will not concern us here, and we will
stick to the cyclicity condition and regard the preservation of
symmetries of secondary importance.

IV. CANONICAL MAPPING AND BRAIDING

FORMULA

Heisenberg algebras are well understood and there is a
sizable literature about the construction of a field theory
on a canonical spacetime [73]. Now we want to show that
it is possible to manage a certain class of algebras and
their cyclic properties just starting from the canonical
one and exploiting what we know about it. This method
was first employed in [39] in the case of κ-Minkowski, but
what follows is a more general formulation valid also for
nonlinear algebras.
Let [Xµ, Xν ] = iθµν(X) be an algebra and S =

∫
dDx v(x)F (x) the associated action integral in the ∗-

product formalism.3 Let Q = (T,Q)t obey the relations
(35) and

∫
dDq vc(q)f(q) be the correspondent action.

Suppose there exists a invertible coordinate transforma-
tion such that

Xµ = Xµ(Q) . (61)

Then, we can describe any functional F (X) of the general
algebra as a functional f(Q) = F [X(Q)] of the canoni-
cal operators. Obviously, we can repeat the same argu-
ment for the classical coordinates, (t,x) and (t,q), in the
spaces equipped with the ∗-product. Writing down the
canonical action functional and operating the coordinate
transformation, we have

∫

dDq vc(q)f(q) =

∫

dDx vc[q(x)]J(x)F (x) (62)

where

J(x) =

∣
∣
∣
∣

∂q

∂x

∣
∣
∣
∣

(63)

is the Jacobian of the transformation. Eq. (62) is just the
action functional S if v(x) = vc[q(x)]J(x). So, calculat-
ing the Jacobian would allow us to find cyclicity-inducing
measures of any algebra related to the canonical one. In
particular, the Jacobian itself is always a solution because
it corresponds to the case vc = 1.

A. Braiding formula

Equation (40) is the simplest example of a braiding
formula, a key ingredient in the following calculations.
In fact, we can prove the very useful relation

eT̃ eX̃(Q) = eX̃(Q−iλ̃)eT̃ , (64)

3 In principle, a ∗-product should also be used in multiplying a La-
grangian density (itself involving ∗-products of fields and their
derivatives) and the measure function, as both are noncommu-
tative functions on spacetime. The form given for the action
integral should be understood as arising after the ∗-product has
been rewritten in terms of ordinary functions acted upon by dif-
ferential operators and after appropriate integrations by parts
have been performed, if needed.
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where X̃(Q) is an analytic function of the canonical co-
ordinate Q (later the generalization to D dimension will
be straightforward). To begin, we expand the operator

eX̃(Q) in its series definition (assuming it exists),

eX̃(Q) =

+∞∑

n=0

anQ
n , (65)

where an are some coefficients.4 Expanding also eT̃ , the
problem is to move T̃ operators to the right in terms of

the form T̃mQn. Repeatedly using Eq. (35), one gets

T̃mQn =

n∑

l=0

l!(iλ̃)l
(
n

l

)(
m

l

)

Qn−lT̃m−l . (66)

Terms with m < l vanish (replace binomials with their
definition with Gamma functions), so that resumming

the exponential in T̃ we obtain

eT̃Qn = (Q − iλ̃)neT̃ , (67)

and using Eq. (65) we have Eq. (64). Reinstating mo-
mentum factors, extending to D dimensions, and writing
T̃ = −ik0T and X̃(Qj) = ipjX(Qj) for some X(Qj) de-
pendent only on the jth coordinate, one has

exp (−ik0T ) exp



i
∑

j

pjX(Qj)



 = exp



i
∑

j

pjX(Qj − λk0)



 exp (−ik0T ) . (68)

When X(Qj) = Qj , one recovers Eq. (40). The deriva-
tion of the braiding formula (54) for κ-Minkowski was
simple enough, but we can replicate it now in just one
line. Noting that the coordinates

Qj := lnXj (69)

are canonical in the orthant Xi > 0, one has Xi =
exp(Qi) = X(Qi) and Eq. (54) is recovered after analytic
continuation to the whole (D − 1)-dimensional space.
Equation (68) is remarkable. It is the composition law

of phase for any algebra of coordinates T and Xi which
can be mapped onto the canonical algebra via an invert-
ible transformation

Xi = X(Qi) , Qi = Qi(Xi) = X−1(Xi) . (70)

For some special cases, phases obey a group composition
law. This happens if the mapping (70) is linear [X(Q +
a) = X(Q) + X(a), Heisenberg algebra], or such that
X(Q + a) = X(Q)g(a) for some function g. The latter
case is κ-Minkowski, but not only: for instance, if Qi =
arcsin(Xi) (up to scales) and space is compact with λ-
dependent period (discrete momentum space), then the
phases in Eq. (68) remain linear in Xi.
Outside these cases, however, the braiding formula tells

us that phases do not satisfy a group law, and one should

4 One might legitimately question whether, for the validity of this
argument, such series must be well defined (an < ∞ for all n)
or else if it is sufficient to consider a formal expression. In the
examples we are concerned with in this work, however, we can
safely ignore this issue since, as we show below, one can slightly
modify the operators involved without changing the underlying
theory, and make Eq. (65) well defined.

change the Weyl map (24) or, in other words, the defi-
nition of “plane wave.” The Weyl mapping may be not
unique, but one such prescription exists for all algebras
related to the Heisenberg algebra via the canonical trans-
formation (70). The natural plane waves of these algebras
are

wk(X) := exp



−ik0T + i

D−1∑

j=1

kjQ(Xj)



 , (71)

the Weyl map is Ωq,

Ωq(f) =
1

(2π)D

∫ +∞

−∞

dDk wk(X)f̃(k) , (72)

and the star product is the canonical ∗-product (41).
At this point, the calculation of the cyclicity-invariant

measure associated with a given algebra is immediately
obtained via the Jacobian method. For κ-Minkowski,
the coordinate transformation xj = exp (qj) provides an
isomorphism between canonical space and κ-Minkowski
space in the first orthant (xj > 0) [39]. Then, the Jaco-
bian of this transformation is just the particular solution
(58), J(x) = vκ(x).
In the case of κ-Minkowski, there exist inequiva-

lent star products in one-to-one correspondence. In
fact, we have seen that a brute-force calculation of the
cyclicity-invariant measure (58) stems from three dif-
ferent Weyl maps, adopting the time-to-the-right, the
time-symmetrized, and the symmetric normal ordering
[Eqs. (55), (59), and (60)]. Now we see that a fourth
alternative is the canonical star product ∗q, defined on
the plane waves (71) with the Weyl map (72). Choosing
different Weyl maps corresponds to changing the basis on
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which functionals are expanded. When we shall consider
general nonlinear algebras, the most convenient choice
will be by far ∗q and the Weyl map (72). Since we have
not been able to prescribe alternative quantizations, we
do not know whether this choice is unique.

V. NONCOMMUTATIVE FRACTAL

SPACETIMES

Having prepared all the necessary ingredients, we are
ready to present the main physical results of this paper.
Since the geometry of multifractal spacetimes changes
with the scale, it is natural to expect that any relation
between these and noncommutative spaces with a given
coordinate algebra will be valid at a fixed scale. At dif-
ferent scales, the mapping will also change.

A. Mapping in the near-boundary regime

At the smallest scale probed by fractional models,
there is a simple correspondence with κ-Minkowski. If
the time direction is nonfractional and α0 = 1, the mea-
sure weight (15) in the boundary-effect regime reads

vBE(x) =

D−1∏

j=1

x−1
j = vκ(x) , (73)

which coincides with the κ-Minkowski cyclicity-
preserving measure. The only difference is in the
support: while vBE lives in the first orthant, the weight
vκ was found in the same region but then analytically
continued to the whole space RD−1. In turn, analytic
continuation was due to the particular canonical map-
ping (69) employed, which was well defined only in the
first orthant.
The fundamental scale of κ-Minkowski (what noncom-

mutativists would call “the Planck length”5) is then iden-
tified with ℓ∞:

ℓ∞ = ℓPl . (74)

Equations (19) and (23) imply that the critical point with
lowest integer Hausdorff dimension in a D = 4 ambient
space with integer time has dH = 3. This may be in ap-
parent agreement with the fact that the spectral dimen-
sion of κ-Minkowski is 3 [40], but there are two caveats
one should not overlook. First, the result of [40] relies
on the non-cyclic-invariant measure vκ = 1. Second, in
anisotropic models with α 6= α0 = 1 the spectral and
Hausdorff dimension are different. In order to get a cor-
rect comparison, one should compute the spectral dimen-
sion with the method of [40] for the cyclicity-preserving

5 Note that at this stage this is nothing more than a (reasonable)
choice.

measure, and verify that it coincides with dS = 2 as given
by Eq. (20) (D = 4 and α = 1/2). Since the calculation
of the spectral dimension follows the same method of the
return probability, the two results should agree; we omit,
however, a detailed calculation.
Note that, in order to establish the connection between

the two measures, we necessarily had to start with a com-
plex measure with log-oscillations. Indeed, in order to
recover the measure (73) at scales ℓ & ℓ∗, i.e., in a real-
order fractional action with measure ̺α and α0 = 1, one
should send α to zero and formally keep the leading term
in the expansion of the measure weight (now coefficients
are fully reinstated) vα(x

µ) = (xµ)α−1/Γ(α) ∼ α/xµ,
getting

d̺α
α→0
∼ αD−1vBE(x) d

Dx . (75)

In the pure multi-fractional scenario, the case α = 0 has
a pathological geometric structure (a zero-dimensional
object), the correct limit in the sense of distributions is
vα ∼ δ(x), and the formal inverse-power limit (75) is at
least doubtful. One could simply absorb the vanishing
constant αD−1 into a new normalization for the action,
but the geometric considerations constraining the range
of α (validity of the triangle inequality) would still lead to
tension when α < 1/2. On the other hand, the measure
weight vBE is well defined at scales ℓ ∼ ℓ∞, where it is
just the asymptotic limit of the log-oscillating measure in
the boundary-effect regime. As we mentioned above, in
that regime the Hausdorff and spectral dimensions take
well-defined, nonzero values determined by the fractional
charge frozen at α(ℓ∗).

B. Mapping in the multifractional regime

In the real-order multifractional regime ℓω ≪ ℓ . ℓ∗,
the effective measure weight is the average (16) of the
measure over a log-period, Eq. (17). If α0 = 1,

vα(x) =

D−1∏

j=1

xα−1
j . (76)

At any given α, we demonstrate that this measure is
also obtained, if one imposes the cyclicity condition, in a
noncommutative spacetime endowed with the nonlinear
algebra

[Xi, T ] = iλX1−α
i , [Xi, Xj ] = 0 , (77)

where λ > 0 is real. For α = 1 one obtains canonical
spacetime and the Heisenberg algebra Eq. (35), unless
one changes the physical interpretation and imposes to
have commutative space in the infrared, when the dimen-
sional flow ends. In this case, it is sufficient to redefine
the constant in the algebra as λ → (1 − α)λ. Anyway,
for α = 0 one gets κ-Minkowski, Eq. (50). The cyclicity-
inducing measure(s) will not depend on λ.
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One can check that if the algebra (77) holds, then

Qi :=
Xα

i

α
(78)

are canonical coordinates in the first orthant.6 In fact,
[Qi, Qj ] = 0 from the second relation in (77). To prove
the remaining commutator, we need the commutator of
T with an arbitrary, possibly noninteger power β of Xi.
For an integer power β = N , this commutator would read
(index i omitted)

[XN , T ] =

N−1∑

n=0

XN−1−n[X,T ]Xn ,

from which a generalization to the continuum follows:

[Xβ, T ] =

∫ β

0

dsXβ−1−s[X,T ]Xs = iβλXβ−α , (79)

where the last equality holds for the algebra (77). Then,
setting β = α we get

[Qi, T ] =
1

α
[Xα

i , T ] = iλ . (80)

Notice that in the limit α → 0, and after removing
an immaterial divergent constant, Eq. (78) gives the
known mapping from canonical to κ-Minkowski coordi-
nates, Eq. (69). This is the reason why we put a factor
1/α in (78).

From the discussion in Sec. IV and Eq. (68), one sees
that phases are not natural plane waves in fractional non-
commutative spacetime described by the algebra (77):

exp(−ik0T ) exp(ipjX
j) = exp



i
∑

j

pj(αX
α
j − αλk0)

1/α



 exp(−ik0T ) . (81)

In the limits α → 1 and α → 0, one correctly recov-
ers Eqs. (40) and (54), respectively. However, one can
construct a quantum field theory on these spacetimes by
employing the canonical Weyl map and ∗-product. The
effective spacetime measure is then found immediately
via the Jacobian trick. For general α, the Jacobian asso-
ciated with the coordinate transformation (78) is

J(x) =

∣
∣
∣
∣

∂q

∂x

∣
∣
∣
∣
= αD−1

D−1∏

i=1

|xi|
α−1 , (82)

and by the known calculation in canonical space, this is
also a particular solution for a cyclicity-preserving mea-
sure. It coincides with Eq. (76), up to a trivial constant
factor. This is the final result.
We have thus shown that we can map the measures

appearing in field theories on multifractional spacetimes
S(φ) =

∫
d̺(x)L(φ) =

∫
dDx vα(x)L[φ(x)] and in

field theories on spacetimes characterized by a nonlin-
ear noncommutative algebra of coordinates (77) I(φ) =
∫
dDx vα(x)F [φ(x)]. We have not, however, shown that

this extends to a map of field theories that include also
the algebra of fields and the corresponding dynamical ac-
tion principles. This was beyond our present goal.
As already mentioned, spacetimes associated with this

measure have Hausdorff and spectral dimension equal to,

6 This is the reason why the geometric coordinates (21) were de-
noted as qµ in [36–38].

respectively, dH = 1 + (D − 1)α and dS = Dα [37].
Since dH 6= dS, diffusion processes taking place therein
are anomalous.
One may be concerned that the series (65) does not ex-

ist for Xi defined as in Eq. (78). The canonical mapping
is valid even in the case where (65) is formal, but for the
sake of completeness we note that we can take another
mapping which gives exactly the same results:

Qi :=
Xα

i

α
− 1 , (83)

Xi = (1 + αQi)
1/α =

+∞∑

n=0

(
α−1

n

)

(αQi)
n , (84)

where
(
α−1

n

)

=
Γ(1 + α−1)

n!Γ(α−1 − n+ 1)
. (85)

Obviously, these new coordinates are canonical and the
series is well-defined since 0 < α ≤ 1.

C. Representations

In order to find the Hilbert space whereon the frac-
tional algebra (77) acts, we must find an explicit rep-
resentation. Here we are interested in mathematical re-
alizations of a representation on an abstract functional
space, not in any specific physical realization.
Due to the fact that the fractional Leibniz rule is con-

siderably more complicated than the integer case, we
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were unable to find representations based upon frac-
tional derivatives. Nonetheless, a representation asso-
ciated with the canonical mapping may be inferred from
the Heisenberg algebra. Letting

T := −iλ
D−1∑

j=1

d

dsj
, Qi := si , (86)

one has

[Qj , T ]f(s) = iλ

(
d

dsj
sj

)

f(s) = iλf(s) .

Then, in fractional Minkowski spacetime the canonical
representation is

T := −iλ
D−1∑

j=1

d

dsj
, Xi := (αsi)

1/α . (87)

In fact,

[Xj , T ]f(s) = iλ

[
d

dsj
(αsj)

1/α

]

f(s)

= iλ(αsj)
1/α−1f(s)

= iλX1−α
j f(s) .

Notice that the operator T is a plain derivative, i.e., the
generator of translations. By definition, “plane waves”
are the eigenfunctions of the Laplacian, and Eq. (87) tells
us that the plane waves of the quantum theory are phases
in Qi(X). This is in agreement with the canonical map-
ping picture.

VI. CONCLUSIONS

We have provided a connection between multifrac-
tional and noncommutative spacetimes based on the
properties of their nontrivial integration measures. Near
the fundamental scale ℓ∞, we found a correspondence be-
tween the fractional measure and the cyclicity inducing
measure of κ-Minkowski spacetime with the identifica-
tion ℓ∞ ∼ ℓPl ∼ 1/κ. For scales in the multifractional
regime ℓ∞ < ℓ . ℓ∗ we showed that the fractional mea-
sure is connected to the cyclicity inducing measure of a
family of fractional noncommutative spacetimes whose
fractional index α can be seen as a parameter which in-
terpolates between canonical (α = 0) and κ-Minkowski
(α = 1) noncommutative spacetime.
A couple of technical points may throw some light on

the physical picture. First, while fractional measures
have support in the first orthant, noncommutative spaces
typically extend to the whole embedding. The canoni-
cal mapping for κ-Minkowski coordinates was determined
only in the first orthant, too, but then one can analyt-
ically continue [39] and get the correct measure, with
absolute values. The fact that we have an analytic ob-
struction in the fractional case might be significant for
clarifying the fractal-noncommutative duality.

Second, cyclic-invariant measures are not unique, and
the duality was determined between fractional measures
on one hand and the particular solution v = J on the
other hand, corresponding to the Lebesgue canonical
measure vc = 1. We do not know whether other non-
trivial solutions exist with a fractal interpretation, but
a negative answer would imply that the canonical map-
ping is a far stricter guiding principle than expected. The
lack of alternative constructions, not passing through the
canonical mapping, leaves this matter undecided.

Two other pressing issues remain open. As we dis-
cussed, multifractal spacetimes exhibit different types of
symmetries at different scales, ranging from discrete scale
invariance to nonlinear realizations of Poincaré transfor-
mations. Also on the noncommutative side, in the sim-
pler cases of κ-Minkowski and canonical noncommuta-
tivity, there exist notions of deformed Poncaré transfor-
mations. For κ-Minkowski, they can also be understood
as nonlinear deformations of the ordinary ones. A nat-
ural question is whether we can establish a connection
between the various symmetry structures on both sides.

For the specific case of κ-Minkowski, another interest-
ing problem is to calculate the Hausdorff and spectral di-
mensions in the presence of a cyclicity-inducing measure.
A measure theory can be defined in order to generalize
the Hausdorff and spectral dimensions to noncommuta-
tive spaces [75–78]. However, the standard techniques
employed in [40] (for the κ-Minkowski Laplacian and the
trivial Lebesgue measure) and [37, 38] (for classical frac-
tional spacetimes with fractional or integer Laplacians)
should be sufficient to determine dH and dS. It would also
be interesting to reproduce the study [40] of the spectral
dimension in κ-Minkowski in the case of the more general
nonlinear noncommutative algebra (77). This will be the
subject of future work.

Finally, one would like to extend the correspondence
between fractional and noncommutative spacetimes that
has been investigated in this paper to the level of the
field theories defined thereon, mapping both the kine-
matics of fields defined on such spaces (both classical
and quantum) and their dynamics.

Concerning this, as we mentioned, the respective role
of cyclicity and breaking of symmetries in noncommuta-
tive field theories should be further elucidated. In par-
ticular, the preservation of symmetries in theories where
these are given by quantum groups (e.g., κ-Minkowski
and canonical noncommutativity) seems to require the
introduction of a nontrivial braiding for field operators
and a non-trivial statistics [69, 79–82]. Despite its ob-
vious importance, this issue is not fully understood in
the noncommutative field theory setting (in particular,
κ-Minkowski) and it has been noticed only recently in
fundamental quantum gravity models like group field the-
ory [83]. It should certainly be investigated further both
for the noncommutative algebra (77) introduced in this
paper and in the fractional spacetime context.
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