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Abstract

Corvino, Corvino and Schoen, Chruściel and Delay have shown the existence of a
large class of asymptotically flat vacuum initial data for Einstein’s field equations which
are static or stationary in a neighborhood of space-like infinity, yet quite general in the
interior. The proof relies on some abstract, non-constructive arguments which makes it
difficult to calculate such data numerically by using similar arguments.

A quasilinear elliptic system of equations is presented of which we expect that it can
be used to construct vacuum initial data which are asymptotically flat, time-reflection
symmetric, and asymptotic to static data up to a prescribed order at space-like infinity.
A perturbation argument is used to show the existence of solutions. It is valid when the
order at which the solutions approach staticity is restricted to a certain range.

Difficulties appear when trying to improve this result to show the existence of solu-
tions that are asymptotically static at higher order. The problems arise from the lack of
surjectivity of a certain operator.

Some tensor decompositions in asymptotically flat manifolds exhibit some of the diffi-
culties encountered above. The Helmholtz decomposition, which plays a role in the prepa-
ration of initial data for the Maxwell equations, is discussed as a model problem. A method
to circumvent the difficulties that arise when fast decay rates are required is discussed. This
is done in a way that opens the possibility to perform numerical computations.

The insights from the analysis of the Helmholtz decomposition are applied to the York
decomposition, which is related to that part of the quasilinear system which gives rise
to the difficulties. For this decomposition analogous results are obtained. It turns out,
however, that in this case the presence of symmetries of the underlying metric leads to
certain complications. The question, whether the results obtained so far can be used again
to show by a perturbation argument the existence of vacuum initial data which approach
static solutions at infinity at any given order, thus remains open. The answer requires
further analysis and perhaps new methods.



Abstrakt

Corvino, Corvino und Schoen als auch Chruściel und Delay haben die Existenz einer grossen
Klasse asymptotisch flacher Anfangsdaten für Einstein’s Vakuumfeldgleichungen gezeigt,
die in einer Umgebung des raumartig Unendlichen statisch oder stationär aber im Inneren
der Anfangshyperfläche sehr allgemein sind. Der Beweis beruht zum Teil auf abstrakten,
nicht konstruktiven Argumenten, die Schwierigkeiten bereiten, wenn derartige Daten nu-
merisch berechnet werden sollen.

In der Arbeit wird ein quasilineares elliptisches Gleichungssystem vorgestellt, von dem
wir annehmen, dass es geeignet ist, asymptotisch flache Vakuumanfangsdaten zu berechnen,
die zeitreflektionssymmetrisch sind und im raumartig Unendlichen in einer vorgeschriebe-
nen Ordnung asymptotisch zu statischen Daten sind. Mit einem Störungsargument wird ein
Existenzsatz bewiesen, der gilt, solange die Ordnung, in welcher die Lösungen asymptotisch
statische Lösungen approximieren, in einem gewissen eingeschränkten Bereich liegt.

Versucht man, den Gültigkeitsbereich des Satzes zu erweitern, treten Schwierigkeiten
auf. Diese hängen damit zusammen, dass ein gewisser Operator nicht mehr surjektiv ist.

In einigen Tensorzerlegungen auf asymptotisch flachen Räumen treten ähnliche Proble-
me auf, wie die oben erwähnten. Die Helmholtzzerlegung, die bei der Bereitstellung von
Anfangsdaten für die Maxwellgleichungen eine Rolle spielt, wird als ein Modellfall disku-
tiert. Es wird eine Methode angegeben, die es erlaubt, die Schwierigkeiten zu umgehen,
die auftreten, wenn ein schnelles Abfallverhalten des gesuchten Vektorfeldes im raumartig
Unendlichen gefordert wird. Diese Methode gestattet es, solche Felder auch numerisch zu
berechnen.

Die Einsichten aus der Analyse der Helmholtzzerlegung werden dann auf die Yorkzer-
legung angewandt, die in den Teil des quasilinearen Systems eingeht, der Anlass zu den
genannten Schwierigkeiten gibt. Für diese Zerlegung ergeben sich analoge Resultate. Es
treten allerdings Schwierigkeiten auf, wenn die zu Grunde liegende Metrik Symmetrien
aufweist. Die Frage, ob die Ergebnisse, die soweit erhalten wurden, in einem Störungsar-
gument verwendet werden können um die Existenz von Vakuumdaten zu zeigen, die im
räumlich Unendlichen in jeder Ordnung statische Daten approximieren, bleibt daher offen.
Die Antwort erfordert eine weitergehende Untersuchung und möglicherweise auch neue
Methoden.
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Chapter 1

Introduction

Gravitational waves are one of the many remarkable predictions of Einstein’s general the-
ory of relativity and have stimulated a great number of theoretical, mathematical and
experimental developments. A great effort has been underway in the last few decades to
observe their effects, yet there is still a large part of the studies of solutions to Einstein’s
field equations which is concerned with completing the mathematical foundations of the
theory.

The current concept of gravitational radiation in the non-linear regime was geometri-
cally idealized by Roger Penrose in the 60’s. It is based on the behavior of the field of
isolated gravitating systems as one moves along null geodesics to infinity. He proposed a
characterization of asymptotic flatness that relies on the assumption that the conformal
structure can be extended through null infinity with certain smoothness.

From the mathematical point of view, the Penrose proposal raises a number of difficult
mathematical questions regarding the long time evolution behavior of gravitational fields.
One of the main concerns was whether there exists a sufficiently large class of space-times
satisfying these assumptions such that physically relevant scenarios can be studied in this
way. In particular, the issue of whether the assumptions made allow for the existence of
non-trivial vacuum radiative space-times remained unsettled for a long time.

In the late 70’s Helmut Friedrich was able to construct a system of equations known as
the regular conformal Einstein field equations, which allowed him to prove a semi-global
existence result. This result is based on the hyperboloidal initial value problem in which
data is given in a hyper-surface in space-time that extends to null infinity.

In this setting Friedrich showed in [Friedrich, 1986] that suitable initial data evolve to
have a regular future null infinity locally in time. Furthermore, if such data are sufficiently
close to Minkowskian hyperboloidal initial data, then the evolution can be carried out for
sufficiently long as to obtain the complete future domain of dependence of the initial data.
This was later generalized to the Einstein–Maxwell–Yang–Mills equations in [Friedrich,
1991].

This result opened the door to the possibility of constructing non-trivial complete
vacuum space-times for the first time. This could in principle be done by finding Cauchy
data such that a suitable hyperboloidal surface was in their future development. A number
of complications appear which prevent a straight forward transition from Cauchy data in
a space-like hypersurface to null infinity and one needs to come up with a way to deal with
them.

There were efforts to surpass these obstacles by building particular types of initial
data tailored for the task. In [Cutler and Wald, 1989] time-symmetric initial data was
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CHAPTER 1. INTRODUCTION 4

constructed for the Einstein-Maxwell field equations to address this issue. The construction
is carried out on a manifold diffeomorphic to R3 and it is assumed that the metric h is
conformally flat. The constraints for the Maxwell field are

divhE = 0 (1.0.1a)
divhB = 0 (1.0.1b)

where divh is the divergence operator with respect to h. The electric field is assumed to
vanish while the magnetic Ba field is compactly supported in a shell and such that BaBa

is spherically symmetric. The magnetic field is conformally rescaled and the resulting
constraint divδ B̃ = 0 is solved explicitly, while the hamiltonian contraint is used to solve
for the conformal factor afterwards. We want to emphasize that the fact that the divergence
operator is under-determined elliptic plays a role in allowing considerable freedom to set
up the magnetic field with the required properties, and this is something to which we shall
come back in a moment.

The resulting initial data coincides with Schwarzschildian data outside the support of
the magnetic field. This provided explicit control over the domain of dependence of the
exterior Schwarzschild-like region and thus of the first portion of future null infinity. By
making the magnetic field sufficiently small the authors were able to obtain the first global
space-time by fitting a hypersurface in the future of this initial data suitable to apply the
technique of Friedrich mentioned above.

Though the initial data constructed in [Cutler and Wald, 1989] succeeded in developing
a space-time with a smooth null infinity in the sense Penrose proposed, the question of
which other types of Cauchy data fall within the same category was still open. One would
like to know what features of an initial data set determine whether or not it develops into
such a space-time and furthermore if it is possible to construct these data in pure vacuum.

In [Friedrich, 1998] a systematic study was given which exposed the relation between
the behavior of Cauchy data at space-like infinity and the smoothness of future null infinity.
It was found that one can choose a certain gauge in which space-like infinity is blown-up
to a cylinder I which touches I + and I − at two spheres I+ and I− respectively. With
respect to Cauchy data for the physical space-time, points at infinity are represented in
this picture by a sphere I0 on the cylinder I which lies in between I+ and I−.

The regular conformal field equations reduce on the above mentioned cylinder to interior
equations. This implies in particular that certain data can be given at I0 from which
the solution at I± can be obtained. At these sets the conformal field equations show a
degeneracy which is a potential source of non-smoothness at null infinity.

It was found that, depending on the Cauchy data, certain logarithmic singularities
develop at the sets I± which are expected to propagate along I ± whenever they are
present. The internal nature of the equations on the cylinder allowed Friedrich to derive, in
the time-symmetric case, a set of necessary conditions on Cauchy data such as to avoid the
presence of this class of singularities [Friedrich, 2002]. It was later shown in [Valiente Kroon,
2004], with the aid of computer algebra, that at higher orders these conditions are in fact
not sufficient to ensure the smoothness of the fields at I±.

More recently, it has been shown that a concept of asymptotic staticity (or asymptotic
stationarity in the non-time-symmetric case) ensures that the solutions extend smoothly
on I to I± at all orders.

It is expected that the requirement that the conformal structure of null infinity be
smooth to a certain order p can be related to the imposition on the initial data of being
asymptotically static or stationary up to a certain order q = q(p).
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1.1 Cauchy data with special asymptotics

As mentioned above, the construction of initial data given in [Cutler and Wald, 1989] relies
on finding of rather specific solutions to the Einstein–Maxwell constrains. As is the case
with the Einstein constraint equations in vacuum, the underlying under-determinedness of
the differential operators involved plays an important role in allowing sufficient room to
find such solutions.

More recently, it was shown by Corvino in [Corvino, 2000], and subsequent work in
[Chrusciel and Delay, 2003] and [Corvino and Schoen, 2006], that there exist (in an abstract
sense) a large class of asymptotically flat vacuum initial data for Einstein’s field equations
which are static or stationary in a neighborhood of space-like infinity, yet quite general in
the interior. These new data are constructed by starting from an arbitrary asymptotically
flat initial data set by perturbing it in a transition zone and attaching it to the exterior
region of a known asymptotically flat stationary solution. This process is sometimes refered
to as ‘gluing’.

Initial data sets with such behavior near space-like infinity are therefore relevant in the
efforts towards global simulations of isolated systems because their evolution, as was the
case for the data of [Cutler and Wald, 1989], can be controlled explicitly in such regions.
As was later shown in [Chruściel and Delay, 2002] and [Corvino, 2007], one can make
use of these data and the results on the hyperboloidal initial value problem to construct
space-times which have a smooth conformal structure at null infinity.

These results provide for the first time a satisfactory argument to say that the Penrose
proposal is not overly restrictive concerning the physical scenarios that can be considered.
There remains, however, the question of whether there are still more general data which
evolve into space-times with smooth asymptotics at null infinity. In fact, the requirement
that the data be static or stationary in a neighborhood of space-like infinity seems rather
strong. As mentioned above, it can be expected to be sufficient for the data to behave at
space-like infinity asymptotically like static or stationary data.

Unfortunately, from the point of view of numerical computations, the methods discussed
in the references above are quite different from the standard methods used so far in the
construction of initial data.

1.2 Asymptotic staticity

The initial motivation for the present work was to develop a framework by which initial
data with special asymptotics as discussed above could be generated by standard PDE
methods. Of particular interest was to obtain a system of equations that incorporated the
ideas of asymptotic staticity and which would lend itself to be treated by the techniques
currently used in numerical computations.

As a simplifying assumption, we shall consider time-reflection symmetric intial data.
The constraint equations reduce in this case to the problem of finding metrics hab such
that

R(h) = 0 (1.2.1)

where R(h) is the scalar curvature of hab. Equation (1.2.1) (as is the case for the general
vacuum Einstein constraints) is largely under-determined. This is manifestly used in what
is nowadays the most widely exploited method to construct solutions to Einstein’s con-
straint equations, i.e. the method of conformal rescalings. In it, a background metric is
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prescribed (subject to a certain condition) to which the solution is required to be confor-
mally related. This turns the constraints into an elliptic equation for the conformal factor
which can then be solved for. It seems that this method does not allow one to get the kind
of finer control on the asymptotics which we have in mind.

The equations we shall study in chapter 4 form a quasilinear elliptic system of equations
conceived with the aim of constructing solutions to (1.2.1) which are asymptotically flat and
asymptotically static up to a prescribed order at space-like infinity. The system is obtained
by altering Einstein’s static field equations in a way which we shall briefly describe here for
reference. A function v and a Riemannian metric hab on a manifoldM are said to satisfy
Einstein’s static vacuum field equations if they are a solution to

∆hv = 0 (1.2.2a)
−v Ric(h) + Hessh(v) = 0 (1.2.2b)

where ∆h, Hessh and Ric(h) denote the Laplace operator, the Hessian operator and the
Ricci tensor associated to the metric hab.

To begin with, the interest in studying the asymptotics of the solutions makes it rea-
sonable to consider a manifoldM diffeomorphic to R3. Let σ be a symmetric tensor field
defined onM and consider the system of equations

∆hv + trh(σ) = 0 (1.2.3a)
−v Ric(h) + Hessh(v) + σ = 0 (1.2.3b)

where trh is the trace operator with respect to hab. Solutions to this system of equations
are also solutions of (1.2.1), and are therefore admissible time-symmetric vacuum initial
data.

The objective of the introduction of the tensor σ is twofold. First, if it were possible
to solve this system in a way as to guarantee that σ has strong decay at space-like infinity,
then one could interpret such solutions as asymptotically static vacuum initial data. On
the other hand, as was noted very early in [Lichnerowicz, 1955], there do not exist non-
trivial asymptotically flat solutions to the static field equations (1.2.2) in R3, while it is
conceivable that the presence of the tensor σ in equations (1.2.3) relaxes this restriction.

One may not, however, freely prescribe the tensor σ. The contracted Bianchi identity
gives an integrability condition which reads

Mh(σ) = 0 (1.2.4)

where Mh is the operator given by Mh(σ) = divh(σ)−d ◦ trh(σ) = 0 and will be refered to
as the momentum constraint operator with respect to hab for its importance in Einstein’s
constrains. We shall refer to the system of equations that consists of considering equations
(1.2.3) together with (1.2.4) as the asymptotic staticity equations.

It is remarkable that, although we are considering time-symmetric initial data (i.e. with
vanishing second fundamental form), the momentum constraint operator reappears from
taking into account the Bianchi identity. The first order operator Mh is under-determined
elliptic and we shall devote considerable attention to some of its properties. As is typical of
these situations, one needs a way to split the unknowns into a part which can be prescribed
arbitrarily so that the rest of them can be solved for.

A remark is due at this point in support of the expectations that there should exist
solutions to the system considered here such that they correspond to a σ with fast decay
at infinity.
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Consider a manifold M ∼= R3 and on it an initial data set of the type that can be
constructed by gluing. More specifically, let h be an asymptotically flat metric such that
it is a solution to the vacuum, time-reflexion symmetric constraints (1.2.1) and let R > 0,
v ∈ C∞(M\ BR(0)) be such that v > 0, v → 1 at infinity and the static field equations
(1.2.2) are satisfied by (v, h) onM\BR(0).

It is possible to use such v and h to construct a solution to the asymptotic staticity
equations (1.2.3), (1.2.4). To do so, choose a smooth positive extension of v to whole ofM
(possibly after choosing a slightly larger value for R) and let σ := vRic(h)− Hessh(v) on
M. This implies ∆hv+trh(σ) = 0 is satisfied onM, while the contracted Bianchi Identity
implies σ satisfies (1.2.4). Then (v, h, σ) are a solution to (1.2.3),(1.2.4) with σ supported
on BR(0). One should also note that there remains a rather large freedom to specify the
extension of v and this could possibly allow for the imposition of further conditions.

The construction of the previous paragraph suggests that it is not the solvability of the
asymptotic staticity equations (1.2.3), (1.2.4) which is a problem but whether the solu-
tions can be obtained constructively, and in particular by methods accessible to numerical
computations. The construction also allows for generalizations by considering gluing data
which are asymptotically static up to a prescribed order as discussed in [Chrusciel and
Delay, 2003].

In chapter 4 an existence result is obtained for the system of equations (1.2.3), (1.2.4),
which holds when the order at which the solutions approach staticity is low. The strategy
used there to turn equation (1.2.4) into an elliptic equation relies on the standard York
decomposition. It consists of prescribing arbitrarily a symmetric tensor ψ and considering
the ansatz

σ = ψ − LhX (1.2.5)

where X is a 1-form and Lh is the conformal Killing operator with respect to hab. The
requirement σ ∈ ker (Mh) turns equation (1.2.4) into the elliptic equation

LhX −Mh(ψ) = 0 (1.2.6)

where Lh = Mh ◦ Lh. This equation is thought of as a condition on X and the tensor ψ
is considered as the free data. The system of equations consisting of (1.2.6) together with
what results of replacing (1.2.5) into (1.2.3) is studied using the implicit function theorem.
This allows to show existence of solutions in certain weighted Sobolev spaces under suitable
conditions on the weight parameters, which are used to control the decay rate at infinity.

Difficulties appear when trying to improve this result to show the existence of solutions
which are asymptotically static to higher order. The problems arise from the lack of
surjectivity of the operator Lh under stronger decay conditions.

1.3 Tensor decompositions with fast decay

The difficulties mentioned above are found in the present work to be related with the
possibility of carrying out the York decomposition in an asymptotically flat manifold under
the imposition of fast decay conditions. This served as the initial motivation for our study,
as a model problem, of what is known in the literature as the Helmholtz decomposition.
It turned out to be a problem of interest on its own right and which, though simpler to
treat in some respects, retains some of the features present in the York decomposition.
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Both the Helmholtz and the York decomposition can be viewed as methods to generate
solutions to particular under-determined equations. In the case of the former the operator
in question is divh, while in the latter it is Mh.

As was mentioned above, the construction of [Cutler and Wald, 1989] relies on an ex-
plicit solution with compact support to (1.0.1). We were interested, however, in a system-
atic approach that would allow one to generate a large class of solutions, while considering
weaker decay conditions. In this respect weighted Sobolev spaces play a fundamental role
by allowing one to rely on the results available in the literature concerning the properties
of the differential operators involved as maps between such spaces. A choice of a certain
weight parameter determines, roughly speaking, the decay conditions under which one is
considering the problem.

The Helmholtz decomposition consists of splitting a 1-form field into a part in the set
ker (divh) plus a part which is the gradient of a function. Roughly speaking, the issue of
whether one can do this or not depends on the properties of the Laplace operator as a map
between certain weighted Sobolev spaces.

As will be discussed in chapter 3, one might not be able to carry out the decomposition
in the standard more familiar form on account of a lack of surjectivity of the second order
operator in question, namely ∆h in the case of the Helmholtz decomposition, or Lh in the
case of the York decomposition.

To fix ideas, consider for example the problem of constructing solutions to divh σ = 0
such that they behave as

o
(
r−

5
2

)
for r →∞ (1.3.1)

at space-like infinity. To do this using the standard Helmholtz decomposition, one pre-
scribes a 1-form ψ satisfying (1.3.1), and then sets σ = ψ − dv. Requiring σ to have
vanishing divergence gives the equation ∆hv = divh ψ which one then solves for v. If the
solution v is such that dv also satisfies (1.3.1) then one is done, yet this might not always
be the case.

A method was developed to circumvent the problems caused by this lack of surjectivity
and is exhibited first in abstract terms in chapter 3. The key property used is that the
second order operator is a Fredholm map. This method allows one to find a certain finite
number of fields fν which serve as an extension to a given decomposition.

In the light of these abstract results one may consider the example above using what
we will refer to in the sequel as the extended Helmholtz decomposition and which shall be
discussed in detail in chapter 3. It is shown that one can choose fields f1, f2, f3 satisfy-
ing(1.3.1) such that, given any 1-form ψ satisfying (1.3.1), it can be decomposed as

ψ = dv + σ + k1f1 + k2f2 + k3f3 (1.3.2)

where σ ∈ ker (divh) and dv satisfy (1.3.1), and where k1, k2, k3 are constants.
As will be seen, the number of fields fν that are required to extend a decomposition

depend on the behavior at infinity one is aiming for. In general, it increases as one looks
for solutions with faster decay. The function v and the constants kν are unique, once the
fields fν are fixed. What this leads to is a systematic method to produce, by prescribing
a 1-form ψ, a divergence-less 1-form σ with the desired behavior at space-like infinity.

Afterwards it is shown that under certain conditions a given constructed extension
enjoys of a type of stability. Let {fν} be an extension to the Helmholtz decomposition with
respect to a given background metric hab and let ĥab be a another Riemannian metric. It is
shown that if ĥab is sufficiently close to hab, then the set {fν} also serves as an extension to
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the Helmholtz decomposition with respect the metric ĥab. In particular, explicit expressions
for extensions with respect to the Euclidean metric are given which, by the above stability,
can be used for metrics which are sufficiently small perturbations of Euclidean space.

The abstract discussion from chapter 3 are used in chapter 5 to derive results about
the York decomposition. It is shown that given a fixed background, extensions can be
constructed for the York decomposition in a way analogous to those obtained for the
Helmholtz decomposition in the same circumstances.

It is shown, however, that while in the Helmholtz case the number of fields in an
extension depends only on the fall-off considered, in the case of the York decomposition it
depends in addition on the number of Killing fields of the background geometry.

This is reflected in the fact that the kind of stability that was obtained for the Helmholtz
decomposition only carries through to the York decomposition in a direct way under certain
assumptions on the presence of symmetries for the metrics involved. In fact, a stability
result is obtained for the York decomposition in which it is assumed that the metrics
involved do not have Killing fields.

Explicit expressions can be obtained for the extended York decomposition with respect
to Euclidean R3. One cannot, however, apply the stability result to use this construction
for a different background. Loosely speaking, the dimension of the extension with respect
to the Euclidean metric falls short of allowing one to solve the issues regarding the lack of
surjectivity of the operator Lh.

1.4 Discussion

A system of equations is presented of which we expect that it can be used to construct vac-
uum initial data which are asymptotically flat, time-reflection symmetric, and asymptotic
to static data up to a prescribed order at space-like infinity. A perturbation argument is
used to show the existence of solutions. It is valid when the order at which the solutions
approach staticity is restricted to a certain range.

The York decomposition, which is part of the system used in the proof, gives rise
certain to difficulties when trying to show the existnece of solutions that are asymptotically
static at higher order. To explore those difficulties the Helmholtz decomposition, which
plays a role in the preparation of initial data for the Maxwell equations, is discussed as a
model problem. This decomposition, when considered under the imposition of fast decay
conditions, exhibits some of the features encountered above. A method to circumvent
those difficulties is discussed in a way that opens the possibility to perform numerical
computations.

The insights from the analysis of the Helmholtz decomposition are applied to the York
decomposition. For this decomposition analogous results are obtained. It turns out, how-
ever, that in this case the presence of symmetries of the underlying metric leads to certain
complications.

It remains to be seen whether the results obtained so far can be used again to show
by a perturbation argument the existence of vacuum initial data which approach static
solutions at infinity at any given order. The expectation is that the system of equations
presented here does indeed have solutions with such behavior. A rigorous proof, however,
requires further analysis and perhaps new methods.

In this respect, a further possibility to be explored is that one may somehow consider a
family of free data ψ(t) to the asymptotic staticity equations with ψ(0) = 0 and such that,
by imposing a parity condition for example, result in solutions having no Killing fields
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whenever t > 0. One may be able to use this family of free data along with the stability
results presented in this work to construct Cauchy data which are asymptotically static up
to a higher degree than obtained here.

We would like to point out that as a spin-off of the results of chapter 5, the techniques
used there can be used in the context of the construction of solutions to the non-time-
symmetric constraint equations by conformal rescalings. There, a background metric is
given a priori up to a condition on its conformal class. One can choose this metric so
that it has no non-trivial conformal Killing fields and then, using the results of this work,
obtain a large class of symmetric tensors Kab with prescribed fast fall-off at infinity which
are solutions to the momentum constraint with respect to that metric. These tensors, upon
a conformal rescaling which does not alter the fall-off, are admissible as second fundamental
forms for initial data sets.



Chapter 2

Operators and Function Spaces

2.1 Notation
M manifold diffeomorphic to Rn,
BR(p) ball centered at p of radius R in Rn,
T r,pM vector bundle of (r, p)-tensors overM,
δab Flat metric in Rn,
hab Riemannian metric onM,
dh(x0, x) geodesic distance between x0, x with respect to hab,
|w|h pointwise norm with respect to hab, e.g. |wa|2h = wawbh

ab,
dµh volume element associated to hab,

Λ0 space of scalar functions,
Λ1 space of 1-forms,
S2 space of symmetric 2-tensors,
trh trace operator associated to hab,
∇̊a connection associated with δab,
∇a connection associated with hab,
divh divergence operator associated to hab, i.e. divh u = ∇aua,
Hessh Hessian operator associated to hab, i.e. Hessh = ∇a∇b,
Sym Symmetrization operator, e.g. Sym (uavb) = 1

2(uavb + ubva),
∆h Laplace operator associated to hab, i.e. ∆h = trh ◦Hessh,
X ,Y,Z, .. Banach space,
‖x‖X norm of x ∈ X ,
Ox ⊂ X open set in X containing x,
W s,p
γ Weighted Sobolev space,
〈u, v〉h pairing of the tensor fields u ∈ T r,pM and v ∈ (T r,pM)∗ defined by

〈u, v〉h =

∫
M
v(u)dµh

whenever the right hand makes sense.

11
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2.2 Abstract Banach Spaces

A normed space (X , ‖ ‖X ) which is complete with respect to its norm is called a Banach
space. We collect here a number of abstract general statements that will be used in this
text.

Definition 2.2.1. The space of all continuous linear forms f : X → R is the dual space
to X and it is denoted by X ∗. By

‖f‖ = sup
x∈X

|f(x)|
‖x‖X

. (2.2.1)

a norm is defined on X ∗ which makes it a Banach space.

We denote by f(x) or alternatively by 〈f, x〉 the application of f ∈ X ∗ to x ∈ X .

Definition 2.2.2. [Kato, 1995] Let T : X → Y be a bounded operator. The dual operator
of T , denoted by T ∗, is a map

T ∗ : Y∗ → X ∗

where X ∗ and Y∗ are the dual spaces to X and Y respectively. This map is defined by

〈T ∗u, v〉 = 〈u, Tv〉, ∀u ∈ Y∗, v ∈ X

Theorem 2.2.3 (Banach’s closed range Theorem [Zeidler, 1993]). Let X and Y be Banach
spaces and let T : X → Y be a bounded linear operator. The following statements are
equivalent

i) ran (T ) is closed

ii) ran (T ∗) is closed

iii) ran (T ) = ker (T ∗)⊥

iv) ran (T ∗) = ⊥ ker (T )

where ran (T ) and ker (T ) denote the range and the kernel of T respectively and

ker (T ∗)⊥ = {y ∈ Y : 〈y∗, y〉 = 0 for all y∗ ∈ ker (T ∗)} (2.2.2)
⊥ ker (T ) = {x∗ ∈ X ∗ : 〈x∗, x〉 = 0 for all x ∈ ker (T )} (2.2.3)

Definition 2.2.4 ([Kato, 1995]). An bounded linear operator S : Y → Z is said to be

i) upper semi-Fredholm if ran (S) is closed in Z and dim (ker (S)) <∞

ii) lower semi-Fredholm if ran (S) is closed in Z and dim (coker (S)) <∞

iii) Fredholm if it is both upper and lower semi-Fredholm, and then its index is given by
index(S) = dim (ker (S))− dim (coker (S)).

where coker (S) denotes the cokernel of S defined by coker (S) = Z/ ran (S).

Lemma 2.2.5 ([Palais, 1965] section VI, Theorem 7). Let Z be a Banach space and let
X ⊂ Y be subspaces of Z. If X is closed and of finite codimension in Z, then the same is
true for Y.
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Definition 2.2.6 (Complemented set, [Rudin, 1991]). Suppose X is a closed subspace of
a topological vector space Z. If there exists a closed subspace Y of Z such that

Z = X + Y and X ∩ Y = ∅ (2.2.4)

then X is said to be complemented in Z. In this case Z is said to be the direct sum of X
and Y and the notation Z = X ⊕ Y is used1.

Lemma 2.2.7 ([Rudin, 1991]). Let X be a closed subspace of a topological vector space Z.
If dim (Z/X ) <∞, then X is complemented in Z.

Note that Lemma 2.2.7 implies that the range of any lower semi-Fredholm operator
S : Y → Z is complemented in the target space Z, so there exists a closed subspace I ⊂ Z
such that

Z = S(Y)⊕ I and S(Y) ∩ I = ∅ . (2.2.5)

We will refer to this by saying I is a complement to the range of S.

Projectors

Two families of s elements e1, . . . , es ∈ X and e∗1, . . . , e∗s ∈ X ∗ define a bi-orthogonal system
if and only if they satisfy

〈e∗i , ej〉 = δij for i, j = 1, . . . , s . (2.2.6)

Given s linearly independent elements in X , one can always find s elements in X ∗ to
construct a bi-orthogonal system. Their existence is guaranteed by the Hahn-Banach
theorem. (See [Zeidler, 1993, A.51])

Consider now the subspace X1 = {ei}si=1 generated by s linearly independent elements
e1, . . . , es ∈ X . Choosing elements {e∗j}sj=1 ∈ X ∗ such that they form with {ei}si=1 a
bi-orthogonal system, a projection operator P : X → X1 is defined by setting

P( · ) =

s∑
i=1

〈e∗i , · 〉ei . (2.2.7)

If s < dim (X ) the space X2 = (I− P)X depends largely on the choice of {e∗j}sj=1.

2.3 Weighted Sobolev Spaces

In our applications the Banach spaces will mainly the weighted Sobolev spaces that where
initially introduced in [Cantor, 1975]. However, we follow the conventions for the weight
parameter used in [Bartnik, 1986]. 2

Consider γ ∈ R, k ∈ Z with k ≥ 0 and p ∈ Z with 1 ≤ p ≤ ∞. Let x0 be a point in Rn
and define the function σδ by

σδ(x) =
√

1 + dδ(x0, x)2 . (2.3.1)
1This is also refered to as the topological direct sum, [Zeidler, 1993]
2The substitution γ → −(γ +n/p) changes from the notation for the weights used by [Cantor, 1975] to

the one used in the present work and viceversa.
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The weighted Lebesgue spaces of tensor fields Lpγ and weighted Sobolev spaces W k,p
γ over

Rn are defined to be the closure of C∞0 in the norm

‖u‖Lpγ =


(∫

Rn
|u|pδσ

−γp−n
δ dµδ

)1/p

, p <∞

ess supRn
(
|u|δσ−γδ

)
, p =∞

(2.3.2)

and

‖u‖
Wk,p
γ

=
k∑
j=0

∥∥∥∇̊ju∥∥∥
Lpγ−j

(2.3.3)

respectively.

Note: This convention for the weights permits the interpretation of the parameter γ
directly as a measure of the growth at infinity for if ‖u‖

Wk,p
γ

< ∞ with k > n
p , then

|u(x)| = o (rγ) for |x| → ∞ (see [Bartnik, 1986]).

2.3.1 Properties

Lemma 2.3.1 (Hölder inequality [Bartnik, 1986]). If u ∈ Lqγ1, v ∈ Lrγ2 and γ = γ1 + γ2,
1 ≤ p, q ≤ ∞, 1/p = 1/q + 1/r, then

‖uv‖Lpγ ≤ ‖u‖Lqγ1 ‖v‖Lrγ2 (2.3.4)

Lemma 2.3.2 (Multiplication Lemma, see [Maxwell, 2005]). If m ≤ min (j, k), p ≤ q,
ε > 0 and n

q < j + k −m, then multiplication

W j,q
γ1 ×W

k,p
γ2 →Wm,p

γ1+γ2+ε

acting by
(u1, u2)→ u1 ⊗ u2 (2.3.5)

for tensors u1 ∈W j,q
γ1 , u2 ∈W

k,p
γ2 defines a continuous bilinear map. If furthermore n

p < k

and γ < 0, then W k,p
γ is a Banach algebra.

Lemma 2.3.3 (Sobolev inequality, [Bartnik, 1986]). If u ∈ W k,p
γ with n

p < k, then there
exists a constant C depending only on the dimension such that

‖u‖
W 0,∞
γ
≤ C ‖u‖

Wk,p
γ

(2.3.6)

holds.

Lemma 2.3.4 (Poincaré inequality, [Bartnik, 1986]). If γ < 0 and u ∈ W 0,p
γ , then there

exists a constant C depending only on the dimension such that

‖u‖
W 0,p
γ
≤ C ‖∇u‖

W 0,p
γ−1

(2.3.7)

holds.

Proof. A Poincaré inequality for weighted spaces was proven in [Bartnik, 1986] for func-
tions. For tensor fields, it follows from the Cauchy-Schwartz inequality that |∇|w|h| =

2 |〈w,∇w〉h||w|h ≤ 2|∇w|h, hence

‖w‖
W 0,p
γ

= C1 ‖|w|h‖W 0,p
γ
≤ C ‖∇|w|h‖W 0,p

γ−1
≤ 2C2 ‖∇w‖W 0,p

γ−1
(2.3.8)

holds.
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2.3.2 Dual Spaces

For given p, we shall always designate the conjugate exponent p′ by

p′ =


1 if p =∞
p
p−1 if 1 < p <∞
∞ if p = 1

(2.3.9)

At the level of Lp spaces it is known (see [Adams, 1975]) that if 1 ≤ p <∞, then (Lp)∗

is isometrically isomorphic to Lp′ . It is customary to denote this by

(Lp)∗ ∼= Lp
′
.

This statement is sometimes refered to as the Riesz representation theorem for Lp. It is
straight forward to carry out an analogous argument to conclude that a similar statement
holds for Lpγ spaces. In fact, if 1 ≤ p <∞, then (Lpγ)∗ is isometrically isomorphic to Lp

′

−γ−n.
Thus if 1 ≤ p <∞ we write

(Lpγ)∗ ∼= Lp
′

−γ−n .

In the case of Sobolev spaces involving derivatives, the properties of the dual spaces
are most easily obtained by regarding W s,p as a closed subspace of a Cartesian product of
Lp spaces, consisting of as many factors as there are multi-indices j satisfying 0 ≤ |j| ≤ m.
Applying the considerations about duality for Lp spaces to such Cartesian producs, one
can conclude that if 1 ≤ p < ∞ then every element of f ∈ (W s,p)∗ is an extension of a
distribution T ∈ D′ to a bounded linear functional on W s,p. If 1 ≤ p <∞ and s ∈ N it is
customary to denote this space by W−s,p′ , so we write

(W s,p)∗ ∼= W−s,p
′
.

The considerations about duality in W s,p carry over to W s,p
γ with minor modifications to

account for the presence of different powers of the weights in each factor of the Cartesian
producs referred to above. The space (W s,p

γ )∗ is then seen to consist of those elements of
D′ which extend to give bounded linear functionals on W s,p

γ , and is denoted by W−s,p
′

−γ−n.
Then if 1 ≤ p <∞ and s ∈ N we write

(W s,p
γ )∗ ∼= W−s,p

′

−γ−n .

2.3.3 Operator Duals

Concerning operators and their duals, it is important to clarify some aspects of the use
that will be made of weighted Sobolev spaces. Consider the divergence operator as a map

divh : W s−1,p
γ−1 (Λ1)→W s−2,p

γ−2 (Λ0) (2.3.10)

for a given weight parameter γ. The operator dual is defined to be the map

(divh)∗ : W−s+2,p′

−γ+2−n(Λ0)→W−s+1,p′

−γ+1−n(Λ1) (2.3.11)

such that
〈divh ψ, ω〉h = 〈ψ, (divh)∗ω〉h (2.3.12)
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for every ψ ∈ W s−1,p
γ−1 (Λ1) and ω ∈ W−s+2,p′

−γ+2−n(Λ0). A formal expression for (divh)∗ can be
obtained as follows. Let there be a function ρ ∈ C∞0 and a 1-form φ ∈ C∞0 . Then

〈ρ, divh φ〉h =

∫
ρ divh φ dµh = −

∫
hab(dρ)a(φ)b dµh = −〈dρ, φ〉h (2.3.13)

on account of the compact support of the integrand. One can now interpret this as a
representation (by Riesz’s Theorem [Adams, 1975]) of the action of divh φ, considered
as an element of W s−2,p

γ−2 , on an element ρ ∈ (W s−2,p
γ−2 )∗. Then, when acting on compactly

supported functions, the operator −d coincides with div∗h. The set C∞0 is densely contained
in every W s,p

γ and therefore this operator extends by continuity to the respective space.
One can therefore regard the operator −d as the formal dual to divh, as long as the pair-

ing considered is consistent. To be more precise, the operator dual to divh : W s−1,p
γ−1 (Λ1)→

W s−2,p
γ−2 (Λ0) acts as the map

−d : W−s+2,p′

−γ+2−n(Λ0)→W−s+1,p′

−γ+1−n(Λ1) . (2.3.14)

In the same sense it can be seen that if one considers the Laplace operator ∆h =
hab∇a∇b as the map

∆h : W s,p
γ →W s−2,p

γ−2 (2.3.15)

then its operator dual ∆∗h is the map

∆∗h : W
−(s−2),p′
−γ+2−n →W−s,p

′

−γ−n (2.3.16)

and it acts as ∆∗h = hab∇a∇b (in the sense of distributions).

Example Application

We now consider the classical Poisson equation in
(
R3, hab

)
as an example. Let ρ ∈W s−2,p

γ−2
and consider

∆hv = ρ (2.3.17)

as an equation for v. Let Q(ρ) be defined by

Q(ρ) =

∫
ρ dµh . (2.3.18)

Without restricting the weight γ, there is no guarantee 2.3.18 will be finite. However if
γ < −1 then (2.3.18) is finite and 1 ∈ (W s−2,p

γ−2 )∗ = W−s+2,p′

−γ−1 . One can write

Q(ρ) = 〈1, ρ〉h .

Then it is possible to conclude for example that if ρ = divh ψ for a 1-form ψ ∈ W s−1,p
γ−1

then Q(divh ψ) = −〈ψ, d(1)〉h = 0.

2.3.4 The Hilbert space case, p = 2

For p = 2, the weighted Sobolev spaces acquire the structure of a Hilbert spaces, and it is
customary to adopt the notation W s,2

γ = Hs
γ . Let u1, u2 ∈ H0

γ . The scalar product of u1
and u2 is given by

(u1|u2)H0
γ

=

∫
M
u1 u2 (σ−γ−n/2)2dµδ .
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In order to have
‖u‖2Hγ

k
= (u|u)Hk

γ

one needs to set

(u1|u2)Hk
γ

=

k∑
j=0

(
∇̊ju1

∣∣∣∇̊ju2)
H0
γ−|α|

.

2.3.5 Asymptotic Flatness

Let x0 ∈ M be a given point and for any R ∈ R+, let {φ, (1− φ)} be a partition of unity
such that φ(x) = 1 if dh(x, x0) ≥ R.

Definition 2.3.5. Let (M, hab) be a Riemannian manifold. We call it asymptotically flat
of class (p, t, τ) if there exists compact sets K1,K2 with K1 ⊂ K̊2 ⊂M, a function φ :M→
[0, 1], φ(K1) = 0, φ(M\ K2) = 1 and a coordinate system {xj : M\ K1 → Rn \ B1(0)}
(refered to as end coordinates) such that in these coordinates one has

(1− φ)h ∈W t,p
−n/p (2.3.19a)

φ(x)(hij − δij) ∈W t,p
τ (2.3.19b)

with τ < 0.

We will be working with metrics hab which are sufficiently close to the flat metric in
the norm used to define asymptotic flatness. Because of this, we will consider the end
coordinates to be defined globally onM.

Lemma 2.3.6 (Proposition 7.3 in [Cantor, 1981]). Let (Rn, hab) be asymptotically flat of
class (p, t, τ). with t > n

p + 1 and τ < 0. Then if s ≤ t, the W s,p
γ norm with respect to end

coordinates is equivalent to the intrinsic norm

∑
|α|≤s

(∫
|(∇αf)|ph σ

−γp−n
h dµh

)1/p

. (2.3.20)

Lemma 2.3.7 (Bound for the inverse metric). Let
(
R3, hab

)
be asymptotically flat of class

(p, t, τ), t > 3
p . Assume that in (globally defined) end coordinates one has for 0 < 3ε < 1

‖hij − δij‖W t,p
τ
< ε . (2.3.21)

If hijhjk = δi
k, then in end coordinates it holds∥∥hij − δij∥∥

W t,p
τ
<

3ε

1− 3ε
. (2.3.22)

Proof. Defining γij = hij − δij one has

(δij + δikγkj)h
jl = δil (2.3.23)

Consider the (1, 1)-tensor T ij = −δikγkj . One can define the square of T by

(T )2 = T ikT
k
j (2.3.24)
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and similarly higher powers. By hypothesis
∥∥T ij∥∥W t,p

τ
< ε, so now one can compute the

weighted norm of (T )2 by first noting

|T ik T kj |δ=|δklT ik T lj |δ ≤|δkl|δ|T ik T lj |δ
≤ 3|T ij T lk|δ (2.3.25)

and using the multiplication Lemma 2.3.2∥∥(T )2
∥∥
W t,p
τ

=
∥∥∥|T ikT kj |δ∥∥∥

W t,p
τ

≤ 3
∥∥∥|T ikT lj |δ∥∥∥

W t,p
τ

≤ 3ε2 (2.3.26)

where τ < 0 and 3
p < t where used. Finally one has for q ≥ 1

‖(T )q‖W t,p
τ
≤ (3ε)q

3
(2.3.27)

so now it is possible to consider the series

∞∑
q=0

(T )q = δei +

∞∑
q=1

(−δekγki)q (2.3.28)

is absolutely convergent if 3ε < 1 and therefore constitutes the inverse to (δij + δikγkj).
This gives

hij − δij =

∞∑
q=1

(
−δikγke

)s
δej (2.3.29)

and consequently

∥∥hij − δij∥∥
W p,t
τ
≤ 3

∞∑
j=1

∥∥∥∥(−δikγke)j∥∥∥∥
W p,t
τ

(2.3.30)

≤ 3ε

1− 3ε
. (2.3.31)

2.4 Linear Partial Differential Operators

Suppose Q = (Qij) is a N × N system of linear partial differential operators in Rn. We
use the generalized definition of ellipticity provided by Douglis and Nirenberg [Douglis and
Nirenberg, 1955].

It is usual to define ellipticity first at a point, and then to say a system is elliptic in a
region Ω if it is elliptic at every x ∈ Ω. In what follows, it is to be understood that elliptic
refers to the complete manifold.

Definition 2.4.1. Two N -tuples, t = (t1...tN ) and s = (s1...sN ) of nonnegative integers
form a system of orders for Q if for 1 ≤ i, j ≤ N we have order(Qij) ≤ tj−si (if tj−si < 0
then Qij = 0). Then
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• the (t, s)-principal part of Q, denoted by σ(Q), is obtained by replacing each Qij by
its terms which are exactly of order tj − si,

• the (t, s)-principal symbol of Q, denoted by σξ(Q), is obtained by replacing each ∂a
in the (t, s)-principal part by the covector ξa ∈ Sn−1,

• the operator Q is elliptic with respect to (t, s) if the (t, s)-principal symbol of Q has
determinant bounded away from zero for x ∈ Rn and ξa ∈ Sn−1.

Assumption 2.4.2. Let Q be a system of linear partial differential operators and let (t, s)
be a system of orders for Q. We write

Q = Q∞ + S (2.4.1a)

and assume
Q is elliptic with respect to (t, s) and
each (Q∞)ij is either zero or a constant
coefficient operator of order tj − si,

(2.4.1b)

and writing3 S =
∑
|α|≤tj−si(Sα)ij∂

α we assume

(Sα)ij ∈ Csi(Rn) , (2.4.1c)

lim
x→∞

∣∣∣σtj−si−|α|+|β|∂β(Sα)ij

∣∣∣ = 0 (2.4.1d)

for all β ≤ si ∈ N.

Let ~γ represent the N-tuple of weights ~γ = (γ1, ...γN ). Define the weighted Sobolev
spaces

W
~t,p
~γ (RN ) =

N∏
j=1

W
tj ,p
γj (2.4.2)

In abuse of this notation, we omit the arrow and write simply γ if all the components of ~γ
are identical and take the value γ. Under the assumptions 2.4.2 the maps

Q∞ : W
~t,p

γ+~t
(RN )→W~s,p

γ+~s(R
N ) (2.4.3)

S : W
~t,p

γ+~t
(RN )→W~s,p

γ+~s(R
N ) (2.4.4)

define bounded operators.
Let Poly(γ) be the space of polynomials in x1, ..., xn of degree ≤ γ and denote by dP (γ)

its dimension (note that Poly(γ) = {0} if γ < 0). The number of homogeneous polynomials
of degree k is

(k + n− 1)!

k!(n− 1)!
(2.4.5)

and thus

dP (γ) =

[γ]∑
k=0

(k + n− 1)!

k!(n− 1)!
(2.4.6)

where [γ] represents the largest integer smaller than or equal to γ.
3By α we denote a standard multi-index.
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Theorem 2.4.3. Let Q∞ be a linear partial differential operator satisfying assumption
(2.4.1b). Then the map (2.4.3) is Fredholm if and only if

γ + tj 6∈ N if 0 ≤ γ + tj (2.4.7a)
−(γ + sj + n) 6∈ N if γ + tj < 0 (2.4.7b)

for every j = 1..N . Furthermore,

γ < −tj ∀j =⇒ Q∞ is injective (2.4.8a)
−sj − n <γ < −tj ∀j =⇒ Q∞ is an isomorphism (2.4.8b)
−sj − n <γ ∀j =⇒ Q∞ is surjective (2.4.8c)

The kernel and co-kernel of Q∞ consist of polynomials. Their dimensions are

dim (ker (Q∞)) =

N∑
j=1

dP (γ + tj)− dP (γ + sj) (2.4.9)

dim (coker (Q∞)) =
N∑
j=1

dP (−(γ + sj + n))− dP (−(γ + tj + n)). (2.4.10)

Proof. This theorem was proven with a different notation for the weights in [Lockhart and
McOwen, 1983].

If it is the case that Order(Qij) = m for all i, j = 1..N , then it is convenient to set
~t = (k +m, ..., k +m) and ~s = (k, ..., k). We restate the previous Theorem in this special
but useful case.

Theorem 2.4.4. Let Q∞ be a linear partial differential operator satisfying assumption
(2.4.1b) with respect to the system of orders given by ~t = (k+m, ..., k+m) and ~s = (k, ..., k)
with k ∈ N. 4. Then the map5

Q∞ : W k+m,p
γ (RN )→W k,p

γ−m(RN ) (2.4.11)

is Fredholm if and only if

γ 6∈ N if 0 ≤ γ (2.4.12a)
−(γ + n−m) 6∈ N if γ < 0 (2.4.12b)

Furthermore,

γ < 0 ∀j =⇒ Q∞ is injective (2.4.13a)
m− n <γ < 0 ∀j =⇒ Q∞ is an isomorphism (2.4.13b)
m− n <γ ∀j =⇒ Q∞ is surjective (2.4.13c)

The kernel and co-kernel of Q consist of polynomials. Their dimensions are

dim (ker (Q∞)) = N (dP (γ)− dP (γ −m)) (2.4.14a)
dim (coker (Q∞)) = N (dP (−γ − n+m)− dP (−γ − n)) . (2.4.14b)

4Observe that this implies that Order((Q∞)ij) = m for all i, j
5Observe that we have shifted the weight from γ + ~t to γ
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Theorem 2.4.5. Let Q be a linear partial differential operator satisfying assumptions
(2.4.1b) and (2.4.1c) with respect to the system of orders given by ~t = (k + m, ..., k + m)
and ~s = (k, ..., k) with k ∈ N. Then the map

Q : W k+m,p
γ (RN )→W k,p

γ−m(RN ) (2.4.15)

is Fredholm if and only if conditions (2.4.12) are satisfied. Moreover

index (Q)− index (Q∞) (2.4.16)

is a constant independent of γ. In particular, if Q is an operator on scalars, then it holds
that index (Q) = index (Q∞).

Remark 2.4.6. Theorem 2.4.5 was proven in [Lockhart and McOwen, 1985, Corollary 9.2],
and the statement about scalar operators is from [Lockhart and McOwen, 1983]. See also
[Lockhart and McOwen, 1984].

2.5 The Laplace operator

Consider in an asymptotically Euclidean manifold
(
R3, hab

)
, the Poisson equation for a

potential v with source ρ ∈W s−2,p
γ−2

∆hψ = ρ (2.5.1)

under the assumptions that γ 6∈ Z and γ < 0.
The Laplace operator ∆h is considered (as described in section 2.3.3) as the mapping

∆h : W s,p
γ →W s−2,p

γ−2

and Theorem 2.4.4 implies this map is Fredholm, hence ker (∆∗h) is finite dimensional.
Furthermore it will not be empty whenever γ < −1. By the closed range Theorem one has

ran (∆h) = ker (∆∗h)⊥

=
{
ρ ∈W s−2,p

γ−2 : 〈ρ, u〉h = 0 ∀u ∈ ker (∆∗h)
}
. (2.5.2)

After introducing some notation, we will consider in section 2.5.1 the case of Euclidean
R3, both as an illustration of the above discussion and as a matter of convenience for later
application.

Notation for basis of ker (∆∗h)

We will denote the elements of a basis for ker (∆∗h) by aµ, where the index µ = 1, . . . ,M
enumerates the elements. We use the same notation but with a little circle above (e.g. å)
when working with the Euclidean metric. Thus we write

ker (∆∗h) = {aµ}Mµ=1, and ker (∆∗δ) = {̊aµ}Mµ=1 (2.5.3)

where the overline denotes the linear span of the elements in brackets.
Whenever the sets (2.5.3) are not empty, they contain the constants. As a matter of

convenience, the index µ will be chosen so that the first element corresponds to a constant,
that is

a1 = å1 = 1 . (2.5.4)
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2.5.1 The case of Euclidean R3

To describe in more detail the set (2.5.2) when the manifold under consideration is
(
R3, δab

)
,

one must consider the problem of solving for all the u ∈W−s+2,p′

θ such that

∆∗δ(u) = 0 . (2.5.5)

The results of Theorem 2.4.4 apply also to this equation, so the solutions to (2.5.5) are
polynomial functions of the coordinates.

The set ker (∆∗δ) consists of the harmonic polynomials that are contained in the domain.
This means they are the ones that have growth at infinity slower than

(√
1 + dδ(x0, x)2

)γ
where x0 is any given point in R3. We shall denote by Hγ the set of harmonic polynomials
or order ≤ γ.

Counting the harmonic polynomials

By Theorem 2.4.4 the dimension of Hγ is given by

dim (Hγ) = dP (γ)− dP (γ − 2)

=
([γ] + n− 2)!

[γ]!(n− 1)!
(2[γ] + n− 1) (2.5.6)

where (2.4.6) was used. For the case n = 3 this gives dim (Hγ) = ([γ] + 1)2. This coincides
with the result of adding the dimensions of the independent spherical harmonics up to
l = [γ],

[γ]∑
l=0

(2l + 1) = ([γ] + 1)2 . (2.5.7)

Basis of harmonic polynomials

We now describe a basis to ker (∆∗δ) given explicitly. We start by choosing a set of indices
µ = 1, . . . ,M so that they enumerate the standard spherical harmonics Ylm, where l =
0, . . . , lM (for an adequate maximum value lM ) and for each given l, the integer m runs in
the range m = −l, . . . , l. Then we set

åµ : = rlYlm(θ, φ) . (2.5.8)

The way in which the numbering
µ↔ (l,m)

is constructed need not be specified at this point, except for the condition mentioned earlier
that µ = 1↔ (l = 0,m = 0) in order to make å1 a constant.

2.5.2 Complement to ∆δ(W
s,p
γ )

In this section we construct explicitly a finite dimensional subspace Iδ ⊂W s−2,p
γ−2 such that

W s−2,p
γ−2 = ∆δ(W

s,p
γ )⊕ Iδ . (2.5.9)

The set Iδ is a complement to ∆δ(W
s,p
γ ).
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Lemma 2.5.1. Let γ 6∈ Z. Let the functions g̊µ, µ = 1, ..,M , be defined by

g̊µ =

{
− 1
lr2

d
dr

(
r2χ(r)
rl−1

)
µ 6= 1

χ(r) µ = 1

}
× Y lm(θ, φ) (2.5.10)

where Y lm denotes the complex conjugate of Ylm, the function χ(r) ∈ C∞0 has support away
from the origin and satisfies ∫ ∞

0
χ(r)r2dr = 1 . (2.5.11)

Then the two families {̊aµ}Mµ=1 and {̊gν}Mν=1 form a bi-orthogonal system. Furthermore,
the set Iδ = {̊gµ} satisfies

W s−2,p
γ−2 = ∆δ(W

s,p
γ )⊕ Iδ . (2.5.12)

Proof. First of all, having χ(r) ∈ C∞0 supported away from the origin implies that g̊µ ∈
W s−2,p
γ−2 independently of the weight and differentiability degree under consideration.
Let f ∈ W s−2,p

γ−2 be arbitrary. The operator ∆δ is Fredholm by Theorem 2.4.4. Using
Theorem 2.2.3 we know there exists a solution v to

∆δv +
M∑
ν=1

kν g̊ν = f where kν ∈ RM (2.5.13)

if and only if
M∑
ν=1

kν 〈̊gν , åµ〉δ = 〈f, åµ〉δ ∀µ = 1, . . . ,M (2.5.14)

where ker (∆∗δ) = {̊aµ}. Under the given assumptions, it holds

〈̊gν , åµ〉δ = δν
µ (2.5.15)

which implies kµ = 〈f, åµ〉δ and proves the claim. 6

Using the bi-orthogonal system constructed above one can build a projection operator

J : W k−2,p
γ−2 → ∆δ(W

k,p
γ ) (2.5.17)

by setting

J(ρ) = I(ρ)−
M∑
µ=1

g̊µ〈̊aµ, ρ〉δ (2.5.18)

for every ρ ∈W k−2,p
γ−2 .

6 Remark (simpler basis): In Lemma 2.5.1, the choice of basis fields that generate Iδ was made for
convenience in a later application. With this choice, it is possible to write g̊ν = divδ f̊ν for ν 6= 1, as will
be shown latter on. A simpler choice for basis fields g̊ν is for example:

g̊µ = χ(r)r−lY lm(θ, φ) . (2.5.16)

with the same conditions on χ(r) as stated in the lemma.
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2.6 The Implicit Function Theorem

Let Ox0 ∈ X and Oy0 ∈ Y be neighborhoods of x0 ∈ X and y0 ∈ Y respectively. Consider
an operator

Ψ(x, y) : Ox0 ×Oy0 → Z

and assume it is Cr, r ≥ 1 (see [Abraham et al., 1988]). Then we denote the derivative
of the map Ψ by DΨ. Also for x ∈ Ox0 , the derivative of the map Ψ(x, y0) : Ox0 → Z is
called partial derivative of Ψ in the direction of the first argument and will be denoted by
DXΨ.

Theorem 2.6.1 (IFT [Abraham et al., 1988]). Let Π : X × Y → I be Cr, r ≥ 1 and
consider x0 ∈ Ox0 ⊂ X , y0 ∈ Oy0 ⊂ Y such that Π(x0, y0) = 0. If

(DXΠ)|(x0,y0) : X → I (2.6.1)

is an isomorphism, then there exist a neighborhood O′y0 ⊂ Oy0 and a unique Cr map
g : O′y0 → X satisfying

Π(g(y), y) = 0 (2.6.2)

for all y ∈ O′y0.

Corollary 2.6.2. Let Ψ : X × Y → Z be Cr with r ≥ 1 and consider x0 ∈ Ox0 ⊂ X ,
y0 ∈ Oy0 ⊂ Y such that Ψ(x0, y0) = 0. Assume that the operator DXΨ at (x0, y0) has
closed ran (DXΨ) = I ⊂ Z and that dim (Z/I) is finite. Let P : Z → I be a bounded
projection operator so that

P(Z) = I . (2.6.3)

If (DXΨ)|(x0,y0) : X → Z is injective then there exists a neighborhood O′y0 ⊂ Oy0 ⊂ Y and
unique Cr map q : O′y0 → X satisfying

P ◦Ψ (q(y), y) = 0 (2.6.4)

for all y ∈ O′y0.

Proof. Define a new operator Π : X × Y → I by Π(x, y) := P ◦ Ψ(x, y) and consider the
equation Π(x, y) = 0. The linearization of Π in the direction of X is (DXΠ) = P ◦ (DXΨ).
It defines a map (DXΠ)|(x0,y0) : X → I, and is therefore an isomorphism. The Implicit
Function Theorem can be applied to Π and this proves the corollary.

Remark 2.6.3.

i) Observe that by Lemma 2.2.7, the closedness of I and finite dimensionality of Z/I
implies I is complemented.

ii) Boundedness of the projection operator comes as a consequence of the closedness of
I. See [Kato, 1995, pag. 156]
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2.7 Cokernel Stability for Elliptic Operators

Definition 2.7.1 (Continuous Family). Let X and Y be Banach spaces and let ε ∈ [0, 1].
Denote by Qε : X → Y a family of bounded linear operators with parameter ε. We say
Qε : X → Y is a continuous family of operators if there exists a constant C > 0 such that
‖Qε −Q0‖Op ≤ Cε. The operator norm is defined as usual.7

Definition 2.7.2 (Uniform Injectivity). Let ε ∈ [0, 1] and denote by Qε : X → Y a
continuous family of linear elliptic operators between the Banach spaces X and Y. We say
the family is uniformly injective if there exists a constant C > 0 independent of ε such that

‖y‖X ≤ C ‖Qε(y)‖Y (2.7.2)

for all y ∈ X .

Lemma 2.7.3 (Stability Lemma [Butscher, 2007]). Let Qε : X → Y, ε ∈ [0, 1] be a
continuous family of linear, elliptic operators. Assume that Qε is uniformly injective. If
ran (Q0) ∩ C = {0}, where C is a finite dimensional linear subspace of Y, then there exists
ε0 > 0 such that ran (Qε) ∩ C = {0} for all ε < ε0.

Proof. Assume that for every ε > 0 there exists a non-vanishing element zε ∈ ran (Qε)∩C.
Linearity allows for the assumption ‖ze‖Y = 1. Let {εj} be a sequence converging to
zero. The finite dimensionality of C implies that the unit ball is compact. Thus there is a
convergent subsequence which we denote also by {zj} for convenience. The sequence {zj}
converges to a non-vanishing element z ∈ C with ‖z‖Y = 1. Because we have assumed
zε ∈ ran (Qε), there exist elements yε ∈ X for which Qε(yε) = zε. We now prove that the
sequence yj converges to an element y ∈ X . If C denotes the injectivity constant of the
family, it holds

‖yi − yj‖X ≤ C
(
‖(Q0 −Qi)(yi)‖Y + ‖(Q0 −Qj)(yj)‖Y

+ ‖Qi(yi)−Qj(yj)‖Y
)

≤ C
(
‖(Q0 −Qi)(yi)‖Y + ‖(Q0 −Qj)(yj)‖Y

+ ‖zi − zj‖Y
)

(2.7.3)

The continuity of the operator family implies the first two terms go to zero, while the last
term goes to zero because {zi} is Cauchy. This implies {yi} is a Cauchy sequence in the
norm X and therefore converges to an element y ∈ X . Also we have

‖z −Q0(y)‖Y ≤ ‖z − zi +Qi(yi)−Qi(y) +Qi(y)−Q0(y)‖Y
≤ ‖z − zi‖Y + ‖Qi(yi − y)‖Y + ‖(Qi −Q0)(y)‖Y (2.7.4)

which implies that z = Q0(y) and therefore gives z ∈ ran (Q0) ∩ C non-vanishing, contra-
dicting the hypothesis of ran (Q0) ∩ C = {0}.

7The operator norm is defined by

‖Qε‖Op = sup
‖x‖X=1

{
‖Qε(x)‖Y

}
. (2.7.1)



Chapter 3

Helmholtz decomposition with fast
decay

3.1 Introduction

In this chapter we focus our attention on a simple underdetermined model problem, namely
the construction of divergenceless 1-form fields. In particular where the solution is required
to have fast decay at space-like infinity, this problem exhibits certain difficulties that we
will encounter again in chapter 5, where we will use the findings of this case as a guide.

Consider in
(
R3, hab

)
the problem of finding 1-forms σ that are solutions to the equation

divh σ = 0 . (3.1.1)

A typical approach to constructing solutions to this equation consists of prescribing a
1-form ψ and using the ansatz

ψ = dv + σ (3.1.2)

where dv is the differential of a function v. The 1-form ψ is thought of as free data. It is
usual in some of the literature to refer to this procedure as the Helmholtz decomposition of
the field ψ, a name we will also use here. Inserting (3.1.2) into (3.1.1) gives ∆hv = divh ψ
and one is now in the position to study whether there exists a function v, with certain fall-
off conditions, that solves this equation for arbitrary free data. Weighted Sobolev spaces
provide an appropriate setting for analysing this equation.

3.2 Standard Helmholtz decomposition

We state a Theorem of [Cantor, 1981] concerning the Helmholtz decomposition on an
asymptotically flat manifold1.

Theorem 3.2.1 (7.6 in [Cantor, 1981]). Let
(
R3, hab

)
be asymptotically flat of class (p, t, τ)

with p > 1, t > 3/p+ 1 and τ < 0.
If s ∈ N, 3/p+ 1 < s ≤ t, γ 6∈ Z and

− 2 < γ < 1 (3.2.1)
1While Cantor discusses more general situations, we only consider here the cases in which the number

of derivatives controlled for the decomposed field satisfies s > 3/p+ 1.

26
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then it holds
W s−1,p
γ−1 (Λ1) = d(W s,p

γ )⊕ ker (divh) (3.2.2)

with d(W s,p
γ ) being closed.

In the proof a 1-form ψ is prescribed such that ψ ∈ W s−1,p
γ−1 (Λ1) and one tries to de-

compose it as in (3.1.2). The requirement that the 1-form σ ∈W s−1,p
γ−1 (Λ1) be in ker (divh)

gives {
∆h : W s,p

γ (Λ0)→W s−2,p
γ−2 (Λ0)

∆hv = divh ψ
(3.2.3)

which turns the underdetermined elliptic equation (3.1.1) into an elliptic problem. Above
and in the following we denote in parenthesis the type of objects of which each space is
made of. The details of the proof of this Theorem are posponed to section 3.2.2.

We will refer to the decomposition of Theorem 3.2.1 as standard Helmholtz decom-
position.

3.2.1 Abstract Banach space decompositions

Before addressing any further particularities of the Helmholtz decomposition, let us discuss
the situation from the abstract point of view which generalizes to the situation considered
later on. The feasibility of carrying out the Helmholtz decomposition can be understood
as of the possibility that a certain Banach space Y can be split into two pieces, one of
which is to be realized as the kernel of the operator S : Y → Z introduced by the problem.
To complete the decomposition, an auxiliary Banach space X is introduced, along with an
operator T : X → Y. The intention behind this is that ran (T ) should loosely speaking
contribute the part of Y that is not contained in ker (S) so as to get a spliting

Y = ran (T )⊕ ker (S) . (3.2.4)

Decomposing an arbitrary element ψ ∈ Y can be carried out successfully if one can
find v ∈ X and σ ∈ ker (S) such that ψ = T (v) + σ. The condition σ ∈ ker (S) gives

S ◦ T (v) = S(ψ) (3.2.5)

which is thought of as an equation for v.
In terms of this abstract formulation, the spaces and operators involved in the Helmholtz

decomposition are

X (Λ0)
d−−→
T
Y(Λ1)

divh−−−→
S
Z(Λ0) . (3.2.6)

The key issue is whether one can choose appropriate norms in each of the spaces involved
such that the decomposition can be carried out.

The Helmholtz decomposition and certain other Banach space decompositions can be
studied by means of the following Lemma by Cantor (see [Cantor, 1981]).

Lemma 3.2.2 (2.2 in [Cantor, 1981]). If T : X → Y and S : Y → Z are bounded linear
operators between Banach spaces, then the following are equivalent

i) ran (S ◦ T ) = ran (S) and ker (S ◦ T ) = ker (T )

ii) Y = ran (T )⊕ ker (S)

In particular when i) and ii) hold, ran (T ) is closed in Y.
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3.2.2 Differential Operators

In the following will shall not discuss the choices of p and t in our assumptions regarding
asymptotic flatness, but we keep them for future reference. It is important to note that
a choice for a weight parameter γ has to be made depending on the desired decay rate of
the prospective decompositions.

The values of γ are taken to be in R\Z to deal a technical issue with elliptic operators2

between weighted Sobolev spaces in n = 3, as can already be seen to some extent from
Theorems 2.4.3 and 2.4.4.

Assumption 3.2.3. Let γ ∈ R, p ∈ N, 1 < p <∞ and s ∈ N, 2 ≤ s. The 1-form fields σ
and ψ, and the function v, satisfy

σ, ψ ∈W s−1,p
γ−1 (Λ1) (3.2.7a)

v ∈W s,p
γ (Λ0) . (3.2.7b)

The differential operators considered here define the following bounded linear maps

divh : W s−1,p
γ−1 (Λ1)→W s−2,p

γ−2 (Λ0) (3.2.8a)

d : W s,p
γ (Λ0)→W s−1,p

γ−1 (Λ1) (3.2.8b)

divh ◦ d = ∆h : W s,p
γ (Λ0)→W s−2,p

γ−2 (Λ0) (3.2.8c)

and satisfy a number of properties collected in the following lemmas. Throughout the
chapter, the operators will be considered as maps acting between the spaces shown above.
We shall simply denote them by divh, d and ∆h when it is both convenient and clear.

Lemma 3.2.4 ([Cantor, 1981][Lockhart, 1981][Lockhart and McOwen, 1983]). Let
(
R3, hab

)
be asymptotically flat of class (p, t, τ) with p > 1, τ < 0, t > 3

p + 1. If s ∈ N is such that
2 ≤ s ≤ t, then the operator

∆h : W s,p
γ →W s−2,p

γ−2

defines a Fredholm map if and only of γ 6∈ Z. If so, then

i) It is injective iff γ < 0,

ii) It is surjective iff −1 < γ.

and
dim (ker (∆h)) = dim (ker (∆δ)) . (3.2.9)

Proof. Follows from Theorem 2.4.5.

The above Lemma states in particular that for metrics that are sufficiently close to the
Euclidean metric in the function spaces that define asymptotic flatness, the dimension of
ker (∆h) does not depend on the metric.

Lemma 3.2.5. The operator d : W s,p
γ →W s−1,p

γ−1 satisfies

ker (d) =

{
R if 0 < γ
{0} if γ < 0

(3.2.10)

2Some authors refer to this by saying that γ is not excepcional if γ ∈ R \ Z. In dimensions other than
n = 3, the set of non-excepcional weights takes a slightly different form.
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Proof. Clear.

Lemma 3.2.6. Let
(
R3, hab

)
be asymptotically flat of class (p, t, τ) with p > 1, τ < 0,

t > 3
p + 1. If s ∈ N is such that 2 ≤ s ≤ t, and if γ 6= Z then the operator

divh : W s−1,p
γ−1 →W s−2,p

γ−2 (3.2.11)

is lower semi-Fredholm and satisfies

ran (divh) =

{
W s−2,p
γ−2 if − 1 < γ

{R}⊥ if γ < −1
(3.2.12)

Proof. It is clear that ∆h(W s,p
γ ) = divh ◦ d(W s,p

γ ) ⊂ divh(W s−1,p
γ−1 ). By Lemma 3.2.4,

the set ∆h(W s,p
γ ) is closed and has finite codimension. Then Lemma 2.2.5 implies that

divh(W s−1,p
γ−1 ) is also closed and of finite codimension, thus lower semi-Fredholm. The

characterization (3.2.12) follows from the closed range Theorem and the remarks of section
2.3.3.

Proof of Standard Helmholtz Decomposition

Proof of Theorem 3.2.1. The decomposition (3.2.2) follows from Lemma 3.2.2 and the two
following facts.
i) It holds that

ker
(
d : W s,p

γ →W s−1,p
γ−1

)
= ker

(
∆h : W s,p

γ →W s−2,p
γ−2

)
(3.2.13)

if and only if γ 6∈ Z and γ < 1.
It is immediate that ker (d) ⊂ ker (∆h). If γ < 0 then ker (∆h) = ∅ and one gets the

claim. If 0 < γ < 1, we know from Lemma 3.2.5 that ker (∆h) consists of constants only.
The constants are in ker (d) and then with ker (∆h) ⊂ ker (d) the identity follows. For
1 < γ one has that dim (ker (∆h)) > 1 so equality cannot hold.
ii) It holds that

ran
(

divh : W s−1,p
γ−1 →W s−2,p

γ−2

)
= ran

(
∆h : W s,p

γ →W s−2,p
γ−2

)
(3.2.14)

if and only if γ 6∈ Z and −2 < γ. This Follows similarly from Lemmas 3.2.4 and 3.2.6.

3.3 Extended Banach Space Decompositions

As mentioned in the introduction, our main interest is the construction of divergenceless
1-forms with fast decay at space-like infinity. In terms of the weight parameter γ for the
Helmholtz decomposition, ‘fast decay’ translates into the requirement that γ be a large
negative number. Difficulties arise because the arguments in the proof of Theorem 3.2.1
do not apply for weights γ < −2.

To overcome these difficulties we will extend the decompositions (3.2.4) by including a
finite dimensional subspace J ⊂ Y such that

Y = ran (T )⊕ ker (S)⊕ J (3.3.1)

holds. In the case of the Helmholtz decomposition, we shall refer to such a set J as a
complement extending the Helmholtz decomposition.

The Theorem that follows simplifies and extends earlier work of [Specovius-Neugebauer,
1990] where the Helmholtz decomposition was considered in Euclidean space (Rn, δab).
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Theorem 3.3.1 (Abstract decomposition extension). Let T : X → Y and S : Y → Z
be bounded linear operators such that Q = S ◦ T : X → Z is Fredholm. Then S is lower
semi-Fredholm. Furthermore, there exists a subspace J ⊂ Y of finite dimension N+ −N−
such that

Y = ker (S)⊕ T (X )⊕ J (3.3.2)

where N+ = dim (Z/Q(X )) and N− = dim (Z/S(Y)).

Proof. Since Q is Fredholm, Q(X ) is closed and Z/Q(X ) is finite dimensional. Using
Q(X ) = S ◦ T (X ) ⊂ S(Y) and Lemma 2.2.5 it follows that S(Y) is closed and Z/S(Y) is
finite dimensional, making S lower semi-Fredholm (note that this is the same argument of
Lemma 3.2.6).

By the closed range Theorem

Q(X ) = {ker (Q∗)}⊥ (3.3.3a)

S(Y) = {ker (S∗)}⊥ . (3.3.3b)

Given that ker (Q∗) = ker (T ∗ ◦ S∗), one knows that ker (Q∗) ⊃ ker (S∗). Let aµ ∈ Z∗,
µ = 1, . . . , N+ be linearly independent elements such that

ker (Q∗) = {a1, . . . , aN− , aN−+1, . . . , aN+} (3.3.4a)

ker (S∗) = {a1, . . . , aN−} (3.3.4b)

where N+ = dim (ker (Q∗)), N− = dim (ker (S∗)). As was pointed out in section 2.2, there
exists a family of N+ fields gν ∈ Z such that

〈gν , aµ〉 = δν
µ ∀µ, ν = 1, . . . , N+ (3.3.5)

and thus the families {aµ}N+

µ=1 and {gν}N+

ν=1 form a bi-orthogonal system. By equation
(3.3.3b) and (3.3.5) one knows that gν ∈ ran (S) for ν = N− + 1, . . . , N+. Thus there exist
N+ −N− elements fν ∈ Y such that

S(fν) = gν , ν = N− + 1, . . . , N+ . (3.3.6)

We now let
J =

{
fN−+1, . . . , fN+

}
. (3.3.7)

Let ψ ∈ Y be arbitrary. To show that (3.3.2) holds, let us assume ψ is of the form

ψ = σ + T (x) + ξ (3.3.8)

where x ∈ X , ξ ∈ J and σ ∈ ker (S). This gives the equation

Q(x) = S(ψ − ξ) (3.3.9)

which we consider as a condition on x and ξ. A solution x to equation (3.3.9) will exist if
and only if

〈S(ψ − ξ), aµ〉 = 0 ∀µ = 1, . . . , N+ . (3.3.10)

These conditions are satisfied for the first µ = 1, . . . , N− because of equation (3.3.4b). By
writing ξ ∈ J as

ξ =

N+∑
ν=N−+1

kνfν (3.3.11)
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one obtains the linear system

〈S(ψ), aµ〉 =

N+∑
ν=N−+1

kν〈S(fν), aµ〉 (3.3.12)

which has the unique solution kν = 〈S(ψ), aν〉 by (3.3.5) and (3.3.6). With the obtained ξ
one can solve equation (3.3.9) and the decomposition of ψ is completed as claimed.

3.3.1 Cokernel Stability

The Lemma that follows will be used in a stability argument later on, but it is convenient
that we state and prove it here.

Lemma 3.3.2. Let Qε : [0, 1]×X → Z be a family of elliptic Fredholm operators. Assume
Qε is uniformly injective in the sense of definition 2.7.2 and that dim (ker (Q∗ε )) = N+ is
independent of ε. Let {gν}N+

ν=1 be a set of fields in Z such that I0 = {gν} satisfies

Z = Q0(X )⊕ I0 . (3.3.13)

Then there exists ε0 > 0 such that

Z = Qε(X )⊕ I0 for 0 ≤ ε < ε0 , (3.3.14)

and there exists an ε-dependent basis {âµ}N+

µ=1 of ker (Q∗ε ) such that the matrix 〈âµ, gν〉 is
non-degenerate for 0 ≤ ε < ε0.

Proof. One wants to show is that it is possible to use, as a complement to Qε(X ), the set
I0 which is independent of ε.

The hypothesis Q0(X )∩I0 = {0} and Lemma 2.7.3 imply there exists ε0 > 0 such that

Qε(X ) ∩ I0 = {0} for 0 ≤ ε < ε0 . (3.3.15)

By the closed range Theorem 2.2.3, one has Qε(X ) = {ker (Q∗ε )}
⊥ and by assumption

dim (ker (Q∗ε )) = N+ is independent of ε. Let {âµ}N+

µ=1 denote an ε-dependent basis for
ker (Q∗ε ) and consider the square matrix Aµν = 〈âµ, gν〉. The matrix Aµν is non-degenerate.
To see this, assume there exists kν ∈ RN+ − {0} such that Aµνkν = 0. Then one would
have that

〈âµ, kνgν〉 = 0 ∀µ (3.3.16)

and therefore 0 6= kνgν ∈ Qε(X ) ∩ I0 in contradiction with (3.3.15).
To prove that the decomposition (3.3.14) holds, let f ∈ Z be arbitrary. The equation

Qε(x) +

N+∑
ν=1

gνk
ν = f (3.3.17)

can be solved for the coefficients kν by first setting kν = (A−1)νµ〈âµ, f〉, and then solving
for x ∈ X .

Remark 3.3.3. Note that one can choose a basis {âµ}N+

µ=1 such that it satisfies

〈âµ, gν〉 = δµν for 0 ≤ ε < ε0 . (3.3.18)

by a redefinition
âµ → (A−1)µν â

ν . (3.3.19)
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3.4 Extended Helmholtz decomposition

The abstract decomposition Theorem 3.3.1 can be applied to the study of divergenceless
1-forms. In what remains of this chapter the symbols n+ and n− are used specifically to
refer to

n+ = dim (coker (∆h)) (3.4.1a)
n− = dim (coker (divh)) . (3.4.1b)

This numbers depend on the weight parameter γ. By Lemma 3.2.6 it holds that

n− =

{
0 if − 1 < γ

1 if γ < −1
(3.4.2)

As for the Laplace operator (see equation (2.5.7)), one can learn from the Euclidean R3

case that n+ behaves as

n+ =


0 if − 1 < γ

1 if − 2 < γ < −1

4 if − 3 < γ < −2

. . .

(3.4.3)

and continues to grow the further down the negative values of γ one is looking at.
The following result shows that it is possible to construct a finite dimensional set to

extend the Helmholtz decomposition with respect to a given metric hab.

Theorem 3.4.1. Let
(
R3, hab

)
be asymptotically flat of class (p, t, τ) with τ < 0. If γ 6∈ Z

and γ < 1 then there exist n+ − n− fields fν ∈W s−1,p
γ−1 (Λ1) such that

W s−1,p
γ−1 (Λ1) = d(W s,p

γ )⊕ ker (divh)⊕ Jh (3.4.4)

holds with Jh = {fν}n+

ν=1+n−
, and where n+, n− are those in (3.4.1a).

Proof. For values of −2 < γ, the statement coincides with that of Theorem 3.2.1. For
γ < −2 it follows from the abstract version 3.3.1.

3.4.1 Example Application: Euclidean Case

Fields f̊ν will now be constructed explicitly so that Jδ =
{
f̊ν

}n+

ν=2
satisfies

W s−1,p
γ−1 (Λ1) = d(W s,p

γ )⊕ ker (divδ)⊕ Jδ . (3.4.5)

The conditions that are required of the f̊ν can be stated in terms of explicit expressions
for the harmonic polynomials åµ and can be transformed into

〈̊aµ, divδ f̊ν〉δ = −〈d̊aµ, f̊ν〉δ . (3.4.6)

With the choice of basis made in section 2.5.1, one can compute

d̊aµ =

{
0 for µ = 1
rq−1 (qYqm dr + r dYqm ) for µ 6= 1

. (3.4.7)
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Consider the 1-form fields f̊ν ∈W s−1,p
γ−1 given by

f̊ν = −χ(r)
Y ∗q′m′

q′rq′−1
(dr) (3.4.8)

for ν = 2, . . . , n+, where χ(r) satisfies the hypothesis from lemma 2.5.1. This implies

〈d̊aµ, f̊ν〉δ = −
∫
R3

χ(r)Y ∗q′m′
rq−1

q′rq′−1
(qYqm + r∂rYqm) dµδ

= −δq,q′δm,m′C
∫ ∞
0

χ(r)r2dr

= −δµν (3.4.9)

for ν = 2, . . . , n+, and where C is the normalization constant for the spherical harmonics.
Hence, they are an explicit construction of the fields of of equation (3.3.6) in this particular
case.

Remark 3.4.2. It should be noted that by construction, the fields f̊ν satisfy

divδ(f̊ν) = g̊ν for ν 6= 1 (3.4.10)

for the functions g̊ν that where defined in lemma 2.5.1.

3.4.2 Extension Stability

A particular explicit construction of an extension to the Helmholtz decomposition in Eu-
clidean R3 was shown in (3.4.5). In this section we study the possibility of using the set
Jδ as a complement for the extended Helmholtz decomposition with respect to another
metric hab. It will be shown that

Y = ran (d)⊕ ker (divh)⊕ Jδ (3.4.11)

holds when hab is sufficiently close to the Euclidean metric. The proof of this statement
will rely on Lemma 3.3.2 and on the following estimate.

Lemma 3.4.3. Let
(
R3, hab

)
be asymptotically flat of class (p, t, τ), τ < 0, t > 3

p . If in
end coordinates

‖hij − δij‖W t,p
τ
< ε (3.4.12)

for some 0 < ε, then there exist a constant C such that

‖(divh−divδ)w‖W 0,p
γ−2
≤ Cε ‖w‖

W 1,∞
γ−1−τ

(3.4.13)

for every w ∈W 1,∞
γ−1−τ (Λ1).

Proof. Define γab and θab by

γab = hab − δab (3.4.14)

θab = hab − δab (3.4.15)

and let ∇a be the derivative operator compatible with hab, and ∇̊a the derivative operator
compatible with δab.
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By definition,

divδ(wb) = δab∇̊awb , divh(wb) = hab∇awb . (3.4.16)

Using
∇awb = ∇̊awb − Ccabfc (3.4.17)

with

Ccab =
1

2
hcd
(
∇̊ahbd + ∇̊bhad − ∇̊dhab

)
(3.4.18)

one obtains

(divh−divδ)wc = (δab + θab)(∇̊awb − Ccabwc)− δab∇̊awb (3.4.19)

= θab∇̊awb − habCcabwc . (3.4.20)

This gives

‖(divh−divδ)wc‖W 0,p
γ−2
≤
∥∥∥θab∇̊awb∥∥∥

W 0,p
γ−2

+
∥∥∥habCcabwc∥∥∥

W 0,p
γ−2

. (3.4.21)

Consider the first term of the right hand side in (3.4.21). By Hölder’s inequality∥∥∥θab∇̊awb∥∥∥
W 0,p
γ−2

≤ 9
∥∥∥θab∥∥∥

W 0,p
τ

∥∥∥∇̊awb∥∥∥
W 0,∞
γ−2−τ

(3.4.22)

≤ 9
∥∥∥θab∥∥∥

W 1,p
τ

‖wb‖W 1,∞
γ−1−τ

(3.4.23)

where the definition of the W 1,∞
γ−1−τ norm and the W 1,p

τ where used and each time a con-
traction is removed a factor 3 comes out.

For the second term of (3.4.21), first note that one can assume there exists a constant
C1 such that ∥∥∥habhcd∥∥∥

W 0,∞
0

=
∥∥∥(δab + θab)(δcd + θcd)

∥∥∥
W 0,∞

0

<
C1

35
. (3.4.24)

Then ∥∥∥habCcabwc∥∥∥
W 0,p
γ−2

≤ 1

2

∥∥∥habhcd (∇̊aγbd + ∇̊bγad − ∇̊dγab
)
wc

∥∥∥
W 0,p
γ−2

(3.4.25)

≤ C1

3

∥∥∥(∇̊aγbd + ∇̊bγad − ∇̊dγab
)
wc

∥∥∥
W 0,p
γ−2

(3.4.26)

≤ C1

∥∥∥∇̊aγbd∥∥∥
W 0,p
τ−1

‖wc‖W 0,∞
γ−1−τ

(3.4.27)

where Hölder’s inequality was used once more.
By the definition of the W 1,p

τ norm of γbc and the W 1,∞
γ−1−τ norm of wc one obtains then∥∥∥habCcabwc∥∥∥

W 0,p
γ−2

< C1 ‖γbc‖W 1,p
τ
‖wc‖W 1,∞

γ−1−τ
. (3.4.28)

Coming back to (3.4.21), one gets

‖(divh−divδ)wc‖W 0,p
γ−2

<

(
9
∥∥∥θab∥∥∥

W 1,p
τ

+ C1 ‖γbc‖W 1,p
τ

)
‖wc‖W 1,∞

γ−1−τ
. (3.4.29)

Using Lemma 2.3.7 it follows that it is possible to choose ε small enough so that the claimed
estimate is obtained.
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Theorem 3.4.4. Let γ 6∈ Z satisfying γ < 1. Let
(
R3, hab

)
be an asymptotically flat metric

of class (p, t, τ) with τ < 0, t > 3/p+ 1, and such that in end coordinates ‖hij − δij‖W t,p
τ

is
sufficiently small. If s ∈ N, 3

p + 1 ≤ s ≤ t, and the set Jδ is a complement for the extended
Helmholtz decomposition in

(
R3, δab

)
, then the decomposition

W s−1,p
γ−1 (Λ1) = d(W s,p

γ )⊕ ker (divh)⊕ Jδ (3.4.30)

holds for γ < 1.

Proof. The claimed decomposition holds if the matrix

Aµν = 〈aµ,divh f̊ν〉h for ν, µ = 2, . . . , n+ (3.4.31)

is non-degenerate, where the elements {aµ}n+

µ=1 are a basis of ker (∆∗h). The fields f̊ν satisfy
divδ f̊ν = g̊ν for ν = 2, . . . , n+, so one can write

Aµν = 〈aµ, g̊ν〉h + 〈aµ, (divh−divδ)f̊ν〉h . (3.4.32)

Using Lemma 3.3.2, one can assume that 〈aµ, g̊ν〉h is non-degenerate. Note also that both
terms in equation (3.4.32) are linear in aµ, in f̊ν and in g̊ν .

We now show that the first term in (3.4.32) dominates the second term. By the defini-
tion of the pairing 〈 , 〉h and Hölder’s inequality one has

|〈aµ, g̊ν〉h| ≤ C1 ‖aµg̊ν‖W 0,1
−3

≤ C1 ‖aµ‖W 0,p′
−γ−1

‖̊gν‖W 0,p
γ−2

(3.4.33)

where the constant C1 accounts for the supremum norm of the volume element associated
to hab. Similarly one has∣∣∣〈aµ, (divh−divδ)f̊ν〉h

∣∣∣ ≤ C1

∥∥∥aµ(divh−divδ)f̊ν

∥∥∥
W 0,1
−3

≤ C1 ‖aµ‖W 0,p′
−γ−1

∥∥∥(divh−divδ)f̊ν

∥∥∥
W 0,p
γ−2

≤ CC1ε ‖aµ‖W 0,p′
−γ−1

∥∥∥f̊ν∥∥∥
W 1,∞
γ−1−τ

(3.4.34)

where Lemma 3.4.3 was used. Comparing (3.4.33) with (3.4.34) one can see that if
‖hij − δij‖W t,p

τ
is sufficiently small then Aµν is be non-degenerate.



Chapter 4

Asymptotic Staticity

4.1 Introduction

Consider a 3-dimensional manifold M, a Riemannian metric hab and a symmetric tensor
Kab. One says that (M, hab,Kab) is an initial data set to Einstein’s vacuum field equations
if it satisfies the vacuum constraints, i.e. the Hamilton constraint

R(h)− |K|2h + (trhK)2 = 0 (4.1.1a)

and the momentum constraint

divh(K)− d ◦ trh(K) = 0 . (4.1.1b)

Einstein’s vacuum constraints constitute an under-determined elliptic system of four
equations for twelve unknowns. It is not evident at first sight how one could prescribe a
priori some of these unknowns in a way that makes possible solving for the remaining ones.

A well established and widely used method for constructing initial data is what is
referred to the literature as the method of conformal rescalings. This method provides
a way to prescribe some of the unknowns –thought of as free data– and turns equations
(4.1.1) into a determined elliptic system for the remaining variables.

At the core of this method is the idea that one can specify (up to certain conditions) a
background metric ĥab and require that the solution hab to (4.1.1) be conformally related
to ĥab so that

hab = φ4ĥab (4.1.2)

with a positive function φ onM, which possibly satisfies some boundary conditions. The
method also gives a prescription for how to give data for the symmetric tensor Kab which
we will discuss later, but in a different context.

The construction of initial data discussed in the present work is specifically intended
to address certain aspects in the modeling of isolated gravitating systems, so we restrict
our attention to manifolds which are asymptotically flat in the sense of definition 2.3.5.

The method of conformal rescalings does not seem to provide one with the means to
get finer control on the behavior of solutions at space-like infinity.

For simplicity, we will focus on the construction of time reflection symmetric initial
data. The vacuum constraints reduce in this case (vanishing extrinsic curvature) to the
problem of finding metrics hab that satisfy the equation,

R(h) = 0 . (4.1.3)

36
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The ansatz (4.1.2) then leads to the equation

∆ĥφ = 1
8 R(ĥ)φ (4.1.4)

and one requires the solution to satisfy the condition φ → 1 at space-like infinity. In a
reasonable function space the solution will then be determined uniquely.

We are interested, however, in constructing initial data with certain special asymptotics
which cannot be controlled by this method. A system of equations will be proposed with
this specific goal in mind. To motivate the introduction of our system of equations, we
consider first Einstein’s static vacuum field equations.

4.1.1 Static Vacuum Field Equations

Let
(
M(4), g

(4)
ab

)
be a four dimensional space-time and consider Einstein’s vacuum field

equations
Ric(4)[g] = 0 (4.1.5)

where Ric(4) denotes the four dimensional Ricci tensor. A space-time is said to be static
if there exists a timelike Killing field ξ which is hypersurface orthogonal. In a static
space-time it is possible to construct a coordinate t adapted to the integral curves of the
Killing field so that ξ = ∂t and ξ is orthogonal to the hypersurfaces {t = const.}. Then
M(4) ∼= R×M whereM is a three dimensional manifold and the space-time metric takes
the form

g
(4)
ab = −v2(dt)2 + hab (4.1.6)

where hab is a Riemannian metric onM and v :M→ R is a positive function. Equation
(4.1.5) reduces in this case to the problem of finding a positive function v and a metric hab
satisfying onM the static vacuum field equations

∆hv = 0 (4.1.7a)
−v Ric(h) + Hessh(v) = 0 . (4.1.7b)

A solution (v, hab) to the static vacuum field equations provides in particular a solution to
(4.1.3).

A few important remarks need to be made about the manifoldM. To begin with, ifM
is a closed manifold then the only solution to (4.1.7) is the trivial one, namely v is constant
and h is flat. We consider here open manifolds. There is a classical result of [Lichnerowicz,
1955] which implies that if (M, h) is an asymptotically flat and complete solution of (4.1.7)
with v → 1 at infinity, then v = 1 everywhere and the solution corresponds to Euclidean R3.
It was shown in more generality in [Anderson, 2000] that the hypotheses on the asymptotic
behavior are not necessary. These results suggest that one must consider equations (4.1.7)
on asymptotically flat manifolds having an inner boundary ∂M 6= ∅ if one is to have
non-trivial solutions.

4.2 The system of equations

Let σ be a symmetric tensor field defined onM and consider the system of equations

∆hv + trh(σ) = 0 (4.2.1a)
−v Ric(h) + Hessh(v) + σ = 0 (4.2.1b)
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For vanishing σ these equations reduce to (4.1.7) and in this sense they generalize them.
Moreover, for suitable non-vanishing fields σ one may expect to find non-trivial solutions
on manifolds without boundary. Solutions to this system of equation are then also solutions
of (4.1.3), and are therefore admissible time symmetric vacuum initial data.

The idea behind this generalization is that if it were possible to solve this system in
a way such that σ has strong decay at space-like infinity, then one could interpret such
solutions as asymptotically static vacuum initial data.

However, the symmetric tensor field σ cannot be prescribed arbitrarily. To ensure
consistency it is necessary satisfy the contracted Bianchi identity(

divh−1
2d ◦ trh

)
Ric(h) = 0 . (4.2.2)

Together with (4.1.3) this leads to the integrability condition

divh(σ)− d ◦ trh(σ) = 0 . (4.2.3)

It is remarkable that this integrability condition has the same form as the vacuum momen-
tum constraint equation (4.1.1b). For this reason, we will call the operator Mh : S2 → Λ1

defined by
Mh = divh−d ◦ trh (4.2.4)

the momentum constraint operator.
Rewriting the time-symmetric vacuum Hamilton constraint (4.1.3) in the form of equa-

tions (4.2.1a), (4.2.1b) and (4.2.3) allows us to incorporate features of the static vacuum
field equations into the system. Moreover, this renders the underdetermined character of
(4.1.3) in a new form with may open new ways to exploit it.

The considerations regarding decay properties of the unknowns will now be made more
precise by selecting appropriate function spaces. We will use weighted Sobolev spaces as
defined in chapter 2.

The first characteristic we want to capture is that of asymptotic flatness. We will
require the solution to be asymptotically flat of class (p, t, τ) with τ < 0 (see definition
2.3.5). The Positive Mass Theorem further requires that if this metric is to be a non-trivial
solution of the constraint equations, then it must approach the flat metric at infinity not
faster that 1

r . This consideration is taken into account by the condition −1 < τ .
We want the function v to approach a constant at space-like infinity, so we require that

the function v should satisfy
v − 1 ∈W t,p

τ (4.2.5)

where, for consistency, we use the same weight as that for the metric.
The Laplacian is a second order differential operator and defines a bounded map ∆h :

W t,p
γ → W t−2,p

γ−2 . The Ricci tensor is also a differential operator of second order. Under
the conditions we have imposed for τ and assuming that the differentiability parameter
satisfies t ≥ 3

p + 1, it is possible to use the multiplication Lemma 2.3.2 to conclude that
Ric : W t,p

τ (S2)→W t−2,p
τ−2 (S2) is likewise a bounded map. This implies

∆hv ∈W t−2,p
τ−2

−vRic(h) + Hessh(v) ∈W t−2,p
τ−2 .

We will be interested in constructing solutions for which σ has fast decay at space-like
infinity.
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Statement of the problem

To summarize the considerations above, we will be studying the asymptotic staticity equa-
tions which are given by

0 = φ := ∆hv + trh(σ) (4.2.6a)
0 = V := Mh(σ) (4.2.6b)
0 = S := −v Ric(h) + Hessh(v) + σ (4.2.6c)

and consider the associated mapv − 1 ∈ W t,p
τ (Λ0)

σ ∈ W q−1,p
β−1 (S2)

h− δ ∈ W t,p
τ (S2)

 −→
φ ∈ W k−2,p

τ−2 (Λ0)

V ∈ W q−2,p
β−2 (Λ1)

S ∈ W k−2,p
τ−2 (S2)

 (4.2.7)

under the conditions

−1 < τ < 0 (4.2.8a)
β < τ − 1 . (4.2.8b)

where β ∈ R \ Z to comply with a technical requirement that shall become clear when
elliptic operators are analyzed.

Definition 4.2.1 (Asymptotic staticity). 1 Let σ ∈W q−1,p
β−1 with β < τ − 1 and q = t− 1.

If (v, hab) is a solution to (4.2.6) corresponding to σ, we say it is asymptotically static to
order β.

The condition β < τ − 1 implies

∆hv ∈W t−2,p
β−1 (4.2.9)

−vRic(h) + Hessh(v) ∈W t−2,p
β−1 (4.2.10)

which, loosely speaking, says that the solution (v, hab) will behave in an asymptotic ex-
pansion at infinity as a solution of the static field equations up to O

(
rβ+1

)
.

The quasilinear system (4.2.6) has two particular features which one needs to address.
First, Ric(h) is a geometric operator and coordinate invariance prevents it from be-

ing elliptic without further conditions. To obtain an elliptic operator, one can choose a
particular coordinate gauge and we will do that in section 4.2.1.

Second, the momentum constraint operator Mh is underdetermined elliptic, it maps
symmetric tensors to 1-forms. A method to deal with this operator, which has proven
successful in the study of the constraint equations by the method of conformal rescalings
(see for example [Bartnik and Isenberg, 2004]), is what is called the York decomposition.
We will discuss it in section 4.2.2 in the context of the asymptotic staticity equations.

4.2.1 Harmonic Coordinates

Let {yj}3j=1 be a globally defined coordinate system in
(
R3, h

)
. The Christoffel symbols of

h with respect to this coordinate system are given by

Γkij = 1
2h

kl (∂ihjl + ∂jhil − ∂lhij) . (4.2.11)

1The introduction of q = t− 1 is made only for bookkeeping purposes.
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The components Rij of the operator Ric(h) in this coordinate system are given in terms
of the Christoffel symbols by

Rij = ∂kΓ
k
ij − ∂iΓkkj + ΓkijΓ

l
lk − ΓkilΓ

l
jk . (4.2.12)

Consider the quantities Γi = hjkΓijk and Γi = hijΓ
j as functions of the coordinates

{yj}. In these coordinates we define the 1-form Γ by

Γ =

3∑
i=1

Γi(y
1, y2, y3)

(
dyi
)
. (4.2.13)

We note that the coefficients Γi of this 1-form do not transform covariantly under coordinate
transformations! We set furthermore in this coordinate system

∇Γ =
3∑

i,j=1

(
∂iΓj − ΓlijΓl

) (
dyi
)
⊗
(
dyj
)

(4.2.14)

which is the expression which formally looks like the covariant derivative of a 1-form with
coefficients Γi.

We now define with respect to the coordinate system {yj} the reduced Ricci tensor
RicH(h)

RicH(h) = Ric(h)− Sym(∇Γ) . (4.2.15)

A computation shows that the highest order derivatives of the metric with respect to
{yj} that appear in RicH(h) define an elliptic operator. Explicitly this is

RHij = −1
2h

kl∂k∂lhij + F (∂h, h) (4.2.16)

where F (∂h, h) is a function of the metric components and their first derivatives.
The coordinate system {yi} is said to be harmonic on (M, h) whenever the coordinate

functions yi satisfy
∆hy

i = 0 . (4.2.17)

If one writes equation (4.2.17) in terms of the coordinate system {yi} one obtains

hjkΓijk = 0 . (4.2.18)

Thus in a harmonic coordinate system, the reduced Ricci operator equals the Ricci operator

Γ = 0 =⇒ Ric(h) = RicH(h) . (4.2.19)

The way in which this property is used is as follows: one assumes that a coordinate
system has been fixed and modifies the equations by using instead of Ric(h), the elliptic
operator RicH(h) with respect to those coordinates. The resulting equations are stud-
ied in this coordinate system. Then, one must show that the solutions obtained satisfy
the harmonic coordinate condition (4.2.17) so that they are also solutions to the original
system.
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4.2.2 The York decomposition

As was mentioned above, the equation of the system (4.2.6) that involves the momentum
constraint operator Mh is underdetermined elliptic. To deal with this operator we shall
study now the York decomposition. This will be done in a way which emphasizes the
analogy between this decomposition and the Helmholtz decomposition discussed in chapter
3.

Consider the first order differential operator Lh : Λ1 → S2 defined by

LhX = 2 Sym(∇X)− 2

3
hdivh(X) . (4.2.20)

A 1-form X is called a conformal Killing field of (M, h) if and only if X ∈ ker (Lh), so it
is customary to call Lh the conformal Killing operator. We will also make use of a second
order operator Lh : Λ1 → Λ1 defined by

Lh = Mh ◦ Lh (4.2.21)

which will be referred to as the conformal Killing Laplacian.
To construct solutions to

Mh(σ) = 0 (4.2.22)

we prescribe an arbitrary symmetric 2-tensor ψ and assume the ansatz

σ = ψ − LhX . (4.2.23)

In a way analogous to the Helmholtz decomposition, this transforms the underdetermined
elliptic problem (4.2.22) into a elliptic equation for the field X, where ψ is considered as
free data.

In section 4.2 we have stated that we want σ to be in W q−1,p
β−1 . For this to happen

equation (4.2.23) suggests to choose ψ ∈ W q−1,p
β−1 and look for solutions X ∈ W q,p

β . One is
therefore looking for solutions X to the following elliptic problem{

Lh : W q,p
β (Λ1)→W q−2,p

β−2 (Λ1)

Lh(X) = Mh(ψ)
. (4.2.24)

One is reminded of the Helmholtz decomposition and equation (3.2.3). To study this
decomposition, we shall make use of a Lemma that is the analogue of Lemma 3.2.4 in this
context.

Lemma 4.2.2 ([Cantor, 1981][Lockhart, 1981][Lockhart and McOwen, 1983]). Let
(
R3, hab

)
be asymptotically flat of class (p, t, τ) with p > 1, τ < 0, t > 3

p + 1. If s ∈ N is such that
2 ≤ s ≤ t, then the operator

Lh : W s,p
γ →W s−2,p

γ−2 (4.2.25)

defines a Fredholm map if and only of γ 6∈ Z. Also

i) Lh is injective iff γ < 0,

ii) Lh is surjective iff −1 < γ.

Furthermore if 3
p + 3 < s, then indexLh = indexLδ. In particular this implies

dim (coker (Lh)) = dim (coker (Lδ)) = 3 dim (coker (∆δ)) (4.2.26)

where ∆δ is considered as the map ∆δ : W s,p
γ →W s−2,p

γ−2 .
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Proof. The Fredholm property and parts (i) and (ii) are a consequence of Theorem 2.4.5.
For the equality of the indices, note that Lh is an isomorphism for −1 < γ < 0.

This was shown in [Christodoulou and O’Murchadha, 1981] for p = 2 under the condition
n
2 +3 < s, and generalizes to 1 < p <∞ in a straight forward way. The operator Lδ is also
seen to be an isomorphism if −1 < γ < 0, so the indices coincide in this range, and are
therefore equal by Theorem 2.4.5. Equation (4.2.26) follows from equation (2.4.14b).

Under the assumptions made in equation (4.2.8), the operator in (4.2.25) is Fredholm, so
ran (Lh) = {ker (L∗h)}⊥ by the closed range Theorem. The set ker (L∗δ) is finite dimensional.

Remark 4.2.3. It should be noted that by a similar argument as that of section 2.3.3, it is
possible to see that the action of L∗h is given formally by the same expression as that for
Lh shown in equation (4.2.21). Likewise, just as was the case discussed in section 2.3.3,
one considers them to be operators acting between different spaces.

Notation 4.2.4 (Basis). Let {Aµ}N+

µ=1 denote a basis for ker (L∗h), where Lh is considered as
in the map in equation (4.2.25) and where

N+ = dim (ker (L∗h)) . (4.2.27)

Furthermore let {Gν}N+

ν=1 denote a family of fields in W q−2,p
β−2 which with {Aµ}N+

µ=1 forms a
bi-orthogonal system (see section 2.2). The symbols Åµ and G̊ν refer to such fields in the
case of the flat geometry

(
R3, δab

)
.

Using this notation one can construct a projection operator Ph such that Lh(W s,p
γ ) =

Ph(W s−2,p
γ−2 ). The projector Ph is given by

Ph = I−
N+∑
ν=1

Gν〈Aν , · 〉h . (4.2.28)

where N+ depends on the parameter γ.
It should also be noted that one can give explicit expressions for a basis

{
Åµ
}

of
ker (L∗δ) and in chapter 5 such expressions are given for any value of the weight parameter
β.

The necessary conditions for the existence of a solution X ∈W q,p
β to equation (4.2.24)

are given in this notation by

〈Aµ,Mh(ψ)〉h = 0 ∀Aµ ∈ ker (L∗h) . (4.2.29)

4.3 A perturbative result

In this section and what remains of the chapter we will consider the manifold to be dif-
feomorphic to R3. It will be shown that, under a small free data assumption, a solution
to the asymptotic staticity equations (4.2.6) exists. The argument consists of two steps,
starting first by studying the linearized equations. We will obtain existence of solutions
to an auxiliary projected system of equations. In the second step, we will show that the
solutions so obtained are also solutions of (4.2.6) when a smallness requirement on the free
data is assumed and a further restriction on the asymptotic staticity parameter β (on top
of (4.2.8)) is met.

Consider the system of equations that results from replacing Ric(h) with RicH(h) and
from plugging the ansatz of the York decomposition (4.2.23) into (4.2.6). Then the set of
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variables consists of v ∈ Λ0, X ∈ Λ1, h ∈ S2 and a tensor ψ ∈ S2 which will be thought of
as free data. The resulting equations are

0 = φ := ∆hv + trh ψ (4.3.1a)
0 = V := Lh(X)−Mh(ψ) (4.3.1b)

0 = S := −vRicH(h) + Hessh(v)− Lh(X) + ψ (4.3.1c)

and the associated map is

Ψ :


v − 1 ∈ W t,p

τ (Λ0)
X ∈ W q,p

β (Λ1)

h− δ ∈ W t,p
τ (S2)

ψ ∈ W q−1,p
β−1 (S2)

→
φ ∈ W t−2,p

τ−2 (Λ0)

V ∈ W q−2,p
β−2 (Λ1)

S ∈ W t−2,p
τ−2 (S2)

 (4.3.2)

where τ and β satisfy the conditions (4.2.8). By writing

W = W t,p
τ (Λ0)×W q,p

β (Λ1)×W t,p
τ (S2)

Ŵ = W t−2,p
τ−2 (Λ0)×W q−2,p

β−2 (Λ1)×W t−2,p
τ−2 (S2),

then (4.3.1) and (4.3.2) then read

Ψ(v,X, h ;ψ) = 0 (4.3.3a)

Ψ :W ×W q−1,p
β−1 (S2)→ Ŵ . (4.3.3b)

4.3.1 First Step

We want to study equation (4.3.3) perturbatively in a neighborhood of the trivial solutions
corresponding to ψ = 0, namely v = 1, X = 0, and h = δ.

Linearization

The derivative of the map Ψ at the trivial solution defines the map DΨ :W×W q−1,p
β−1 (S2)→

Ŵ given for (u, Y, g, s) ∈ W ×W q−1,p
β−1 (S2) by

(DΨ)|ψ=0 (u, Y, g, s) =

 ∆δ(u) + trδ(s)
Lδ(Y )−Mδ(s)

1
2∆δg + Hessδ(u)− LδY + s

 . (4.3.4)

Setting s = 0, one obtains the partial derivative of the operator Ψ in the direction of
the unknowns (DWΨ)|ψ=0 : W → Ŵ and in this section we study its properties. In the
following it will be shown that under conditions (4.2.8), the map

(DWΨ)|ψ=0 :W → Ŵ (4.3.5)

defines an injective Fredholm operator with non-trivial cokernel.
Consider for some (φ0, V0, S0) ∈ Ŵ the equations

φ0 = ∆δu (4.3.6a)
V0 = LδY (4.3.6b)
S0 = 1

2∆δg + Hessδ u− LδY (4.3.6c)
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for the unknowns (u, Y, g) ∈ W. Equations (4.3.6) define a linear partial differential oper-
ator in R3. A system of orders for this operator is given by t = (k + 2, k + 1, k + 2) and
s = (k, k − 1, k), with k ∈ N.

Although it will not be the route taken here, one could apply a more general version
of Theorem 2.4.3 (with different weights for each field) to the operator of equation (4.3.6).
It can be seen that the system satisfies the assumption of 2.4.2 and one can study its
Fredholm properties this way. It is actually easier and clearer to take advantage of the
particularities of this system and to deduce its properties by discussing its decoupled parts.

First, consider equation (4.3.6a). Lemma 3.2.4 and the condition −1 < τ < 0 imply
∆δ : W t,p

τ (Λ0)→W t−2,p
τ−2 (Λ0) is a Fredholm map with trivial kernel and cokernel.

Second, from Lemma 4.2.2 and conditions (4.2.8) one learns that the operator Lδ :
W q,p
β → W q−2,p

β−2 is Fredholm and injective, but not surjective. Using the notation intro-
duced in 4.2.4, one has Lδ(W q,p

β ) = Pδ(W q−2,p
β−2 ). Then, the operator

Lδ : W q,p
β → Pδ(W q−2,p

β−2 ) (4.3.7)

is an isomorphism. We will postpone a discussion on how to explicitly construct such the
projection operator Pδ to Lemma 4.3.3.

Finally one considers, for given u ∈ W t,p
τ and Y ∈ W q,p

β , (4.3.6c) as an equation for g,
namely

∆δg = 2 (S0 −Hessδ u− LδY ) . (4.3.8)

By assumption one has S0 ∈ W t−2,p
τ−2 . Also u and Y satisfy Hessδ u ∈ W t−2,p

τ−2 and LδY ∈
W q−1,p
β−1 respectively. Conditions (4.2.8), q = t− 1 and the fact that

γ1 ≤ γ2, s1 ≥ s2 =⇒ W s1,p
γ1 ⊂W s2,p

γ2 (4.3.9)

holds, imply S0 − Hessδ u − LδY ∈ W t−2,p
τ−2 . Then by Lemma 3.2.4 one has that given u

and Y , there always exists a unique solution g to (4.3.6c).
To summarize these finding one says that, under conditions (4.2.8), the map (4.3.5) is

Fredholm and

ker
(

(DWΨ)|ψ=0

)
= {0} (4.3.10a)

ran
(

(DWΨ)|ψ=0

)
=

 W t−2,p
τ−2

Pδ
(
W q−2,p
β−2

)
W t−2,p
τ−2

 . (4.3.10b)

where Pδ
(
W q−2,p
β−2

)
has finite codimension N+ (see (4.2.27) for the definition).

The projected system

We now return to the non-linear system (4.3.1). The perturbative analysis of the previous
section provides a way to come up with a new non-linear system of equations whose lin-
earization is in fact an isomorphism between Banach spaces. To construct this new system
we define the projection operator P : Ŵ → Ŵ by P (φ, V, S) := (φ,Pδ(V ), S) where the
projector Pδ : W q−2,p

β−2 → W q−2,p
β−2 was introduced in (4.2.28). We consider now a projected

system given by
P ◦Ψ(v,X, h, ψ) = 0 (4.3.11)
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where Ψ is the map in equation (4.3.2). Written in terms of v, σ and h, the projected
system consists of the equations

0 = ∆hv + trh σ (4.3.12a)
0 = Mh(σ) + λ (4.3.12b)

0 = −vRicH(h) + Hessh(v) + σ (4.3.12c)

where σ is given by σ = ψ − LhX (see (4.2.23)) and where the error term λ is

λ(ψ) = (I− Pδ)Mh(σ) =

N+∑
ν=1

G̊ν〈Åν ,Mh(σ)〉δ . (4.3.13)

Lemma 4.3.1. If ψ ∈W q−1,p
β−1 is sufficiently small, then there exist

v(ψ) : v − 1 ∈W t,p
τ (4.3.14a)

σ(ψ) : σ ∈W q−1,p
β−1 (4.3.14b)

h(ψ) : h− δ ∈W t,p
τ (4.3.14c)

satisfying equations (4.3.12) and depending continuously on the free data ψ.

Proof. The system (4.3.1), (4.3.2) satisfies the hypotheses of corollary 2.6.2, i.e. the lin-
earization of Ψ at the trivial solution is an injective Fredholm map (see equation (4.3.10)).
The projector used in equation (4.3.11) satisfies the condition (2.6.3) of the corollary and
therefore there exist {v(ψ), X(ψ), h(ψ)} satisfying (4.3.11). From ψ and the resultingX(ψ)
we reconstruct σ and write the equations as (4.3.12).

By Corollary 2.6.2 the solution (4.3.14) depends continuously on the free data ψ.

4.3.2 Second Step

The system in (4.3.12) differs from (4.3.3) in two aspects. The first difference is that the
reduced Ricci operator appears in the projected system. The other difference is that in
the projected system there is the extra term λ. In order for (4.3.14) to be a solution of the
system we started with in (4.3.3), one must make sure that for the solution (4.3.14), the
conditions

λ = 0 (4.3.15a)
Γ = 0 (4.3.15b)

are satisfied. If these conditions are satisfied, then RicH(h) = Ric(h) and (v, h, σ) is in
fact a solution to (4.2.6). Using the contracted Bianchi identity (4.2.2) and the projected
system (4.3.12), we shall derive an equation relating λ and Γ.

First one replaces the reduced Ricci operator in equation (4.3.12c) using (4.2.15) and
obtains the equation

Ric(h) =
Hessh(v) + σ

v
+ Sym(∇Γ) . (4.3.16)

The contracted Bianchi identity (4.2.2) then implies

(
divh−1

2d ◦ trh
)(Hessh(v) + σ

v
+ Sym(∇Γ)

)
= 0 . (4.3.17)
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We will compute the action of the differential operator acting on each term separately.
First, by (4.3.12a) one has that trh (Hessh(v) + σ) = 0. Then one computes

divh

(
Hessh(v) + σ

v

)
=

∆h ◦ dv + divh σ

v
− (Hessh(v) + σ) (dv, · )

v2
(4.3.18)

and using the identity

∆h ◦ dv = d ◦∆hv + Ric(h)(∇v, · ) , (4.3.19)

and equation (4.3.16) one gets

divh

(
Hessh(v) + σ

v

)
=
d ◦∆hv + divh σ + Sym(∇Γ)(dv, · )

v
. (4.3.20)

Replacing ∆hv using equation (4.3.12a) and then using (4.3.12b) gives

(
divh−1

2d ◦ trh
)(Hessh(v) + σ

v

)
=

Sym(∇Γ)(dv, · )− λ
v

. (4.3.21)

A computation shows that

(
divh−1

2d ◦ trh
)

Sym(∇Γ) =
∆hΓ + Ric(h)(Γ, · )

2
(4.3.22)

so using (4.3.21) together with (4.3.22) in (4.3.17) one finally gets

v∆hΓ + 2 Sym(∇Γ)(dv, · ) + vRic(h)(Γ, · ) = 2λ . (4.3.23)

The left hand side of equation (4.3.23) defines a linear homogeneous second order partial
differential operator we shall denote by Hψ, more specifically{

Hψ : W t−1,p
τ−1 (Λ1)→W t−3,p

τ−3 (Λ1)
Hψ(Γ) := v∆h(Γ) + 2 Sym(∇Γ)(dv, · ) + vRic(h)(Γ, · ) (4.3.24)

where the choices of weighted Sobolev spaces are such because Γ is defined in terms of first
derivatives of the the metric h. The notation Hψ is meant to emphasize that we want to
consider this operator in the following way: associated to given free data ψ there exists a
solution as given by Lemma 4.3.1, which in turn gives rise to the corresponding operator
Hψ by equation (4.3.24).

For clarity, let us briefly summarize the steps in the argument that follows. We will
use Lemma 2.7.3 to conclude that λ vanishes for sufficiently small free data ψ. To do this,
we will first study the range of the operator Hψ for trivial free data, i.e. when ψ = 0. The
second result we need will take the form of an explicit characterization of the subspace of
W q−2,p
β−2 (Λ1) to which the error term λ belongs. The third piece of information we need

is the uniform injectivity of Hψ for sufficiently small ψ. Finally, after concluding that λ
vanishes, the injectivity of the operator Hψ implies Γ = 0.

One should point out at this stage that the characterization of the possible error terms
depends on the choice made for the asymptotic staticity parameter, which will limit the
applicability of this argument to certain range for β.

In the Lemma that follows it will be shown that if ψ = 0, then the range of the
associated operator Hψ=0 = H0 can be explicitly characterized.
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Lemma 4.3.2 (Range of H0). The 1-form fields

Åµ = (dxµ) for µ = 1, 2, 3 (4.3.25)

are a basis for ker (H∗0 ) where H0 := Hψ=0 and Hψ is the operator defined in equation
(4.3.24).

Proof. When ψ = 0, the operator Hψ reduces to ∆δ : W t−1,p
τ−1 (Λ1) → W t−3,p

τ−3 (Λ1) and the
result follows from Theorem 2.4.4 and a computation in Cartesian coordinates.

To give an explicit expression of the error term λ defined in equation (4.3.13), one
needs to study the operator Lδ in more detail. In the present context, it acts as a map in
the spaces shown in equation (4.2.24) where β satisfies the conditions (4.2.8).

As mentioned above, the argument given here applies when the asymptotic staticity
parameter β is restricted to certain interval. We therefore strongly emphasize that even if
in principle one would like to avoid any lower bounds on β, we are only able to carry out
this argument when we restrict it to the interval

− 2 < β < −1 . (4.3.26)

This in turn simplifies considerably the description of ker (L∗δ), for there is a straight
forward way to find fields that give a basis for it.

Lemma 4.3.3. If −2 < β < −1 then the 1-form fields

Åµ = (dxµ) for µ = 1, 2, 3 (4.3.27)

are a basis for ker (L∗δ) where Lδ is considered as in equation (4.2.24). Furthermore if
χ(r) ∈ C∞0 is such that

∫
χ(r)dµδ = 1, then the 1-form fields

G̊ν = χ(r)(dxν) for ν = 1, 2, 3 (4.3.28)

together with (4.3.27) form a bi-orthogonal system. This implies

W s−2,p
β−2 = Lδ(W s,p

β )⊕
{
G̊1, G̊2, G̊3

}
(4.3.29)

Proof. The simplifying observation is that any Killing field of
(
R3, δab

)
in the domain of L∗δ

will be in ker (L∗δ). The assumption on β implies one is considering fields which behave as
o (r) at infinity and by Theorem 4.2.2 the dimension of this kernel is 3. The three Killing
fields of

(
R3, δab

)
which generate translations have precisely o (r) growth at infinity.

In particular the error term λ ∈
{
G̊1, G̊2, G̊3

}
in equation (4.3.13) is then given by

λ(ψ) =

3∑
ν=1

G̊ν〈Åν ,Mh(σ)〉δ (4.3.30)

where the metric h and the tensor σ both depend on the free data.

Lemma 4.3.4 (Injectivity of Hψ). If ψ is sufficiently small, then the operator Hψ defined
in (4.3.24) is injective.
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Proof. As was pointed out in Lemma 4.3.1, the solution depends continuously on the free
data ψ. This means that if ψ is small in W q−1,p

β−1 (S2), then v − 1, X and h− δ are small in
the spaces given in equation (4.3.14).

To show that the operator Hψ is injective, we set Hψ(Γ) = 0 and show that this
implies Γ = 0. Under the assumptions made on the differentiability 3

p + 1 < t, the Sobolev
inequality (Lemma 2.3.3) implies that |v − 1| is bounded, so it is safe to assume that
v > 0. Thus it suffices to consider the equation Hψ(Γ)/v = 0. Furthermore, consider the
contraction 〈Hψ(Γ)/v,Γ〉h, which reads

〈Γ,∆hΓ〉h + 2〈d(ln v)⊗ Γ,Sym(∇Γ)〉h + 〈Ric(h),Γ⊗ Γ〉h = 0 (4.3.31)

which will be analyzed term by term.
Using the identity

h(Γ,∆hΓ) = 1
2∆h|Γ|2h − |∇Γ|2h (4.3.32)

one gets for the first term in (4.3.31)

〈Γ,∆hΓ〉h = 1
2〈1,∆h|Γ|2h〉h − 〈∇Γ,∇Γ〉h . (4.3.33)

By Lemma 2.3.2, the condition (4.2.8) on τ and the assumption t > 3
p + 1 (as mentioned

in section 4.2), one knows that |Γ|2h ∈W
t−1,p
τ−1 . Given that

ran
(

∆:
hW

t−1,p
τ−1 →W t−3,p

τ−3

)
= {f ∈W t−3,p

τ−3 : 〈1, f〉h = 0} , (4.3.34)

the first term in (4.3.33) vanishes. As for the second term in (4.3.33), one has

C1 ‖∇Γ‖2
W 0,2
−3/2

≤ 〈∇Γ,∇Γ〉h (4.3.35)

where C1 is a constant that accounts for using h instead of δ in the definition of the
weighted Sobolev norm and is of the order of 1 in the present circumstances. The first
term in (4.3.31) then satisfies

〈Γ,∆hΓ〉h ≤ −C1 ‖∇Γ‖2
W 0,2
−3/2

. (4.3.36)

For the second term in (4.3.31) one has

2〈d(ln v)⊗ Γ,Sym(∇Γ)〉h ≤ 2C2

∫
|Sym(∇Γ)(d(ln v),Γ)|dµδ

≤ 6C2 ‖d(ln v)‖
W 0,∞
−2
‖Sym(∇Γ)( · ,Γ)‖

W 0,1
−1

≤ 18C2 ‖d(ln v)‖
W 0,∞
−2
‖∇Γ‖

W 0,2
−1/2
‖Γ‖

W 0,2
−1/2

(4.3.37)

where Hölder’s inequality 2.3.1 was used twice.2 The constant C2 = supµ(x) where dµδ =
µ(x) dµh is of the order of 1. Finally one uses 2ab ≤ a2 + b2 and

‖∇Γ‖2
W 0,2
−1/2

≤ ‖∇Γ‖2
W 0,2
−3/2

(4.3.38)

to obtain

2〈d(ln v)⊗ Γ,Sym(∇Γ)〉h ≤

≤ 9C2

(
‖∇Γ‖2

W 0,2
−3/2

+ ‖Γ‖2
W 0,2
−1/2

)
‖d(ln v)‖

W 0,∞
−2

. (4.3.39)

2Each factor of 3 comes from removing a contraction.
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For the last term in (4.3.31) we have

〈Ric(h),Γ⊗ Γ〉h ≤ 9C2 ‖Ric(h)⊗ Γ⊗ Γ‖
W 0,1
−3

≤ 9C2 ‖Ric(h)‖
W 0,∞
−2
‖Γ‖2

W 0,2
−1/2

(4.3.40)

as a consequence of using Hölder’s inequality twice and C2 as in (4.3.39).
From (4.3.36), (4.3.39) and (4.3.40) one obtains

0 ≤ 9
(
‖Ric(h)‖

W 0,∞
−2

+ ‖d(ln v)‖
W 0,∞
−2

)
‖Γ‖2

W 0,2
−1/2

+

(
9 ‖d(ln v)‖

W 0,∞
−2
− C1

C2

)
‖∇Γ‖2

W 0,2
−3/2

. (4.3.41)

Using the Poincaré inequality for weighted Sobolev spaces (Lemma 2.3.4) in the form

‖Γ‖2
W 0,2
−1/2

≤ C3 ‖∇Γ‖2
W 0,2
−3/2

(4.3.42)

one arrives at

0 ≤
[(
C4 ‖Ric(h)‖

W 0,∞
−2

+ C5 ‖d(ln v)‖
W 0,∞
−2

)
− 1
]
‖∇Γ‖2

W 0,2
−3/2

(4.3.43)

for positive constants C4 and C5. Letting t be such that 3
p < t − 2 one knows that small

free data ψ implies that ‖Ric(h)‖
W 0,∞
−2

+ ‖d(ln v)‖
W 0,∞
−2

is small, and therefore

‖∇Γ‖2
W 0,2
−3/2

= 0 . (4.3.44)

Using (4.3.42) this gives ‖Γ‖2
W 0,2
−1/2

= 0 and the regularity assumed implies that Γ vanishes.

Consider a family of free data ψ(ε), ε ∈ [0, 1] such that ψ(0) = 0. It will be shown in the
following Lemma that assuming ψ(ε) is sufficiently small for every ε, there exists ε0 ∈ (0, 1]
such that the solution (4.3.14) associated to ψ(ε) is also a solution of the asymptotic staticity
system (4.2.6).

Lemma 4.3.5 (Satisfying the Harmonicity condition). Let ψ(ε), ε ∈ [0, 1] be a family of
free data satisfying ψ(0) = 0 and

∥∥ψ(ε)
∥∥
W q−1,p
β−1

≤ εCψ. If

− 2 < β < τ − 1 (4.3.45)

and Cψ is sufficiently small, then there exists ε0 > 0 such that (4.3.14) is a solution of the
system (4.2.6) whenever 0 ≤ ε < ε0.

Proof. The proof is based on Lemma 2.7.3. The assumptions that β < τ − 1 and that Cψ
is small imply there exists, for every ψ(ε), a solution to the projected system as given in
equation (4.3.14).

By Lemma 4.3.4 one knows that the resulting operators Hψ are injective for each ε.
This can be used to conclude that for any U ∈W t−1,p

τ−1 we have the estimate

‖U‖
W t−1,p
τ−1

≤ C(ε) ‖Hψ(U)‖
W t−3,p
τ−3

(4.3.46)
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where C(ε) is a constant (see for example Proposition 1.11 in [Bartnik, 1986]). Taking the
largest C(ε) for ε ∈ [0, 1] implies the family can be assumed to be uniformly injective in
the sense of 2.7.2.

Thus by Lemmas 4.3.2 and 4.3.3, the family of operators Hψ associated to ψ(ε) satisfies
the hypothesis of the cokernel stability theorem. This implies there exists ε0 > 0 such that
λ = 0 whenever 0 ≤ ε < ε0. Then the injectivity of Hψ implies Γ = 0 for every 0 ≤ ε < ε0
from which the conclusion of the Lemma follows.

4.4 Obstacles to obtaining faster decay

The perturbative result of the previous section is valid in a special range of values for the
weight parameters. To begin with, they were required to satisfy (4.2.8) when the problem
was stated, and no lower bound on β was imposed at that point. However, in the course
of the proof of the perturbative result, a lower bound on β was assumed in order to use
Lemma 4.3.3. This leaves one with conditions the the weights which can be summarized
as

−2 < β < τ − 1 < −1 (4.4.1)

thereby obstructing the applicability of the proof for lower values of β, i.e. to perturbatively
showing the existence of solutions which are asymptotically static up to higher order.

The perturbative result imposes no further restrictions on the free data ψ ∈W q−1,p
β−1 (S2)

other than it being sufficiently small. In this sense it is analogous to finding a solution to a
Poisson equation as discussed in section 2.5 where ∆h is considered as the map in equation
(2.5.2). Under the restriction that the weight γ satisfies −1 < γ < 0, one finds then that
there are no further restrictions on the source term ρ other than having bounded norm in
W s−2,p
γ−2 (Λ0).
If one is interested, however, in solutions with faster decay at infinity, one needs to

choose weights more into the negatives (γ for the example of the Poisson equation, β in
the case of the asymptotic staticity equations). One does not expect to find solutions
without imposing further conditions on the free data.

In the case of the Poisson equation, the conditions on the right hand side take the form

〈aµ, ρ〉h = 0 ∀ aµ ∈ ker (∆∗h) (4.4.2)

where the notation aµ was introduced in (2.5.3). These conditions are given in terms of
functions which depend on the background metric h but not on the source function ρ.

The situation is different in the case of the asymptotic staticity equations. If one allows
the asymptotic staticity parameter β to fall below −2, one needs to provide an analog of
Lemma 4.3.3 for the resulting situation. The space in which the error term λ can vary is
enlarged as a consequence and the argument of Lemma 4.3.5 does not apply.

The problems encountered when trying to extend the perturbative result of the previous
section are found to be related to the possibility of constructing solutions to (4.2.22) with
fast decay, which is the topic of the next chapter.



Chapter 5

York decomposition with fast decay

5.1 Introduction

Motivated by the result of the previous chapter, we explore now the possibility for im-
provement in the asymptotic staticity rate for which existence was shown. To do this,
we will study the York decomposition in a given asymptotically flat background. We will
exploit the analogies between the York decomposition and the Helmholtz decomposition
as discussed in chapter 3.

Let
(
R3, hab

)
be an asymptotically flat manifold of class (p, t, τ) with τ < 0. We recall

that, as was discussed in chapter 3, the standard Helmholtz decomposition can be viewed
as a method by which one can generate solutions to the equation{

divh(σ) = 0

divh : W s−1,p
γ−1 (Λ1)→W s−2,p

γ−2 (Λ0)
(5.1.1)

for suitable values of γ. This method consists of first prescribing arbitrarily ψ ∈W s−1,p
γ−1 (Λ1)

and considering the ansatz

σ = ψ − dv , v ∈W s,p
γ (Λ0) . (5.1.2)

The under-determined problem (5.1.1) is thereby transformed into the elliptic equation{
∆hv = divh ψ

∆h : W s,p
γ (Λ0)→W s−2,p

γ−2 (Λ0)
(5.1.3)

which we consider as a condition on v. Whenever one can solve this equation for v we say
that the 1-form ψ has a standard Helmholtz decomposition into a sum of a divergenceless
part σ and the gradient of a function v.

The problem we want to consider now is that of constructing, in
(
R3, hab

)
, solutions to{

Mh(Σ) = 0

Mh : W s−1,p
γ−1 (S2)→W s−2,p

γ−2 (Λ1)
(5.1.4)

where Mh is the momentum constraint operator introduced in equation (4.2.4). To trans-
form this under-determined elliptic problem into an elliptic equation, one prescribes arbi-
trarily a symmetric 2-tensor Ψ ∈W s−1,p

γ−1 (S2) and considers the ansatz

Σ = Ψ− LhX , X ∈W s,p
γ (Λ1) . (5.1.5)
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where Lh is the conformal Killing operator introduced in equation (4.2.20). This gives{
LhX = MhΨ

Lh : W s,p
γ (Λ1)→W s−2,p

γ−2 (Λ1)
(5.1.6)

which we consider as an equation to be solved for X. Note that the symbols for the
fields used throughout this chapter are the uppercase format of the symbols for the fields
considered in chapter 3, so as to highlight the similarities between the two decompositions.

Some of the notation that will be used was introduced already in chapter 4. Because we
need to introduce some more notation, it will be convenient to recall and extend 4.2.4 here.
The notation that we introduce here is based on the fact that under suitable assumptions
on the weight parameter γ, the operator Lh is Fredholm and the operator Mh is semi-
Fredholm. We will use the notation

N− = dim (ker (M∗h)) (5.1.7a)
N+ = dim (ker (L∗h)) (5.1.7b)

and note that Lh = Mh ◦ Lh implies ker (M∗h) ⊂ ker (L∗h), hence N− ≤ N+. The notation
shall be changed accordingly whenever it refers to a different metric, e.g. when considering
operators with respect to the metric ĥab we write N̂+.

Lemma 5.1.1. Assume Y ∈ ker (M∗h). Then Y is a Killing field of
(
R3, hab

)
and if

furtheremore −1 < γ then Y = 0. It follows that N− ≤ 6 and that if −1 < γ then N− = 0.

Proof. A computation shows that the action of M∗h is given by

M∗hY = hdivh(Y )− Sym(∇Y ) . (5.1.8)

If Y ∈ ker (M∗h) then, by taking trh ◦M∗h(Y ) = 0, one finds that divh Y = 0. Plugging this
back in M∗hY = 0 one gets Sym∇Y = 0, therefore Y is Killing. Lemma 4.2.2 implies Lh
is surjective whenever −1 < γ, thus N− = N+ = 0. The upper limit on the number of
Killing fields in dimension 3 is well known.

In the Euclidean case
(
R3, δab

)
, denoting N̊− = dim (ker (M∗δ )), it holds

N̊− =


6 for γ < −2 (transl. and rotat.)
3 for − 2 < γ < −1 (translations)
0 for − 1 < γ

. (5.1.9)

In general the value of N− depends on the given metric. In particular if the background
metric has no Killing fields, then N− vanishes.

A crucial difference between the results regarding the Helmholtz decomposition and
the results that will be presented in this chapter is the fact that for the former (see Lemma
3.2.6) {

n− = 1 for γ < −1
n− = 0 for −1 < γ

(5.1.10)

while Lemma 5.1.1 gives in the present situation{
0 ≤ N− ≤ 6 for γ < −1
N− = 0 for −1 < γ

. (5.1.11)
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5.2 Standard and Extended York decomposition

The Riemannian manifold
(
R3, hab

)
is assumed to be asymptotically flat of class (p, t, τ)

with −1 < τ < 0. As was the case for the Helmholtz decomposition (see section 3.2.2), we
will not discuss the choices of p and t. The choice for the weight parameter γ has to be
made based on the decay rate one desires to achieve. As was mentioned in chapter 3, in
dimension 3 this choice must be in R \ Z for a technical reason.

Assumption 5.2.1. Let γ ∈ R, p ∈ N, 1 < p < ∞ and s ∈ N, 2 ≤ s, and the symmetric
tensors Σ and Ψ and the 1-form V satisfy

Σ,Ψ ∈W s−1,p
γ−1 (S2) (5.2.1a)

V ∈W s,p
γ (Λ1) . (5.2.1b)

The differential operators considered in the York decomposition define the following
bounded linear maps

Mh : W s−1,p
γ−1 (S2)→W s−2,p

γ−2 (Λ1) (5.2.2a)

Lh : W s,p
γ (Λ1)→W s−1,p

γ−1 (S2) (5.2.2b)

Lh : W s,p
γ (Λ1)→W s−2,p

γ−2 (Λ1) (5.2.2c)

where Lh and Lh where introduced in equations (4.2.20) and (4.2.21) respectively. Through-
out the chapter the operators Mh, Lh and Lh will be considered as maps in the spaces
indicated in equations (5.2.2), and we shall omit the reference to these spaces if the choice
is clear from the context.

Let {Aµ}N+

µ=1 be a basis for ker (L∗h) such that {Aµ}N−µ=1 is a basis for ker (M∗h). Fur-
thermore let {Gν}N+

ν=1 denote a family of fields in W s−2,p
γ−2 (Λ1) which with {Aµ}N+

µ=1 forms a
bi-orthogonal system (see section 2.2). The symbols Åµ and G̊ν refer to such fields in the
case of the Euclidean background

(
R3, δab

)
.

Theorem 5.2.2 (Extended York decomposition). Let
(
R3, hab

)
be asymptotically flat of

class (p, t, τ) with τ < 0, p ∈ N, 1 < p <∞ and t > 3
p + 1. If s ∈ N, 2 ≤ s ≤ t, γ ∈ R \ Z

and
γ < 0 (5.2.3)

thenMh is lower semi-Fredholm. Furthermore, there exist N+−N− fields Fν ∈W s−1,p
γ−1 (S2)

such that
Mh(Fν) = Gν , ν = N− + 1, . . . , N+ (5.2.4)

and
W s−1,p
γ−1 (S2) = Lh(W s,p

γ )⊕ ker (Mh)⊕ {Fν}N+

ν=N−+1 (5.2.5)

holds.

Proof. From Lemma 4.2.2 and the assumption on γ, it follows that Lh is a Fredholm map
when considered as the map in equation (5.2.2c). Then using Theorem 3.3.1 with S = Mh,
T = Lh, Q = Lh, the result follows.

We will refer to the set {Fν}N+

ν=N−+1 as an extension to the York decomposition
for hab.
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Corollary 5.2.3 (Standard York decomposition). Under the hypothesis of Theorem 5.2.2,
and if −1 < γ < 0 then

W s−1,p
γ−1 (S2) = Lh(W s,p

γ )⊕ ker (Mh) (5.2.6)

holds.

Proof. From Lemma 4.2.2 and the assumption on γ, it follows that Lh is an isomorphism
when considered as the map in equation (5.2.2c). Then one finds that N+ = 0 and
consequently N+ ≥ N− ≥ 0 implies N− = 0.

5.3 Stability

In this section we consider an asmptotically flat manifold
(
R3, hab

)
having no Killing fields,

i.e. N− = 0 by Lemma 5.1.1. It will be shown that if one has an extension for the York
decomposition with respect to hab generated by the set of fields

{Fν}N+

ν=1 (5.3.1)

then it is possible to say that the same set of fields constitutes an extension to the York
decomposition for another metric ĥab if the metrics are sufficiently close in a suitable
weighted Sobolev space. Whenever we refer to operators, fields or quantities associated to
the metric ĥab, as described when the notation was introduced in section 5.1, a hat will be
added to denote this.

We state the main result of this section in Theorem 5.3.2. The estimate that follows is
a generalization of the corresponding Lemma 3.4.3 for the Helmholtz decomposition.

Lemma 5.3.1. Consider in R3 metrics hab and ĥab which are asymptotically flat of class
(p, t, τ), with t > 3

p and τ < 0. If in end coordinates holds∥∥∥ĥij − hij∥∥∥
W t,p
τ

< ε , (5.3.2)

for some 0 < ε, then there exists a constant C such that∥∥(M
ĥ
−Mh

)
ψ
∥∥
W 0,p
γ−2
≤ Cε ‖ψ‖

W 1,∞
γ−1−τ

(5.3.3)

holds for every ψ ∈W 1,∞
γ−1−τ (S2).

Proof. Define γab and θab by

γab = ĥab − hab (5.3.4)

θab = ĥab − hab (5.3.5)

and let ∇ and ∇̂ be the derivative operators compatible with hab and ĥab respectively.
By definition 4.2.4 we have

Mhψ = ∇aψab −∇b(hacψac) (5.3.6a)

M
ĥ
ψ = ∇̂aψab − ∇̂b(ĥacψac) . (5.3.6b)

Using
∇̂cψab = ∇cψab − Cdcaψdb − Cdcbψad (5.3.7)
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with

Ccab =
1

2
ĥcd
(
∇aĥbd +∇bĥad −∇dĥab

)
(5.3.8)

one obtains

(M
ĥ
ψ)b − (Mhψ)b = θac∇cψab − ĥab(Cdcaψdb + Cdcbψad)−∇b(θacψac)

= θac (∇cψab −∇bψac)− ĥab(Cdcaψdb + Cdcbψad)

−∇b(θac)ψac (5.3.9)

which gives∥∥(M
ĥ
−Mh)ψab

∥∥
W 0,p
γ−2
≤
∥∥∥ĥab(Cdcaψdb + Cdcbψad) +∇b(θac)ψac

∥∥∥
W 0,p
γ−2

+ ‖θac (∇cψab −∇bψac)‖W 0,p
γ−2

. (5.3.10)

For the first term of the right hand side in (5.3.10), first note that one can assume there
exists a constant C1 such that ∥∥∥ĥabĥcd∥∥∥

W 0,∞
0

< C1 . (5.3.11)

Then ∥∥∥ĥabCdcaψdb∥∥∥
W 0,p
γ−2

≤ 32
∥∥∥ĥabĥde (∇cγae +∇aγce −∇eγca)

∥∥∥
W 0,p
τ−1

‖ψdb‖W 0,∞
γ−1−τ

≤ 35C1 ‖∇cγae‖W 0,p
τ−1
‖ψdb‖W 0,∞

γ−1−τ
(5.3.12)

where Hölder’s inequality was used once more. By the definition of the W 1,p
τ norm and

Lemma 2.3.6 of γae and the W 1,∞
γ−1−τ norm of ψdb one obtains∥∥∥ĥabCdcaψdb∥∥∥
W 0,p
γ−2

< 35C1 ‖γae‖W 1,p
τ
‖ψdb‖W 1,∞

γ−1−τ
. (5.3.13)

Similarly we have

‖∇b(θac)ψac‖W 0,p
γ−2
≤ 32 ‖∇bθac‖W 0,p

τ−1
‖ψac‖W 0,∞

γ−1−τ

≤ 32 ‖θac‖
W 1,p
τ
‖ψac‖W 1,∞

γ−1−τ
. (5.3.14)

For the second term of the right hand side in (5.3.10), by Hölder’s inequality

‖θac (∇cψab −∇bψac)‖W 0,p
γ−2
≤ 2 32 ‖θac‖

W 0,p
τ
‖∇cψab‖W 0,∞

γ−2−τ

≤ 2 32
∥∥∥θab∥∥∥

W 1,p
τ

‖ψab‖W 1,∞
γ−1−τ

(5.3.15)

by Lemma 2.3.6 and the definition of the norms in W 1,∞
γ−1−τ and W 1,p

τ .
Using (5.3.13), (5.3.14) and (5.3.15) in (5.3.10), one gets∥∥(M

ĥ
−Mh)ψab

∥∥
W 0,p
γ−2

< 27
(

18C1 ‖γae‖W 1,p
τ

+ ‖θac‖
W 1,p
τ

)
‖ψab‖W 1,∞

γ−1−τ
. (5.3.16)

Finally, by Lemma 2.3.7 it follows that one can find ε small enough so that the claimed
estimate is obtained.



CHAPTER 5. YORK DECOMPOSITION WITH FAST DECAY 56

Theorem 5.3.2. Consider in R3 metrics hab and ĥab, both asymptotically flat of class
(p, t, τ) with τ < 0, t > 3/p + 1, and assume that hab does not have Killing fields. Let
γ ∈ R \ Z, s ∈ N, 3

p + 1 ≤ s ≤ t. Assume that {Fν}N+

ν=1 is an extension to the York
decomposition with respect to hab. There exists 0 < ε such that if in end coordinates it
holds ∥∥∥hij − ĥij∥∥∥

W t,p
τ

≤ ε (5.3.17)

and ĥab has no Killing fields, then

W s−1,p
γ−1 (S2) = L

ĥ
(W s,p

γ )⊕ ker
(
M
ĥ

)
⊕ {Fν}N+

ν=1 (5.3.18)

holds.

Proof. Consider an arbitrary element ψ ∈ W s−1,p
γ−1 (S2). The decomposition (5.3.18) holds

if one can find X ∈W s,p
γ and kν ∈ RN+ such that

ψ = L
ĥ
X + σ +

N+∑
ν=1

kνFν . (5.3.19)

By requiring that σ ∈ ker
(
M
ĥ

)
one obtains the equation

M
ĥ
ψ = L

ĥ
X +

N+∑
ν=1

kνM
ĥ
Fν (5.3.20)

which is considered as a condition on X and kν . Letting {Âµ}N+

µ=1 denote a basis of
ker
(
L
ĥ
∗), one has the equation

Tµνk
ν = 〈Âµ,M

ĥ
ψ〉

ĥ
(5.3.21)

where the matrix Tµν is given by

Tµν = 〈Âµ,M
ĥ
Fν〉ĥ for ν, µ = 1, . . . , N+ . (5.3.22)

If the matrix Tµν is non-degenerate, then one can solve for kν and then plugging them
back into (5.3.20) solve for X.

The fields Fν are assumed to be an extension to the York decomposition with respect
to hab which by assumption has no Killing fields, hence N− = 0. They are constructed out
of a bi-orthogonal system {Aµ}N+

µ=1, {Gν}
N+

ν=1 by requiring that they satisfy MhFν = Gν
for ν = 1, . . . , N+. Then one can write

Tµν = 〈Âµ, Gν〉ĥ + 〈Âµ, (M
ĥ
−Mh)Fν〉ĥ . (5.3.23)

Using Lemma 3.3.2, one can assume that 〈Âµ, Gν〉ĥ is non-degenerate and the proof follows
that of Theorem 3.4.4.

An important remark about Theorem 5.3.2 is that if the metric ĥab has non-trivial
Killing fields, one is not able to solve for the coefficients kν uniquely. In the notation we
have used, one would have that the first N̂− of the elements in {Âµ}N+

µ=1 are a basis for
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ker
(
M∗
ĥ

)
. This implies that the first N̂− rows of both the matrix Tµν and the right hand

side of equation (5.3.21) vanish identlically. The equation (5.3.21) is therefore a system of
N+−N̂− non-homogeneous linear equations can be solved for kν up to N̂− free parameters.
If this is the case, the statement (5.3.18) must be replaced with

W s−1,p
γ−1 (S2) = L

ĥ
(W s,p

γ ) + ker
(
M
ĥ

)
+ {Fν}N+

ν=1 (5.3.24)

and one could say that there are N̂− too many fields in the set {Fν}N+

ν=1 which make the
decomposition not-unique.

One should also note that the set of metrics having no Killing fields is known to be open
in the set of asymptotically flat metrics. This implies there allways exist 0 < ε such that
if hab has trivial isometry group then the same holds for every ĥab in an ε-neighborhood
around hab.

5.4 The case of Euclidean R3

In this section the extensions discussed above are constructed explicitly for a Euclidean
background in dimension 3. In particular it will be shown that if one considers a weight
parameter γ ∈ (−2,−1) then it happens for

(
R3, δab

)
that N+ = N− and so Theorem

5.2.2 reduces to the usual York decomposition. This accounts for the fact that whenever
γ ∈ (−2,−1), the translation generators are a basis for ker (M∗δ ) as well as for ker (L∗δ).

Throughout the section we will use standard spherical coordinates (r, θ, φ) in R3. The
spin-weighted spherical harmonics provide a framework to carry out the computations
needed, so they will be introduced in section 5.4.1.

In section 5.4.2 a basis {Åµ}N+

µ=1 for the set ker (L∗δ) is described. Also a set of fields
{G̊ν}N+

ν=1 that forms a bi-orthogonal system with {Åµ}N+

µ=1 is given. Some of the fields in
the set {Åµ}N+

µ=1 are in ker (M∗δ ), i.e. they are Killing fields. They are identified and labeled
conveniently.

One should note that there are other ways to derive explicit expressions for the elements
of ker (L∗δ). In [Stavrov Allen, 2010] one such computation is given in terms of standard
spherical harmonics. The use of spin-weighted spherical harmonics is however much better
suited for the purposes of this work.

To construct the extended York decomposition for the flat background one wants to
find a set of symmetric tensors {

F̊ν

}N+

ν=N−+1
(5.4.1)

such that they satisfy

Mδ(F̊ν) = G̊ν (5.4.2)

for ν = N−+ 1, . . . , N+. To do this, an ansatz for the fields F̊ν is proposed in section 5.4.3
by which one can actually find all the fields F̊ν sought-after.

5.4.1 Spin-weighted spherical harmonics

The spin-weighted spherical harmonics can be thought of as a generalization of the standard
spherical harmonics. For details and a thorough discussion we refer the reader to [Goldberg
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et al., 1967]. Consider an orthonormal triad given by

na = (dr)a (5.4.3a)

ma =
r√
2

((dθ)a + i sin θ(dφ)a) (5.4.3b)

ma =
r√
2

((dθ)a − i sin θ(dφ)a) . (5.4.3c)

They satisfy nana = mama = 1 and nama = nama = mama = mama = 0. One can write
the flat metric in the form δab = nanb+mamb+mamb. The vectors ma and ma are defined
up to a phase transformation

ma →m′a = eiϕma (5.4.4)

ma →m′a = e−iϕma (5.4.5)

which leaves the properties of the triad invariant. A function η is said to be of spin-weight
s if, under the transformation (5.4.4) it changes by

η′ = eisϕη . (5.4.6)

Let ηs denote a function of spin-weight s. We define the operators ð and ð acting on
ηs by

ðηs = −
(
∂θ +

i

sin θ
∂φ − s cot θ

)
ηs (5.4.7)

ð̄ηs = −
(
∂θ −

i

sin θ
∂φ + s cot θ

)
ηs . (5.4.8)

The resulting functions ðηs and ðηs have spin-weight s+ 1 and s− 1 respectively.
For integral values of s, j andm, the spin-s spherical harmonics can be defined in terms

of the standard spherical harmonics by

sYjm(θ, φ) =


√

(j−s)!
(j+s)!ð

sYjm , if 0 ≤ s ≤ j√
(j+s)!
(j−s)!(−1)−sðsYjm , if − j ≤ s ≤ 0

0 , if j < |s|

. (5.4.9)

They are eigenfunctions of the operators ðð and of −i∂φ with eigenvalues s(s−1)−j(s+1)
and m respectively. They satisfy

ðsYjm =
√
j(j + 1)− s(s+ 1)s+1Yjm (5.4.10a)

ðsYjm = −
√
j(j + 1)− s(s− 1)s−1Yjm . (5.4.10b)

Differential operators using spin-weighted components

A 1-form field Ab can be writen in terms of na, ma and ma as

Ab = A0nb +A+mb +A−mb (5.4.11)
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where A0 = Abn
b, A+ = Abm

b, and A− = Abm
b are of spin weight 0, +1 and −1 respec-

tively. The field Ab is real if and only if As = A−s. Similarly, a symmetric tensor Ψab can
be writen in the form

Ψab = Ψ0n(anb) + Ψ00m(amb)

+ Ψ−n(amb) + Ψ+n(amb) + Ψ−2m(amb) + Ψ+2m(amb) (5.4.12)

where Ψ0 and Ψ00 have spin weight 0, and the Ψs have spin weight s.
The introduction of the operator ð allows one to derive expressions for differential

equations in terms of the different spin-weight components of the fields involved. After
some computation, one finds that the momentum constraint operator is given by

Mδ(Ψ) =
nb
r

{
−∂r(rΨ00) + 2Ψ0 −

ðΨ− + ðΨ+

2
√

2

}
+
mb

r

{
∂r(r

3Ψ−)

2r2
+

1

2
√

2
ð (2Ψ0 + Ψ00)−

ðΨ−2√
2

}
+
mb

r

{
∂r(r

3Ψ+)

2r2
+

1

2
√

2
ð (2Ψ0 + Ψ00)−

ðΨ+2√
2

}
. (5.4.13)

The conformal Killing operator is given by

LδA =
2

3
n(anb)

{
2r∂r

(
A0

r

)
+

ðA− + ð̄A+√
2r

}
− 2

3
m(amb)

{
2r∂r

(
A0

r

)
+

ðA− + ð̄A+√
2r

}
+ 2n(amb)

{
r∂r

(
A−
r

)
− ðA0√

2r

}
+ 2n(amb)

{
r∂r

(
A+

r

)
− ðA0√

2r

}
−
√

2

r

{
m(amb)ðA− +m(amb)ðA+

}
. (5.4.14)

The conformal Killing Laplacian is given by

Lδ(A) =
nb
3r2

{
4
(
∂r
(
r2∂rA0

)
− 2A0

)
+ 3ððA0 + (7− r∂r)

ðA+ + ðA−√
2

}
+
mb

3r2

{
− (r∂r + 8)

ðA0√
2

+ 3∂r
(
r2∂rA+

)
+

7

2
ððA+ +

1

2
ððA−

}
+
mb

3r2

{
− (r∂r + 8)

ðA0√
2

+ 3∂r
(
r2∂rA−

)
+

7

2
ððA− +

1

2
ððA+

}
. (5.4.15)

The advantage of the expression above is that in the present context one can assume
that the spin-weighted components of the one form Ab are expanded as

A0(r, θ, φ) =

∞∑
j=0

j∑
m=−j

g0jm(r) 0Yjm(θ, φ) (5.4.16a)

As(r, θ, φ) =

∞∑
j=1

j∑
m=−j

gsjm(r)

√
2

j(j + 1)
sYjm(θ, φ) . (5.4.16b)

where gsjm(r) depend only on r. Note that for A± the sum starts from j = 1 because by
equation (5.4.9) one has ±Y0m = 0.
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Conformal Killing fields of Euclidean R3

One can use the expansion (5.4.16) in equation (5.4.14) to study the conformal Killing
equation

Lδ(A) = 0 (5.4.17)

in Euclidean R3. The result is that a basis for the conformal Killing fields of Euclidean R3

is given by

Ab =
∑

m=−1,0,1
c1mr

2
{
Y1m nb + (+Y1mmb − −Y1mmb)

}
+ c2mr (+Y1mmb + −Y1mmb) + c3rnb

+ c4m

{
Y1m nb − (+Y1mmb − −Y1mmb)

}
(5.4.18)

where m = −1, 0, 1 and c1m, c2m, c3 and c4m are 10 constants. If one computes the diver-
gence of (5.4.18) one obtains

divδ(Aa) =
∑

m=−1,0,1
6 0Y1mc1mr + 3 0Y00c3 . (5.4.19)

Conformal Killing fields whose divergence vanishes, i.e. those with c1m = c3 = 0, are
proper Killing fields.

5.4.2 The conformal Killing operator in Euclidean R3

In this section we start by studying the equation L∗δ(A) = 0 in Euclidean R3 without
considering fall-off conditions on the solutions. Using the ansatz (5.4.16) in equation
(5.4.15) we obtain a system of ODEs for the functions gsjm. Then, by requiring that the
solutions be regular everywhere and that they satisfy certain fall-off conditions it will be
seen that the resulting solutions span ker (L∗δ).

In terms of the unknowns

U0 = g0jm (5.4.20a)
U+ = g+,jm + g−,jm (5.4.20b)
U− = g+,jm − g−,jm (5.4.20c)

the system reads (
4 ∂r

(
r2 ∂r

)
− 6k − 8

)
U0 + (r ∂r − 7)U− = 0 (5.4.21a)

−2k (r ∂r + 8)U0 +
(
3 ∂r

(
r2 ∂r

)
− 8k

)
U− = 0 (5.4.21b)(

∂r
(
r2 ∂r

)
− 2k

)
U+ = 0 (5.4.21c)

where we have set k = j(j+1)
2 . We now set Us(r) = usr

p where us are constants and p ∈ Z.
This gives4p(p+ 1)− 6k − 8 p− 7 0

−2k(p+ 8) 3p(p+ 1)− 8k 0
0 0 p(p+ 1)− 2k

u0u−
u+

 = 0 . (5.4.22)

To find non-trivial solutions one sets the determinant of this matrix to zero. In terms of
j, this gives p = j + 1, j, j − 1,−j,−j − 1,−j − 2 and for each value of p one can find
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corresponding constants us. We are interested in solutions which are regular everywhere,
so we consider those having p ≥ 0. To parametrize all the solutions obtained we consider
(in a way similar to what we did for the Helmholtz decomposition) some numbering by
indices µ = 1, . . . , N+ of the set of triples

µ↔ (s, j,m) (5.4.23)

where s = 1, 2, 3, j ≥ 0 runs up to a certain maximum value, and for fixed j m = −j, . . . , j.
The solutions to L∗δ(A) = 0 obtained are given by

Åµ = δ1sr
j+1

{
(j − 6)

(j + 9)
0Yjmnb −

√
j

j + 1
+Yjmmb − −Yjmmb√

2

}

+ δ2sr
j +Yjmmb + −Yjmmb√

2

+ δ3sr
j−1

{√
j

j + 1
0Yjmnb −

+Yjmmb − −Yjmmb√
2

}
(5.4.24)

where the term corresponding to s = 3 vanishes for j = 0.
So far we have not said anything regarding which of the solutions found in (5.4.24) are

in ker (L∗δ). A 1-form Åµ belongs to ker (L∗δ) if it grows at infinity no faster than o
(
r−γ−1

)
.

This means that in (5.4.24) one must consider for s = 1 the solutions with j ≤ −γ− 2, for
s = 2 the solutions with j ≤ −γ − 1 and for s = 3 those with j ≤ −γ. To illustrate the
way in which the solutions are enumerated, we have collected some of these properties in
table 5.1 for ranges of the weight parameter γ down to −5. Each row indicates how many
solutions are in ker (L∗δ) in addition to all the solutions in rows above it.

γ s = 1 s = 2 s = 3 N+ N−
∈ (−1, 0) 0 0 0 0 0

∈ (−2,−1) 0 0 3 (j = 1) 3 3

∈ (−3,−2) 1 (j = 0) 3 (j = 1) 5 (j = 2) 9 + 3 6

∈ (−4,−3) 3 (j = 1) 5 (j = 2) 7 (j = 3) 15 + 9 + 3 6

∈ (−5,−4) 5 (j = 2) 7 (j = 3) 9 (j = 4) 21 + 15 + 9 + 3 6

Table 5.1: Ordering of the fields Åµ ∈ ker (L∗δ).

It is also important to stress that the number of solutions (5.4.24) obtained for each
γ ∈ R \Z coincides with the general result of Theorem 4.2.2 and their linear independence
then guarantees that they are in deed a basis for ker (L∗δ).

The solutions with s = 3, j = 1 and m = 1, 0,−1

Åb =
1√
2

0Y1mnb −
+Y1mmb − −Y1mmb√

2
(5.4.25)

can be seen to correspond to Killing fields associated to translations while the solutions
with s = 2, j = 1 and m = 1, 0,−1

Åb = r
+Y1mmb + −Y1mmb√

2
(5.4.26)



CHAPTER 5. YORK DECOMPOSITION WITH FAST DECAY 62

are seen to correspond to be Killing fields generating rotations. They are 6 linearly inde-
pendent elements of ker (M∗δ ) and therefore constitute a basis for it.

The way in which the index µ is assigned by (5.4.23) to each of the fields Åµ in
equation (5.4.24) need not be completely specified at this point, but to be consistent with
the notation introduced in section 5.1 and the fact pointed out above, it is convenient to
choose 

µ = 1 ↔ (2, 1, 1)
µ = 2 ↔ (2, 1, 0)
µ = 3 ↔ (2, 1,−1)

,


µ = 4 ↔ (3, 1, 1)
µ = 5 ↔ (3, 1, 0)
µ = 6 ↔ (3, 1,−1)

. (5.4.27)

In this sense, the fields {Åµ}6µ=1 are a basis for ker (M∗δ ). This will become important in
the next section.

It is convenient at this point to define fields L0, LR and LL by

L0 = 0Yjmnb (5.4.28a)

LR =
+Yjmmb + −Yjmmb√

2
(5.4.28b)

LL =
+Yjmmb − −Yjmmb√

2
(5.4.28c)

and note that they satisfy 〈L0, L0〉S2 = 〈LR, LR〉S2 = 〈LL, LL〉S2 = 1 and 〈L0, LR〉S2 =
〈L0, LL〉S2 = 〈LR, LL〉S2 = 0. Let χ(r) ∈ C∞0 be supported away from r = 0 and such
that

∫
χ(r)r2dµδ = 1. Writing (5.4.24) in terms of L0, LR and LL, one can show that for

ν = 1, . . . , N+ the set of fields

G̊ν = δ1s′
χ(r)

rj+1

(j + 1)(j + 9)

2(7j + 3)

{
−L0 −

√
j

j + 1
LL

}

+ δ2s′
χ(r)

rj
LR

+ δ3s′
χ(r)

rj−1
(j + 1)(j + 9)

2(7j + 3)

{√
j

j + 1
L0 +

(j − 6)

j + 9
LL

}
(5.4.29)

satisfies 〈Åµ, G̊ν〉δ = δµν where ν stands for (s′, j′,m′). Hence the sets

{Åµ}N+
µ , {G̊ν}N+

ν (5.4.30)

given by equations (5.4.24) and (5.4.29) form a bi-orthogonal system.

5.4.3 Construction of the complement

One now looks for symmetric tensors F̊ν such that

Mδ(F̊ν) = G̊ν (5.4.31)

for ν = 7, . . . , N+. There is a large freedom in the way this is done and we now show a
construction of such tensors. Consider symmetric tensors of the simple form

F̊ab = Ψ0n(anb) + Ψ−2m(amb) + Ψ+2m(amb) . (5.4.32)
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Assume the components are of the form

Ψs = Ps(r)sYjm(θ, φ) (5.4.33)

and change variables to f± = 1√
2
(P+ ± P−). Using the expression for the momentum

constraint operator given in equation (5.4.13), one obtains

Mδ(F̊ ) =
L0

r
2P0

+
LR
r

√
(j − 1)(j + 2)

2
f−2

+
LL
r

(√
(j − 1)(j + 2)

2
f+2 +

√
j(j + 1)P0

)
. (5.4.34)

By comparing with equation (5.4.29) we obtain relations for the functions fs(r). These
are found to have solutions only for the cases with ν = 7, . . . , N+ as expected. The solution
obtained reads

F̊ν = δ1s′
χ(r)

rj
(j + 1)(j + 9)

4(7j + 3)

(
− 0Yjmn(anb)

+

√
2j(j − 1)

(j + 1)(j + 2)

+2Yjmm(amb) + −2Yjmm(amb)√
2

)

+ δ2s′r
χ(r)

rj

√
2

(j − 1)(j + 2)

+2Yjmm(amb) − −2Yjmm(amb)√
2

+ δ3s′
χ(r)

rj−2
(j + 1)(j + 9)

4(7j + 3)

(√
j

j + 1
0Yjmn(anb)

− (j + 3)(j + 4)

j + 9

√
2

(j − 1)(j + 2)

+2Yjmm(amb) + −2Yjmm(amb)√
2

)
. (5.4.35)

Example 5.4.1. To give an example, we consider the first non-trivial elements of this com-
plement which corresponds to considering weights γ ∈ (−3,−2). The complement is gen-
erated by 6 fields given by taking in the previous equation the values (s = 1, j = 0,m = 0)
and (s = 3, j = 2,m = −2, . . . , 2). This gives the following 6 fields

F̊ν = −δ1s′
3χ(r)

4
√

4π
n(anb)

+ δ3s′
χ(r)

68

(
11
√

6 0Y2mn(anb) − 45
(
+2Y2mm(amb) + −2Y2mm(amb)

))
. (5.4.36)
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