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Abstract
Models of gravitational waveforms from coalescing black-hole binaries play a
crucial role in the efforts to detect and interpret the signatures of those binaries
in the data of large-scale interferometers. Here we summarize recent models
that combine information both from analytical approximations and numerical
relativity. We briefly lay out and compare the strategies employed to build such
complete models and we recapitulate the errors associated with various aspects
of the modelling process.

PACS numbers: 04.30.Db, 04.25.dg, 04.25.Nx, 04.30.Tv

(Some figures may appear in colour only in the online journal)

1. Introduction

The world-wide effort to directly detect gravitational waves (GWs) for the first time is an
ambitious project that unites the expertise from various fields in experimental and theoretical
physics. A network of instruments, containing the Laser Interferometer Gravitational-wave
Observatory (LIGO) [1–3], VIRGO [4, 5] and GEO600 [6, 7], will soon reach a sensitivity
where the signatures of coalescing compact binaries are expected to be seen above the noise
level of the detectors a few times to hundreds of times per year [8]. In the case of binaries that
consist of black holes (BHs) and/or neutron stars, the correct interpretation of the GW signals
crucially depends on the quality of theoretically predicted template waveforms that have to be
used to identify the physical properties of the source.

This paper focuses on waveform families of binary BHs as they constitute one of the most
promising sources of the first direct detection of GWs. Their modelling typically combines
two very different approximation procedures. One describes the early inspiral of both objects
through an asymptotic expansion in terms of the relative velocity v/c, where c is the speed
of light. As long as this quotient is small, the resulting post-Newtonian (PN) equations are an
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Figure 1. The dominant spherical harmonic mode of the GW signal of two coalescing (nonspinning)
BHs as a function of time. The different approximation schemes and their range of validity are
indicated. The wavy lines illustrate the regime close to the merger where analytical methods have
to be bridged by NR.

adequate representation of the dynamical evolution of the binary [9]. Because of the simple
form of PN approximants that provide the GW signal in terms of differential equations or, in
some cases, even in a closed form, they have long been the favourite tool for data-analysis
applications.

However, as the two BHs orbit around each other, they lose energy through the emission
of GWs, and their distance shrinks along with an increase in velocity. Consequently, PN
predictions become more and more inaccurate the closer the binary gets to the merger. Different
analytical modifications are known that try to enhance the convergence of the PN series, even
close to the merger, and one of the most successful methods is the effective-one-body (EOB)
approach [10–13].

Without further information, however, all these analytical schemes break down at some
point prior to the merger of both BHs, and a second approach has to be used to model
the dynamics from the late inspiral through the merger: numerical relativity (NR). In NR,
the full Einstein equations are usually solved discretely on a finite grid that is adapted to
the movement of the two bodies, and the resolution in space and time is chosen fine enough
to obtain a converging result. The GW content is extracted at finite radii and then extrapolated
to infinity, or it is directly extracted at null infinity via Cauchy-characteristic extraction
[14, 15]. For current overviews of the field, see for example [16–20].

Both numerical and analytical approaches have their limitations. The PN-based
formulations are, by construction, not valid throughout the entire coalescence process; NR
relies on computationally very expensive simulations that become increasingly challenging
(and time-consuming) with larger initial separations, higher spin magnitudes of the BHs and
higher mass-ratios q = m1/m2 (mi are the masses of the individual BHs and we use the
convention m1 � m2). Thus, to build models of the complete inspiral, merger and ringdown
signal, one has to combine information from both analytical and numerical approximations.
See figure 1 for an illustration of the dominant harmonic mode of a nonspinning binary.

These ‘complete’ waveforms are indispensable to perfect current search strategies. They
constitute our best and most complete approximation of the real signals that we are trying to
detect, which makes them ideal target waveforms in a simulated search to test existing analysis
algorithms. The Numerical INJection Analysis (NINJA) project [21, 22] is dedicated to that
question. The other important application of complete waveforms is to derive an analytical
model from them which leads to an improved template bank in the search. The improvement
manifests itself, e.g., in a wider detection range and a more accurate extraction of the physical
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information encoded in the signals. Ongoing searches with such templates in LIGO data are
summarized for instance in [23].

This paper briefly describes the efforts to build complete waveform models by combining
analytical approximants and NR into individual signals and eventually entire waveform
families. Our focus then turns to the question of how reliable and accurate such final models are.
After all, one expects (and finds) a smooth connection between the two parts of a supposedly
common GW signal, but the use in actual analysis algorithms of GW interferometers requires
a much deeper error analysis with a quantitative understanding of the uncertainty introduced
in the modelling process.

2. Concepts for constructing full waveform models

2.1. EOBNR

The EOB formalism has been refined several times to incorporate additional information
from NR. Depending on the number of available NR waveforms as well as the modifications
introduced to the EOB description, various versions of such EOBNR models have been
developed [24–31]. It is beyond the scope of this paper to repeat the technical details of the
EOB formalism and its extensions. For the sake of comparison to other approaches, however,
we shall summarize the general strategy towards complete inspiral–merger–ringdown EOBNR
models below.

The main additions that allow for the description of the entire GW signal are (a) a
generalization of the EOB formalism which introduces free parameters to be calibrated by NR
simulations and (b) attaching a series of damped sinusoidal oscillations (quasinormal modes)
representing the final stage of the BH ringdown (see, e.g., [32]). The proposed variants of
EOBNR mainly differ in the way the original EOB description is modified and which free
parameters are introduced. The most recent versions by Damour and Nagar [28] and Pan et al
[31] extend the standard EOB form through the following steps.

• Two unknown parameters representing the 4PN- and 5PN-order contributions are added
to the radial potential (commonly referred to as A(u)) that enters the Hamiltonian. As
for many quantities in the EOB framework, using Padé resummation [12] proves to
be superior to the Taylor-expanded form (which is, however, not always true, see the
discussion about a generalization to spinning BHs [29] and also [33]).

• The radiation-reaction force and the waveform modes are written in a resummed,
factorized manner [34]. Additional coefficients are introduced in the waveform,
accounting for further, undetermined PN contributions and next-to-quasi-circular
corrections.

• A sum of quasi-normal modes is attached to the inspiral-plunge EOBNR waveform over
a certain time interval around the peak of the waveform mode.

The impact of NR on the above strategy is manifold. Some parameters (like the EOB-
dynamical parameters introduced into the radial potential) are directly determined through
minimizing the phase difference between the analytical and numerical GW. Other parameters
are derived from independent (i.e. not EOB-related) fits of the numerical data, such as
predictions of the final spin of the remnant BH or the maximum of the modulus of the
GW. Note, however, that for a direct comparison (and thereby calibration), analytical and
numerical waveforms have to be aligned, i.e. a relative shift in time and phase has to be fixed
by some minimization procedure. We shall find the same need in all construction algorithms
for complete GW signals.
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In short, the characteristics of EOBNR constructions are that a well-adapted analytical
description is extended and informed by NR data, so that finally a time-domain description
based on a set of differential equations provides the entire inspiral to plunge signal that is
completed by attaching the ringdown waveform.

2.2. Phenomenological models

Although there is a common strategy in all modelling procedures described here, let us highlight
a few distinct features of phenomenological waveform families as introduced by Ajith et al
[35–37] and Santamarı́a et al [38]. These families are built by first constructing a finite set
of complete hybrid waveforms [36, 38–43] that are direct combinations of the available NR
data with the appropriate waveforms obtained with some PN approximant (usually based on
Taylor-expanded quantities). The construction of these hybrid waveforms may differ, as they
can be based on the time or frequency domain, they can overlap both waveform parts at a
single point or over an interval and they can impose various requirements on the smoothness of
the transition. However, all hybridization procedures are based on finding the, in some sense,
optimal alignment between two parts of the same waveform by exploiting the free relative
time and phase shift.

Different from the EOBNR approach, this combination of analytical and numerical
waveforms does not immediately lead to a model allowing arbitrary physical parameters.
Hybrid waveforms merely constitute the set of discrete target signals that are represented in a
next step as accurately as possible by a simple and convenient multi-parameter fit. This fit is
separated from the analytical approach used to describe the inspiral of the hybrid waveform.
For instance, the latest model of Ajith et al [37] employs a time-domain PN approximant
commonly denoted by ‘TaylorT1’ in the hybrid construction, but the final multi-parameter
model is instead inspired by the form of a Fourier-domain PN approximant (see for instance
[44] for an overview of the different PN approximants).

The final fit that turns a set of hybrid waveforms distributed in the parameter space
into an analytical model is a delicate procedure. Introducing an arbitrary (yet as small as
possible) number of parameters to fit a relatively small number of hybrids is not difficult.
These auxiliary parameters, however, have to be a smooth function of the physical parameters
(notably symmetric mass ratio and spins) themselves in order to allow for an interpolation of the
parameter space. Only if the latter can be achieved, again with guidance from PN descriptions
and the knowledge of quasinormal ringdown modes, the model becomes potentially useful for
data-analysis purposes without increasing the rate of false alarms in a search process.

In the end, the phenomenological descriptions mentioned above [35–38] are provided
in terms of closed-form equations representing the GW signal in Fourier space. It should
be noted that, although the procedure of combining PN and NR data in the first step
and analytically modelling it in the second step is conceptually useful to analyse different
error sources (see section 4), it is not entirely different from the EOBNR approach. If the
inspiral model used in the hybrid would be the EOB and an extended EOB description is
chosen as the ‘phenomenological model’, then we would recover the EOBNR construction.
Likewise, if the EOBNR construction would calibrate its model against a complete hybrid
signal instead of pure NR data, it would be conceptually no different from phenomenological
constructions (which does not imply that one construction cannot be superior to the other). The
important question ultimately is how flexible and accurate each individual strategy (with all its
detailed distinctions) can predict the unknown real GW signal. We shall touch this question in
section 4.
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Table 1. A selection of recent complete waveform models for BH binaries with comparable
masses on quasi-spherical orbits. We summarize the reference where the model was described, the
approximate inspiral waveforms and NR codes that were employed, the parameter range in which
each model was calibrated (q is the mass ratio) and the number of parameters and NR simulations
used to build the model.

Alias Reference Inspiral NR code Calibration range Calibrated parameters

EOBNR [28] EOB SpEC, BAM q � 4 and q → 0 2 dynamical from q = 1
no spins + fits from q ∈ {1, 2, 4}

EOBNR [31] EOB SpEC q � 6 and q → 0 2 dynamical + 4 waveform
no spins parameters/mode, 5 leading

modes from 5 NR runs
PhenomB [37] T1 BAM q � 4 and q → 0 6 phase, 4 amplitude

aligned spins from 24 NR simulations
PhenomC [38] F2 BAM q � 4 6 phase, 3 amplitude

aligned spins from 24 NR simulations
PhenSpin [46] T4 MayaKranc q = 1, χi = 0.6 2 phase parameters from

precession 24 NR simulations + 4 PhenomB

For completeness, let us mention another phenomenological family that was constructed
by Sturani et al [45, 46] as a first step to model waveforms of precessing binaries. In this
approach, a Taylor-expanded time-domain approximant (‘TaylorT4’) is extended and finally
fitted to NR data. Just like EOBNR (although less sophisticated), the resulting model is given
in the form of time-domain differential equations with quasinormal ringdown modes attached.

3. Physical range of waveform models

Understanding the concepts underlying the construction of complete waveform models is
mainly interesting when we want to compare various approaches, deduce why they lead to
slightly different waveforms and, most importantly, assess the quality of individual families.
In this section, however, we will first summarize the facts that are interesting for the actual
usage of the waveforms in data-analysis applications. In particular, before applying the model
to a set of physical parameters, one should have a clear perception of where in the parameter
space these models have been constructed. Although this range does not necessarily coincide
with the range of parameters the model can be used with, it nevertheless is a good indication
where it can be trusted most.

The waveform models that have been introduced in section 2 are tailored to model binary
BHs with comparable masses inspiralling on quasi-circular orbits. There are successful efforts
to exploit the synergy of analytical methods and NR also for other scenarios, such as the
extreme mass-ratio regime [30, 47] or binary neutron star coalescences [26, 48]. In this paper,
we focus on binary BHs in the comparable-mass regime only, as they are the most promising
sources for the upcoming generation of ground-based GW detectors whose detection and
interpretation may require information both from PN and NR.

In table 1, we provide an overview of selected, recent models for this regime. Apart
from an alias (partially adopted from the LIGO-Virgo collaboration [49, 50]), we indicate
the inspiral model which is either based on the EOB approach or derived from Taylor-
expanded PN quantities. In the latter case, various different PN approximants are known
depending on the details of the re-expansion and integration. The time-domain approximants
are commonly referred to as TaylorTn (where n ranges from 1 to 4, and a fifth version has
recently been suggested [51]); a frequency-domain representation obtained via the stationary-
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phase approximation is denoted by TaylorF2. For details, see [44, 52, 53] and references
therein.

The NR codes that contributed to the construction of the given models are the Spectral
Einstein Code (SpEC [54, 55]), BAM [56] and MayaKranc [57], where the few SpEC
waveforms are notably long and accurate, the BAM simulations provide the largest diversity
in parameter space with moderately long waveforms and MayaKranc waveforms are the only
precessing simulations used to calibrate analytical models to date.

Other distinctive features of the models listed in table 1 are for example as follows:

• PhenomB/C are closed-form frequency-domain representations of the GW; EOBNR and
PhenSpin provide the signal in terms of time-domain differential equations.

• EOBNR models can readily be extended beyond the dominant spherical harmonic of the
GW, whereas the phenomenological models and PhenSpin solely provide the signal in
terms of the � = 2, m = ±2 (spin-weighted) spherical harmonic modes.

• The PhenSpin model is the first attempt to model generic precessing spin configurations,
but it is so far only calibrated to equal-mass systems and dimensionless spin magnitudes
of 0.6. All other models in table 1 are only applicable to nonspinning systems or systems
where the spin of each BH is aligned (or antialigned) with the total orbital angular
momentum.

In the aligned-spin case, both phenomenological waveform families reduce the two spin
parameters to one ‘total’ spin

χ = m1χ1 + m2χ2

m1 + m2
, (1)

where mi are the individual masses and the dimensionless spin magnitudes are χi = ±|Si|/m2
i

(the sign distinguishing aligned and antialigned configurations). As recently shown by Ajith
[51], this degeneracy in the spin parameters can be further optimized, and it will be an
important goal for future models to describe as many physical effects as possible with the
smallest possible number of parameters. In the nonspinning case, all waveforms presented
here are parametrized in terms of the physical parameters total mass and symmetric mass
ratio (plus initial time and phase) but it may be useful both from the modelling and the search
point of view to refrain from this parametrization strategy once all additional spin dynamics
are included. Note that there is also an EOBNR model proposed that includes aligned-spin
configurations [29], but this first exploratory study only employed two equal-mass simulations
(performed with SpEC) with equal spins χ1 = χ2 ≈ ±0.44.

Apart from the listed facts, there are many more procedures involved in checking the
validity of proposed models. Most importantly, it has been shown to some extent that the
models mentioned here agree to reasonable accuracy with the waveforms they were derived
from, but also with waveforms that were not in the construction set. Thus, with an increasing
number of available numerical simulations, all these models can not only be extended and
refined, but also be cross-checked extensively until, ideally, one can confidently interpolate
over the entire parameter space independent of the set of waveforms actually used to calibrate
the model.

4. Uncertainties in the modelling process

Having briefly sketched some successful approaches to combine analytical and numerical
methods in the GW-modelling process, let us recapitulate the choices that had to be made
along the way.
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• Which PN/EOB formulation should be employed?
• What physical parameters in PN and NR are consistent with the other framework?
• Which NR resolution, extraction formalism, etc is sufficient?
• How long do the NR waveforms have to be?
• What is the appropriate way to match analytical and numerical data?
• How do the fitting parameters depend on physical quantities?

When constructing a complete waveform model, each of these questions has to be
answered and different choices lead to the different results presented above. The important
conclusion we shall draw from this is that none of the suggested models is based on an
unambiguous construction, and the spread of possible results that different reasonable choices
yield is a measure of the uncertainty within the modelling process. We shall first outline the
basic concepts of evaluating these uncertainties in a way meaningful for GW searches and
then summarize some results that have been obtained in the recent past.

4.1. Accuracy requirements for detection and parameter estimation

Let us recall the basic strategy of a matched-filter search (see, e.g., [58–60]) that employs a
theoretically predicted template bank of waveforms h2 which in turn are characterized by the
parameters θ . Assume that a real GW signal h1 is contained in the data stream. The search
mainly relies on finding the maximum agreement between h1 and h2(θ ), for any θ , as quantified
by the inner product

〈h1, h2〉 = 4 Re
∫ f2

f1

h̃1( f ) h̃∗
2( f )

Sn( f )
d f . (2)

Here, h̃i are the Fourier transforms of hi, ∗ denotes the complex conjugation and Sn is the noise
spectral density of the assumed GW detector (we assume stationary Gaussian noise with zero
mean).

The detection efficiency can be expressed in terms of the minimal mismatch

M = 1 − max
θ

〈h1, h2(θ )〉
‖h1‖‖h2(θ )‖ , (‖hi‖ =

√
〈hi, hi〉), (3)

which quantifies the loss in signal-to-noise ratio (SNR) due to an inexact model, or equivalently
yields the fraction of missed signals in a matched-filter search. If, for example, up to x = 10%
of the detectable signals may be missed due to a mismatch of real and modelled waveform,
we can allow this mismatch to be at most M = 1 − 3

√
1 − x ≈ 3.5%.

Typically, one does not have access to an ideal target waveform and an approximate search
family, so one commonly uses the mismatch between two supposedly equivalent, approximate
waveforms to quantify the error of the modelling process itself. The other simplification that
often comes with the restriction to discrete points in the parameter space is that instead of
maximizing (3) with respect to all parameters, one only exploits a free relative time and phase
shift between the waveforms and varies along θ = (t0, φ0). This can only be an upper bound
on M , which is of course sufficient if the values found are small enough.

The uncertainty of estimating parameters in a search has recently [42, 43, 61, 62] been
based on the requirement that the error of the waveform model is indistinguishable by the
detector. With h1 and h2 denoting supposedly equivalent waveforms, this requirement reads

‖δh‖ = ‖h1 − h2‖ < ε, (4)

with ε being the fraction of the noise level we allow for the model uncertainty (ε � 1).
The parameters of h1 and h2 are deliberately kept the same in (4), except for a time and
phase shift that is used to minimize the distance. The other parameters (masses, spins) should
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be determined in the search with no bias introduced by the model; thus, we do not optimize
over them in (4). Note that (4) can also be expressed in terms of the mismatch (also minimized
over a time and phase shift only) by assuming the equal norms ‖h1‖ = ‖h2‖ = ‖h‖ [63, 64],

M = 1

2

‖δh‖2

‖h‖2
⇒ (4) ⇔ M <

ε2

2‖h‖2
. (5)

Fulfilling (4) or (5) is certainly the ultimate goal for an accurate waveform model, and
we can easily understand that if the waveform uncertainty δh is not even detectable in the
presence of instrument noise, it has no effect on the measurement. The converse, however,
cannot be interpreted in this straightforward manner. If ‖δh‖ > 1, we would expect that the
model uncertainty has some effect on the parameter estimation, but which effect it actually
has must be quantified through the systematic (i.e. model-induced) parameter bias which is
defined as the difference between the parameter values of the best fitting template and the
true parameters [12]. These errors should then be compared to statistical (i.e. noise-induced)
errors, and there are explicit expressions available for both types of biases in the high SNR
regime [63, 65]. Here we just remind the reader that (4) was derived as a sufficient criterion
to ensure that the systematic errors do not exceed the statistical parameter variance [63]. It is,
however, not a necessary criterion, and we shall illustrate this explicitly in section 4.4.

Next, we summarize some important results that have been obtained recently, all casting
the question of accuracy of waveforms in the form just outlined. All the results quoted below
use an Advanced LIGO noise curve [36, 66] with appropriate integration limits.

4.2. Errors in the NR regime

Quantifying errors is an important and very natural process for numerical integrations and the
uncertainty of NR waveforms is usually given in terms of phase and amplitude error. Although
these can be related to the quantities we have introduced above (see [61, 67, 68]), we will
focus on publications here that directly analyse NR errors in terms of waveform mismatches
(all mismatches quoted below are optimized over time and phase shifts of the waveforms).

The ‘Samurai’ project [69] was a joint effort proving the consistency of NR waveforms by
comparing numerical simulations of equal-mass, nonspinning binaries from five different NR
codes. No completion of the waveforms with PN or EOB inspiral signals was considered as the
focus laid primarily on the NR data and their errors. Therefore, the mismatches reported in [69]
are restricted to high frequencies; thus, high masses of the system (total mass > 180M�) and
values of M < 0.1% are found. Similarly, Santamarı́a et al [38] compare hybrid waveforms
of nonspinning binaries with mass ratios 1 and 2 where the PN part was fixed, respectively,
and NR data were produced either from the BAM or Llama [70] code. The maximal mismatch
they find satisfies M < 0.2%.

The effect of different resolutions used to calculate the NR part of a complete waveform
was also analysed in [38] and by MacDonald et al [42] who report that even the low-resolution
run causes a difference to their best simulation (nonspinning, equal mass, SpEC code) with M
not greater than 0.1%.

Finally, various comparisons of analytical waveform models with NR data can be found in
the literature, e.g., the recent EOBNR model by Pan et al [31] exhibits a mismatch M ∼ 0.5%
with an NR waveform (multiple harmonics) of a binary with mass ratio 6. Smaller mass
ratios and fewer harmonics lead to smaller mismatches. Note that all these mismatches can be
considered as small, at least in terms of detection, as only ≈ 1.5%(0.6%) of signals would
be lost due to a mismatch of M = 0.5%(0.2%) (not even including additional optimizations
over the physical parameters of the template bank).
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4.3. Hybridization errors

There are different strategies to combine two parts of supposedly the same waveform into one
signal. As one is forced to overlap analytical and numerical results in the late merger regime
(as early as the NR simulation permits), one cannot expect that they agree perfectly, and there
is some ambiguity about the way an ‘optimal alignment’ of both waveform parts is defined.
Most common both in EOBNR an phenomenological constructions is to decompose h into
the phase φ and amplitude A by h = A eiφ . The alignment of the PN/EOB and NR parts is
then carried out by minimizing a phase difference, either over an entire interval or at discrete
points, utilizing the frequency ω = dφ/dt as well.

A detailed analysis of various aspects involved in such procedures can be found in [38, 42].
The authors of [38] calculate in their example of a frequency-domain matching that the relative
time shift between both waveform parts can be determined, in the best case, up to an uncertainty
of δt0/M ≈ 0.15. Reference [42] complements this statement by estimating that δt0/M � 1 is
required for an accurate matching with M < 0.02%. In addition, the recommended matching
interval is formulated in terms of the frequency evolution ω1 → ω2 within this interval, and
reference [42] suggests (ω2 − ω1)/ωm � 0.1 (where ωm is the transition frequency from PN
to NR).

Hannam et al [41] compared different hybridization schemes, including time and
frequency-domain variants, and they show for an equal-mass, nonspinning binary that the
resulting different hybrids have a mismatch of at most M = 0.03%. Again, we can summarize
these results by stating that in the cases considered (mostly nonspinning, some aligned-spin
configurations, mass-ratio close to unity), the hybridization involves some careful fine-tuning
but the uncertainties introduced are acceptable for data-analysis purposes.

4.4. Uncertainty of the inspiral waveform—NR length requirements

Recently, several publications quantified the effect of different analytical waveform models
that are completed with common late-inspiral, merger and ringdown data [38, 41– 43, 62, 71].
The general approach in each of these articles is similar: different PN/EOB approximants are
stitched to some given high-frequency data (Boyle [43] and Ohme et al [71] point out that
only very limited information from NR is actually needed) and the slightly different signals
are analysed in terms of their distance ‖δh‖ or mismatch M , at first optimized over time and
phase shifts only.

The results are sobering. Even approximants with nonspinning/spinning terms up to
3.5PN/2.5PN order (amplitude at 3PN/2PN order) induce hybrid-waveform disagreements
that can reach mismatches of the order of a few to more than 10%. That is at least an order
of magnitude more than what has been found for NR and hybridization errors! Of course,
there are again many details entering these calculations, the most crucial choices being (a) the
two analytical models compared to each other, (b) the total mass of the system, (c) the other
physical parameters of the system (mass ratio, spins) and (d) where the inspiral waveforms
are connected to common NR data.

In a conservative approach, (a) and (b) are dealt with by repeating the same analysis
for various different models and calculating the mismatches for a range of masses (the
waveforms themselves scale trivially with the total mass); the maximum of all of these numbers
then represents the total uncertainty due to an ambiguous inspiral. However, astrophysical
expectations of, e.g., the minimal constituent mass may considerably restrict the plausible
range of total masses, which leads to more relaxed accuracy requirements particularly for
higher mass ratios [43, 71].
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One way to reduce the total modelling error is to shorten the PN contribution to the
waveform and employ accordingly longer NR simulations. As stated before, NR data are
extremely expensive to compute and therefore estimating the required minimal simulation
length is a major input to be provided by the waveform modelling community. The first efforts
in this direction repeated the error analysis based on PN uncertainties simply for different
matching points, thereby estimating how early one would have to match PN and NR to meet
a given accuracy requirement. The results found in [42, 43] suggest that, for given mass ratio
and spin, numerical waveforms have to be much longer than currently practical simulations.
In particular, demanding an uncertainty indistinguishable by the detector (equation (4)), even
for a moderate SNR (∼10), requires hundreds of NR orbits.

At first sight, these results are discouraging, but they are based on sufficient (but not
necessary) criteria for individual waveforms. If instead the accuracy analysis is carried out
for waveform families that allow for a continuous variation of all physical parameters, the
corresponding error estimates are much smaller. Hannam et al [41] first presented mismatches
that are not only optimized over phase and time shifts but also with respect to the total mass.
Ohme et al [71] calculated mismatches that are fully optimized (also with respect to mass ratio
and spin). This now allows us to quantify the errors not only in terms of waveform differences
but also as modelling-based uncertainties in the determination of the parameters. In practice,
reference [71] reports fully optimized mismatches of the order of 1% and less, achieved with
parameter uncertainties of 1% for total mass and symmetric mass ratio and a total bias of 0.1
for the spin parameter χ . It was concluded that approximately ten orbits before the merger of
numerical data should be good enough for the modelling of many astrophysical systems.

The reason behind such inconsistent conclusions about the required NR waveform length
is that the authors take different approaches to define an accuracy goal for hybrid waveforms.
From a purely theoretical point of view, every single waveform should be as accurate as
possible, and any effect on the measurement should be excluded from the outset. This
consequently leads to (4) and (5) and the request for hundreds of NR orbits. The other
point of view is inspired by the immediate goal to detect and interpret GWs out of existing
data, and although current waveform uncertainties significantly violate (4), it is concluded that
one can still potentially use waveforms incorporating ≈10 NR orbits for the science intended.

This much more optimistic conclusion relies on fully optimized mismatches, and also on
the actual calculation of the systematic parameter bias. As we have noted before, not satisfying
(4) does not imply that the systematic bias exceeds the statistical one, and an illustration of
that is given in figure 2. For the example of a binary with total mass M = 20M�, mass ratio
4 and equal aligned spins with χ = 0.5, we see that the modelling bias calculated in [71] is
outside of the 1-σ ellipse (by which we mean the area that satisfies (5) with ε = 1) for all
reasonable SNRs. The uncertainty of measuring the total mass M and the symmetric mass-ratio
η is nevertheless dominated by the statistical error for moderate SNRs, as we can infer from
the extension of the ellipses. (If we would measure the chirp mass Mc = Mη3/5 instead of
the total mass, we would find the opposite relation, which highlights again that there is some
non-negligible effect on measuring parameters, but it has to be interpreted carefully.)

In the end, both views are important to assess the current state of the art in building GW
models. Neither are 10 NR orbits good enough for every application nor are currently feasible
waveform models entirely useless for detection or parameter estimation purposes.

4.5. Interpolation error

The final source of error we shall discuss here is the step from a discrete set of combined
PN + NR waveforms to an analytical model. This involves a choice of the interpolation
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Figure 2. The parameter uncertainties for a binary system with M = 20M�, mass ratio 4 and
χ = 0.5. The ellipses illustrate the statistical 1-σ uncertainty for SNR 10 and 20 (inner ellipse).
They are obtained through a calculation of the Fisher information matrix (see [72]) using the
phenomenological model [38] with all its parameters. The systematic modelling bias is adopted
from [71], and we use the same detector configuration here, i.e. the analytical fit of the design
sensitivity for Advanced LIGO [36] with a lower cutoff frequency at 20 Hz.

model that eventually represents the entire (phenomenological) waveform as a function of the
physical parameters, or, less obvious in the EOBNR construction, the concrete dependence of
certain parameters has to be fixed by hand (see, e.g., figure 5 in [31]). Investigations of how
different choices affect the entire model have mostly been restricted to comparisons with NR
data; mismatches of the entire signals in different points of the parameter space, however, have
not been published to the extent other error sources have been analysed.

An indication of how relevant these ‘interpolation errors’ are is provided by the study of
Damour, Nagar and Trias [62] who compared an EOBNR model [28] with phenomenological
models [36–38], showing that even the mismatches optimized over physical parameters
(excluding the spin) exceed 3% in some regions of the parameter space. At first sight, this
might be surprising as the hybrids used to construct the models should be accurate enough for
detection purposes (satisfying the 3% mismatch criterion). The difference between the final
model and hybrids is also reported to be M � 2% (� 5% for the PhenSpin model).

It should be noted, however, that the triangle inequality reads

‖hmodel − hexact‖ � ‖hmodel − hhybrid‖ + ‖hhybrid − hexact‖, (6)

which yields through relation (5) and its assumptions

M (hmodel, hexact) �
(√

M (hmodel, hhybrid) +
√

M (hhybrid, hexact)
)2

. (7)

Consequently, if the hybrids are accurate within, say, 2% mismatch and the model does
not deviate by more than 2% from the set of hybrids, the resulting total uncertainty can
nevertheless only be bounded to 8%, which is far above the acceptable mismatch. It is clear
from this rough estimation and the results from [62] that the interpolation of the final model
has to be improved in the future, which can be done most easily by increasing the number of
(NR/hybrid) waveforms it is constructed from.

5. Summary

Because of the rapid advance in numerical relativity and analytical waveform modelling, there
are already a number of waveform models proposed that describe the entire inspiral, merger
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and ringdown signal of a BH binary. These models are already used to analyse data from GW
laser interferometers [23] and their impact will successively grow the more the physical effects
are understood and included in the model. One of the upcoming challenges is for instance the
improved construction of full waveform models with precessing spins, and some fundamental
questions concerning the choice of coordinate system have already been addressed [73–76].

Some attention of the modelling community has most recently been on investigating
different error sources and ambiguities in the modelling process, and it was shown that
different waveform models do not yet agree accurately enough so that their uncertainty can
be neglected. Of course, current and future studies (such as the NINJA project [21, 22] and
the NRAR collaboration) aim at testing various search algorithms and waveform models,
and the ‘best model’ will subsequently be refined by incorporating the results obtained in
such analyses. It should be pointed out, however, that the variety of models we have today
is very useful. In fact, most of the quantitative error analyses rely on the diversity different
approaches generate, and if they eventually converge to an (almost) unambiguous description
of the waveform, this will put GW astronomy on very solid ground.

The prospects for that are rather good. Techniques to accurately simulate compact binaries
and extract GWs are advancing, and the more efficient NR codes become the more they can
provide large sets of waveforms spanning the parameter space. A few very long, very accurate
simulations will greatly aid the analysis of fundamental questions related to the combination
of analytical and numerical data, but there are already various established and well-tested
strategies to match both waveform parts. In addition, most recent studies show that hybrid
waveforms employing moderately long NR signals are already potentially useful for data-
analysis applications, so refining existing models or introducing new complete waveform
models on the basis of many of those NR waveforms should be a realistic goal to be
accomplished before the advent of the advanced-detector era.

The common framework to quantify the uncertainty in various waveform models has been
introduced and used by several authors, which not only allows for a meaningful comparison of
different approaches, but also sets the stage for the time when actually measured signals have
to be interpreted. The question of how confident one can claim to identify the source of the
signal will be of fundamental importance, and any signal that exceeds the uncertainty limits
of all theoretically modelled waveforms will be equally exciting.

Acknowledgments

It is a pleasure to thank the organizers at Cardiff University for a very pleasant and enlightening
conference NRDA2011/Amaldi 9. Many ideas and insights presented here are the result of
numerous discussions with colleagues, with special thanks to Mark Hannam, Sascha Husa,
Badri Krishnan, Stas Babak and Parameswaran Ajith. This work was supported by the IMPRS
for Gravitational Wave Astronomy.

References

[1] Abbott B et al (LIGO Scientific Collaboration) 2009 Rep. Prog. Phys. 72 076901 (arXiv:0711.3041)
[2] Sigg D (LIGO Scientific Collaboration) 2008 Class. Quantum Grav. 25 114041
[3] Smith J R (LIGO Scientific Collaboration) 2009 Class. Quantum Grav. 26 114013 (arXiv:0902.0381)
[4] Acernese F et al 2008 Class. Quantum Grav. 25 184001
[5] Accadia T et al 2011 Class. Quantum Grav. 28 114002
[6] Grote H (LIGO Scientific Collaboration) 2008 Class. Quantum Grav. 25 114043
[7] Luck H (LIGO Scientific Collaboration) 2010 arXiv:1004.0338

12

http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://arxiv.org/abs/0711.3041
http://dx.doi.org/10.1088/0264-9381/25/11/114041
http://dx.doi.org/10.1088/0264-9381/26/11/114013
http://arxiv.org/abs/0902.0381
http://dx.doi.org/10.1088/0264-9381/25/18/184001
http://dx.doi.org/10.1088/0264-9381/28/11/114002
http://dx.doi.org/10.1088/0264-9381/25/11/114043
http://arxiv.org/abs/1004.0338


Class. Quantum Grav. 29 (2012) 124002 F Ohme

[8] Abadie J et al (LIGO Scientific Collaboration, Virgo Collaboration) 2010 Class. Quantum Grav. 27 173001
(arXiv:1003.2480)

[9] Blanchet L 2006 Living Rev. Rel. 9 4 (http://www.livingreviews.org/lrr-2006-4)
[10] Buonanno A and Damour T 1999 Phys. Rev. D 59 084006 (arXiv:gr-qc/9811091)
[11] Buonanno A and Damour T 2000 Phys. Rev. D 62 064015 (arXiv:gr-qc/0001013)
[12] Damour T, Iyer B R and Sathyaprakash B S 1998 Phys. Rev. D 57 885–907 (arXiv:gr-qc/9708034)
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