Angewandte manmonn Chemie

Supporting Information
© Wiley-VCH 2011
69451 Weinheim, Germany

TOPP—A Novel Nitroxide-Labeled Amino Acid for EPR Distance Measurements**
Sven Stoller, Giuseppe Sicoli,* Tatiana Y. Baranova, Marina Bennati, and Ulf Diederichsen*

anie_201103315_sm_miscellaneous_information.pdf

Supporting Information

S1. Synthesis of compounds 1-14
S2. Racemization study of TOPP
S3. Synthesis of Peptides P1 - P4
S4. Characterization of the molecular structure of the spin label TOPP by DFT calculations S5-S7. CW-EPR spectra

S8. Orientation selection at low field (X-band)
S9. Orientation averaging experiment
S10. DEER experiment with hard pulses
S11. Structure for the peptide P3
S12. References

S1. Synthesis of Fmoc-TOPP-OH (1)

2,2'-Iminobis(2-methylpropionitrile) (4) ${ }^{[1]}$ Acetone ($71.2 \mathrm{~mL}, 970 \mathrm{mmol}$) was added to an ice-cold solution of $\mathrm{KCN}(78.1 \mathrm{~g}, 1.20 \mathrm{~mol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(77.0 \mathrm{~g}, 1.44 \mathrm{~mol})$ in aq ammonia $(38 \%, 500 \mathrm{~mL})$ over 1 h and the solution was stirred at $25^{\circ} \mathrm{C}$ for 5 d . The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 250 \mathrm{~mL})$, the combined organic layers dried over MgSO_{4}, and the solvent was removed in vacuo. The residue was distilled under reduced pressure $\left(52{ }^{\circ} \mathrm{C}\right.$, 20 mbar) to give 2-amino-2-methylpropionitrile ($60.8 \mathrm{~g}, 720 \mathrm{mmol}$), which was then refluxed at $100^{\circ} \mathrm{C}$ under reduced pressure (50 ? 20 mbar) for 3 d , and concentrated in vacuo to obtain pure $4(35.5 \mathrm{~g}, 48 \%, 235 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.62(\mathrm{~s}$, $\left.12 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$-NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=123.2(\mathrm{CN}), 49.0\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 29.0\left(\mathrm{CH}_{3}\right)$.

3,3,5,5-Tetramethylpiperazine-2,6-dione (2) ${ }^{[1]}$ 2,2'-Iminobis(2-methylpropionitrile) (17.1 g, $112 \mathrm{mmol})$ was added to $\mathrm{H}_{2} \mathrm{SO}_{4}(124 \mathrm{~mL})$ at $5{ }^{\circ} \mathrm{C}$ over 2 h and the solution was stirred at $25^{\circ} \mathrm{C}$ for 3 d . The solution was heated to $100^{\circ} \mathrm{C}$ for 1 h and left overnight at room temperature. The solution was, then, poured onto ice (1.5 kg), neutralized to pH 7 by addition of 10 N NaOH and concentrated. The residue was suspended in $\mathrm{MeOH}(1 \mathrm{~L}), \mathrm{Na}_{2} \mathrm{SO}_{4}$ was removed by filtration and the filtrate concentrated in vacuo. The crude product was washed with water (200 mL) and pentane (200 mL) to provide $2(11.8 \mathrm{~g}, 62 \%, 69 \mathrm{mmol})$ as a colorless powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=10.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 2.72(\mathrm{~s}, 1 \mathrm{H}$, NH), $1.27\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=177.8(\mathrm{CONH}), 54.6$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 27.7\left(\mathrm{CH}_{3}\right)$; ESI-MS: $m / z(\%)=363.2(100)[2 \mathrm{M}+\mathrm{Na}]^{+}, 169.1(100)[\mathrm{M}-\mathrm{H}]^{-}$.

Cbz-L-Hpg-OH A solution of Cbz-Cl (50% in toluene, $6.10 \mathrm{~mL}, 18.2 \mathrm{mmol}$) in dioxane $(30 \mathrm{~mL})$ was added to an ice-cold suspension of L-4-hydroxyphenylglycine ($3.00 \mathrm{~g}, 17.9$ mmol) in aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \%, 40 \mathrm{~mL})$. The suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and at 25 ${ }^{\circ} \mathrm{C}$ for 1 h . The organic solvent was removed under reduced pressure and the aqueous residue was poured into ice water (100 mL) and extracted with $\operatorname{EtOAc}(3 \times 50 \mathrm{~mL})$. The aqueous layer was acidified with 2 N HCl to pH 2 and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water (30 mL), dried over MgSO_{4} and concentrated in vacuo to yield pure Cbz-L-Hpg-OH ($4.90 \mathrm{~g}, 91 \%, 16.3 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, [D $\left.{ }_{6}\right] \mathrm{DMSO}$): $\delta=12.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 9.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{NH}), 7.46-7.26(\mathrm{~m}, 5 \mathrm{H}$, phenyl CH), 7.24-7.18 (m, 2 H , phenyl CH), 6.77-6.70 (m, 2 H , phenyl CH), $5.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=172.2(\mathrm{COOH}), 156.9(\mathrm{C}-\mathrm{OH}), 155.6(\mathrm{CONH}), 136.8$ (phenyl C), 128.8 (phenyl CH), 128.1 (phenyl CH), 127.6 (phenyl CH), 127.5 (phenyl CH), 127.1 (phenyl C), 115.0 (phenyl CH), $65.4\left(\mathrm{CH}_{2}\right)$, $57.5(\alpha-\mathrm{C})$; ESI-MS: $m / z(\%)=324.2(50)[\mathrm{M}+\mathrm{Na}]^{+}, 340.2$ (100) $[\mathrm{M}+\mathrm{K}]^{+}, 641.2$ (34) $[2 \mathrm{M}+\mathrm{K}]^{+}, 300.1$ (43) $[\mathrm{M}-\mathrm{H}]^{-}, 623.1$ (100) $[2 \mathrm{M}+\mathrm{Na}-2 \mathrm{H}]^{-}, 940.2$ (100) $[3 \mathrm{M}+\mathrm{K}-2 \mathrm{H}]^{-}$; HR-ESI-MS: m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 324.0842$, found 324.0846 .

Cbz-L-Hpg-OBn (6) $\mathrm{BnBr}(2.30 \mathrm{~mL}$, 19.3 mmol) was added dropwise to an ice-cold suspension of Cbz-L-Hpg-OH ($4.80 \mathrm{~g}, 15.9 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(1.40 \mathrm{~g}, 16.7 \mathrm{mmol})$ in dry DMF (80 mL). The suspension was stirred at $25^{\circ} \mathrm{C}$ for 15 h , diluted with water $(120 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The extracts were washed with water $(20 \mathrm{~mL})$, brine ($3 \times$ 20 mL), dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash chromatography using EtOAc/pentane (1:1) to provide 6 ($3.90 \mathrm{~g}, 63 \%, 9.96 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, [D ${ }_{6}$]DMSO): $\delta=9.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.50-7.12$ (m, 10 H , phenyl CH), 7.24-7.17 (m, 2 H , phenyl CH), 6.76-6.69 (m, 2 H , phenyl CH), 5.21 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{CH}$), $5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, [D ${ }_{6}$]DMSO): $\delta=170.7$ (COOBn), 157.1 (C-OH), 155.7 (CONH), 136.7 (phenyl C), 135.6 (phenyl C), 128.9 (phenyl CH), 128.1 (phenyl CH), 127.7 (phenyl CH), 127.6 (phenyl CH), 127.5 (phenyl CH), 127.3 (phenyl CH), 126.0 (phenyl C), 115.0 (phenyl CH), $65.9\left(\mathrm{Bn} \mathrm{CH}_{2}\right)$, $65.5\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 57.6(\alpha-\mathrm{C}) ;$ ESI-MS: $m / z(\%)=414.2(100)[\mathrm{M}+\mathrm{Na}]^{+}, 390.1(100)[\mathrm{M}-\mathrm{H}]^{-}$, 781.3 (58) [2M-H]; HR-ESI-MS: m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 414.1312$, found 414.1314.

Cbz-L-Hpg(Tf)-OBn (7) Triflic anhydride ($2.50 \mathrm{~mL}, 14.9 \mathrm{mmol}$) was added to an ice-cold solution of Cbz-L-Hpg-OBn ($3.80 \mathrm{~g}, 9.70 \mathrm{mmol}$) and pyridine ($2.40 \mathrm{~mL}, 29.8 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and at $25^{\circ} \mathrm{C}$ for 20 min . The reaction was quenched with saturated aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the resulting solution extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine $(3 \times 20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. Pyridine was removed by codestillation with toluene under reduced pressure and the residue was purified by flash chromatography using EtOAc/pentane (1:4) to provide 7 ($4.80 \mathrm{~g}, 94 \%, 9.17 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, [D $\left.\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.44-7.06$ ($\mathrm{m}, 14 \mathrm{H}$, phenyl CH), 5.95 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$),
$5.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 5.14-5.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right):$ $\delta=169.6(\mathrm{COOBn}), 155.1(\mathrm{CONH}), 149.3$ (phenyl C), 137.2 (phenyl C), 135.8 (phenyl C), 134.5 (phenyl C), 129.0 (2 phenyl CH), 128.5 (phenyl CH), 128.3 (phenyl CH), 128.1 (phenyl CH), 127.9 (phenyl CH), 121.7 (phenyl CH), 118.6 (q, $J=320.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), $67.9\left(\mathrm{Bn} \mathrm{CH}_{2}\right)$, $67.4\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 57.2(\alpha-\mathrm{C})$; ESI-MS: $m / z(\%)=546.1(100)[\mathrm{M}+\mathrm{Na}]^{+}, 1069.2$ (38) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 522.1$ (100) $[\mathrm{M}-\mathrm{H}]^{-}$; HR-ESI-MS: m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}-\mathrm{H}]$: 522.0840 , found 522.0840 .
$\mathbf{B n}_{\mathbf{2}}$-L-Hpg(Tf)-OBn (8) A solution of Cbz-L-Hpg(Tf)-OBn (2.00 g, 3.82 mmol) and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ ($8.40 \mathrm{~mL}, 113 \mathrm{mmol}$) in TFA (34 mL) was stirred at $25^{\circ} \mathrm{C}$ for 17 h . Trifluoroacetic acid was subsequently removed by codestillation with toluene at room temperature. The crude intermediate and $\mathrm{NaHCO}_{3}(1.90 \mathrm{~g}, 22.6 \mathrm{mmol})$ were suspended in dry DMSO (20 mL) and $\mathrm{BnBr}(8.10 \mathrm{~mL}, 68.2 \mathrm{mmol})$ was added dropwise. The suspension was stirred at $25^{\circ} \mathrm{C}$ for 25 h , diluted with water (120 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water $(20 \mathrm{~mL})$ and brine $(3 \times 20 \mathrm{~mL})$ and excess benzyl bromide was removed under high vacuum. The residue was purified by flash chromatography using 3% EtOAc in pentane to provide $8(1.50 \mathrm{~g}, 69 \%, 2.63 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta=7.44-7.16\left(\mathrm{~m}, 19 \mathrm{H}\right.$, phenyl CH), $5.31\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.20(\mathrm{~d}, J=$ $\left.12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.62(\mathrm{~s}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 3.76\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{a}}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \text {-phenyl) }\right)_{2}\right.$), 3.67 $\left(\mathrm{d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{b}}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \text {-phenyl }\right)_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9$ (COOBn), 148.8 (phenyl C), 138.8 (phenyl C), 137.3 (phenyl C), 135.4 (phenyl C), 130.5 (phenyl CH), 128.6 (phenyl CH), 128.5 (phenyl CH), 128.3 (phenyl CH), 127.2 (phenyl CH), 121.1 (phenyl CH), 118.6 ($\mathrm{q}, J=320.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), $66.5\left(\mathrm{CH}_{2}\right), 64.9(\alpha-\mathrm{C}), 54.3\left(\mathrm{CH}_{2}\right)$; ESIMS: $m / z(\%)=570.2(100)[\mathrm{M}+\mathrm{H}]^{+}$, $592.1(46)[\mathrm{M}+\mathrm{Na}]^{+}, 568.1(100)[\mathrm{M}-\mathrm{H}]^{-}$; HR-ESI-MS: m / z calculated for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 570.1557$, found 570.1556.
Bn_{2}-4-pinacolboryl-L-Phg-OBn (9) A suspension of $\mathrm{Bn}_{2}-\mathrm{L}-\mathrm{Hpg}(\mathrm{Tf})-\mathrm{OBn}(2.00 \mathrm{~g}, 3.51$ $\mathrm{mmol})$, bis(pinacolato)diboron ($1.08 \mathrm{~g}, 4.25 \mathrm{mmol}$), $\mathrm{KOAc}(1.04 \mathrm{~g}, 10.6 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf})$ ($247 \mathrm{mg}, 338 \mu \mathrm{~mol}$) , and dppf ($196 \mathrm{mg}, 354 \mu \mathrm{~mol}$) in degassed dioxane (35 mL) was stirred at $80^{\circ} \mathrm{C}$ under argon atmosphere for 10 h . The suspension was diluted with EtOAc (150 mL), filtered through Celite, washed with brine ($3 \times 20 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography using a gradient of 3 ? $10 \% \mathrm{EtOAc}$ in pentane to yield $9(1.74 \mathrm{~g}, 90 \%, 3.18 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76\left(\mathrm{~m}_{\mathrm{c}}\right.$,

2 H, phenyl CH), 7.39-7.17 (m, 17 H , phenyl CH), $5.30\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.18(\mathrm{~d}, J$ $=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $4.66(\mathrm{~s}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 3.73\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7$ (COOBn), 139.6 (phenyl C), 139.3 (phenyl C), 135.7 (phenyl C), 134.6 (phenyl CH), 128.7 (phenyl CH), 128.4 (phenyl CH), 128.2 (phenyl CH), 128.1 (phenyl CH), 126.9 (phenyl CH), $83.8\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 66.2\left(\mathrm{CH}_{2}\right), 65.9(\alpha-\mathrm{C}), 54.2\left(\mathrm{CH}_{2}\right), 25.0$ $\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right)$; ESI-MS: $m / z(\%)=548.3(100)[\mathrm{M}+\mathrm{H}]^{+}, 570.3(100)[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESIMS: m / z calculated for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{BNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 548.2973$, found 548.2972.
$\mathbf{B n}_{2}$-4-dihydroxyborane-L-Phg-OBn (3) Water (380 mL), $\mathrm{NH}_{4} \mathrm{OAc}(2.20 \mathrm{~g}, 28.5 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(6.20 \mathrm{~g}, 29.0 \mathrm{mmol})$ were added to a solution of Bn_{2}-4-pinacolboryl-L-Phg-OBn (5.30 $\mathrm{g}, 9.69 \mathrm{mmol})$ in acetone (430 mL). The suspension was stirred at $25^{\circ} \mathrm{C}$ for 2 d . Acetone was removed under reduced pressure and the aqueous residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100$ $\mathrm{mL})$. The combined organic layers were washed with brine ($3 \times 20 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo to yield $3(4.00 \mathrm{~g}, 89 \%, 8.60 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{B}-\mathrm{OH}), 8.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{B}-\mathrm{OH}), 7.51-7.20(\mathrm{~m}, 19 \mathrm{H}$, phenyl CH), $5.36(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $5.23\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), $4.74(\mathrm{~s}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 3.79\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.5$ (COOBn), 141.3 (phenyl C), 139.2 (phenyl C), 135.7 (phenyl C), 135.5 (phenyl CH), 128.7 (phenyl CH), 128.5 (phenyl CH), 128.4 (phenyl CH), 128.3 (phenyl CH), 128.2 (phenyl CH), 127.0 (phenyl CH), $66.3\left(\mathrm{CH}_{2}\right), 65.9(\alpha-\mathrm{C}), 54.3$ $\left(\mathrm{CH}_{2}\right) ;$ ESI-MS: $m / z(\%)=466.2(100)[\mathrm{M}+\mathrm{H}]^{+} ;$HR-ESI-MS: m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{BNO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 466.21896$, found 466.21807 .
Bn_{2}-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazin-1-yl)-L-Phg-OBn (10) A suspension of Bn_{2} -4-dihydroxyborane-L-Phg-OBn ($4.00 \mathrm{~g}, 8.60 \mathrm{mmol}$), 3,3,5,5-tetramethylpiperazine-2,6-dione $(1.46 \mathrm{~g}, 8.59 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(1.56 \mathrm{~g}, 8.59 \mathrm{mmol})$, molecular sieve ($4 \mathrm{~g}, 4 \AA$, powder) and $\mathrm{Et}_{3} \mathrm{~N}(1.66 \mathrm{~mL}, 12.0 \mathrm{mmol})$ in dry DMSO (180 mL) was stirred at $25^{\circ} \mathrm{C}$ under oxygen atmosphere for 14 d . The suspension was filtered through Celite, diluted with water (200 mL) and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine ($3 \times 30 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography using EtOAc/pentane (1:2) to yield $\mathbf{1 0}$ ($3.94 \mathrm{~g}, 78 \%, 6.68 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51-7.19(\mathrm{~m}, 17 \mathrm{H}$, phenyl CH$), 7.06\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right.$, phenyl CH$)$, $5.36\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.19\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.69(\mathrm{~s}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 3.82(\mathrm{~d}$, $\left.J=14.0 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{a}}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \text {-phenyl }\right)_{2}\right), 3.72\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{b}}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \text {-phenyl) }\right)_{2}\right), 1.69$
($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $1.53\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.4\left(\mathrm{CONR}_{2}\right), 171.3$ (COOBn), 139.0 (phenyl C), 136.7 (phenyl C), 135.6 (phenyl C), 134.8 (phenyl C), 129.3 (phenyl CH), 128.7 (phenyl CH), 128.5 (phenyl CH), 128.4 (phenyl CH), 128.3 (phenyl CH), 128.2 (phenyl CH), 128.1 (phenyl CH), 126.9 (phenyl CH), $66.3\left(\mathrm{CH}_{2}\right), 65.4(\alpha-\mathrm{C}), 56.0$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 54.2\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right) ;$ ESI-MS: $\mathrm{m} / \mathrm{z}(\%)=590.3(100)[\mathrm{M}+\mathrm{H}]^{+}, 612.3$ (67) $[\mathrm{M}+\mathrm{Na}]^{+}, 1201.6$ (26) $\left[2 \mathrm{M}+\mathrm{Na}^{+}, 588.3\right.$ (100) $[\mathrm{M}-\mathrm{H}]^{-}, 634.3$ (99) $\left[\mathrm{M}+\mathrm{HCOO}^{-}\right]^{-}, 634.3$ (23) $\left[2 \mathrm{M}+\mathrm{HCOO}^{-}\right]^{-}$; HR-ESI-MS: m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 590.3013$, found 590.3013 .

Fmoc-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazin-1-yl)-L-Phg-OH (11) A suspension of $\mathrm{Bn}_{2}-4$-(3,3,5,5-tetramethyl-2,6-dioxopiperazin-1-yl)-L-Phg-OBn ($500 \mathrm{mg}, 849 \mu \mathrm{~mol}$) and 20 $\% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\left(50 \% \mathrm{H}_{2} \mathrm{O}, 100 \mathrm{mg}, 71.2 \mu \mathrm{~mol}\right)$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was shaken in Parr apparatus under hydrogen atmosphere $(70 \mathrm{psi})$ at $25^{\circ} \mathrm{C}$ for 20 h . The resulting suspension was diluted with $\mathrm{MeOH}(230 \mathrm{~mL}$), filtered and concentrated in vacuo. A suspension of crude intermediate, Fmoc-OSu ($286 \mathrm{mg}, 848 \mu \mathrm{~mol}$) and $\mathrm{NaHCO}_{3}(143 \mathrm{mg}, 1.70 \mathrm{mmol})$ in dry DMF (5 mL) was stirred at $25{ }^{\circ} \mathrm{C}$ for 21 h . The suspension was diluted with water (20 mL), acidified with 2 N HCl to pH 2 and extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine $(3 \times 15 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH}$ (98:2:0.1 ? 97:3:0.1) to provide $11(423 \mathrm{mg}, 92 \%, 781 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=$ 8.25 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}$), 7.92-7.08 (m, $12 \mathrm{H}, 8$ Fmoc CH, 4 phenyl CH), 5.24 (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 4.29\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Fmoc} \mathrm{CH}_{2}\right), 4.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Fmoc} \mathrm{CH})$, $1.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.40\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=176.5$ (CONR_{2}), 171.6 (COOH), 155.8 (CONH), 143.7 (Fmoc C), 140.6 (Fmoc C), 136.9 (phenyl C), 135.7 (phenyl C), 128.5 (phenyl CH), 128.2 (phenyl CH), 127.6 (phenyl CH), 127.0 (phenyl CH), 125.3 (phenyl CH), 120.0 (phenyl CH), $65.9\left(\right.$ Fmoc CH $\left._{2}\right), 57.7(\alpha-\mathrm{C}), 55.3$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 46.6(\mathrm{Fmoc} \mathrm{CH}), 28.0\left(\mathrm{CH}_{3}\right)$; ESI-MS: $m / z(\%)=564.2(100)[\mathrm{M}+\mathrm{Na}]^{+}, 540.2$ (100) [M-H]; HR-ESI-MS: m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{-} 540.2140$, found 540.2140.

Fmoc-4-(3,3,5,5-tetramethyl-2,6-dioxo-4-oxylpiperazin-1-yl)-L-Phg-OH (1) mCPBA (296 $\mathrm{mg}, 70-75 \%, 1.24 \mathrm{mmol}$) was added to an ice-cold solution of Fmoc-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazin-1-yl)-L-Phg-OH ($361 \mathrm{mg}, 667 \mu \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL}$). The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and at $25^{\circ} \mathrm{C}$ for 5 h . The solvent was removed under reduced
pressure and the residue was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH}$ (99.4:0.5:0.1 ? 98.4:1.5:0.1) to provide $1(300 \mathrm{mg}, 81 \%, 539 \mu \mathrm{~mol})$ as a yellow powder. ESI-MS: $m / z(\%)=579.2(100)[M+N a]^{+}, 555.2(100)[M-H]^{-} ;$HR-ESI-MS: m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}-\mathrm{H}]:$: 555.2011; found 555.2013.
calculated

found

S2. Racemization study of TOPP

AcNH-L-TOPP(OH)-L-Ala-OH (black), AcNH-L-TOPP(OH)-D-Ala-OH (gray)

RP-HPLC-column: Phenomenex Jupiter (C18, $300 \AA$ A, $5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}$); gradient: water/TFA (100:0.1) ? acetonitrile/TFA (100:0.1) in 60 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; wavelength: 235 nm .

S3. Synthesis of Peptides P1, P2 and P3

For the synthesis of peptides P1, P2 and P3 low loaded ($0.29 \mathrm{mmol} / \mathrm{g}$) Rink amide MBHA resin was used. The first amino acid was coupled three times using diisopropylcarbodiimide (DIC) and 1-hydroxybenzotriazole (HOBt) as coupling reagents. The proteinogenic amino acids were activated with HBTU/HOBt and DIEA and coupled using microwave irradiation. Fmoc-TOPP-OH (1) was activated with DEPBT and NaHCO_{3} in dry THF and coupled at 0 C for 2 h and then at $25^{\circ} \mathrm{C}$ for 30 min . Fmoc protecting group was cleaved by piperidine/DMF (1:4). The terminal amino group of the peptides was acetylated with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{DIEA} / \mathrm{DMF}$ (1:1:18). Cleavage from the resin was carried out using TFA/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{TIS}$ (90:5:5, v/v/v) (for $\mathbf{P 1}$ and P2) or TFA/ $\mathrm{H}_{2} \mathrm{O} / E D T / T I S ~(94 / 2.5 / 2.5 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v} / \mathrm{v}$) (for $\mathbf{P 3}$ precursor peptide ($\mathbf{P} 4)$). The hydroxylamine group of the crude peptide $\mathbf{P 1}$ was oxidized to nitroxide with $\mathrm{Cu}(\mathrm{OAc})_{2}$ before RP-HPLC purification. The regeneration of the nitroxide was proven by mass spectrometry. MTSSL labeling of cysteine residues was performed with peptide $\mathbf{P 4}(1.0 \mathrm{mM})$ in a phosphate buffer/acetonitrile ($4 / 1, \mathrm{v} / \mathrm{v}$) solution and MTSSL (5 eq. per cysteine residue). The solution was stirred under argon atmosphere at $25{ }^{\circ} \mathrm{C}$ for 12 h . The target peptide P3 was obtained by RP-HPLC.
(P1) Ac-AAAAK-TOPP-AKAAAAAKAAKA-TOPP-KAAAA- $\mathrm{NH}_{2}\left(\mathrm{C}_{115} \mathrm{H}_{186} \mathrm{~N}_{34} \mathrm{O}_{31}, 2540.9\right)$ RP-HPLC-column: Phenomenex Jupiter (C18, $300 \AA$ A , $5 \mu \mathrm{~m}, 250 \times 10 \mathrm{~mm}$); gradient: 25 ? 50% B in $30 \mathrm{~min}, \mathrm{~A}=$ water/TFA (100:0.1), $\mathrm{B}=$ acetonitrile/water/TFA (80:20:0.1); flow rate $3.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=14.9 \mathrm{~min}$; HR-ESI-MS: m / z calculated for $\mathrm{C}_{115} \mathrm{H}_{189} \mathrm{~N}_{34} \mathrm{O}_{31}[\mathrm{M}+3 \mathrm{H}]^{3+}$: 847.4747, found 847.4749.
calculated found

(P2) Ac-AAAAKYAKAAAAAKAAKAYKAAAA- $\mathrm{NH}_{2}\left(\mathrm{C}_{101} \mathrm{H}_{168} \mathrm{~N}_{30} \mathrm{O}_{27}\right.$, 2234.6)
RP-HPLC-column: Phenomenex Jupiter (C18, $300 \AA$, $5 \mu \mathrm{~m}, 250 \times 10 \mathrm{~mm}$); gradient: 5 ? $40 \% \mathrm{~B}$ in $30 \mathrm{~min}, \mathrm{~A}=$ water/TFA (100:0.1), $\mathrm{B}=$ acetonitrile/water/TFA (80:20:0.1); flow rate $3.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=25.3 \mathrm{~min}$; HR-ESI-MS: m / z calculated for $\mathrm{C}_{101} \mathrm{H}_{171} \mathrm{~N}_{30} \mathrm{O}_{27}[\mathrm{M}+3 \mathrm{H}]^{3+}$: 745.4304, found 745.4308 .
(P3) Ac-AAAAK MTSSL AKAAAAAKAAKA MTSSL KAAAA- $\mathrm{NH}_{2}\left(\mathrm{C}_{107} \mathrm{H}_{188} \mathrm{~N}_{32} \mathrm{O}_{27} \mathrm{~S}_{4}\right.$, 2483.10)

RP-HPLC-column: $M N$ Nucleodur 100 (C18, $300 \AA, 5 \mu \mathrm{~m}, 250 \times 21 \mathrm{~mm}$); gradient: 20 ? $60 \% \mathrm{~B}$ in $30 \mathrm{~min}, \mathrm{~A}=$ water/TFA (100:0.1), $\mathrm{B}=$ acetonitrile/water/TFA (80:20:0.1), flow rate $=10 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=19.62 \mathrm{~min} ; ~ H R-E S I-M S: ~ m / z$ calculated for $\mathrm{C}_{107} \mathrm{H}_{191} \mathrm{~N}_{32} \mathrm{O}_{27} \mathrm{~S}_{4}$ $[\mathrm{M}+3 \mathrm{H}]^{3+}: 828.1143$, found 828.1141.
(P4) Ac-AAAAKCAKAAAAAKAAKACKAAAA-NH $\mathrm{N}_{2}\left(\mathrm{C}_{89} \mathrm{H}_{160} \mathrm{~N}_{30} \mathrm{O}_{25} \mathrm{~S}_{2}\right.$, 2114.54)
RP-HPLC-column: MN Nucleodur $100(\mathrm{C} 18,300 \AA, 5 \mu \mathrm{~m}, 250 \times 21 \mathrm{~mm}$); gradient: 15 ? $60 \% \mathrm{~B}$ in $30 \mathrm{~min}, \mathrm{~A}=$ water/TFA (100:0.1), $\mathrm{B}=$ acetonitrile/water/TFA (80:20:0.1), flow rate $10 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=16.69 \mathrm{~min}$; $\mathrm{HR}-E S I-M S: ~ m / z$ calculated for $\mathrm{C}_{89} \mathrm{H}_{163} \mathrm{~N}_{30} \mathrm{O}_{25} \mathrm{~S}_{2}[\mathrm{M}+3 \mathrm{H}]^{3+}$: 705.3939, found 705.3944 .

S4. Characterization of the molecular structure of the spin label TOPP by DFT calculations

The hybrid functionals B3LYP and PBE0 were used for calculations of the molecular geometry of the model compounds $\mathbf{1 2}$ and $\mathbf{1 3}$ (Figure S1). The geometry optimizations and frequency calculations were performed using the basis set 6-311G (d, p) in the gas phase or in the dipole field of water. Therefore, the program package GAUSSIAN 09 was used. ${ }^{[2]}$

Figure S1: Structures of the calculated compounds 12 and 13 and the angle λ formed by the vectors \vec{a} and \vec{b}.

Figure S 2 shows the conformers $B \alpha$ and $B \beta$ of the compound 12, which were calculated using the B3LYP method.
a

b

c

d

e

f

Figure S2: Geometry optimizations and frequency calculations of the conformations $B \alpha(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $B \beta(\mathrm{~d}, \mathrm{e}, \mathrm{f})$ of the compound $\mathbf{1 2}$ were obtained with the B3LYP method and the basis set $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ in the gas phase at 298 K.

The conformation $B \alpha$ exists in the ground state and the conformation $B \beta$ with $\mathrm{C}_{2 \mathrm{v}}$ symmetry is energetically $1.4 \mathrm{~kJ} / \mathrm{mol}$ above the ground state (Table S1). The angle λ, enclosed by the CH bond and nitroxide bond was calculated by the following formula:

$$
\cos \lambda=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}
$$

Here, vector \vec{a} is described by the CH bond and vector \vec{b} by the NO bond (Figure S1).

Conformation of $\mathbf{1 2}$	$\Delta \mathrm{E} / \mathrm{kJ} / \mathrm{mol}$	Angle $\lambda /{ }^{\circ}$
$\mathrm{B} \boldsymbol{\alpha}$	0.0^{a}	6.5
$\mathrm{~B} \beta$	1.4	0.0

Table S1: The energy difference and the angle λ of the conformers $B \alpha$ and $B \beta$ of the compound 12. ${ }^{a}$ Zero-point energy $=-878.795016 \mathrm{a} . \mathrm{u}$.

To determine the geometry of TOPP in an a-helical secondary structure in water $\left(25^{\circ} \mathrm{C}\right.$, 1 atm), the amino acid $\mathbf{1 3}$ was used as a model compound (Figure 5). The calculations were carried out with fixed dihedral angles $\left(\varphi=-52^{\circ}, \psi=-53^{\circ}\right)$. The simulation of the solvent was carried out by the continuum model (IEFPCM). Three conformational isomers of the compound $\mathbf{1 3}$ with the corresponding energy differences and the angles λ are shown in the Table S2.

Conformation of $\mathbf{3 3}$	$\Delta \mathrm{E} / \mathrm{kJ} / \mathrm{mol}$	Angle $\lambda /{ }^{\circ}$
$\mathrm{B} \boldsymbol{\alpha}$	0.0^{a}	8.1
$\mathrm{~B} \beta$	4.8	3.2
$\mathrm{~B} \gamma$	4.9	3.2

Table S2: The energy difference and angle λ of the conformers $B \alpha, B \beta$ und $B \gamma$ of compound 13. Geometry optimization and frequency calculation were obtained with the B3LYP method and the basis set 6-311G (d, p) in water $(298 \mathrm{~K}, 1 \mathrm{~atm}) .{ }^{a}$ Zero-point energy $=-1334.144545 \mathrm{a} . \mathrm{u}$.

Calculations with PBE0 method show comparable results:

 Conformation	$\Delta \mathrm{E} / \mathrm{kJ} / \mathrm{mol}$	Angle $\lambda /{ }^{\circ}$
$\mathbf{1 2 P \alpha}$	0.0^{a}	7.7
$\mathbf{1 2} P \beta$	1.5	0.0
$\mathbf{1 3} P \alpha$	0.00^{b}	3.4
$\mathbf{1 3} P \beta$	0.30	10.6
$\mathbf{1 3} P \gamma$	0.34	3.3

Table S3: The energy difference and angle λ of the conformers $12 P \alpha, 12 P \beta$ und $13 P \alpha, 13 P \beta, 13 P \gamma$. Geometry optimization and frequency calculation were obtained with the PBE0 method and the basis set 6-311G (d, p) in the gas phase (12) and in water (13) at $298 \mathrm{~K} .{ }^{a}$ Zero-point energy $=-877.782029 \mathrm{a} . \mathrm{u} .{ }^{b}$ Zero-point energy $=-1332.618222 \mathrm{a} . \mathrm{u}$.

S5. CW EPR

Figure S3. Continuous-wave (CW) EPR spectra for the peptide $\mathbf{P 1}$ collected at temperatures 20 to $-60{ }^{\circ} \mathrm{C}$. $50 \mu \mathrm{M}$ of the labeled system, dissolved in EtOH/MeOH/TFE (40:40:20). Spectra have been recorded with modulation amplitude of 1.5 G , modulation frequency 100 kHz , sweep-width 100 G .

S6. CW EPR

Figure S4. Continuous-wave (CW) EPR spectra for the peptide P1 collected at temperatures 20 to $-60{ }^{\circ} \mathrm{C}$. $50 \mu \mathrm{M}$ of the labeled system, dissolved in TFE/glycerol (90:10). Spectra have been recorded with modulation amplitude of 1.5 G , modulation frequency 100 kHz , sweep-width 100 G .

S7. CW EPR

Figure S5. Continuous-wave (CW) EPR spectra for the monomer Fmoc-TOPP-OH collected at temperatures 20 to $-64{ }^{\circ} \mathrm{C} .100 \mu \mathrm{M}$ of the labeled system, dissolved in TFE/glycerol (90:10). Spectra have been recorded with modulation amplitude of 1.5 G , modulation frequency 100 kHz , sweep-width 100 G .

S8. Orientation Selection Experiments at low field (X-band)

$$
\begin{aligned}
& \mathrm{p}=\text { pump } \\
& \mathrm{o}=\text { observe }
\end{aligned}
$$

$\mathrm{EtOH} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$

EtOH/MeOH/TFE

Figure S6. Double-labeled P2 in TFE/EtOH/MeOH (40:40:20). Left: Field swept echo-detected spectrum and DEER set-up; two different $\Delta \nu$ values, corresponding to 70 (black) and 150 (red) MHz , respectively. Right: Dipolar spectra obtained from the Fourier transform of the DEER signals and dipolar evolutions after background subtraction. The DEER experiment was carried out on a Bruker ELEXYSIS 580 pulsed EPR spectrometer at $50 \mathrm{~K} ; \pi / 2-\pi=16-32 \mathrm{~ns} ; \pi_{\mathrm{ELDOR}}=36 \mathrm{~ns} ; \mathrm{SPP}=50 ; \mathrm{SRT}=5 \mathrm{~ms}$; acquisition time: 12 h . The Pake pattern distortion is produced by the two different DEER set-up.

S9. Orientation Averaging Experiments

Figure S7. X-Band time-domain DEER signal of double-labeled P1: sum of 11 field values $\left(\mathrm{B}_{\mathrm{obs}}=3453.5-\right.$ 3466 G , with 2.5 G step). $\mathrm{T}=50 \mathrm{~K} ; \pi / 2-\pi=16-32 \mathrm{~ns} ; \pi_{\mathrm{ELDOR}}=36 \mathrm{~ns} ; \mathrm{SPP}=50 ; \mathrm{SRT}=5 \mathrm{~ms} ; 10$ scans for each field value.

S10. DEER experiment with hard pulses

Figure S8. Time-domain DEER signal of double-labeled P1 in TFE/EtOH/MeOH (40:40:20). The black line is the background-subtracted experimental data and the red line is the time-domain simulation of the data performed by DeerAnalysis2009. Dipolar spectrum obtained from the Fourier transform of the DEER signal; best fit of the distance distribution obtained from Tikhonov regularization. The DEER experiment was carried out on a Bruker ELEXYSIS 580 pulsed EPR spectrometer at $40 \mathrm{~K} ; \pi / 2-\pi=8-16 \mathrm{~ns} ; \pi_{\mathrm{ELDOR}}=16 \mathrm{~ns} ; \mathrm{SPP}=$ $50 ;$ SRT $=5 \mathrm{~ms}$; scans $=264$; acquisition time: 14 h .

S11. Structure for the peptide P3

Figure S9. Distance between the spin labels in the MTSSL-modified peptide is highly dependent on the conformation of the spin labels. Here, the distance is 2.21 nm , which fits well with the measured 2.26 nm .

S12. Literature

[1] C. E. Ramey, J. J. Luzzi (Ciba-Geigy AG), US-3920659, 1975.
[2] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

