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Abstract 
 
Many plants flower in response to seasonal changes in day length. This response often varies 

between accessions of a single species. We studied the variation in photoperiod response 

found in the model species Arabidopsis thaliana. Seventy-two accessions were grown under 

six day lengths varying in 2 h intervals from 6 h to 16 h. The typical response was sigmoidal 

so that plants flowered early under days longer than 14 h, late under days shorter than 10 h 

and at intermediate times under 12 h days. However, many accessions diverged from this 

pattern and were clustered into groups showing related phenotypes. Thirty-one mutants and 

transgenic lines were also scored under the same conditions. Statistical comparisons 

demonstrated that some accessions show stronger responses to different day lengths than are 

found among the mutants. Genetic analysis of two such accessions demonstrated that different 

quantitative trait loci conferred an enhanced response to shortening the day length from 16 h 

to 14 h. Our data illustrate the spectrum of day-length response phenotypes present in 

accessions of Arabidopsis and demonstrate that similar phenotypic variation in photoperiodic 

response can be conferred by different combinations of loci. 
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Introduction 
 
Growth and reproduction of many plant species are regulated by seasonal changes in day 

length. Specific traits controlled by day length include flowering, bud dormancy in trees and 

tuberisation of potato (Thomas and Vince-Prue, 1997). Within a species there is often 

quantitative variation for the precise length of day that induces a response, and the distribution 

of accessions that respond to different day lengths suggests that this trait is associated with 

adaptation to growth at particular latitudes. Examples of such distributions include induction 

of flowering by day length in cultivated populations of soybean (Borthwick and Parker, 1939) 

and natural populations of Xanthium strumarium (Ray and Alexander, 1966) or repression of 

bud growth in poplar (Bohlenius et al., 2006). The mechanisms controlling photoperiodic 

flowering are best understood in Arabidopsis thaliana (Kobayashi and Weigel, 2007; Turck et 

al., 2008) , but no comprehensive analysis of quantitative variation in photoperiod response 

within this species has been reported.      

Arabidopsis is a quantitative long-day plant that flowers earlier under long days (LDs) of 

spring and early summer than during short days (SD) of winter. Commonly used laboratory 

accessions such as Columbia (Col) or Landsberg erecta (Ler) show a marked flowering 

response to day length and were used to screen for mutations that impair photoperiodic 

flowering (Redei, 1962; Koornneef et al., 1991). The genes identified by these mutations 

defined a pathway that promotes flowering in response to LDs. GIGANTEA (GI), CONSTANS 

(CO) and FLOWERING LOCUS T (FT) are central to this pathway (Putterill et al., 1995; 

Fowler et al., 1999; Kardailsky et al., 1999; Kobayashi et al., 1999; Park et al., 1999). 

Transcription of each of these genes is regulated by the circadian clock (Fowler et al., 1999; 

Park et al., 1999; Suarez-Lopez et al., 2001), while CO activity is promoted by exposure to 

light both at the transcriptional and post-transcriptional levels (Valverde et al., 2004; 

Imaizumi et al., 2005). This complex regulation ensures that CO activates FT transcription 

only under LDs.  

In addition to the mutational analysis performed in Arabidopsis accessions commonly used in 

the laboratory, natural-genetic variation has been studied by analyzing genetic differences 

between a wider range of accessions. The most dramatic variation in flowering is between 

accessions that show a strong requirement for vernalization (extended exposure to low 

temperatures) to induce flowering and those that flower rapidly without vernalization. These 

distinct types are often referred to as winter annuals or summer annuals, respectively. Detailed 

genetic analysis based on crossing both types identified the semi-dominant locus 

FLOWERING LOCUS C (FLC) and the dominant locus FRIGIDA (FRI), that are present in 
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winter annuals and are required for the vernalization response (Burn et al., 1993; Clarke and 

Dean, 1994; Koornneef et al., 1994; Lee et al., 1994). FLC encodes a MADS box 

transcription factor that represses flowering, and FRI promotes FLC transcription prior to 

vernalization (Michaels and Amasino, 1999; Sheldon et al., 1999). Exposure of plants to 

vernalization for several weeks causes FLC transcript levels to fall due to changes in 

chromatin structure at the FLC locus (Bastow et al., 2004; Sung and Amasino, 2004). 

Summer annuals carry alleles of FLC or FRI that reduce the activity of one or both genes. 

Mutations at FRI and FLC appear to have occurred independently many times conferring the 

summer annual habit (Johanson et al., 2000; Le Corre et al., 2002; Gazzani et al., 2003; 

Michaels et al., 2003; Lempe et al., 2005; Shindo et al., 2005).  

Although genetic differences at loci involved in vernalization are responsible for much of the 

variation in flowering time among Arabidopsis accessions, allelic differences at genes 

contributing to the photoperiodic response can also have important effects on flowering time. 

This variation was mainly characterized by comparing flowering time under extreme LDs of 

16 h and SDs of 8 or 10 h (Alonso-Blanco et al., 1998; Lempe et al., 2005; Werner et al., 

2005b). However, in one set of experiments day length and tmperature were varied 

continuously through the experiment recreating the effect of the changing seasons, which 

allowed identification of QTL that regulate flowering time and interact with seasonal changes 

in environmental parameters (Li et al., 2006). Also, the flowering times of the Ler and Ws 

accessions were recently characterized under a wide range of photoperiods describing a 

quantitative response to photoperiod that exhibited a sigmoidal shape (Pouteau et al., 2008; 

Wilczek et al., 2009). Most of the described natural-genetic variation in photoperiod response 

causes earlier flowering under SDs. For example, recessive alleles at PHYTOCHROME C 

(PHYC) and FLOWERING LOCUS M (FLM) were identified as causing earlier flowering 

under SDs and therefore reducing the difference in flowering time between LDs and SDs 

(Werner et al., 2005b; Balasubramanian et al., 2006; Li et al., 2006). Similarly, a single amino 

acid change in the CRYPTOCHROME 2 (CRY2) photoreceptor was shown to be present in 

the Cape Verde Islands (Cvi) accession and to promote early flowering under SDs (El-Assal 

et al., 2001). Sequence variation at PHYC was proposed to be significant in natural 

populations because both active and inactive alleles are common and these formed a 

latitudinal cline with the inactive allele more frequent at lower latitude while the active allele 

was more prevalent at higher latitude (Balasubramanian et al., 2006). Such a distribution may 

be consistent with the notion that a strong response to day length is more significant at higher 

latitudes where more extreme seasonal variation in day length occurs. Similarly, the dominant 
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CRY2 allele that reduces day-length sensitivity was identified in an accession from low 

latitude (El-Assal et al., 2001).         

Across the latitudinal range of Arabidopsis day length varies continuously and the LDs or 

SDs most commonly used in laboratory experiments are experienced only rarely. To more 

thoroughly analyze the day-length response of Arabidopsis, we tested over 70 accessions 

under 6 different day lengths and the results were compared with those for many 

characterized mutants and transgenic lines. Accessions that show a greater delay in flowering 

time than Ler as day length is reduced from 16 h to 14 h were selected and the genetic basis 

of this response was examined. Our results provide an extensive analysis of variation in 

photoperiodic flowering responses in Arabidopsis and indicate that the enhanced responses to 

day length shown by two accessions are caused by different combinations of quantitative trait 

loci. 

 

 
Results 
 
Variation in flowering time of Arabidopsis accessions under a wide range of day lengths  
 
Quantitative responses to photoperiod were measured in Arabidopsis by scoring flowering 

time of 72 genetically divergent accessions under 6 different day lengths. The day lengths 

used varied in 2 h intervals from 6 h to 16 h. The accessions included Ler, Col and Ws to act 

as points of reference with previous analyses of photoperiod response and with studies on 

mutants recovered in these backgrounds. Accessions showing extreme late flowering under 

standard 16 h day lengths were excluded from the analysis, because most of these exhibit a 

strong vernalization requirement. The accessions used are listed in Supplementary Table 1 

and their genetic relatedness illustrated in Supplementary Figure 1 (Methods). 

Flowering time was measured by counting total leaf number for each accession under all day 

lengths (Figure 1; Supplementary Table 1; Methods). In most cases the photoperiod response 

curve was sigmoidal (Figure 1A), as previously described for Ws and Ler (Pouteau et al., 

2008; Wilczek et al., 2009). Typically flowering time of these accessions occurred only 

slightly earlier when day length was lengthened from 6 h to 8 h, was broadly the same 

between day lengths of 8 h and 10 h, accelerated markedly as day length was lengthened from 

10 h to 12 h and was little affected as day length was extended from 12h to 16 h.  

Although the sigmoidal pattern observed in Figure 1A described the behaviour of most 

accessions, others deviated from the standard response. For example, one group showed 

earlier flowering than the mean under all day lengths (e.g. Dra-0; Ler; Ws; Figure 1C), and 
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this group included CVI which exhibited a strongly diminished response to photoperiod. A 

second set of accessions showed an enhanced response to day length, flowering earlier than or 

similar to the mean under 16 h long days (LDs) but later than the mean under shorter days 

(e.g. Bs-1, Cen-0; Figure 1D). 

 

Flowering times of Arabidopsis mutants and transgenic plants under a range of day 

lengths 

To facilitate comparisons between accessions and mutants that impair photoperiodic 

responses, the flowering times of 31 previously described mutants and transgenic lines were 

scored under the same range of day lengths (Figure 1B; Supplementary Table 2). These lines 

showed a wide range of responses. Early and late-flowering lines showing little response to 

changing day length were analyzed and neither showed the sigmoidal pattern characteristic of 

wild-type plants (Supplementary Figure 2AB and Supplementary Table 2).  

Mutants impaired in circadian-clock function were also tested (Supplementary Figure 2C). 

The photoperiodic responses of lhy-11 cca1-1 double mutants and transgenic lines 

overexpressing both LHY and CCA1 (called 35S:CCA1 lhy-1) were compared. Both of these 

genotypes are severely impaired in circadian clock function (Schaffer et al., 1998; Wang and 

Tobin, 1998; Mizoguchi et al., 2002), but 35S:CCA1 lhy-1 is late flowering, whereas lhy-11 

cca1-1 is early flowering. The 35S:CCA1 lhy-1 plants were almost entirely insensitive to day 

length. The lhy-11 cca1-1 plants were similarly insensitive to changes in day length from 16 h 

to 8 h days so that in this interval flowering time only varied from 7 to 15 leaves. However, 

when day length was shortened to 6 h then flowering was strongly delayed to 42 leaves. These 

data indicate that photoperiodic responses are almost completely abolished across a wide 

range of day lengths by strong impairment of the circadian clock, and that lhy-11 cca1-1 

plants show a very different response being strongly delayed in flowering only when day 

length falls below 8 h.       

Photoperiodic responses also require active photoreceptors, therefore the photoperiodic 

response curves of phyA-201 and phyB-1 mutants were compared with wild-type plants 

(Supplementary Figure 2D). The curves describing the flowering-time behaviour of these 

mutants were similar in shape to those of wild-type plants. However, phyB-1 mutants were 

generally earlier flowering than wild-type plants, especially under SDs (10 h, 8 h and 6 h).  In 

contrast the flowering time of phyA-201 mutants tended to be slightly later than wild-type 

plants, particularly under 12 h and 8 h days.  
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Taken together these data define the photoperiodic responses of a wide range of flowering-

time mutants, and provide a basis for comparison with the responses of the accessions.    

 

Comparisons of day-length responses of mutants, transgenic plants and accessions 

To classify the accessions according to their photoperiodic response, the flowering- time data 

were analyzed using the Cluster programme (Figure 2A; Methods). Accessions with a 

generally later flowering phenotype formed clusters located at the top of the figure, while 

mostly earlier flowering accessions are located towards the bottom. This analysis identified 

several groups each of which contained accessions showing broadly similar photoperiodic 

responses and the photoperiod response curves of these accessions were compared.  

Principal components (PC) analysis was used to compare the responses of individual 

accessions, and to contrast the accessions with the mutants (Figure 2B; Supplementary Figure 

3 and 4). Components that most effectively separated the responses of accessions and mutants 

were identified (Figure 2B). These were PC5, which compared flowering time under 16 h 

with flowering time under 14 h, and PC4, which compared flowering time under 10 h and 6 h 

with flowering time under 8 h (see also Sup Fig. 4 for component loading). These components 

clearly identified accessions that showed stronger photoperiodic flowering responses than 

those present in the mutants and transgenic lines. 

Based on the cluster and principal components analyses, four accessions that showed 

interesting differences in their photoperiodic responses compared to the laboratory accession 

Ler were selected for further analysis. The photoperiod response curves of these accessions 

also confirm the differences inferred from the PC analyses. Cen-0 and Bs-1 both flowered 

markedly later under 14 h days than 16 h days, whereas Ler flowered at the same time under 

both day lengths (Figure 2C). Therefore, Bs-1 and Cen-0 show increased photoperiod 

discrimination compared to Ler, distinguishing between 14 h and 16 h day lengths whereas 

Ler does not. A few other accessions, such as Ang-0, showed similar responses to Bs-1 and 

Cen-0 (Figure 2A; Supplementary Table 1). However, not all accessions that were later 

flowering than Ler at 14 h showed such a steep acceleration in flowering between 14h and 16 

h days (Supplementary Figure 2E). Similarly, the photoperiod response curves of Dijon-G and 

Sha differed under SDs (Figure 2D).  Dijon-G distinguished between 10 h and 8 h 

photoperiods, flowering later under 8 h than 10 h days. In contrast, Sha flowered at similar 

times under both day lengths. Thus the statistical analysis of the photoperiodic responses of 

the accessions defined genotypes exhibiting increased discrimination of photoperiod under 

LD (16 h vs 14 h) or SD (10 h vs 8 h) and provides a basis for subsequent genetic analysis.  
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Overall the analysis of flowering time under 6 different day lengths described considerable 

quantitative variation for photoperiodic response among the 72 accessions that were tested, 

placed these accessions in response groups and identified accessions exhibiting phenotypes 

distinct from those found among the tested mutants and transgenic lines.       

 
 
Effect of vernalization on accessions showing enhanced response to changing day length 

In many late-flowering Arabidopsis accessions the delay in flowering observed under 

inductive photoperiods can be overcome by exposure to low temperatures (vernalization). 

Therefore whether vernalization suppresses the late flowering of Bs-1 and Cen-0 under 14 h 

days was tested. The accessions were exposed to 4°C for 4 weeks under 8 h days, and then 

returned to 14 h days at normal growth temperatures (Figure 3; Methods). Cen-0 plants 

exposed to vernalization flowered at a similar time to those that were not vernalized, 

indicating that the delay in flowering of this accession under 14 h days was not caused by a 

requirement for vernalization (Fig. 3A). In contrast, Bs-1 flowered approximately 20 leaves 

earlier after vernalization, indicating that the later flowering of this accession under 14 h days 

was at least partially suppressed by vernalization (Figure 3A). The insensitivity of Cen-0 to 

vernalization was consistent with previous reports (Shindo et al., 2005), however Bs-1 was 

previously described as almost insensitive to vernalization (Shindo et al., 2005). The stronger 

response to vernalization that we observed may be due to the plants being returned after 

vernalization into 14 h days rather than longer days of 16 h. Flowering of non-vernalized 

plants is delayed under 14 h and therefore the difference between the flowering times of 

vernalized and non-vernalized plants may be more pronounced.  

The vernalization requirement in Arabidopsis is mainly conferred by the floral repressor FLC, 

whose transcription is in turn repressed by vernalization. The abundance of FLC mRNA in 

Cen-0 and Bs-1 was measured before and after vernalization, and compared with other 

accessions. Prior to vernalization FLC mRNA accumulated to relatively high levels in the 

Cen-0 accession but to low levels in Bs-1 (Figure 3B). These results are broadly in agreement 

with previous data (Shindo et al., 2005). In Bs-1, the abundance of FLC mRNA was further 

reduced by vernalization, and the difference was mainly observed after return to normal 

growth temperatures. This reduction was consistent with the earlier flowering induced by the 

treatment. In contrast, the high level of FLC mRNA in Cen-0 was not stably reduced by 

vernalization. However, previous data indicated that Cen-0 FLC  mRNA is improperly spliced 

(Lempe et al., 2005), suggesting that Cen-0 FLC may contribute little to flowering time of this 

accession despite the relatively high level of its mRNA.  
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Sequence variation at the FRI locus plays an important role in determining the level of FLC 

expression. To further study the contribution of the FRI/FLC system to the flowering time of 

the Bs-1 and Cen-0 accessions, the FRI allele of each genotype was tested for polymorphisms 

characterized in other accessions (Le Corre et al., 2002; Caicedo et al., 2004; Lempe et al., 

2005; Shindo et al., 2005). The inactive FRI allele present in Ler carries a 16 bp deletion 

within the protein coding sequence, and a similar deletion is present in the Bs-1 allele (Figure 

3C). Therefore, the low level of FLC mRNA in Bs-1 is consistent with the presence of an 

inactive FRI allele (Lempe et al., 2005). In contrast the FRI allele of Cen-0 does not carry the 

deletions present in Columbia or Ler, and was previously characterized as an active allele. 

This conclusion is consistent with the higher level of FLC mRNA detected in Cen-0.  

Taken together these results suggest that the relatively low level of FLC mRNA in Bs-1 may 

nevertheless contribute to its late-flowering phenotype under 14 h days creating the observed 

vernalization response. In contrast Cen-0 exhibits high levels of FLC mRNA that are 

improperly spliced, consistent with the observation that it did not show a response to 

vernalization.            

 
Genetic basis of enhanced response to changing day length differs between accessions. 
 
QTL mapping was carried out to identify loci contributing to the enhanced response to 

photoperiod of the Bs-1 and Cen-0 accessions. Each of these accessions was crossed to Ler. 

The flowering times of F2 populations were scored under 14 h and 16 h days (Supp. Fig. 5). 

Under 14 h days approximately 17 % of F2 plants derived from the cross of Bs-1 to Ler 

flowered later than any of the corresponding F2 plants grown under 16 h days (Supp. Figure 

5A and B). These data demonstrate that a proportion of F2 plants derived from this cross can 

be identified as late flowering under 14 h days compared to 16 h days. Analysis of late-

flowering F2 plants under 14 h days allows mapping of Bs-1 alleles that delay flowering 

under these conditions. Loci identified by this approach might also cause late flowering under 

16 h days, and therefore not be responsible for generating a difference in flowering time 

between 14 h and 16 h days (see below).. The F2 population derived from the Cen-0 cross to 

Ler was also scored under the same conditions and approximately 40 % of plants appeared to 

flower later under 14 h days than under 16 h days, although only around 5% were outside of 

the range of flowering times observed under 16 h days (Supplementary Figure 5E and F).  

The effect of vernalization on flowering time of the segregating F2 populations was also 

tested (Supplementary Figure 5 C and D). As observed in the parental Bs-1 line, the number 

of late-flowering plants under 14 h in the F2 population derived from the Bs-1 cross to Ler 
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was greatly reduced by vernalization. In contrast, vernalization had little effect on flowering 

time of the F2 derived from the cross of Cen-0 to Ler (Supplementary figure 5 G and H).  

DNA was extracted from F2 plants derived from each cross grown under 14 h days to 

construct genetic maps and facilitate identification of QTL that delay flowering under these 

conditions. SNPs between Ler and Bs-1 or Cen-0 were identified (Methods, Supplementary 

table 3), and used to construct genetic maps (Supplementary Figure 6 and 7). QTLs for 

flowering time under 14 h days identified in the crosses of Bs-1 or Cen-0 to Ler (Figure 4A; 

Supp. Table 4). This analysis identified one major QTL, ALTERED FLOWERING TIME 2 

(AFT2) and a putative QTL, AFT1. AFT2 is located on the upper arm of chromosome 5 with a 

high probability of contributing to flowering time and was responsible for approximately 35 

% of the variation in flowering time under 14 h days. AFT1 was located on the lower arm of 

chromosome 1 and was responsible for only 5 % of the variation in flowering time of the 

mapping population (Figure 4A; Supplementary Table 4). 

Flowering time variation under 14 h days in the F2 population derived from crossing Ler to 

Cen-0 was conferred by a different set of QTL than detected in the cross of Bs-1 to Ler 

(Figure 4A). In this cross five high probability QTL (AFT3, AFT4, AFT5, AFT6, AFT7) were 

detected. These were distributed across the upper and lower arms of chromosomes 4 and 5. 

The QTL located on the upper arm of chromosome 5 (AFT6) was located at a different 

position from AFT2, detected in the cross of Ler and Bs-1 (Supplementary Table 4). Overall 

the QTLs on chromosomes IV (AFT3, AFT4 and AFT5) and V (AFT6 and AFT7) in the Cen-0 

cross to Ler contributed 11 and 27 % of variation in flowering time, respectively 

(Supplementary Table 4).   

These experiments identified regions in both populations that are likely to contain QTL that 

delay flowering under 14 h days, and showed that those present in the Bs-1 to Ler cross differ 

from those present in the Cen-0 to Ler cross.   

 
 
Identification of QTL causing enhanced discrimination between 14 h and 16 h day 
lengths 
 
To test the heritability of the QTL identified in the F2 mapping populations and to determine 

whether they had differing effects on flowering time under 14 h and 16 h days, the flowering 

times of F3 families made by self-fertilizing selected F2 plants were scored under both day 

lengths. From the Bs-1 cross to Ler five F3 families were scored in total and the range of 

flowering times observed in one of these, family 72, is shown in Figure 5A. Each of these 

families was derived from an F2 plant that was predicted to be heterozygous for the region 
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containing the major effect QTL (AFT2) on chromosome 5. To allow comparison of the 

effects of QTL under both day lengths each F3 family was grown under 14 h and 16 h days 

and flowering time was scored. All of the F3 families grown under 14 h contained plants that 

flowered later than any of the plants grown under 16 h, confirming that the F2 plants 

contained QTL conferring late flowering under 14 h. Plants in populations grown under both 

day lengths were tested with a molecular marker linked to AFT2 (chr5_7.79). Plants 

homozygous or heterozygous for the Bs-1 allele at this locus were later flowering under 14 h 

days with higher leaf numbers than Ler plants, but did not show a significant difference in 

flowering time under 16 h days (Figure 5B). Analysis of variance confirmed that the 

difference under 14 h days but not under 16 h days was statistically significant (p<0.05) 

(Figure 5 B; Supplementary Table 5AB). However, the weaker effect QTL detected on 

chromosome 1 (AFT1) may also contribute, particularly because AFT2 was predicted to 

explain only 35% of the variation in flowering time in the F2 population (Supplementary 

Table 4). 

Flowering time was also scored in F3 families derived from the cross of Cen-0 to Ler (Figure 

5 C, D). More QTL were identified in the F2 of this cross (Figure 4A) making confirmation of 

their effect more complex. The F2 individuals selected for F3 progeny testing were fixed or 

heterozygous for different combinations of QTL. F2 plant 20 carried Cen-0 and Ler alleles at 

AFT3 (chromosome 4) and AFT6 (chromosome 5) and only Ler alleles at the other three loci 

(Figure 5D). The F3 progeny contained severely late-flowering plants under 14 h (Figure 5D), 

indicating that Cen-0 alleles at AFT3 and AFT6 interact to delay flowering under these 

conditions. However, the presence of Cen-0 alleles at all loci more uniformly delays 

flowering under 14 h (Plant 97; Figure 5C), although plants with this genotype do not exhibit 

a more extreme late-flowering phenotype than observed in the progeny of plant 20. Taken 

together these data indicate that interactions between the Cen-0 alleles at AFT3 and AFT6 

cause the most severe delays in flowering in the Cen-0 cross to Ler, but that the effect of these 

loci under 14 h is further enhanced by Cen-0 alleles at the other loci. 

To further study the complex inheritance of flowering-time variation in the Cen-0 cross to 

Ler, QTL were mapped in segregating F3 populations derived from plants 97 and 20 grown 

under 14 h and 16 h days. The mean flowering time of these families was significantly later 

under 14 h compared to 16 h (Figure 6A; Supplementary Table 5C,D). The F3 plants grown 

under both conditions were analyzed with 40 markers in regions of all five chromosomes that 

were segregating for Cen-0 and Ler alleles. Interactions between flowering time QTL and 

day-length were then analyzed (Figure 6B; Supplementary Table 5G). Homozygosity for Cen-
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0 alleles at AFT3 (Chr4_2.81) delayed flowering, particularly under 16 h, and reduced the 

effect of the day-length difference on flowering time. In contrast, homozygous Cen-0 at AFT6 

(Chr5_3.60) delayed flowering under 14 h and enhanced the effect of day length. Finally, 

AFT15, a QTL on chromosome 5 that was not detected in the F2 (Chr5_7.27; see also below), 

delayed flowering under 14 h when homozygous for Cen-0 and enhanced the effect of day 

length on flowering time. Taken together these data demonstrated strong interactions between 

day length and the Cen-0 allele present at AFT6 and AFT15 that would be consistent with 

them causing a delay in flowering under 14 h compared to 16 h as observed in the parental 

accession. However, the Ler allele at AFT3 delayed flowering under 14 h but not 16 h, and 

therefore did not show the effect observed in the parental Ler accession.  

The flowering time data under both day lengths were then combined and QTL were tested for 

their effect on flowering time independently of day length. Univariate ANOVA identified 4 

regions for which the Cen-0 alleles were significantly correlated with late flowering 

independently of day length (Figure 6C; Supplementary Table 5E). The markers used for this 

analysis were located in regions previously shown to contain the AFT3 (marker Chrom 

4_2.81), AFT4 (marker Chrom 4_9.58) and AFT6 (marker Chrom 5_3.60) QTL. The region 

containing AFT7 was not polymorphic in either population preventing its detection, while 

AFT5 was not detected. Therefore, this analysis  validated three of the four QTL identified in 

the F2 and segregating in the F3 material. In addition, a further QTL for flowering time 

(AFT15) was identified on chromosome 5 using markers at 7.27 Mb (Figure 6C) that was not 

detected in the F2 population, probably due to its smaller effect.  

Finally interactions between loci on chromosomes 4 and 5 were found to have important 

effects on flowering time in these families (Figure 6D; Supplementary Table 5F). The Cen-0 

allele at AFT3 (Chr4_2.81) interacts with the Cen-0 allele near AFT6 (Chr5_3.6) to delay 

flowering in all genotypic combinations except when AFT3 is Cen-0 heterozygous and AFT6 

Cen-0 homozygous. Interaction was also observed between Cen-0 alleles near AFT3 

(Chr4_0.28) and AFT15, although in this case AFT15 alone caused a severe delay in 

flowering (Fig. 6D). 

Taken together analysis of F3 families confirmed most of the QTL proposed from the F2 data. 

These analyses also detected a strong interaction between day length and AFT2 in delaying 

flowering in the Bs-1 cross to Ler, and between day length and AFT6 and AFT15 in delaying 

flowering in the Cen-0 cross to Ler.  
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Accessions showing enhanced photoperiodic flowering response under short days 

Accessions showing differential sensitivity to SDs of less than 10 h light were also identified 

(Figure 2D). Flowering time of the Sha accession did not change as day length was shortened 

from 10 h to 6 h, while Dijon-G flowered much later under 6 h than 10 h. To identify the loci 

responsible for this difference in day-length sensitivity the two accessions were crossed and 

an F2 population was made. F2 plants were grown under 8 h or 10 h days and flowering time 

was scored. In parallel, DNA was extracted from both populations and used to construct a 

genetic map (Supplementary Figure 6 and 7). The flowering-time data and mapping 

information were used to identify QTL that influence flowering time under 8 h or 10 h days 

(Figure 4B). Under 8 h days QTL were identified on chromosomes 1 (AFT8), 4 (AFT11, 

AFT12) and 5 (AFT13, AFT14) (Supplementary Table 4). Under 10 h days the same QTL 

were detected as under 8 h days, but in addition QTL were found on chromosome 3 (AFT9, 

AFT10) (Supplementary Table 4). The detection of QTL under 10 h but not 8 h days suggests 

the involvement of different genes in controlling flowering time under 10 h compared to 8 h 

days. These genes may act together with or independent of the QTL that influence flowering 

time under both day lengths.     

 
 
Detection of conditional epistatic interactions that influence flowering under short days 

in the cross of Dijon-G to Sha 

A genome-wide screen was performed to identify epistatic interactions influencing flowering 

time in the F2 population derived from crossing Dijon-G to Sha (Fig 7; Methods). The results 

are illustrated by heat maps (Figures 7A,B), in which the strongest interactions appear in red, 

as represented in the scale diagrams (Methods). This analysis revealed one highly significant 

epistatic interaction between two loci influencing day-length perception. This interaction was 

between a locus at the top of chromosome 5 (1.2 to 2.1 Mb) and a second one in the middle of 

the same chromosome (13.6 to 17.1 Mb) (Fig 7A). The interaction was conditional on day 

length because it appears only under SD of 8 h but not under SD 10 h (Fig 7 A B). The 

phenotypic effect of this epistatic interaction is to delay or accelerates flowering by 

approximately ten leaves, and it is statistically significant based on ANOVA (Figure 7C). 

However, no significant difference was observed in plants grown under 10 h  (Fig 7 D). These 

data indicate that genetic interactions with significant phenotypic effects on flowering time 

can be environmentally dependent and thereby contribute to day-length perception.  
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Discussion   
 
We identified extensive quantitative variation in the photoperiodic responses of Arabidopsis 

accessions. The response curves of most accessions were sigmoidal, as previously described 

for Ws and L er (Pouteau et al., 2008; Wilczek et al., 2009). These curves are in agreement 

with the classical description of A. thaliana as a facultative long-day species (Laibach, 1951), 

flowering earlier under LDs than SDs. The sigmoidal curve was previously used to define two 

key determinants of the photoperiod response, the critical day length and the ceiling 

photoperiod (Pouteau et al., 2008). The ceiling photoperiod is the longest day length under 

which the accession reached the plateau in flowering time characteristic of SDs. In contrast 

the critical photoperiod is the shortest photoperiod under which the accession shows the full 

LD response. In our data variation in both critical photoperiod and ceiling photoperiod was 

observed in many accessions, however these parameters were often difficult to score precisely 

because the flowering times under SDs frequently did not form a perfectly horizontal plateau, 

and under LDs a progressive delay in flowering time was sometimes observed as day length 

was shortened. Therefore, rather than comparing these two defined positions on the 

photoperiod response curves we used more general statistical approaches such as principal 

components analysis or clustering to evaluate the general shape of the response and thereby 

compare the photoperiod response curves of different accessions. These approaches allowed 

the accessions to be placed in broad phenotypic groups that were defined relative to the mean 

flowering response. These groups provide a basis for genetic and molecular analysis as well 

as comparison with existing mutants. One group was early flowering under all photoperiods, 

and this included Cvi, which showed a strongly diminished response to photoperiod (Alonso-

Blanco et al., 1998; El-Assal et al., 2001). This early flowering group also included Ws, 

which was previously used for mutational analysis of photoperiodic response (Pouteau et al., 

2008). However, the early flowering of this accession under all photoperiods reduces the 

absolute difference in flowering time between LD and SD, and may make it more difficult to 

use for mutational studies. Future genetic analysis of those accessions showing enhanced 

responses to day length may be particularly useful, because as well as showing an enhanced 

response at extreme day lengths some of them demonstrated increased capacity to distinguish 

between similar day lengths. For example, Cen-0 and Bs-1 discriminated between 16 h and 14 

h days whereas Ler and Col flowered at the same time under both day lengths. One 

interpretation of this result is that Cen-0 and Bs-1 have a longer critical day length than Ler or 

Col. In addition to the three broad categories, extensive quantitative variation for 

photoperiodic response was detected consistent with previous studies demonstrating 
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tremendous variation for flowering time in Arabidopsis (Laibach, 1951; Alonso-Blanco et al., 

1998; Lempe et al., 2005; Shindo et al., 2005; Werner et al., 2005a).          

Altered photoperiodic responses shown by mutants or transgenic plants were compared with 

those of the accessions. Photoperiod-insensitive genotypes included late-flowering mutants 

under LDs that were impaired in the photoperiodic flowering pathway or transgenic plants 

overexpressing genes in this pathway that flowered early under SDs. These results were 

broadly consistent with previous publications and data obtained under a narrower range of day 

lengths (Redei, 1962; Koornneef et al., 1991; Kardailsky et al., 1999; Kobayashi et al., 1999; 

Onouchi et al., 2000; Mizoguchi et al., 2005). The circadian clock provides the time-keeping 

mechanism required to measure day length, and genetic variation in clock function influences 

flowering time. Plants overexpressing the clock components LHY and CCA1 are strongly 

impaired in circadian clock regulation of different processes (Schaffer et al., 1998; Wang and 

Tobin, 1998) and in our data these plants were almost day-length insensitive, flowering much 

later than wild-type plants under LDs. This result is consistent with the previous observation 

that the mRNA of the long-day flowering pathway component CO is reduced in abundance in 

LHY overexpressing plants (Suarez-Lopez et al., 2001). Similarly, lhy-11 cca1-1 double loss 

of function mutants were early flowering under all conditions tested, except in extreme SDs of 

6 h light, where flowering time was severely delayed. The early flowering of lhy-11 cca1-1 

double mutants under SDs was previously proposed to be due to the earlier phase of 

expression of clock-regulated genes such as CO (Mizoguchi et al., 2002; Mizoguchi et al., 

2005), so that they are expressed in the light in the double mutant under SDs but not in wild-

type plants. The abrupt delay in flowering of the double mutant under 6 h SDs might be due to 

the expression of CO occurring in darkness under such extreme SD conditions. Alternatively, 

in lhy-11 cca1-1 double mutants increased expression of repressors of flowering may be 

activated only under certain environmental conditions (Fujiwara et al., 2008) or metabolic 

defects caused by impaired clock function (Dodd et al., 2005) may indirectly delay flowering 

under extreme SDs.  

Statistical approaches were used to compare the photoperiodic responses of the mutants and 

transgenic lines with those of the accessions. The extensive variation found in the mutant and 

transgenic lines occupied much of the phenotypic space occupied by the accessions. However, 

some accessions clearly showed photoperiodic responses that were not found among the 

mutants. The responses of some of the accessions may be caused by allelic variation at several 

genes creating complex interactions that cannot be induced with single mutations in the 

widely used laboratory accessions Col-0, Ler and Ws. The presence of response types in the 
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accessions that were not observed in any of the mutants emphasises the value of using natural-

genetic variation to study photoperiodic responses.     

The ecological significance of the genetic variation in day-length responses that we detected 

is not immediately clear. Correlations between photoperiodic responses and latitude at which 

accessions were collected have been demonstrated for other species (Ray and Alexander, 

1966). Also the expansion of the geographical range of crop plants that occurred after 

domestication involved selection for photoperiodic insensitive varieties (Yano et al., 2000; 

Turner et al., 2005; Purugganan and Fuller, 2009).  In Arabidopsis accessions relationships 

have been detected between the presence of particular alleles at FRI or PHYC and the latitude 

at which the accessions were collected (Stinchcombe et al., 2004; Balasubramanian et al., 

2006). We did not observe a strong relationship between photoperiodic response and the 

latitude at which the accessions were collected. In particular, the Cen-0 and Bs-1 accessions 

that showed a longer critical day length than the mean response and enhanced discrimination 

between similar LDs were collected from France and Switzerland, at similar latitudes to many 

of the other accessions. Recently the ecological significance of different flowering pathways 

was explored in field experiments by planting a wide range of mutant genotypes in 5 sites 

across the European range of Arabidopsis (Wilczek et al., 2009). These experiments indicated 

that the significance of different flowering pathways is highly dependent on germination time 

and that flowering of most genotypes is suppressed in winter if they germinate at an 

appropriate time during late summer or autumn. Therefore the relationship between variation 

in photoperiodic flowering regulation and latitude may be difficult to assess in isolation but 

may depend on variation in the regulation of other traits including germination. The 

significance of variation in Arabidopsis photoperiodic response to adaptation at different 

latitudes may therefore emerge when analyzed together with a more thorough description of 

the phenotypic variation in other traits in the same accessions.   

In the three mapping populations a total of 15 QTL were detected and named ALTERED 

FLOWERING TIME (AFT). None of these QTL were mapped to high enough resolution to 

identify the underlying genes with certainty, but some are located in regions previously shown 

to contain one or more genes regulating flowering time, while others are located in regions in 

which no genes regulating flowering time were previously identified. Those QTL that 

interacted with day length and contribute to the increased discrimination in day length 

response between 14 h and 16 h or between 10 h and 8 h were studied. In the Bs-1 cross to 

Ler, AFT2 and putatively AFT1 were detected as causing late flowering under 14 h in the F2. 

Furthermore, phenotypic and genotypic testing of F3 progeny strongly indicated that AFT2 
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interacts with day length conferring a delay in flowering between 14 h and 16 h days. The 

location of AFT2 on chromosome 5 is close to the flowering-time genes FRL1, HUA2, PRR5 

and FPF1, which were previously described (Kania et al., 1997; Chen and Meyerowitz, 1999; 

Michaels et al., 2004; Doyle et al., 2005; Nakamichi et al., 2007; Wang et al., 2007). In 

addition, AFT1 had a small  effect on flowering time in this cross and is located on 

chromosome 1 in a broad region containing two genes that promote flowering within the 

photoperiod pathway (FKF1, FT) (Kardailsky et al., 1999; Kobayashi et al., 1999; Nelson et 

al., 2000) and a general repressor of flowering (FLM) (Ratcliffe et al., 2001; Scortecci et al., 

2001). Strong loss of function alleles in the photoperiod pathway similar to PpdH-1 of barley 

(Turner et al., 2005) or Hd-1 of rice (Yano et al., 2000) were not expected to be detected 

because accessions showing a severe late-flowering phenotype under 16 h LDs were excluded 

from the analysis. Nevertheless, AFT1 may represent in Bs-1 a weak loss of function allele of 

FKF1 or FT or a strong allele of FLM. 

The inheritance of flowering-time variation was more complex in the Cen-0 cross to Ler, and 

a total of 6 QTL were detected in the F2 and F3 generations. Of these, AFT6 and AFT15 

showed strong interactions with day length in F3 families, delaying flowering more strongly 

under 14 h than 16 h. AFT6 is located on chromosome 5 in a region containing FLC. 

Furthermore, AFT6 delayed flowering more strongly when combined with AFT3, a QTL 

located on chromosome 4 close to the position of FRI. Therefore, AFT6 and AFT3 may 

represent FLC and FRI, two loci previously shown to contribute much of the variation for 

flowering time among Arabidopsis accessions (Lempe et al., 2005, Shindo et al., 2005). 

Nevertheless, FLC is not expected to show such a strong interaction with day length, because 

it is a central component of the vernalization pathway, and both parental accessions, Cen-0 

and Ler, harbour weak alleles of FLC. AFT15, the other locus that showed a strong interaction 

with day length in this cross, is located on chromosome 5 close to AFT2, and therefore to 

FRL1, HUA2, PRR5 and FPF1 (Kania et al., 1997; Chen and Meyerowitz, 1999; Michaels et 

al., 2004; Doyle et al., 2005; Nakamichi et al., 2007)   

The cross between Dijon-G and Sha identified seven QTL influencing flowering time under 

SDs of 10 h or 8 h. Most of these did not show an interaction with day length and were 

detected in mapping populations grown under 10 h and 8 h days. However, AFT9 and AFT10 

delayed flowering only under 10 h days and were not detected under 8 h days. These two 

QTL are located in a region of chromosome 3 not previously shown to contain genes that 

affect flowering time. 
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The experiments reported here demonstrated that Arabidopsis accessions are a rich source of 

quantitative phenotypic and genetic variation in photoperiodic response. Furthermore, the 

QTL analysis showed that most of this variation is genetically tractable and in some cases 

allowed candidate genes to be proposed. Construction of near isogenic lines as well as more 

detailed genetic mapping and molecular analysis should allow identification of some of the 

genes underlying these QTL and examination of the mechanisms by which they contribute to 

photoperiodic response.  

 

Methods 

Flowering time analysis     

For the flowering time analysis 72 accessions from the Altmann and the Nordborg collection 

and 31 mutants and transgenic lines were selected (Supplementary Tables 1 and 2). The 

accessions were taken through one generation of single seed selection to further reduce 

variation. The flowering time was scored in six different day lengths three of which are short 

days (SD) of 6, 8 and 10 hours of light and the remaining ones are long days (LD) of 12, 14, 

16 hours of light respectively. The analysis was performed in controlled environment growth 

chambers at 22 °C, after stratification for 3 days at 4 °C. A population of 18 individuals 

represented each accession. Flowering time parameters such as a) number of total leaves b) 

days until bolting at the stage of 1 cm c) days until anthesis were monitored. The experimental 

design was a Randomized Complete Block (RCB). For the vernalization treatment, 10 day old 

seedlings, grown under SD of 8 h at 22 °C, were exposed to 4 °C for one month under the 

same photoperiod and then moved to 22 ºC under the desired day length for flowering time 

scoring.  For the genetic analysis, 100 to 150 individuals were used for each F2 population 

and populations of 50 individuals were used per F3 family and condition.  

     

Statistical analysis  

For the statistical analysis SigmaStat v.3 was used. A two way ANOVA was performed with 

accessions and day lengths as the two factors and for parameters such as TLN and BT for 

flowering. Demonstration of the results was performed with SigmaPlot v. 10.  

The hierarchical clustering shown in Figure 2A and the PCA were performed using Cluster v. 

3. The raw data were mean-centered across the different day lengths and accessions in order 

to provide an internal control for comparisons. Self-Organising Maps (SOMs) were calculated 

for both the accessions (100.000 iterations) and the day length (20.000 iterations). Both 

factors were then clustered according to the complete linkage clustering method using 
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Euclidean distance as similarity metric. TreeView v. 1.6 was used to demonstrate the results. 

PCA was performed using Cluster.  

QTL mapping was performed using the MapQTL program. Linkage maps were created using 

JoinMap. A permutation test defined the LOD threshold for each population. First an interval 

mapping was performed and subsequently MQM mapping with automatically selected 

cofactors was used. SPSS v13 was used for the univariate ANOVA in the F3 families of Bs-1 

x Ler and Cen-0 x Ler crosses.  

The genetic relationship between the accessions (Supplementary Figure 1) was calculated 

with the MEGA software using 149 polymorphic SNPs (www.naturalvariation.org). Genome 

wide genetic interactions were performed with the J/qtl software.      

Analysis of genome wide genetic interactions (Figure 7A) was performed in R (http://www.R-

project.org/). Interactions were calculated with the function “scantwo” using 4000 

permutations. The interactions were visualised with J/qtl software.   

 

DNA isolation and genotyping 

 DNA isolation was performed with 100 mg of fresh tissue using either the CTAB method 

(for small number of samples) or the semi-automated method for DNA extraction using the 

Biosprint robot (QIAGEN) for the mapping populations. Genotyping in the F2 populations 

was performed in collaboration with Sequenom inc (San Diego, USA). Polymorphic markers 

were selected for each cross after parental screening of a pool of 360 markers (Supplementary 

Table 3; for further information see www.naturalvariation.org). For validation and further 

genotyping a standard PCR protocol was used after which the PCR fragments were analysed 

in 3 % agarose gels after electrophoresis in 100 V for 40 min approximately. The chr5_7.79 

marker used for the validation in the F3 of AFT2 the Bs-1 x Ler cross and shown in Figure 5 

was a dCAPS marker cleaved with HinfI. The marker utilized the primers 5’- 

TCCACCGCCTTCACAATCATTAACAACTCGAC and 5’- 

GACAATTTGATCACCCTGCAC 

Markers used for validation in the F3 of the QTL in the Cen-0 x Ler cross and shown in 

Figure 6 were as follows. Chr4_2.81 is a dCAPS marker cleaved with HindIII and the primers 

used were 5’-GGCTGCTTTCTTAGCATCAGATGATTCTTCTTACATCACTGGAGAAGC 

and 5’-AAGTATCCAATGGCCTCGTG. The other 3 markers used in Figure 6 are described 

at www.naturalvariation.org. Chr4_9.58 is AtMSQT_NW_173.  Chr5_3.60 is 

AtMSQT_NW_208. Chr5_7.27 is AtMSQT_NW_216.  
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Expression analysis 

   Total RNA isolation was performed in 100 mg of fresh tissue using the RNAeasy kit 

(Qiagen). 3 mg of RNA were tested in formaldehyde gel in order to evaluate the quality of the 

RNA. 5 mg of total RNA were DNase treated with the turbo DNase kit (Ambion). The 

following primer pairs were used in order to perform Real-time PCR after evaluation of the 

correct PCR condition in a gradient reaction. Actin : Forward primer 

GGTAACATTGTGCTCAGTGGTGG, reverse primer : 

AACGACCTTAATCTTCATGCTGC ; FLC forward primer : 

ACGCATCCGTCGCTCTTCT; reverse primer : GCATGCTGTTTCCCATATCGA 
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Figure Legends 
 
Figure 1. Characterization of flowering responses of Arabidopsis accessions, mutants 
and transgenic lines under a range of day lengths.  
 

A. Flowering times of 72 accessions under six day lengths. Day length is plotted in hours 
along the horizontal axis. Flowering time, measured as total leaf number (TLN), is 
plotted on the vertical axis. The flowering time data are also presented in 
Supplementary Table 1. The photoperiodic response curve of each accession is 
represented. The grey region highlights those accessions showing a sigmoidal 
photoperiodic response curve as determined by the correlation coefficients between 
the theoretical sigmoidal pattern and the actual data for the accessions.   

B. Flowering times of 31 mutants and transgenic lines under six different day lengths. 
Day length is plotted in hours along the horizontal axis. Flowering time, measured as 
total leaf number (TLN), is plotted on the vertical axis. The flowering time data are 
also presented in Supplementary Table 1. 

C. Flowering times of a set of early-flowering accessions under all day lengths. Closed 
circles, Cvi; open circles, Sha; closed triangles, Dra-0; open triangles, Ws-0; closed 
squares, Ler; orange squares, average response.  

D. Flowering times of a set of accessions showing a greater than average difference in 
flowering time between 6 h and 16 h days and similar or earlier flowering than 
average at 16 h. Closed circles, Cen-0; open circles, Col-2; closed triangles, Col-0; 
open triangles, Col-3; closed squares, Fr-4; open squares, Enkheim-T; closed 
diamond, Bs-1; orange circles, average response. 

 
 
Figure 2. Characterization of flowering responses of Arabidopsis accessions under a 
range of day lengths. 
 

A. Hierarchical clustering analysis of day-length responses of 72 accessions. The 
flowering time responses of each genotype under six different day lengths were 
analyzed using Cluster. The colours represent: green, earlier flowering than the mean; 
red, later flowering than the mean; grey, missing values; black, equal to mean. 

B. Principal components analysis comparing photoperiod discrimination of mutants and 
accessions.  The Y axis is principal component 5, which is flowering time under 16 h 
versus flowering time under 14 h. The X axis is PC4, which is flowering time under 
10 h and 6 h versus flowering time under 8 h. PC5 explains 8% of the phenotypic 
variation, while PC4 explains 9% of the variation. The large rectangle represents the 
space defined by the photoperiodic responses of mutants. The green squares represent 
mutants and the light blue diamond shape symbols indicate accessions. Black circle : 
Ler, dark blue circle : Bs-1 red circle : Cen-0.  

C. Flowering times of accessions Cen-0 and Bs-1 compared to Ler. The bracket 
illustrates that flowering of Bs-1 and Cen-0 is delayed by shortening day length from 
16 h to 14 h, but flowering of Ler is not.   

D. Flowering times of accessions Dijon-G and Sha that show different responses to 
decreasing day length below 10 h. The bracket illustrates the difference between 10 h 
and 8 h days which delays flowering in Dijon-G but not Sha.   
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Figure 3. Vernalization response of Bs-1 and Cen-0 accessions under 14 h days and its 
relationship to FLC expression levels. 
 
A. Flowering times of Bs-1 and Cen-0 accessions with or without vernalization. Flowering 
time is plotted as total leaf number (TLN) on the Y axis. The accessions with or without 
vernalization are arranged on the X-axis. 
B. FLC mRNA abundance before, during and after vernalization in Bs-1 and Cen-0 
accessions. FLC mRNA level relative to actin mRNA level is plotted on the Y axis. Each 
accession without vernalization (NV), exposed to vernalization for 1 or 4 weeks (1wV and 
4wV, respectively), or exposed to vernalization for 4 weeks and then returned to normal 
growth temperatures for 15 days (15 dav) are arranged on the X-axis.  
C. Analysis of FRI alleles present in selected accessions. Polymorphisms associated with a 16 
bp deletion in the coding sequence (top) or a deletion in the promoter (pFRI; bottom) were 
tested. Ler (Ler) and Columbia (Col-0) act as controls. Ler carries the 16 bp deletion in the 
FRI coding sequence, whereas Col-0 carries the deletion in the FRI promoter.   
 
Figure 4. Positions of QTL that influence flowering time under various photoperiods. 
 
A.QTL identified in the F2 of the cross between Bs-1 and Ler (BL) or between Cen-0 and Ler 
(CL) grown under 14 h days. The left hand panel represents QTL located on chromosome 1, 
the central panel illustrates those located on chromosome 4 whereas the right hand panel 
represents those located on chromosome 5. Arrows between the vertical dotted lines represent 
QTL identified in each cross. Arrows that point upwards indicate QTL for which the Ler 
allele causes early flowering. The three solid red lines in each panel represent the positions of 
markers located in the genomic sequence of Columbia (left), mapped in the BL cross (centre) 
and mapped in the CL cross (right). Dotted black lines connect markers in the sequence to 
their position in each genetic map. Long vertical black lines separate the data for each 
chromosome. 
B.QTL identified in the F2 of the cross between Dijon and Sha grown under 10 h (DS10) or 8 
h (DS8) days. Structure of each panel as for A, except data are shown for chromosomes 1, 3, 
4 and 5. Arrows pointing upwards represent those QTL for which Sha alleles cause early 
flowering.     
 
Figure 5.  Analysis of flowering time in F3 populations used to validate QTL and test 
their interaction with day length. 
 
The flowering times of plants in three F3 families grown under 14 h and 16 h days. In each 
histogram the horizontal axis represents flowering time as leaf number. The vertical axis 
illustrates number of plants. Blue indicates plants grown under 16 h days, whereas cream 
illustrates plants grown under 14 h days. The diagram below each histogram illustrates the 
genotype of the parental F2 plant. White illustrates Ler homozygous alleles, black illustrates 
Bs-1 or Cen-0 homozygous alleles and hatched illustrates heterozygous alleles. The positions 
of the QTL mapped in the F2 are indicated by the rectangles above each diagram and the 
names of each QTL are indicated. The number to the left of the genotype indicates the number 
of the F2 plant whose genotype is illustrated, the number on the right indicates the leaf 
number at flowering of this F2 plant.  
 A. F3 family derived from F2 plant 72 in the Bs-1 cross to Ler.  
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B. ANOVA analysis of the relationship between ERD2 alleles and flowering time under 14 h 
or 16 h days in the F3 family shown in panel A. Left hand panel, analysis of data for plants 
grown under 14 h days. Right hand panel, analysis of data for plants grown under 16 h days.  
Y axis, flowering time represented as total leaf number. X axis, genotype at ERD2, marker 
used chr5_7.79 (Methods). Asterisk illustrates significantly different from Ler (P<0.05).   
C. F3 family derived from F2 plant 97 in the Cen-0 cross to Ler. 
D. F3 family derived from F2 plant 20 in the Cen-0 cross to Ler. 
 
 
Figure 6. Validation of the QTL in the Cen-0 to Ler cross using F3 familes 20 and 97, 
and analysis of interactions between QTL and day length  
A.  Mean flowering times of each family and parental controls under 14 h and 16 h days. Y 
axis flowering time represented as total leaf number. Error bars indicate S.D. X axis 
genotypes and day length. CL20, F3 family derived from F2 plant 20 of the Cen-0 x Ler 
cross. CL97, same nomenclature for F2 plant 97. 
B. Univariate ANOVA detection of two-way interactions between markers and changing day 
length in the control of flowering time. Loci on top of chromosome 4 (4_0.28) and 
chromosome 5 (5_3.6 and 5_7.27) interact differently with the two day lengths. The Cen-0 
allele at the chromosome 4 locus delays flowering under 16 h reducing the difference in 
flowering time between 14 h and 16 h days. The Cen-0 alleles at the chromosome 5 loci more 
strongly delay flowering under 14 h and enhance the difference in flowering time between the 
two day lengths. Data for families 20 and 97 were combined. Y axis flowering time 
represented by total leaf number. X axis genotype and day length. Upper symbols correspond 
to allelic variation at the corresponding loci (L: Ler homozygous, C: Cen-0 homozygous H: 
heterozygous alleles) while lower numbers represent day length. The position of the markers 
used are indicated together with the name of the QTL mapped in the region. All markers are 
described in Methods.  
C. Univariate ANOVA detection of flowering time effects independently of daylength. 
Markers on chromosome 4 (4_0.28 and 4_9.58) and 5 (5_3.6) detect loci that delay flowering 
when Cen-0 alleles are homozygous or heterozygous, whereas the Cen-0 allele at Chr5_7.27 
delays flowering only when homozygous. Markers are described in Methods. Flowering time 
was scored under 14 h and 16 h for both families and all data combined for analysis. The 
genotype at each marker is shown L: Ler homozygous, C: Cen-0 homozygous H: 
heterozygous alleles. The position of each marker is shown together with the name of the 
QTL mapped in the region.  
D. Univariate ANOVA detection of two-way interactions between markers in determining 
flowering time. Allelic variation at a locus at the top of chromosome 4 (linked to marker 
4_0.28) interacts with two other loci on chromosome 5 (linked to markers 5_3.6 and 5_7.27). 
Flowering time was scored under 14 h and 16 h for both families and all data combined for 
analysis. Upper symbols of x-axis correspond to alleles of the chromosome 4 locus while 
bottom symbols correspond to alleles of the chromosome 5 loci. L: Ler homozygous, C: Cen-
0 homozygous H: heterozygous alleles.  
 
 
 
Figure 7. Genome wide detection of epistatic interactions in the mapping population 
created by crossing Dijon-G to Sha  
 
A. Heat map of two-dimensional genome scan for interactions under 8 h SD 
B. Heat map of two dimensional genome scan for interactions under 10 h SD 
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In A and B the numerals on the horizontal and vertical axes illustrate the five chromosomes. 
The upper left triangle shows the epistasis LOD scores. The lower right triangle illustrates the 
joint LOD scores. The colour scale on the right of each panel indicates separate scales for the 
epistasis and joint LOD scores (on the left and right respectively).  
The white arrow in A indicates the presence of an epistatic interaction, which is conditional as 
it occurs only under 8 h, between a locus on the top of Chrom 5 (horizontal axis) and one in 
the middle of the same chromosome (vertical axis). 
 
C. Effect plot of the epistatic interaction under 8 h days marked in Figure 10A. Vertical axis 
represents flowering time as total leaf number. Horizontal axis represents genotype. 
Homozygous Dijon.G is indicated by D and homozygous Shakdara is indicated with S. Upper 
symbols represent the locus at the top of chromosome 5, while lower symbols represent the 
locus in the middle of chromosome 5. The presence of Shakdara alleles at the top of 
chromosome 5 makes a difference in flowering time of around 20 leaves if the locus in the 
middle of chromosome 5 is also Shakdara. Asterix indicates a significant difference (P<0.05).   
 
D. The same  analysis with the same loci as in C, but for plants grown under 10 h days. No 
significant effect of genotype on flowering time was observed. 
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Figure 1. Characterization of flowering responses of Arabidopsis accessions, mutants 
and transgenic lines under a range of day lengths.  
 

A. Flowering times of 72 accessions under six day lengths. Day length is plotted in hours 
along the horizontal axis. Flowering time, measured as total leaf number (TLN), is 
plotted on the vertical axis. The flowering time data are also presented in 
Supplementary Table 1. The photoperiodic response curve of each accession is 
represented. The grey region highlights those accessions showing a sigmoidal 
photoperiodic response curve as determined by the correlation coefficients between 
the theoretical sigmoidal pattern and the actual data for the accessions.   

B. Flowering times of 31 mutants and transgenic lines under six different day lengths. 
Day length is plotted in hours along the horizontal axis. Flowering time, measured as 
total leaf number (TLN), is plotted on the vertical axis. The flowering time data are 
also presented in Supplementary Table 1. 

C. Flowering times of a set of early-flowering accessions under all day lengths. Closed 
circles, Cvi; open circles, Sha; closed triangles, Dra-0; open triangles, Ws-0; closed 
squares, Ler; orange squares, average response.  

D. Flowering times of a set of accessions showing a greater than average difference in 
flowering time between 6 h and 16 h days and similar or earlier flowering than 
average at 16 h. Closed circles, Cen-0; open circles, Col-2; closed triangles, Col-0; 
open triangles, Col-3; closed squares, Fr-4; open squares, Enkheim-T; closed 
diamond, Bs-1; orange circles, average response. 
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Figure 2. Characterization of flowering responses of Arabidopsis accessions under a 
range of day lengths. 
 

A. Hierarchical clustering analysis of day-length responses of 72 accessions. The 
flowering time responses of each genotype under six different day lengths were 
analyzed using Cluster. The colours represent: green, earlier flowering than the mean; 
red, later flowering than the mean; grey, missing values; black, equal to mean. 

B. Principal components analysis comparing photoperiod discrimination of mutants and 
accessions.  The Y axis is principal component 5, which is flowering time under 16 h 
versus flowering time under 14 h. The X axis is PC4, which is flowering time under 
10 h and 6 h versus flowering time under 8 h. PC5 explains 8% of the phenotypic 
variation, while PC4 explains 9% of the variation. The large rectangle represents the 
space defined by the photoperiodic responses of mutants. The green squares represent 
mutants and the light blue diamond shape symbols indicate accessions. Black circle : 
Ler, dark blue circle : Bs-1 red circle : Cen-0.  

C. Flowering times of accessions Cen-0 and Bs-1 compared to Ler. The bracket 
illustrates that flowering of Bs-1 and Cen-0 is delayed by shortening day length from 
16 h to 14 h, but flowering of Ler is not.   

D. Flowering times of accessions Dijon-G and Sha that show different responses to 
decreasing day length below 10 h. The bracket illustrates the difference between 10 h 
and 8 h days which delays flowering in Dijon-G but not Sha.   
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Figure 3. Vernalization response of Bs-1 and Cen-0 accessions under 14 h days and its 
relationship to FLC expression levels. 
 
A. Flowering times of Bs-1 and Cen-0 accessions with or without vernalization. Flowering 
time is plotted as total leaf number (TLN) on the Y axis. The accessions with or without 
vernalization are arranged on the X-axis. 
B. FLC mRNA abundance before, during and after vernalization in Bs-1 and Cen-0 
accessions. FLC mRNA level relative to actin mRNA level is plotted on the Y axis. Each 
accession without vernalization (NV), exposed to vernalization for 1 or 4 weeks (1wV and 
4wV, respectively), or exposed to vernalization for 4 weeks and then returned to normal 
growth temperatures for 15 days (15 dav) are arranged on the X-axis.  
C. Analysis of FRI alleles present in selected accessions. Polymorphisms associated with a 16 
bp deletion in the coding sequence (top) or a deletion in the promoter (pFRI; bottom) were 
tested. Ler (Ler) and Columbia (Col-0) act as controls. Ler carries the 16 bp deletion in the 
FRI coding sequence, whereas Col-0 carries the deletion in the FRI promoter.   
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Figure 4. Positions of QTL that influence flowering time under various photoperiods. 
 
A.QTL identified in the F2 of the cross between Bs-1 and Ler (BL) or between Cen-0 and Ler 
(CL) grown under 14 h days. The left hand panel represents QTL located on chromosome 1, 
the central panel illustrates those located on chromosome 4 whereas the right hand panel 
represents those located on chromosome 5. Arrows between the vertical dotted lines represent 
QTL identified in each cross. Arrows that point upwards indicate QTL for which the Ler 
allele causes early flowering. The three solid red lines in each panel represent the positions of 
markers located in the genomic sequence of Columbia (left), mapped in the BL cross (centre) 
and mapped in the CL cross (right). Dotted black lines connect markers in the sequence to 
their position in each genetic map. Long vertical black lines separate the data for each 
chromosome. 
B.QTL identified in the F2 of the cross between Dijon and Sha grown under 10 h (DS10) or 8 
h (DS8) days. Structure of each panel as for A, except data are shown for chromosomes 1, 3, 
4 and 5. Arrows pointing upwards represent those QTL for which Sha alleles cause early 
flowering.     
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Figure 5.  Analysis of flowering time in F3 populations used to validate QTL and test 
their interaction with day length. 
 
The flowering times of plants in three F3 families grown under 14 h and 16 h days. In each 
histogram the horizontal axis represents flowering time as leaf number. The vertical axis 
illustrates number of plants. Blue indicates plants grown under 16 h days, whereas cream 
illustrates plants grown under 14 h days. The diagram below each histogram illustrates the 
genotype of the parental F2 plant. White illustrates Ler homozygous alleles, black illustrates 
Bs-1 or Cen-0 homozygous alleles and hatched illustrates heterozygous alleles. The positions 
of the QTL mapped in the F2 are indicated by the rectangles above each diagram and the 
names of each QTL are indicated. The number to the left of the genotype indicates the number 
of the F2 plant whose genotype is illustrated, the number on the right indicates the leaf 
number at flowering of this F2 plant.  
 A. F3 family derived from F2 plant 72 in the Bs-1 cross to Ler.  
B. ANOVA analysis of the relationship between ERD2 alleles and flowering time under 14 h 
or 16 h days in the F3 family shown in panel A. Left hand panel, analysis of data for plants 
grown under 14 h days. Right hand panel, analysis of data for plants grown under 16 h days.  
Y axis, flowering time represented as total leaf number. X axis, genotype at ERD2, marker 
used chr5_7.79 (Methods). Asterisk illustrates significantly different from Ler (P<0.05).   
C. F3 family derived from F2 plant 97 in the Cen-0 cross to Ler. 
D. F3 family derived from F2 plant 20 in the Cen-0 cross to Ler. 
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Figure 6. Validation of the QTL in the Cen-0 to Ler cross using F3 familes 20 and 97, 
and analysis of interactions between QTL and day length  
A.  Mean flowering times of each family and parental controls under 14 h and 16 h days. Y 
axis flowering time represented as total leaf number. Error bars indicate S.D. X axis 
genotypes and day length. CL20, F3 family derived from F2 plant 20 of the Cen-0 x Ler 
cross. CL97, same nomenclature for F2 plant 97. 
B. Univariate ANOVA detection of two-way interactions between markers and changing day 
length in the control of flowering time. Loci on top of chromosome 4 (4_0.28) and 
chromosome 5 (5_3.6 and 5_7.27) interact differently with the two day lengths. The Cen-0 
allele at the chromosome 4 locus delays flowering under 16 h reducing the difference in 
flowering time between 14 h and 16 h days. The Cen-0 alleles at the chromosome 5 loci more 
strongly delay flowering under 14 h and enhance the difference in flowering time between the 
two day lengths. Data for families 20 and 97 were combined. Y axis flowering time 
represented by total leaf number. X axis genotype and day length. Upper symbols correspond 
to allelic variation at the corresponding loci (L: Ler homozygous, C: Cen-0 homozygous H: 
heterozygous alleles) while lower numbers represent day length. The position of the markers 
used are indicated together with the name of the QTL mapped in the region. All markers are 
described in Methods.  
C. Univariate ANOVA detection of flowering time effects independently of daylength. 
Markers on chromosome 4 (4_0.28 and 4_9.58) and 5 (5_3.6) detect loci that delay flowering 
when Cen-0 alleles are homozygous or heterozygous, whereas the Cen-0 allele at Chr5_7.27 
delays flowering only when homozygous. Markers are described in Methods. Flowering time 
was scored under 14 h and 16 h for both families and all data combined for analysis. The 
genotype at each marker is shown L: Ler homozygous, C: Cen-0 homozygous H: 
heterozygous alleles. The position of each marker is shown together with the name of the 
QTL mapped in the region.  
D. Univariate ANOVA detection of two-way interactions between markers in determining 
flowering time. Allelic variation at a locus at the top of chromosome 4 (linked to marker 
4_0.28) interacts with two other loci on chromosome 5 (linked to markers 5_3.6 and 5_7.27). 
Flowering time was scored under 14 h and 16 h for both families and all data combined for 
analysis. Upper symbols of x-axis correspond to alleles of the chromosome 4 locus while 
bottom symbols correspond to alleles of the chromosome 5 loci. L: Ler homozygous, C: Cen-
0 homozygous H: heterozygous alleles.  
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Figure 7. Genome wide detection of epistatic interactions in the mapping population 
created by crossing Dijon-G to Sha  
 
A. Heat map of two-dimensional genome scan for interactions under 8 h SD 
B. Heat map of two dimensional genome scan for interactions under 10 h SD 
 
In A and B the numerals on the horizontal and vertical axes illustrate the five chromosomes. 
The upper left triangle shows the epistasis LOD scores. The lower right triangle illustrates the 
joint LOD scores. The colour scale on the right of each panel indicates separate scales for the 
epistasis and joint LOD scores (on the left and right respectively).  
The white arrow in A indicates the presence of an epistatic interaction, which is conditional as 
it occurs only under 8 h, between a locus on the top of Chrom 5 (horizontal axis) and one in 
the middle of the same chromosome (vertical axis). 
 
C. Effect plot of the epistatic interaction under 8 h days marked in Figure 10A. Vertical axis 
represents flowering time as total leaf number. Horizontal axis represents genotype. 
Homozygous Dijon.G is indicated by D and homozygous Shakdara is indicated with S. Upper 
symbols represent the locus at the top of chromosome 5, while lower symbols represent the 
locus in the middle of chromosome 5. The presence of Shakdara alleles at the top of 
chromosome 5 makes a difference in flowering time of around 20 leaves if the locus in the 
middle of chromosome 5 is also Shakdara. Asterix indicates a significant difference (P<0.05).   
 
D. The same  analysis with the same loci as in C, but for plants grown under 10 h days. No 
significant effect of genotype on flowering time was observed. 
 


