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Abstract Cuticular waxes were extracted from the
leaves of a coconut mapping population generated by
the controlled cross of an East African Tall and a
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Rennell Island Tall genotype for the construction of
molecular linkage maps. The wax composition was
analyzed by capillary gas chromatography/mass spec-
trometry, and for eight of the wax compounds, their
absolute and relative amounts were determined. As
reported previously for a different coconut ecotype
(Malayan Yellow Dwarf), lupeol methyl ether, isoskim-
miwallin, and skimmiwallin were identified as the major
components of coconut cuticular wax. The additional
compounds were characterized as 3-(-methoxy lupane
(lupane methyl ether), lupeol and the acetic acid esters
of lupeol, skimmiwallinol, and isoskimmiwallinol, re-
spectively. Minor, nonidentified compounds amounted to
some 5% of total wax content and included triterpe-
noids, sterols, primary alcohols, and fatty acids. The
variation detected for parents and progeny with respect
to the wax components allowed quantitative trait locus
(QTL) analyses for their biosynthetic pathways. A total
of 46 QTLs could be mapped onto the coconut linkage
map which was extended by amplified fragment length
polymorphism and single sequence repeat markers into a
high density map with more than 1,000 mapped DNA
markers. Several colocated QTLs for different traits were
detected reflecting the observed correlations among
characters.

Keywords AFLP-SSR - Lupeol - Skimmiwallin - Lupine

Introduction
Primary surfaces of vascular plants are covered by the

cuticle, a continuous extracellular membrane that repre-
sents the interface of the plant to its aerial environment.
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The cuticle is mainly composed of a matrix of polymeric
oxygenated C;4 and C;g fatty acid derivatives cross-linked
via ester bonds (for reviews see Jeffrey 1996; Post-
Beittenmiller 1996; Kolattukudy 1998; Sommerville et al.
2000). Into the polymer matrix and at its outer surface
mostly monomeric lipids are embedded as intracuticular
waxes or superimposed as epicuticular waxes, respectively.
The components most commonly found in the cuticular
wax of higher plants include very long chain n-alkanes,
ketones, alcohols, aldehydes, esters, and terpenoids. For
example, in Arabidopsis, wax components mostly consist
of aliphatic chains 20-30 carbons in length as well as of
primary and secondary alcohols, aldehydes, and ketones
(Lemieux et al. 1994).

Waxes are involved in the plant’s defense against
abiotic stress: The strongly hydrophobic waxes play an
important role in water retention by limiting nonstomatal
water loss (Kerstiens 1996; Riederer and Schreiber 2001;
Jenks 2002). Secondly, the crystalline structure of surface
wax is involved in light reflection as obvious from
glossy mutants, and changes in crystal structure with
concomitant changes in light reflection may help the
plant in protection from damaging UV light or in the
adaptation to different light intensities. Waxes also form
part of the preformed plant defense system against biotic
stresses such as insects, bacteria, and fungi (Giilz et al.
1991; Yoon et al. 1998; Marcell and Beattie 2002). In
particular, their chemical makeup and abundance are known
to affect resistance to insects (Kolattukudy 1987).

Such protective role of epicuticular wax has also been
reported in coconut (Cocos nucifera) by Kurup et al.
(1993) who observed a clear indication of a negative
relationship between the epicuticular wax content of
coconut leaves and transpiration rate. In general, the
epicuticular wax content was higher among drought
tolerant than among susceptible genotypes. Independently
of the genotype, however, the content increased sharply
during periods of water stress and declined in poststress
periods. This peak coincided with high light intensity,
high temperature, and low relative humidity. The com-
position of cuticular wax in coconut has been studied to
an only limited extent. It was recently reported for two
single coconut genotypes that lupeol methyl ether,
isoskimmiwallin, and the skimmiwallin are the major
components of coconut epicuticular wax (Escalante et al.
2002). In this publication, quantitative trait locus (QTL)
analyses for wax content and wax components were
performed on a mapping population derived from a cross
between the coconut genotypes East African Tall (EAT)
and Rennell Island Tall (RIT). Further five wax compo-
nents could be identified in cuticular wax of C. nucifera
and the corresponding QTLs were mapped onto an
integrated molecular linkage map.
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Material and methods
Plant material

The coconut mapping population originated from controlled
pollinations of an East African Tall palm (EAT;q;;) with
pollen from a Rennell Island Tall palm (RITy7,¢). Both
parental genotypes were heterozygous. A progeny of 94
genotypes was established and field-planted in 1994 at
Chambezi Research Station (Tanzania) under the auspices
of the Mikocheni Agricultural Research Institute (MARI).
The station is located near the coast around 80 m above sea
level and has sandy soils. Average annual rainfall is around
1,060 mm with a marked rain season from March to May
(60% of annual precipitations). Average monthly minimum
temperatures vary between 19° and 25°C and maximum
temperatures between 28°C and 31°C.

Wax analysis
Wax contents

Six leaflets were collected from the 10th frond of each
progeny genotype, carefully cleaned, and cut into pieces of
approximately 25 cm length, resulting in 12 leaf samples
per genotype. For wax extraction, their midribs were
removed, and for each sample, the cuticular wax was
extracted into 80 ml of hexane in a plastic beaker during
2 min at ambient temperature. After recovering the leaf
samples, the organic solution was filtered and transferred to
new plastic cups. Wax samples were dried overnight under
the hood followed by heating at 50°C until constant weight.
The wax amount was determined by weight determination.
The recovered leaf samples were dried and placed on a
scanner for leaf area determination using fixed area stand-
ards and in-house developed software.

Wax component analyses

Dried wax samples of each progeny genotype were
dissolved in 1 ml of chloroform each. A defined
fraction of these solutions was transferred to sample
vials and n-tetracosane (5 pg) was added as internal
standard. Prior to analysis, chloroform was evaporated
from all samples under a gentle stream of N, while heating
the sample vials to 50°C. Then all samples were treated
with bis-N, N-(trimethylsilyl)trifluoroacetamide in pyridine
for 30 min at 70°C to transform all hydroxyl-containing
compounds to the corresponding trimethylsilyl deriva-
tives. Afterwards, the final volume (140 ul) was adjusted
with chloroform.

The qualitative composition was studied by capillary
gas chromatography (GC; 6890N; Agilent Technologies,
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Palo Alto, CA, USA; 30 m DB-1, 0.32 mm i.d.; df=
0.1 um; J&W Scientific, Folsom, CA, USA) and mass
selective detection (5973N; Agilent; 70 eV, m/z 50-750).
The inlet pressure of the carrier gas (Helium 5.0; Messer
Griesheim, Krefeld, Germany) at the time of injection was
at 50 kPa and maintained for 5 min, before increasing the
pressure at a rate of 3 kPa min~' to 150 kPa. This pressure
was maintained up to the end of the temperature program.
GC was carried out with temperature-programmed injec-
tion (on-column) at 50°C, oven 2 min at 50°C, raised by
40°C min "' to 200°C, held for 2 min at 200°C, raised by
3°C min ! to 320°C, and held for 30 min at 320°C. The
quantitative composition of the mixtures was studied by
capillary GC (5890 II; Hewlett Packard, Avondale, PA,
USA; column as above) and flame ionization detection
under the same GC conditions as above, but with
hydrogen (Hydrogen generator; Whatman, Haverhill,
MA, USA) as the carrier gas. Single compounds were
quantified against the internal standard by manually
integrating peak areas.

Each chromatogram was intensively examined for
contaminations with plasticizers resulting from the
extraction procedure in plastic beakers. Except for traces
of one phthalate derivative, no other contamination
could be detected. Analyses of blank samples (with
and without palm waxes) obtained by using only glass
materials revealed this plasticizer to be inherent to the
used GC-Systems.

DNA extraction

Total DNA was extracted from leaf material using a
modified cetyltrimethylammonium bromide (CTAB)
method of Doyle and Doyle (1990). The basic CTAB
buffer was supplemented with 2% polyvinyl pyrrolidone
40, 25 mM sodium ascorbate, 25 mM sodium bisulfite,
and 10 mM diethyldithiocarbamate (Ramirez et al. 2004).
Five grams of leaf material were frozen in liquid nitrogen
and converted to a fine powder by blending in a coffee
mill or technical blender. After the addition to 25 ml of
CTAB buffer prewarmed at 65°C, the suspension was
briefly shaken and extracted twice with equal volumes of
chloroform and subsequent phase separation by centrifu-
gation. Nucleic acids were precipitated from the aqueous
phase by the addition of 0.8 volumes of isopropanol,
collected by centrifugation, and dissolved in TE buffer
(10 mM TRIS-HCI, pH 8, 0.1 mM EDTA) for RNAse
treatment, phenol extraction, and ethanol precipitation as
described previously (Rohde 1996). Precipitated DNA was
dissolved in TE, and its integrity and concentration were
determined by electrophoresis in 0.7% agarose gels and
comparison to a 1 kb DNA ladder standard (GIBCO-BRL,
Netherlands).

DNA marker analysis

Amplified fragment length polymorphism (AFLP) analysis
was performed according to Vos et al. (1995). Genomic
DNA was digested using EcoRI and Msel, and EcoRI and
Msel adapters were ligated to the restricted DNA. Pream-
plification was performed with primers containing one
selective nucleotide and specific amplification with primers
containing three selective nucleotides. Primers were either
labeled with the fluorescent infrared dyes IRD800 or
IRD700 or alternatively **P-labeled AFLP primers were
used. Amplification products were separated on 4%
polyacrylamide gels under denaturing conditions. Fluores-
cent AFLP fragments were detected on a LI-COR 4200-S1
DNA sequencer (LI-COR, Lincoln, NE, USA). Analysis
was performed according to the manufacturer’s instructions.
Radioactively labeled fragments were fixed on the gel in
10% acetic acid, washed with water, dried, and exposed to
X-rays films at room temperature for 1 to 3 days. Single
sequence repeat (SSR) analysis was performed as described
by Lebrun et al. (2001). Amplified alleles were revealed by
silver staining or using fluorescence-labeled primers with
the LI-COR system. Both coconut and heterologous SSR
markers from oil palm were used (Billotte et al. 2005).
Finally, COS clones were anchored to mapped AFLP
markers using multidimensional pools of COS clones as
described by Sniady et al. (2003).

Computational methods and statistics
Data analysis and linkage mapping

For data processing, polymorphic DNA fragments were
scored for presence or absence in parents and progeny
genotypes. Map construction was performed as described in
detail by Ritter et al. (1990) and Ritter and Salamini (1996).
This procedure involves linkage analysis between marker
fragments, estimation of recombination frequencies, and
determination of linear order between linked loci applying
multipoint linkage analysis and the expectation—maximiza-
tion algorithm for handling missing data. Data were
processed for linkage mapping with the MAPRF program
(Ritter and Salamini 1996). Initially, independent parental
linkage maps were constructed considering only segregat-
ing parent-specific fragments. Firstly, linkage subgroups
were established composed of closely linked fragments
with a minimum logarithm of the odds (LOD) threshold of
5.0 with at least one other fragment of the subgroup. Within
each linkage subgroup, fragments were ordered by mini-
mizing the sum of LOD scores for alternative orders.
Afterwards, larger contiguous linkage groups (LGs) were
established by connecting distal markers of appropriate
subgroups based on maximum LOD values/minimum
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recombination frequencies between them. Finally, frag-
ments common to both parents were integrated into linkage
groups of both parental linkage maps as anchor points.
These fragments—together with SSR markers—were used
to combine the parental linkage maps as described by Ritter
et al. (1990).

QOTL analyses

QTLs were mapped using the least square interval
mapping method developed for backcross progenies
(Knapp et al. 1990; Knapp and Bridges 1990) in a similar
way as described by Baudouin et al. (2006) for the
common parent of a halfsib mapping population. In our
study, all marker intervals of both individual parental
linkage maps were used to identify genomic regions
controlling the traits mentioned above. The SAS procedure
PROC NLIN (SAS Institute Inc 1989) was used for

computational analysis. Multiple regression analysis on
all QTL intervals of each trait was applied to calculate the
percentage of total variance explained by the sum of the
individual QTLs. SAS software was also used to calculate
Pearson coefficients for the correlation analyses between
traits.

Results

Qualitative and quantitative analyses of coconut cuticular
wax

Total leaf cuticular waxes were extracted from the progeny
genotypes of the mapping population by immersion of
leaflets into n-hexane. These extracts were subjected to GC/
mass spectrometry analyses as described in “Materials and
methods”. In all extracts, eight compounds (I-VIII; Fig. 1)

Fig. 1 Total ion current and
chemical structures of eight ma- I
jor compounds found in the
cuticular wax of a mapping °
population in Tanzania g
:
<
vV VI
o I /L/LA VII VIIL
- Ll i
24 25 26 27 28 29 30 31 32
Time [min]
RO MeO
I.  R=CHj; lupeol methyl ether Il:  lupane methyl ether

III: R= Si(CH,),; lupeol (trimethylsilyl ether)

IV: R= COCH;; lupeol acetate

RO

V: R= CH;; isoskimmiwallin
VII: R= COCHj; isoskimmiwallinol acetate
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VI:  R=CHj;; skimmiwallin
VIII: R= COCHj; skimmiwallinol acetate
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Table 1 Trait characteristics and results of QTL analyses for wax contents and components in the EAT o1, xRIT¢710 progeny
Trait Abbreviation MEAN Ccv Min Max QTL code No. of QTLs Total R’
aVv %v aV Y%v aV. %v aV Y%v
Wax Contents (ug/dmz) WAX 195.1 - 552 - 503 - 4879 - qWx 4 42.7
Lupeol methyl ether LME 1139 574 534 16.6 21.6 414 2762 772 qLME 3 38.9
Lupeol LUP 2.1 1.1 63.6 22.7 0.6 0.5 57 1.6 qLUP 5 50.6
3-/-methoxy lupan MLU 4.7 2.7 46.2 49.2 1.1 038 104 7.0 gMLU 5 65.5
Lupeol acetate LAC 11.0 55 73.7 42.6 09 1.1 41.5 10.7 qLAC 6 49.6
Isoskimmiwallin IS 16.7 8.6 74.0 38.7 49 42 62.1 15.6 (IS 4 65.4
Isoskimmiwallinol acetate ISA 4.0 2.1 84.5 499 0.7 0.6 19.1 4.6 qISA 1 10.0
Skimmiwallin SW 249 119 91.8 51.6 33 33 1269 26.1 qSW 4 57.1
Skimmiwallinol acetate SWA 33 1.6 81.3 40.0 0.7 0.5 13.7 29 qSWA 8 59.6
Triterpenoids and sterols (ni) TS 94 49 56.2 19.2 29 32 268 6.7 qTS 2 26.3
Other compounds (primary ~ OC 0.1 0.1 2922 2597 0.0 0.0 1.23 1.0 qOC 4 61.5
alcohols; fatty acids)
Total 46

Total R?> —percentage of variance explained by the sum of all individual QTLs for the trait
aV Absolute values, %v relative values [%], ni not identified, CV coefficient of variation

comprised approximately 95% of the cuticular waxes. The
three main components (cf. Table 1) could be identified as
lupeol methyl ether (LME; 1), isoskimmiwallin (IS; V), and
skimmiwallin (SW; VI) by comparing the corresponding
mass spectra (Fig. 2) with those already described for a
different coconut ecotype and other Palmae (Escalante et
al. 2002; Garcia et al. 1995). The mass spectra of
compounds VII and VIII (Fig. 2) strongly resembled those
of IS and SW but showed a shift of [M]" and a
corresponding [M-15]" to m/z 510 and m/z 495, respec-
tively. Most recently, these compounds were identified as
the acetylated derivatives of the parent metabolites iso-
skimmiwallinol and skimmiwallinol, namely isoskimmi-
wallinol acetate (ISA; VII) and skimmiwallinol acetate
(SWA; VIII; Escalante et al. unpublished). In turn, the mass
spectra of compounds II, III, and I'V showed fragmentation
patterns of lupane- and lupene-type triterpenoids (Fig. 2)
that could be assigned to lupane methyl ether (MLU; II),
lupeol (LUP; III; trimethylsilylated derivative), and its
acetylated derivative lupeol acetate (LAC; IV) by compar-
ison with spectra of authentic standards.

Absolute and relative variation of total amounts of wax
and wax components were analyzed in the progeny
genotypes (Table 1). Wax contents between progeny
genotypes varied largely between 50.3 and 487.9 pg/dm?
with an average value of 195.1 pg/dm? and a coefficient of
variation (CV) of 55.2%.

Wax component analyses showed that lupeol methyl
ether is the main wax component with an average 57.4%
representation and a variation from 41% to 77%. Other
major components are skimmiwallin (11.9%), isoskimmi-
wallin (8.6%), and lupeol acetate (5.5%). Other components
such as lupeol, 3-8-methoxy lupane, isoskimmiwallinol

acetate, and skimmiwallinol acetate are present in fractions
between 1% and 3%. Triterpenoids and sterols represent
5% of the wax fraction, and other compounds (OC; primary
alcohols and fatty acids) appear in negligible quantities
(0.1%). The coefficients of variations for the main
compound values varied between 46% and 92% and were
generally much smaller for the relative values, except for
MLU. Relative CVs were smaller for LME (17%) and
lupeol (23%) and larger for the other specific compounds
(between 39% and 52%). The CV of OC contents was
extremely high with 260%, since these other substances
were only found in certain genotypes.

Table 2 shows the results of the trait correlation analyses.
Total wax amount and absolute wax component values
were significantly positively correlated with each other,
except for the contents of other compounds, which did not
show any relationship with the other characters. This
pattern changes drastically considering the relative wax
composition. Wax contents was only significantly nega-
tively correlated with the minor wax compound MLU.
Lupeol methyl ether showed significantly negative correla-
tions with all compounds of the skimmiwallin group.
Skimmiwallin and its derivates presented positive correla-
tions among most of them. Again, OC contents did not
show any correlation with other compounds.

Establishment of a molecular linkage map

A total of 241 AFLP primer combinations were evaluated
on parents and progeny genotypes of the mapping
population EATy;;*RITy71¢. Individual combinations gen-
erated between one and 20 segregating fragments and 1,503
polymorphic AFLP fragments were obtained in total. The
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Fig. 2 Mass spectra (m/z 50-520) of eight major compounds from coconut cuticular waxes of a mapping population in Tanzania

EAT parent (879 fragments) was more polymorphic than
the RIT parent (452 fragments). A total of 163 fragments
were common to both parents. For nine fragments, the
parental pattern was ambiguous and they were discarded.
Furthermore, 64 coconut SSR primer combinations were
analyzed in parents and progeny genotypes of the mapping
population. Forty-eight of them produced segregating
polymorphisms, while 16 were not polymorphic or gener-

@ Springer

ated unclear patterns. In addition, 22 heterologous SSR
primers (originally developed for oil palm) were assayed
with seven of them being functional and amplifying
between one and four segregating alleles. Several coconut
and one oil palm SSR generated two loci each.

Initially, individual parental linkage maps with 16
linkage groups each (in accordance with the 16 chromo-
somes of the haploid coconut genome) were obtained based
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Table 2 Results of correlation analyses for wax contents and wax components

WAX LME LUP MLU LAC IS ISA SW SWA TS oC

WAX —0.06 0.07 —0.47%%%  —0.11 —0.14 0.03 —0.01 0.16 -0.27 —0.10
LME 0.93%** —-0.27 0.12 0.10 —0.77%%%  —0.70%**  —0.85%**  —0.73*¥*¥*  —0.23 —0.01
LUP 0.89%** 0.86%** -0.23 0.17 0.13 0.22 0.12 0.13 0.16 0.12
MLU 0.55%* 0.51%** 0.44%* —0.42%+* —-0.05 —-0.25 —0.24 —0.40%* 0.39%* 0.09
LAC 0.80%** 0.80%** 0.75%** 0.30* —0.41%* 0.15 -0.23 0.32%* —0.12 0.10
IS 0.80%** 0.61%** 0.68%** 0.38* 0.49%* 0.74%%* 0.55%%* 0.24 0.25 0.04
ISA 0.80%** 0.627%%* 0.68%* 0.40%** 0.70%%* 087 0.34* 0.47%%* 0.27 0.20
SW 0.69%** 0.44%* 0.53%** 0.38* 0.38* 0.81 %% 0.66%** 0.75%**  —0.14 —-0.19
SWA 0.827%% 0.61#%* 0.66%** 0.46%* 0.67#%* 0.75%%* 0.80%#** 0.88##* —-0.13 —0.08
TS 0.947#%: 0.86%** 0.86%** 0.58%** 0.78%%* 0.80%** 0.86%** 0.64#%* 0.80#** 0.26
oC —-0.05 —-0.05 0.03 —-0.19 0.02 0.00 0.02 —-0.09 —0.09 —-0.06

The upper diagonal matrix shows correlations between relative values; the lower diagonal matrix shows those for absolute values. See Table 1 for

abbreviations of wax components
*Significant correlations at the 5% level
**Significant correlations at the 1% level
***Significant correlations at the 0.1% level

on individual parent-specific fragments for the two parents
EAT;4;; and RIT(7;¢ of the mapping population (results not
shown). Markers common to both parents as well as the
polymorphic, codominant SSR markers allowed the align-
ment of both parental linkage maps into an integrated map.
Table 3 shows the characteristics of this map: A total of 704
markers were placed onto the integrated map resulting in a
total map length of 2,739 c¢M. Individual linkage groups

vary between 105 and 201 cM in length and contain
between 25 and 61 markers each (average of 44 markers
per LG). In addition, a total of 167 so-called RFO markers
(i.e., markers which are linked with a recombination
frequency (RF) of zero to other mapped markers) were
identified, but are not displayed for reasons of clarity.
Furthermore, 93 so-called associated markers were deter-
mined. These markers did not fit precisely the existing

Table 3 Characteristics of the integrated EATo;;*RIT¢7;0 map with mapped COS clones and QTLs for wax and wax compounds

LG M1 IM2 CM No of SSR loci ™ cM No of COS No of Wax QTL
1 12 10 1 3 26 114.8 1 0
2 13 9 1 2 25 118.7 3 1
3 27 12 1 2+1° 43 192.1 0 1
4 22 9 1 2 34 104.7 0 3
5 24 16 2 3 45 137.4 1 4
6 36 12 1 6 55 200.5 2 8
7 25 9 1 3 38 185.7 0 2
8 21 10 2 6 39 154.7 0 5
9 26 16 1 12 55 196.2 0 3
10 22 13 1 5 41 198.2 0 8
11 32 27 2 0 61 178.5 1 4
12 19 14 1 5 39 187.7 1 1
13 32 19 3 3 57 197.3 1 1
14 30 24 3 3 60 196.3 2 3
15 12 25 1 5 43 193.8 1 0
16 29 12 1 1 43 182.7 1 2
Total 382 237 23 62 704 2,739.3 14 46
Mean 239 14.8 1.4 39 44.0 171.2 0.9 2.9
Min 12 9 1 0 25 104.7 0 0
Max 36 27 3 12 61 200.5 3 8

RF=0 fragments—167; associated fragments—155; total number of markers—1,026

LG Linkage group, /Mi individual marker of parent I, CM marker common to both parents, TM total number of markers, cM centiMorgan
(Kosambi units)

# Desaturase gene ACPDI

@ Springer



60

Tree Genetics & Genomes (2009) 5:53—-69

framework maps (probably due to scoring errors), but
showed reduced RF values (<10 ¢cM) with other mapped
markers and, therefore, were scored as “associated”
markers. Thus, the integrated EAT/RIT map (Fig. 3)
contains 1,026 DNA markers (including RFO and associat-
ed fragments) with an average of 64 markers per linkage
group.

The mapped markers include 53 coconut SSR loci
located on 14 linkage groups and eight oil palm SSR
loci on six linkage groups, covering in total 15 of the 16
linkage group with SSR markers. Also 14 COS clones
could be mapped to AFLP markers, assaying a total of
23 AFLP primer combinations on DNAs from the 30
pools of COS clones as described previously by Sniady
et al. (2003). Furthermore, differences in the alleles of the
desaturase gene (ACDP1; data not shown) revealed
segregating polymorphism in the progeny and allowed to
map this gene to linkage group 3 (ACPD1). Details on
markers, parental linkage maps RFO and associated
markers can be found at http://www.neiker.net/Link2
palm/DEFcoco.htm.

QTL analysis

The coefficients of variations and minimum and maximum
values showed sufficient variation which allowed the
detection of QTLs for all traits under study (Table 1). A
total of 46 putative QTLs were identified for wax contents
and wax component traits at a significance level of 5% and
their number varied from one for ISA contents and eight for
SWA contents. Total variance explained by the sum of all
individual QTLs was relative low for ISA (10%) and TS
contents (24%) due to the small number of QTLs, but
ranged between 39 and 65% for all other characters under
study. Therefore, markers linked to the detected QTLs for
these traits could be used efficiently for marker-assisted
selection.

Table 4 describes in detail the individual QTLs for each
trait, which are also displayed on the linkage map (Fig. 3).
QTLs were found on 14 of the 16 coconut linkage groups
and no QTLs were present on LG1 and LG15. In contrast,
eight QTLs are located on LG6 and LG10, respectively.
Only ten of the 46 QTLs for wax composition descend
from RIT. No QTL from RIT were detected for total wax
amount but two of the three QTLs of the major wax
compound LME originate from this parent. Individual
QTLs explain between 5.9% and 32% of the total variation.

Four QTLs descending from the EAT parent were
detected for wax contents and explain between 10.5% and
17.0% of the total variance. They are located on three
different linkage groups (Table 4) and are always linked to
several QTLs of single wax compounds. This is the case for
qWXa on LG6 where wax amount is linked to QTLs for
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Fig. 3 Integrated linkage map of the cross EAT;¢;1*RITg710.p>
Distances are given in cM (Kosambi units). QTLs are integrated into
the map and shown in bold and underlined. Individual markers
descending from RIT(7;¢ are indicated in italics, markers common to
both parents are underlined and markers from EAT,q;, are indicated
with normal font. SSR markers (with prefix ‘m’) and anchored COS
clones are given in bold. For QTL names, see Table 1. For other QTL,
marker names, and more details, see: http://www.neiker.net/link2palm

mayor components LME and LAC and on LG8 where
qWXb is colocated with a QTL for SW contents. The two
wax QTLs on LGI10 are linked to IS/TS QTls and to SW/
TS QTLs, respectively. In all cases, the relative effects of
the QTLs are in the same direction (Table 4); i.e., with
increasing wax contents, also the absolute contents of the
different compounds increases. No QTL was detected near
the desaturase gene ACPD1 which converts stearic acid
into oleic acid by introducing a cis double bond at the Cq
position of the C;g fatty acid.

In several other cases, QTLs for different wax com-
pounds can be found closely linked or at identical genomic
locations. For example, we find in several cases relation-
ships between the acetylated and nonacetylated compounds
such as the QTLs for SW and SWA contents on LG6, LGS,
and LG10 and QTLs for LUP and LAC on LG4 and LG6.
On LG4, we can observe colocation of QTLs for LUP and
SWA and nearby a QTL for LAC. On LG11, gSWAh and
qLACT are colocated and nearby, we can observe a QTL for
ISA contents. This was the only case were an opposite
effect was detected (i.e., ISA contents decreases for
increasing SWA and LAC contents). On the other hand,
the four QTLs for OC content and the only QTL for ISA
are located at distinct genomic regions.

In some cases, SSR markers are located at QTLs or
nearby. Examples are the microsatellite markers mCN125
and mCnE10 on LG5, mCN61 on LG6, and the oil palm
SSR mEg3620 on LG8 which is colocated with qLUPc on
LGY. In other cases (Fig. 3), QTLs can be found at the
same position or close to mapped COS clones. This is the
case for COS3 and qSWAb on LGS, or for COS2 and
qLUPDb on LG6.

Discussion

This work represents the first published attempt to identify
QTLs for wax contents and its major components in
coconut.

Composition of cuticular waxes

In most seed plant species, cuticular waxes comprise a

complex mixture of mainly aliphatic compounds like -
alkanes, primary and secondary alcohols, fatty acids, and n-
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Table 4 QTL locations and characteristics for wax contents and components
QTL Effect DES LG Interval R R1 PRL R
Wax content

qWXa —103.6 Pl 6 97/1-9/9 25.0 7.3 2.3 17.0
qWXb —84.3 P1 8 44/1-6/6 2.6 2.6 4.0 10.5
qWXc —-102.0 P1 10 mEg2029-68/3 12.1 11.4 3.0 16.1
qWXd -114.7 P1 10 193/5-181/3 11.1 11.1 1.6 13.6
Lupeol methyl ether

qLMEa -50.5 P1 6 97/1-9/9 25.0 3.6 4.4 12.3
qLMEb -57.1 P2 5 mCn125-226/1 25.0 0.6 1.5 14.9
qLMEc +56.1 P2 8 mCnl77-172/11 2.9 29 1.0 21.8
Lupeol

qLUPa +1.42 P1 4 98/13-97/12 2.6 0.0 0.4 222
qLUPb -1.31 P1 6 97/1-9/9 25.0 9.8 1.8 18.9
qLUPc +1.15 P1 8 121/2-mEg3620 12.5 12.5 2.0 17.3
qLUPd -1.42 P1 10 193/5-181/3 8.6 8.0 1.8 18.3
qLUPe +1.71 P2 14 135/6-54/2 12.1 1.4 1.5 14.8
3-f-methoxy lupine

gqMLUa -1.79 Pl 6 62/7-14/10 2.9 29 3.6 14.7
gqMLUb -1.92 P1 7 128/4-21/1 2.6 2.6 2.6 14.3
qMLUc +1.89 P2 6 mCnCIR61-194/6 2.7 2.7 33 14.7
qMLUd —2.06 P2 13 86/7-3/2 13.2 3.1 1.0 20.2
qMLUe -3.04 P2 14 128/2-131/13 3.1 2.5 0.2 324
Lupeol acetate

qLACa —6.88 Pl 3 85/8-137/6 10.3 0.0 32 12.0
qLACb +8.04 Pl 4 162/4-98/13 0.0 0.0 3.8 18.1
qLACc -6.71 P1 6 97/1-9/9 25.0 0.0 3.6 5.9
qLACd +9.71 P1 7 mEg3639-48/10 25.0 15.2 1.5 253
qLACe -8.21 P1 9 64/1-66/5 10.8 43 1.4 20.0
qLACE =7.19 P2 11 60/6-93/7 7.9 7.9 2.3 15.3
Isoskimmiwallin

qlSa +11.35 P1 5 96/4-134/6 7.5 5.4 23 15.9
qISb -9.92 Pl 9 122/13-mCn186 2.9 0.0 4.4 14.9
qlSc —14.70 Pl 10 mEg2029-68/3 12.1 12.1 1.1 14.0
qlSd +25.65 Pl 14 182/6-170/12 53 53 2.3 10.0
Isoskimmiwallinol acetate

qlSAa -3.05 P2 11 89/5-60/6 13.2 0.0 2.7 10.0
Skimmiwallin

qSWa +17.20 P1 5 190/1-90/15 4.8 1.2 0.4 223
qSWb —20.98 P1 6 9/9-126/8 8.3 7.6 35 14.9
qSWce —20.35 Pl 8 44/1-6/6 2.6 2.6 2.6 134
qSWd —24.45 Pl 10 193/5-181/3 11.1 9.7 1.7 18.0
Skimmiwallinol acetate

qSWAa +2.37 P1 4 98/13-97/12 2.5 0.0 2.7 13.8
qSWAb +3.43 P1 5 61/5-147/1 0.0 0.0 3.8 24.5
qSWACc —2.48 P1 6 126/8-76/6 5.0 29 22 16.4
qSWAd -2.17 P1 8 44/1-6/6 2.6 2.6 4.5 12.8
qSWAe -2.12 Pl 9 136/4-96/2 8.1 1.8 4.4 14.0
qSWAT -3.19 Pl 10 193/5-181/3 11.1 10.9 0.5 22.5
qSWAg -2.95 Pl 11 47/7-115/5 12.5 0.0 22 12.6
qSWAh -2.26 P2 11 60/6-93/7 7.7 7.7 4.1 10.5
Triterpenoids and sterols

qTSa -5.19 P1 10 mEg2029-68/3 12.1 12.1 22 15.1
qTSb —5.93 P1 10 193/5-181/3 11.1 11.1 0.8 18.9
Other compounds

qOCa +0.29 P1 2 47/3-75/6 2.5 2.5 4.1 13.2
qOCb +0.42 Pl 16 87/8-72/5 5.6 2.8 0.8 233
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Table 4 (continued)

QTL Effect DES LG Interval R R1 PRL R?
qOCc +0.38 P1 16 13/3-16/1 19.4 0.0 1.2 15.6
qOCd —-0.27 P2 12 216/4-227/1 4.7 3.5 4.2 12.4

Absolute effects measured as deviations between marker classes (relative to the presence of the left marker in the interval) caused by the different
alleles of the QTL. The indicated sign (+/—) is relative to the presence of the flanking markers

R Length of the marker interval where the QTL is located, R/ position in the interval measured from the upper marker of the given interval, DES
origin of the QTL, PRL probability for the null hypothesis of no QTL, R’ portion of the total variance explained by the individual QTL

aldehydes (for reviews see Jetter et al. 2006; Walton 1990;
Baker 1982). In many plant taxa, also cyclic compounds
like triterpenoids, sterols, and phenols can be found to a
limited extent while only in a few species triterpenoids
represent the dominating compound class (e.g., Guhling et
al. 2006; Markstadter et al. 2000; Hemmers and Giilz
1989).

To date, about 200 different basic chemical structures of
triterpenoids from natural sources are described (Xu et al.
2004), with pentacyclic triterpenoids being the most
common in plant cuticular waxes (Walton 1990). The
majority in terms of structural diversity and relative
contribution to wax composition is derived from lupane,
oleanane, and ursane backbones with a hydroxyl function in
the 3{3-position (Jetter et al. 2006; Walton 1990). For
example, lupeol was identified as the forming compound of
epicuticular wax crystals in Ricinus communis (Guhling et
al. 2006) while in Prunus laurocerasus, oleanoic and
ursolic acid only accumulate in the intracuticular wax
compartment (Jetter and Schiffer 2001). By substitutions
on the functional group in the 3f-position, chemical
diversity of triterpenoids is increased enormously with
methyl ethers and acetates as well-known derivatives
(Smith and Martin-Smith 1978; Manheim and Mulroy
1978). In monocots, triterpene methyl ethers were identified
as common compounds especially in Graminae and
Palmae (Garcia et al. 1995; Goh et al. 1988; Russel et al.
1976; Smith and Martin-Smith 1978; Bryce et al. 1967)
with cylindrin and lupeol methyl ether as the major
compounds for Butia capitata and Orbignya spp. (Garcia
et al. 1995). From leaves of O. phalerata, also the
saturated derivative lupane methyl ether (3{3-methoxy
lupane) could be extracted in minor amounts. Recently,
lupeol methyl ether was identified for the first time in leaf
cuticular waxes also of two C. nucifera ecotypes (Escalante
et al. 2002). For the EAT;¢;1%RITy7;o mapping population
analyzed in the present study, we found lupeol methyl ether
to be the major component and detected minor amounts of
lupane methyl ether. Additionally, we found lupeol and its
acetate ester to be present in waxes of C. nucifera. These
compounds were previously described as constituents of
cuticular waxes from R. communis, Euphorbia sp., and
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Tilia sp. (Guhling et al. 2006; Giilz et al. 1988; Hemmers
and Giilz 1988).

Besides this well-known triterpenoid structures in the
cuticular waxes of the EAT;4;;xRITy7,¢o mapping popula-
tion, a set of methyl ethers could be identified that derive
from cycloartanol type triterpenoids never found in cutic-
ular waxes before. Originally, one of these structures was
identified in whole plant extracts of the rutaceen Skimmia
wallichii as skimmiwallin (Kostova et al. 1996). Addition-
ally, by spectroscopic analyses, an isomeric form, isoskim-
miwallin, was characterized in the leaf waxes of C. nucifera
(Escalante et al. 2002). Further detailed analyses detected
also the corresponding parent metabolites skimmiwallinol
and isoskimmiwallinol as well as there acetylated deriva-
tives already described for the lupeol group.

Trait variation and QTL analyses

The current study on QTLs for epicuticular wax content and
composition for the EATy;XRITy710 mapping population
takes into account several aspects: firstly, wax analysis has
been performed on a population of individuals growing
under the same environmental conditions rather than on
individual trees from different locations and environments
which might influence wax content and composition.
Secondly, all samples were taken on the same day, thus,
minimizing environmental effects. Furthermore, this popu-
lation represents the two identified groups of coconut
germplasm (Rohde et al. 1995; Teulat et al. 2000), namely
the “Indo-Atlantic” group (EAT parent) and the “Pacific”
group (RIT parent) and, thus, considers a large part of
coconut biodiversity.

Some 46 total QTLs and a variable number of individual
QTLs were detected for cuticular wax contents and the wax
component traits under study. In several cases, QTLs for
different traits are colocated or closely linked. These
represent probably pleiotropic loci and not closely linked
genes for individual traits. The detected correlations and
relationships between the different components described
above support this hypothesis.

In recent years, the biosynthetic pathways for plant
triterpenoids were under intense investigation (for reviews
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see Abe et al. 1993; Xu et al. 2004; Phillips et al. 2006;
Jetter et al. 2006) resulting in a generalized scheme that
describes 2,3-oxidosqualene as the last common precursor
for most plant triterpenoids. According to this, 2,3-
oxidosqualene is cyclized through cationic intermediates
by a large family of oxidosqualene cyclase enzymes to
triterpene alcohols with the hydroxyl function in the 3(3-
position (Phillips et al. 2006). On one hand, the most
common plant triterpenoids are derived from cyclizations of
2,3-oxidosqualene through the dammerenyl cation leading
to, e.g., [-ramyrin and lupeol (Kajikawa et al. 2005;
Guhling et al. 2006). On the other hand, cyclization through
the protosteryl cation leads to lanosterol and cycloartenol
with the latter one also being the precursor for membrane
sterols, phytohormones, brassinosteroids, and other com-
pounds (Benveniste 2004; Phillips et al. 2006). Whereas the
reaction mechanisms and involved enzymes for an increas-
ing number of biosynthetic steps towards the various
classes of plant triterpenols could be characterized, infor-
mation on the methylation or acetylation processes leading
to the corresponding methylethers or acetates is still
lacking. In the cuticular waxes of the EATy;;*XRITy710
mapping population derivatives of both intermediates were
found to be present in substantial amounts.

The analyses of the relative contents of single compounds,
on one hand, showed strong negative correlations between the
main component LME and all members of the skimmiwallin
group (cf. Table 2) indicating a competitive metabolite
production by either a lupeol synthase (LUS) or a cyclo-
artenol synthase (CAS). In the last years, both synthase
classes from several plant sources have been identified and
functionally characterized, e.g., CAS from Arabidopsis
thaliana (Corey et al. 1993) and Pisum sativum (Morita et
al. 1997), LUS from Betula platyphylla (Zhang et al. 2003)
and Olea europea (Shibuya et al. 1999), and both enzyme
classes from R. communis (Guhling et al. 2006).

On the other hand, there were strong positive correla-
tions between the methylether (IS and SW) and acetate
derivatives (ISA and SWA) of the skimmiwallin group as
well as between the both acetate derivatives. This may
indicate noncompetitive activities of different enzymes for
the catalysis of methylethers and acetates while to our
knowledge there is currently no information available on
the specificity for the various precursors and the location of
the corresponding enzymes which might explain the
observed colocations of QTLs.

It will be also necessary to validate the detected QTLs in
additional genetic backgrounds. In other progenies, also
additional QTLs might be detected, for which the
corresponding QTL alleles in our studied population did
not cause measurable differences. As pointed out by
Baudouin et al. (2006), also the analyses of progenies with
more genotypes would be convenient. The increase in

available degrees of freedom would permit the application of
more sophisticated models involving simultaneous analysis
of several QTLs through for example multiple regression
models on different intervals. In this way, more precise
estimates of QTL effects and locations could be obtained and
overestimation of individual QTL effects or even the
appearance of minor “false positive” QTLs could be
avoided. This approach would be also useful to determine
if the detected wax QTLs are stable in different genetic
backgrounds and represent independent genes or are due to
competing compounds which soften total wax amount
differences between genotypes and generate QTL artefacts.

Moreover, in order to determine the contribution of wax
amount or specific compounds to disease resistance, it
would be necessary to evaluate the incidence of diseases in
clonally propagated progeny genotypes. This is a time-
consuming and complicated process in coconut.

Alternatively, testcrosses, backcrosses, or even selfings
could be derived from genotypes of the studied or other
available mapping population and the means of diseased
palms could be compared for specific marker allele
classes. Also linkage disequilibrium analyses (Jannoo et
al. 1999) in less related populations could provide reliable
results.

In several cases, SSR markers or even COS clones are
located at or nearby QTLs. In the first case, this would imply
that selection can take place in different genetic back-
grounds, provided that the parental QT allele configuration
is known in each case. In the latter case, the gene itself could
be located within the corresponding COS clone or at least
would facilitate gene identification and cloning through
contig building in the surrounding genomic regions.

We have provided a large amount of markers which are
useful for coconut and potentially also for oil palm and
other related palm species. On one hand, they will serve for
the isolation of genes. On the other hand, they provide
markers for important characters which can be applied in
early selection tests. This will accelerate breeding of
coconut and lead to increased productivity of the planta-
tions and improved quality of their products.
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