
The conserved eukaryotic protein SGT1 (suppressor of G2 allele 
of skp1) participates in diverse physiological processes such as cell 
cycle progression in yeast, plant immunity against pathogens and 
plant hormone signalling. Recent genetic and biochemical studies 
suggest that SGT1 functions as a novel co-chaperone for cytosolic/
nuclear HSP90 and HSP70 molecular chaperones in the folding 
and maturation of substrate proteins. Since proteins containing 
the leucine-rich repeat (LRR) protein-protein interaction motif 
are overrepresented in SGT1-dependent phenomena, we consider 
whether LRR-containing proteins are preferential substrates of an 
SGT1/HSP70/HSP90 complex. Such a chaperone organisation is 
reminiscent of the HOP/HSP70/HSP90 machinery which controls 
maturation and activation of glucocorticoid receptors in animals. 
Drawing on this parallel, we discuss the possible contribution of 
an SGT1-chaperone complex in the folding and maturation of 
LRR-containing proteins and its evolutionary consequences for the 
emergence of novel LRR interaction surfaces.

The proper folding and maturation of proteins is essential 
for cell viability during de novo protein synthesis, translocation, 
complex assembly or under denaturing stress conditions. A complex 
machinery composed of molecular chaperones (heat-shock proteins, 
HSPs) and their modulators known as co-chaperones, catalyzes 
these protein folding events.1,2 In animals, defects in the chaperone 
machinery is implicated in an increasing number of diseases such 
as cancers, susceptibility to viruses, neurodegenerative disease and 
cystic fibrosis, and thus it has become a major pharmacological 
target.3,4 In plants, molecular genetic studies have identified chap-
erones and co-chaperones as components of various physiological 
responses and are now starting to yield important information on 

how chaperones work. Notably, processes in plant innate immunity 
rely on the HSP70 and HSP905-7 chaperones as well as two recently 
 characterised co-chaperones, RAR1 (required for Mla12 resistance) 
and SGT1 (suppressor of G2 allele of skp1).8-11

SGT1 is a highly conserved and essential co-chaperone in eukary-
otes and is organized into three structural domains: a tetratricopeptide 
repeat (TPR), a CHORD/SGT1 (CS) and an SGT1-specific (SGS) 
domain (Fig. 1A). SGT1 is involved in a number of apparently unre-
lated physiological responses ranging from cell cycle progression and 
adenylyl cyclase activity in yeast to plant immunity against patho-
gens, heat shock tolerance and plant hormone (auxin and jasmonic 
acid) signalling.7-9,12,13 Because the SGT1 TPR domain is able to 
interact with Skp1, SGT1 was initially believed to be a component of 
SCF (Skp1/Cullin/F-box) E3 ubiquitin ligases that are important for 
auxin/JA signalling in plants and cell cycle progression in yeast.13,14 
However, mutagenesis of SGT1 revealed that the TPR domain is 
dispensable for plant immunity and auxin signalling.15 Also, SGT1-
Skp1 interaction was not observed in Arabidopsis.13 More relevant 
to SGT1 functions appear to be the CS and SGS domains.16 The 
former is necessary and sufficient for RAR1 and HSP90 binding. 
The latter is the most conserved of all SGT1 domains and the site of 
numerous disabling mutations.14,16,17

We recently demonstrated that Arabidopsis SGT1 interacts stably 
through its SGS domain with cytosolic/nuclear HSP70 chaperones.7 
The SGS domain was both necessary and sufficient for HSP70 
binding and mutations affecting SGT1-HSP70 interaction compro-
mised JA/auxin signalling and immune responses. An independent 
in vitro study also found interaction between human SGT1 and 
HSP70.18 The finding that SGT1 protein interacts directly with 
two chaperones (HSP90/70) and one co-chaperone (RAR1) rein-
forces the notion that SGT1 behaves as a co-chaperone, nucleating a 
larger chaperone complex that is essential for eukaryotic physiology. 
A future challenge will be to dissect the chaperone network at the 
molecular and subcellular levels. In plant cells, SGT1 localization 
appears to be highly dynamic with conditional nuclear localization7 
and its association with HSP90 was recently shown to be modulated 
in vitro by RAR1.16

A co-chaperone function suits SGT1 diverse physiological roles 
better than a specific contribution to SCF ubiquitin E3 ligases. 
Because SGT1 does not affect HSP90 ATPase activity, SGT1 was 
proposed rather as a scaffold protein.16,19 In the light of our findings 
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and earlier studies,20 SGT1 is reminiscent of HOP (Hsp70/Hsp90 
organizing protein) which links HSP90 and HSP70 activities and 
mediates optimal substrate channelling between the two chaperones 
(Fig. 1B).21 While the contribution of the HSP70/HOP/HSP90 to 

the maturation of glucocorticoid receptors is well established,21 direct 
substrates of an HSP70/SGT1/HSP90 complex remain elusive.

It is interesting that SGT1 appears to share a functional link 
with leucine-rich repeat- (LRR) containing proteins although LRR 

Figure 1. Model for SGT1/chaperone complex functions in the folding of LRR-containing proteins. (A) The structural domains of SGT1, their sites of action 
(above) and respective binding partners (below) are shown. N- and C-termini are indicated. TPR, tetratricopeptide repeat; CS, CHORD/SGT1; SGS, SGT1-
specific. (B) Conceptual analogy between steroid receptor folding by the HOP/chaperone machinery and LRR protein folding by the SGT1/chaperone 
machinery. LRR motifs are overrepresented in processes requiring SGT1 such as plant immune receptor signalling, yeast adenylyl cyclase activity and plant 
or yeast SCF (Skp1/Cullin/F-box) E3 ubiquitin ligase activities. (C) Opposite forces drive LRR evolution. Structure of LRRs 16 to 18 of the F-box auxin recep-
tor TIR1 is displayed as an illustration of the LRR folds.30 Leucine/isoleucine residues (side chain displayed in yellow) are under strong purifying selection 
and build the hydrophobic LRR backbone (Left). By contrast, solvent-exposed residues of the ß-strands define a polymorphic and hydrophilic binding surface 
conferring substrate specificity to the LRR (Right) and are often under diversifying selection.
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domains are not so widespread in eukaryotes. For example, plant 
SGT1 affects the activities of the SCFTIR1 and SCFCOI1 E3 ligase 
complexes whose F-box proteins contain LRRs.13 Moreover, plant 
intracellular immune receptors comprise a large group of LRR 
proteins that recruit SGT1.8,9 LRRs are also found in yeast adenylyl 
cyclase Cyr1p and the F-box protein Grr1p which is required for 
SGT1-dependent cyclin destruction during G1/S transition.12,14 
Yeast 2-hybrid interaction assays also revealed that yeast and 
plant SGT1 tend to associate directly or indirectly with LRR 
proteins.12,22,23 We speculate that SGT1 bridges the HSP90-HSC70 
chaperone machinery with LRR proteins during complex maturation 
and/or activation. The only other structural motif linked to SGT1 
are WD40 domains found in yeast Cdc4p F-box protein and SGT1 
interactors identified in yeast two-hybrid screens.12

What mechanisms underlie a preferential SGT1-LRR interaction? 
HSP70/SGT1/HSP90 may have co-evolved to assist specifically 
in folding and maturation of LRR proteins. Alternatively, LRR 
structures may have an intrinsically greater need for chaperoning 
activity to fold compared to other motifs. These two scenarios are 
not mutually exclusive. The LRR domain contains multiple 20 to 
29 amino acid repeats, forming an α/β horseshoe fold.24 Each repeat 
is rich in hydrophobic leucine/isoleucine residues which are buried 
inside the structure and form the structural backbone of the motif 
(Fig. 1C, left). Such residues are under strong purifying selection 
to preserve structure. These hydrophobic residues would render the 
LRR a possible HSP70 substrate.25 By contrast, hydrophilic solvent-
exposed residues of the β strands build a surface which confers ligand 
recognition specificity of the LRRs (Fig. 1C). In many plant immune 
receptors for instance, these residues are under diversifying selection 
that is likely to favour the emergence of novel pathogen recognition 
specificities in response to pathogen evolution.26 The LRR domain 
of such a protein has to survive such antagonist selection forces 
and yet remain functional. Under strong selection pressure, LRR 
proteins might need to accommodate less stable LRRs because their 
recognition specificities are advantageous. This could be the point at 
which LRRs benefit most from a chaperoning machinery such as the 
HSP90/SGT1/HSP70 complex. This picture is reminiscent of the 
genetic buffering that HSP90 exerts on many traits to mask muta-
tions that would normally be deleterious to protein folding and/or 
function, as revealed in Drosophila and Arabidopsis.27 It will be 
interesting to test whether the HSP90/SGT1/HSP70 complex acts 
as a buffer for genetic variation, favouring the emergence of novel 
LRR recognition surfaces in, for example, highly co-evolved plant-
pathogen interactions.28,29
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