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Abstract
The transition from vegetative to reproductive growth is controlled
by day length in many plant species. Day length is perceived in leaves
and induces a systemic signal, called florigen, that moves through the
phloem to the shoot apex. At the shoot apical meristem (SAM), flori-
gen causes changes in gene expression that reprogram the SAM to
form flowers instead of leaves. Analysis of flowering of Arabidopsis
thaliana placed the CONSTANS/FLOWERING LOCUS T (CO/FT )
module at the core of a pathway that promotes flowering in re-
sponse to changes in day length. We describe progress in defining
the molecular mechanisms that activate this module in response to
changing day length and the increasing evidence that FT protein is a
major component of florigen. Finally, we discuss conservation of FT
function in other species and how variation in its regulation could
generate different flowering behaviors.
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INTRODUCTION

The life cycles of many plants are synchro-
nized to the changing seasons. This response
is particularly important at high latitudes,
where extreme changes in environmental con-
ditions occur at different times of the year.
Perception of changes in day length is one
of the major ways in which plants detect the
changing seasons. Garner & Allard (24, 25),
who were the first to describe this process
in detail, referred to it as photoperiodism.
These observations captured the imagination

of plant researchers and attempts to explain
the underlying mechanisms led to the discov-
ery of fundamental plant processes such as the
existence of phytochrome as a photoreceptor,
systemic signaling from the leaf to the shoot
apex during the initiation of flower develop-
ment, and the role of circadian rhythms as
the timekeeping mechanism. Many influen-
tial reviews dealing with these issues have ap-
peared in various Annual Reviews series dur-
ing the past 50 years, and each generation of
researchers has approached the same biolog-
ical problem with the tools available to them
(8, 22, 46, 48, 83, 93, 102). This review de-
scribes the recent progress made mainly in
Arabidopsis using the tools of molecular ge-
netics, and it summarizes our current answers
to the questions posed by the observations of
Garner & Allard (24, 25).

INDUCTION OF FLOWERING
BY PHOTOPERIOD IN
ARABIDOPSIS AND
THE EXTERNAL
COINCIDENCE MODEL

Genetic approaches applied in Arabidopsis
thaliana provided insight into the molecular
mechanisms controlling photoperiodic re-
sponses. Recent reviews have described in
detail the results of these approaches (4, 6,
32, 34, 38, 67, 79). Arabidopsis is a facultative
long-day plant that flowers earlier under
long days (LDs) of 16 h of light than under
short days (SDs) of 8 or 10 h of light. The
photoperiodic pathway mutants co (constans),
gi ( gigantea), cry2 (cryptochrome), flowering
locus d ( fd ), flowering locus t ( f t ), fe, and fwa
flowered later than wild-type plants under
LDs but at the same time as wild-type plants
under SDs. The sequences of all these genes
have now been published, with the exception
of FE (1, 23, 27, 40, 44, 70, 84, 95), and
they were proposed to comprise a single
regulatory pathway, called the photoperiodic
or long-day pathway, that promotes flowering
specifically in response to LDs.

574 Turck · Fornara · Coupland

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

08
.5

9:
57

3-
59

4.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 W

IB
61

51
 -

 D
eu

ts
ch

e 
Fo

rs
ch

un
gs

ge
m

ei
ns

ch
af

t o
n 

12
/1

0/
08

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV342-PP59-23 ARI 27 March 2008 1:3

The GI-CO-FT proteins act in this order
at the core of the photoperiodic pathway, and
their regulation results in FT transcription
under LDs but not SDs (Figures 1 and 2). CO
mRNA is present under both LDs and SDs
and is regulated by the circadian clock, so that
it rises in abundance between 10 h and 12 h
after dawn. GI increases CO mRNA abun-
dance (62, 78, 85). Under SDs CO mRNA
accumulates only during the night, whereas
under LDs substantial expression is detected
toward the end of the day. Furthermore,
CO-mediated activation of FT transcription
occurs at the end of the day under LDs
but not under SDs (85). These comparisons

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
Circadian expression of key components in the
photoperiod pathway. (a) GI and CDF1 are
circadian clock-controlled positive and negative
transcriptional regulators of CO, respectively.
CDF1 directly binds to AAAG-elements within
the CO promoter. FKF1 is required for CDF1
degradation toward the middle of the day, thus
permitting CO mRNA levels to rise. (b) CO
mRNA expression differs between LDs and SDs
such that a biphasic curve is observed only in LDs.
(c) Accumulation of CO protein is strongly
dependent on the coincidence of light and mRNA
expression. CO protein is degraded by a
proteasome-dependent mechanism, but it is
stabilized toward the end of LDs through the
concerted action of CRY2, CRY1, and PhyA.
During the night, CO degradation is dependent
on the presence of SPA1, SPA3, and SPA4. In the
early morning, PhyB negatively regulates CO
stability, which counteracts an early peak in CO
that could be caused by high CO mRNA levels at
the end of the night. (d ) FT mRNA production is
a direct result of CO protein accumulation toward
the end of LDs. White area: duration of light
during LDs and SDs. Yellow area: light in LDs but
dark in SDs. Blue area: dark in LDs and SDs.
Time in hours from dawn is represented below
each diagram. ZT, zeitgeber time; SD, short day;
LD, long day; SPA1, SUPRESSOR OF
PHYA-105-1; GI, GIGANTEA; CDF1,
CYCLING DOF FACTOR 1; CO, CONSTANS;
FKF1, FLAVIN-BINDING FACTOR 1,
KELCH REPEAT, F-BOX PROTEIN; CRY,
CRYPTOCHROME; Phy, PHYTOCHROME;
FT, FLOWERING LOCUS T.
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Figure 2
Network that regulates CONSTANS (CO) mRNA expression and CO
protein stability. The circadian clock is a master regulator of photoperiod
pathway components and associated genes. Several photoreceptor classes
regulate the pathway. Clock symbols indicate that transcription of these
genes is regulated by the circadian clock. Zigzag arrows indicate proteins
that directly perceive light, which is more thoroughly characterized for
phytochromes and cryptochromes than for FKF1. (a) Transcriptional
regulation. (b) Posttranscriptional regulation. (c) CO protein
accumulation results in activation of FLOWERING LOCUS T (FT )
transcription. Perpendicular lines represent inhibitory interactions.
Arrows represent positive interactions. GI, GIGANTEA; CDF1, Cycling
DOF Factor 1; FKF1, FLAVIN-BINDING FACTOR 1, KELCH
REPEAT, F-BOX PROTEIN; PhyB, PHYTOCHROME B; CRY1,
CRYPTOCHROME 1, SPA1, SUPRESSOR OF PHYA-105-1.

suggested that posttranscriptional activation
of CO may occur only when CO mRNA is
expressed in the light. Support for this model
came from manipulating the circadian rhythm
of CO mRNA expression using the toc1-1 mu-
tation or by altering the length of the daily
cycle from 24 h. Both of these approaches
showed that if CO mRNA accumulates in the
light under SDs, then FT expression and early
flowering occur (75, 99).

Under LDs the peak of CO mRNA
abundance is broader and extends into the
light (Figure 1). This response requires the

FLAVIN-BINDING, KELCH REPEAT, F-
BOX PROTEIN 1 (FKF1) protein. In fkf1
mutants the abundance of CO mRNA in the
light at the end of an LD is reduced (36)
(Figure 1). FKF1 encodes the F-box protein
subunit of an SCF ubiquitin ligase, suggest-
ing that FKF1 directs the degradation of sub-
strate proteins by catalyzing their ubiquiti-
nation. FKF1 interacts with GI in vivo and
light is required to stabilize their interaction
(78). Thus the FKF1-GI complex might tar-
get for degradation a negative regulator of
CO transcription and thereby increase CO
mRNA levels at the end of the day. Consis-
tent with this idea, FKF1 and GI transcrip-
tion is also regulated by the circadian clock
and their mRNA abundance peaks around
the time CO transcription rises (Figure 1).
The transcription factor CYCLING DOF
FACTOR 1 (CDF1) likely plays a part in this
negative regulation of CO. CDF1 physically
interacts with FKF1 and GI (35, 78), and
overexpression of CDF1 from the CaMV 35S
promoter causes late flowering and represses
CO transcription. HA-CDF1 expressed from
the CDF1 promoter accumulates only early
in the day in wild-type plants but persists for
longer in fkf1 mutants, consistent with a role
for FKF1 in the degradation of CDF1 protein.
Chromatin immunoprecipitation data suggest
that FKF1, GI, and CDF1 proteins bind the
CO promoter and that degradation of CDF1
possibly takes place on the DNA at the CO
locus (78). However, plants in which CDF1
mRNA levels were severely reduced by CDF1
double-standed RNAi exhibited a weak early-
flowering phenotype and no increase in CO
mRNA levels (35). Thus the requirement for
CDF1 in regulating CO transcription in wild-
type plants is relatively weak, perhaps because
it is genetically redundant with other repres-
sors of CO transcription.

The observation that expression of CO
mRNA during the night under SDs does not
promote flowering suggested that exposure
to light activates CO function at the post-
transcriptional level. Analysis of CO:GFP fu-
sion protein expression demonstrated that this
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activation occurs at the level of accumula-
tion of the CO protein (92). In 35S::CO:GFP
plants, GFP is detected in the nucleus when
plants are exposed to light, but disappears
within a few hours of shifting plants to dark-
ness. Endogenous CO protein is below the
level of detection on Western blots, but when
expressed from the CaMV 35S promoter, CO
protein is easily detected. The protein accu-
mulates to highest levels at the end of an LD
and falls rapidly in abundance in the dark,
whereas in these plants CO mRNA is present
at constant levels. Furthermore, the abun-
dance of the protein is increased by applica-
tion of a proteasome inhibitor, supporting the
idea that CO protein is degraded via ubiqui-
tination. These data suggest that turnover of
CO protein is increased during the night and
at the beginning of the day, but reduced at
the end of the day, and therefore that post-
transcriptional regulation provides an inde-
pendent layer of regulation that limits CO ac-
tivity to the end of the day (Figure 1).

The effect of light quality on CO pro-
tein levels was then tested in photoreceptor
mutants carrying the 35S::CO transgene (92).
These experiments indicated that PhyB is re-
quired for the degradation of the protein early
in the day.

In contrast, cryptochromes, in particu-
lar CRYPTOCHROME 2 (CRY2), as well
as PHYTOCHROME A (PhyA), contribute
to the stabilization of the protein at the
end of the day, although single mutations
in these photoreceptors have a small effect
on protein abundance, suggesting that the
photoreceptors might be functionally redun-
dant (92) (Figure 1). The photoreceptors
PhyA, CRY2, and CRYPTOCHROME 1
(CRY1) promote CO stability, whereas the
photoreceptor PHYTOCHROME B (PhyB)
destablizes CO. These data are in agree-
ment with the flowering times of photore-
ceptor mutants, because the cry2 and phyA
photoreceptor mutants are late flowering,
whereas phyB mutants are early flowering
(63, 99). Finally, degradation of the CO
protein likely involves the SUPPRESSOR

OF PHYA-105-1 protein (SPA1). SPA1 was
previously shown to act in concert with
the E3 ubiquitin ligase CONSTITUTIVE
PHOTOMORPHOGENESIS 1 (COP1) to
regulate photomorphogenesis. Mutations in
SPA1 cause early flowering under SDs, and
this phenotype is enhanced by combining mu-
tations in related SPA genes, so that the spa1
spa3 spa4 triple mutant flowers at the same
time under LDs and SDs (49). SPA proteins
physically interact with CO both in vitro and
in vivo, and mutations in CO suppress the early
flowering of spa1 mutants. Also the abundance
of the CO protein is markedly increased in a
spa1 spa3 spa4 triple mutant. These results sug-
gest that the SPA proteins are important in
mediating the degradation of the CO protein.
Factors involved in CO degradation include
SPA1 (SUPRESSOR OF PHYA-105-1),
SPA3, and SPA4.

The analysis of the temporal regulation of
CO mRNA and protein suggests that the pho-
toperiodic flowering response in Arabidopsis is
controlled by an external coincidence model
similar to that originally proposed by Bünning
(14) and Pittendrigh & Minis (68). Accord-
ing to this model, the photoperiodic response
is triggered when the product of an enzymic
reaction reaches a threshold level. The abun-
dance of the substrate of this reaction exhibits
a circadian rhythm, and the enzyme that con-
verts the substrate to the product is active in
the light but reverts to an inactive state in
the dark. Therefore, the photoperiodic re-
sponse would only occur when exposure to
light, which activates the enzyme, coincides
with the peak in the circadian rhythm of the
substrate. This model has striking similarities
to the regulation of CO, in which the circadian
rhythm in the substrate is represented by the
rhythm in CO mRNA abundance, and inac-
tivity of the enzyme in the dark is represented
by the degradation of CO protein in darkness.
Although at first sight the CO system appears
even simpler than the original model because
it includes only one component, the real-
ity is likely much more complex. For exam-
ple, external coincidence between circadian
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Eukaryotic
CCAAT-box
binding complex:
CBF-B/CBF-C/
CBF-A or NF-YA/
NF-YB/NF-YC in
animals; HAP2/
HAP3/HAP5 and
HAP4 in yeast

regulation and exposure to light probably
also acts on other components within the
pathway (Figure 2). FKF1 binds flavin
mononucleotide, the chromophore of the
photoreceptor phototropin, and according to
spectroscopic data FKF1 forms photointer-
mediates similar to those formed by pho-
totropin (36). This observation suggests that
FKF1 activity is influenced by light. Further-
more, GI transcription is regulated by the cir-
cadian clock and activated by light and the
GI protein requires light for the interaction
with FKF1. Therefore, exposure to light can
influence the activity of GI at the transcrip-
tional and posttranscriptional level (62, 78).
Thus, although our understanding of CO reg-
ulation is most advanced, similar interactions
between light and circadian regulation likely
control the activity of multiple components in
the photoperiodic pathway (Figure 2).

ACTIVATION OF FT
TRANSCRIPTION BY CO

In general, understanding the biochemical
function of CO has not advanced as rapidly
as understanding its regulation and general
contribution to photoperiodic responses. Ge-
netic analysis placed FT downstream of CO
and experiments performed with a chemically
inducible CO:GR fusion protein suggested
that it plays a direct role in FT transcriptional
activation (40, 44, 47, 77, 85).

CO contains two distinct, well-defined
protein domains called the B-box (Zinc fin-
ger domain) and the CCT (CONSTANS,
CO-LIKE, TIMING OF CAB 1) domain (26,
70, 74). Zinc-binding B-boxes are found in
many animal transcription factors (89); one
or two B-boxes are usually associated with
a RING and a coiled-coil domain to form
the so-called tripartite motif (11), which has
been implicated in protein-protein interac-
tions rather than DNA binding. The amino-
terminal B-box of CO is the founding member
of a plant-specific B-box subvariant, which oc-
curs either as a single or duplicated domain,
often but not always in combination with a

CCT domain. CO and 16 related COL (CO-
LIKE) proteins in Arabidopsis carry the com-
bination of B-box and CCT domains (26, 74),
whereas additional proteins contain the CCT
domain but no B-boxes.

Difficulty in demonstrating direct DNA
binding led to the suggestion that CO is re-
cruited to DNA by an unidentified protein
partner (85). As CO B-box:Gal4 DNA bind-
ing domain fusion proteins transactivate gene
expression in yeast, the role of CO may be
to add transactivation function to a protein
complex (7). A recent alternative hypothesis
is that CO requires protein partners to en-
hance the affinity of an otherwise weak DNA
binding activity of the CCT domain. This
hypothesis is based on the finding that the
CCT domain of CO and several Arabidop-
sis or tomato COLs interact with subunits of
the eukaryotic CCAAT-box binding complex
(7, 94) and that the CCT domain shows struc-
ture and sequence homology to the sequence-
specific DNA binding domain of HAP2 (94).

Metazoan CBF/NFY and yeast HAP com-
plexes are formed by three and four dis-
tinct subunits, respectively (57). The pre-
assembled HAP3 and HAP5 dimer recruits
the structurally unrelated HAP2 subunit to
the complex. None of the subunits alone
can stably bind DNA, but the preassem-
bled trimeric complex stably associates with
canonical CCAAT box cis elements. Amino
acid residues required for HAP2 interaction
with HAP3/5 and CCAAT-element recogni-
tion are most conserved in the CCT domain.
Furthermore, mutations that impair the activ-
ity of CCT domain–containing proteins affect
these conserved amino acids (94).

Genetic evidence that HAP proteins reg-
ulate FT transcription has been difficult to
obtain because in Arabidopsis approximately
10 genes encode each of the different sub-
units (20, 28). Nevertheless, perturbation
of subunit stoichiometry by overexpression
of HAP2 or HAP3 subunits strongly de-
lays flowering of Arabidopsis, and this effect
can be counterbalanced by increasing CO
concentration (94).
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Is FT the only gene activated by CO?
Studies using 35S::CO:GR transgenic plants,
in which CO activity can be induced with
dexamethasone, initially identified that FT
and several other genes, including SOC1
(SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS), are directly activated by CO.
However, expression of CO from the CaMV
35S promoter in this experiment, at a higher
level than in wild-type plants and in a broader
set of cell types, may have led to the activa-
tion of genes that are not regulated by CO in
wild-type plants. Microarray analysis compar-
ing genes expressed in leaves of wild-type, co,
and ft plants shifted from SDs to LDs iden-
tified FT as the only gene whose expression
was higher under LDs than under SDs in
wild-type plants but not in co mutants (95).
Also, an mRNA null allele of FT ( ft-10) ap-
parently suppressed the early-flowering phe-
notype caused by overexpression of CO from
the CaMV 35S promoter (100). These ex-
periments suggest that FT is the only gene
activated by CO and the only gene that pro-
motes flowering downstream of CO. How-
ever, the FT-like gene, TWIN SISTER OF FT
(TSF), also appears to be activated by CO and
promotes flowering (97). So far these obser-
vations have not been completely reconciled,
but they suggest that CO probably activates at
least the expression of FT and TSF in leaves
(Figure 3).

CLASSICAL STUDIES
DEMONSTRATED THE
INVOLVEMENT OF SYSTEMIC
SIGNALING IN
PHOTOPERIODIC FLOWERING

Photoperiod perception takes place predom-
inantly in expanded leaves. These leaves
evolved to absorb light during photosynthesis
and do so more effectively than the SAM, the
site of organ formation, which is often shaded
by newly formed leaves. Studies performed
from the 1930s onward led to the proposal
that one or more mobile signals synthesized in
the leaves are transported through the phloem

Florigen:
compound produced
in the leaf that moves
through the phloem
to the shoot apex to
induce flowering

to the SAM and that perception of this mobile
signal(s) causes the meristem to change from
vegetative development to reproductive de-
velopment (102). The nature of the signal was
further characterized in different plant species
over many years. Once induced, the synthe-
sis and effectiveness of the leaf signal can be
astonishingly persistent. In Perilla spp., suc-
cessive grafting of an induced leaf to a non-
induced shoot could be successfully repeated
with the same leaf up to seven times over a pe-
riod of three months (43). Furthermore, floral
induction across interspecies grafts has been
reported and long-day and short-day plants
are capable of inducing plants of the other re-
sponse type to flower, suggesting that the flo-
ral stimulus appears to be the same or at least
functionally equivalent in both types. These
experiments supported the hypothesis that a
flowering hormone, termed florigen (15), or
the floral stimulus, exists in plants and moves
from its site of production in the source leaves
through the phloem toward the SAM and po-
tentially other sink tissues. None of the clas-
sical phytohormones appear to correspond to
the definition of a universal floral stimulus, al-
though particularly in Lolium spp. a strong ar-
gument has been made for gibberellins (GAs)
acting as a systemic floral signal (42).

ANALYSIS OF THE SPATIAL
REGULATION OF THE
PHOTOPERIODIC PATHWAY
LINKS FT PROTEIN
AND FLORIGEN

The connection between the florigen hypoth-
esis and the CO/FT module became appar-
ent when the tissues in which CO and FT
act to regulate flowering were identified. In
young plants, CO and FT are expressed in
phloem companion cells, particularly in those
of the distal minor veins of source leaves
(3, 86). For FT this seems to be the only site
of expression; however, because of the diffi-
culty in detecting the endogenous transcript
by in situ hybridization, these data rely only on
promoter reporter gene studies and therefore
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Figure 3
FLOWERING LOCUS T (FT) as a systemic signal. (a) Coincidence of CONSTANS (CO) mRNA
accumulation and light at the end of long days (LDs) stabilizes the CO protein. CO then allows
transcription of FT and TWIN SISTER OF FT (TSF) in the phloem companion cells within the distal part
of the leaf. FT protein is uploaded into the sieve elements either by diffusion through plasmodesmata or
by an unidentified active transport mechanism (white circle). The similarity between FT and TSF proteins
suggests they behave similarly, but no evidence for movement of the TSF protein has been presented.
(b) Long-distance transport of FT toward sink tissues occurs in the phloem translocation stream. FT may
associate with other as yet unknown factors (X) during this step. (c) FT unloading from the phloem and
transport within the apex probably involves cell-to-cell transport through plasmodesmata. The yellow
area indicates a possible gradient of FT and TSF protein distribution in the shoot apical meristem
(SAM). Whether diffusion or directed active transport is involved is unclear. Induction of SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS (SOC1) is the first detectable event in the inflorescence
meristem (IM) and depends on the presence of FT and the bZIP transcription factor FLOWERING
LOCUS D (FD), but whether these directly activate SOC1 transcription is unknown. FT and FD
interact physically and the complex is directly involved in APETALA 1 (AP1) transcriptional activation,
which occurs during the formation of the first floral bud. AP1 directly represses SOC1 in the floral
meristem (FM). TSF protein might follow the same systemic path toward the SAM as does FT. In
addition, promoter TSF::GUS fusions indicate that the TSF transcript could be directly produced in cells
at the periphery of the SAM. CC, companion cells; SE, sieve elements; boxes, mRNA; circles, protein;
solid black arrows, experimentally confirmed interconnection; dotted arrows, inferred interconnection.
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require further validation (86). In contrast to
FT, CO mRNA is found in the apical regions
above the protophloem and expression is less
restricted to the phloem tissue in younger
leaves (3, 82). However, CO protein stabil-
ity is tightly regulated (see above) and studies
with CO::CO:GFP fusions indicated that the
spatial pattern of CO protein is restricted to
the phloem (3).

Misexpression of CO from heterologous
promoters and grafting experiments placed
CO upstream of a leaf-borne transmissible sig-
nal. Thus, expression of CO driven by the
promoter of SUC2 in the companion cells
throughout the phloem system or by the
GAS1 promoter, which is more restricted to
the companion cells of the minor veins, gen-
erates a graft-transmissible signal that is suf-
ficient to cause a co mutant scion to flower
(3, 5). In contrast, expression of CO in
the SAM does not promote flowering (3).
Conversely, FT causes early flowering when
expressed in the phloem or the SAM, and ex-
pression of FT in either of these tissues pro-
motes the floral transition even in the absence
of functional CO (3). This observation con-
firms that CO acts upstream in the signaling
cascade of FT and of the transmissible sig-
nal. Indeed, these experiments indicate that
the signal must reside downstream of FT tran-
scription (3, 86).

Although FT is expressed only in the
vascular tissue (86), the known biochemical
function of FT is in the meristem (1, 95), as is
described in detail below. This discrepancy
between the spatial pattern of FT mRNA
expression and the location at which the
protein acts provided evidence that a product
of FT might represent the mobile signal.
Two general models emerged to explain
the relationship between FT and florigen.
A direct model proposed that FT encodes
florigen, so that either FT mRNA or protein
(or both) move from source leaves to the
meristematic tissue. Alternatively, an indirect
or relay model proposed that FT activates a
transmissible signal in the leaf, and that this
moves to the meristem, where it activates

expression of FT or an FT-like gene. The
involvement of an FT-like gene would be
more plausible because FT expression has not
been detected at the meristem.

The first experiments performed to test
movement of an FT product focused on the
FT mRNA. Experiments describing move-
ment of FT mRNA from the leaf to the meris-
tem using a fusion of a promoter from a heat
shock–inducible gene (from soybean Gmhsp
17.6L) to FT were subsequently retracted (9).
Furthermore, FT mRNA movement was ex-
cluded on the basis of grafting experiments
performed in tomato, where mutations in
the FT ortholog SINGLE FLOWER TRUSS
(SFT ) cause late flowering (64). Tomato
plants overexpressing SFT are early flowering.
Grafting a 35S::SFT donor to an sft recipient
shoot corrected the mutant phenotype of the
recipient shoot. Similarly, 35S::SFT donors
could rescue the late-flowering phenotype of
Maryland Mammoth tobacco plants (51, 52).
These experiments indicated that the systemic
signal must cross the graft junction between
these shoots, but careful PCR analysis using
RNA of the recipient shoot did not detect SFT
mRNA that had crossed the graft junction. A
similar result was obtained with grafted Ara-
bidopsis plants, in which no movement of FT
mRNA could be detected across graft junc-
tions (18). FT mRNA requirement in the
apex was also excluded by expressing artificial
miRNAs targeted against FT in the SAM and
the phloem. Expression of artificial miRNAs
in the SAM did not alter flowering time,
whereas when expressed in the phloem they
phenocopied the ft mutant (59). Taken to-
gether these experiments argue against long-
distance movement of FT mRNA and against
a requirement for the mRNA in the SAM.

In contrast, several results support move-
ment of the FT protein. Expression of
FT:GFP fusion proteins from the phloem-
specific SUC2 promoter allowed detection
of a GFP signal in the phloem and the
SAM region (18), suggesting that the fu-
sion protein can move from the phloem to
the meristem. Similar results were obtained
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in rice using the rice ortholog of FT, Hd3a
(87). In Arabidopsis, the fusion protein but
not its mRNA moved toward sink tissue
across graft junctions (18). Protein move-
ment was further detected using FT:MYC
fusion protein also expressed under the con-
trol of the phloem-specific SUC2 promoter
(39). Finally, in grafted Cucurbita moschata,
protein mass spectrometry was used to show
that an FT-like protein moved through the
phloem system across graft junctions and that
this correlated with flowering (53). Taken to-
gether these experiments seem to convinc-
ingly demonstrate that FT protein can move
long distances through the phloem system and
that this is associated with floral induction
(Figure 3).

However, diffusion of small proteins ex-
pressed in companion cells into the sieve el-
ement and subsequent transport toward sink
tissues may be a general phenomenon, such
that movement of a small (20 kDa) pro-
tein such as FT may be the expected result
(37, 56, 66). Therefore, demonstrating move-
ment of the FT protein is not sufficient to
prove that it acts as a transmissible signal,
but rather evidence that movement of FT
protein is necessary for flowering to occur
is required. Such evidence was provided by
several experiments. When expressed in the
phloem, FT protein fused to a fluorescent
protein is impaired in its ability to comple-
ment ft mutations. Although FT:GFP com-
plements an ft mutation when expressed in the
SAM or in the major veins from the SUC2
promoter, its expression in the minor veins
of the leaves from the GAS1 promoter does
not complement the mutation (18). This is
in contrast to GAS1::FT, which does comple-
ment ft. Furthermore, GAS1::FT:GFP plants
exhibit altered gene expression patterns in
the leaves similar to those caused by 35S::FT
(88). Therefore FT:GFP is active in the leaves
of GAS1::FT:GFP plants. These experiments
suggested that FT movement from the mi-
nor veins is required to promote flower-
ing, and that this movement is impaired in
GAS1::FT:GFP plants (18).

Similarly, FT protein fused to three con-
secutive YFP proteins did not induce earlier
flowering of wild-type plants if expressed from
the SUC2 promoter, but did if expressed ubiq-
uitously from the CaMV 35S promoter. This
experiment suggests that FT:3xYFP is bio-
chemically active but cannot move from the
phloem when expressed from the SUC2 pro-
moter. Because this fusion protein also con-
tained a viral peptidase recognition site, free
FT protein could be cleaved from the fusion
protein in the presence of the viral pepti-
dase. Expression of the viral peptidase from
the SUC2 promoter released free FT protein,
which induced earlier flowering of wild-type
plants (59). This result suggests that move-
ment of free FT but not FT:3xYFP induces
early flowering of these plants.

Finally, FT protein was engineered for ef-
ficient targeting to the nucleus and a MYC
epitope-tag was added (MYC:NLS:FT) (39).
Expression of this fusion protein from the
SUC2 promoter in an ft-10 mutant did not
affect the flowering time of the mutant,
whereas when expressed from the CaMV
35S promoter it caused extreme early flow-
ering. SUC2::MYC:FT ft-10 plants were early
flowering and MYC:FT protein could be
detected beyond the vascular tissue in the
meristem region, whereas the late flowering
of SUC2::MYC:NLS:FT ft-10 plants corre-
lated with reduced movement of the pro-
tein beyond the phloem (39). Taken together,
all these experiments based on different ap-
proaches provide evidence that movement of
FT protein is required for the induction of
flowering and that there is no need to postu-
late an intermediate signal acting between FT
activity in the leaf and flowering at the SAM.

Although the experiments described above
demonstrate that FT protein movement is re-
quired for flowering, they do not unequivo-
cally show that FT protein and florigen are
equivalent. For example, a second signal, per-
haps induced by expression of FT in the leaf,
might move along with FT protein. If this sec-
ond signal were required to optimize move-
ment of FT or to increase the efficiency of
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the system, then its requirement might be
bypassed by direct expression of FT in the
meristem. Therefore, the possibility that FT
protein acts together with a second mobile
component cannot be formally excluded, and
active florigen could still be a mixture of sub-
stances of which FT protein is only a part.

THE ROLE OF FT IN THE
SHOOT APICAL MERISTEM

The developmental program that initiates
flower development occurs at the apical
meristem after synthesis of FT in the leaves
and its transport through the phloem system,
but what is the function of FT at the SAM?
A breakthrough in this area came from the
demonstration that FT interacts in the yeast
two-hybrid system with the bZIP transcrip-
tion factor FLOWERING LOCUS D (FD)
(1, 95). Furthermore, mutations in FD cause
late flowering (47), and fd mutations suppress

the early flowering of 35S::FT plants (1, 95).
FD mRNA is strongly expressed at the SAM,
suggesting that this is the major site of FD
action, although it is also present at the root
meristem and at lower levels throughout the
plant (1, 95) (Figure 4).

The FT/FD heterodimer is involved in
the activation of the floral meristem iden-
tity genes APETALA 1 (AP1) and FRUITFUL
(FUL) at the shoot apex. Occurrence of AP1
at the apex is strongly delayed in fd mutants
(95) and abolished in either fd lfy or ft lfy dou-
ble mutant plants, indicating that the FT/FD
complex acts redundantly with LFY to acti-
vate AP1 (1, 95). Whereas lfy mutant plants
form abnormal flowers, introduction of either
fd or ft as a second mutation causes the result-
ing plants to form leaves instead of flowers (1,
76, 95). Furthermore, FD overexpression un-
der the control of the CaMV 35S promoter
causes ectopic expression of AP1 and FUL in
leaves of LD-grown but not SD-grown plants,

Flower development

Flower meristem initation

Transition meristem

Vegetative meristem

FD SOC1 LFY AP1 TFL1FT

Figure 4
Dynamics of gene expression in the shoot apical meristem upon floral transition. From top to bottom:
progression of the apical meristem from a fully vegetative state (vegetative meristem) to a reproductive
state (flower development). Two intermediate stages are shown: the transition meristem stage, where
morphological changes are not yet visible but induction is taking place, and the flower meristem
initiation stage, where the first flower primordia are arising on the flanks of the inflorescence meristem.
The mRNA (red ) and protein (blue) patterns of key regulators of floral transition are shown. The varying
intensity of the color accounts for the expression level of the gene. The question mark referring to
FLOWERING LOCUS T (FT ) in later stages indicates that the pattern is inferred. Abbreviations: FD,
FLOWERING LOCUS D; SOC 1, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1; LFY,
LEAFY; AP1, APETALA 1; TFL1, TERMINAL FLOWER 1.
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suggesting that FT is required in leaf tissue
for this expression to occur (1, 95). Similarly,
CaMV 35S promoter–driven overexpression
of FT causes ectopic expression of AP1, FUL,
and SEP3 in leaves, which is strongly re-
duced if the transgene is expressed in an fd
mutant background (88). These observations
are consistent with the idea that the FT/FD
heterodimer regulates AP1, FUL, and SEP3
expression in the meristem, and that overex-
pression of FT or FD in the leaves causes ec-
topic expression of the downstream genes.

FT/FD probably activates AP1 by directly
binding to its promoter, presumably via the
DNA binding domain of FD. A C-box, a cis
element bound by bZIP factors, is present in a
functionally important region of the AP1 pro-
moter in close proximity to LFY binding sites
(95). The role of FT in the heterodimer is cur-
rently unclear, but it might provide a coactiva-
tor function to the FT/FD complex, and this
is supported by a chromatin immunoprecipi-
tation experiment that detected FT associated
with the AP1 promoter (95). Alternatively,
FT might be necessary for posttranslational
modification of FD, thereby activating it
or targeting it to the nucleus. A putative
calcium-dependent protein kinase target site
in FD appears to be required for the inter-
action with FT in yeast two-hybrid assays,
supporting the idea that posttranslational
modification regulates the interaction (1).

Robust AP1 expression is detectable at the
SAM four days after a shift from SD to LD in
Landsberg erecta, at a time when the first stage
1 floral bud is visible (Figure 4). By this stage
production of the FT signal in the leaves is not
required any longer, and the meristem is fully
committed to flower independently of FT ex-
pression in the leaves (18). Therefore, the first
molecular event controlled by FT at the SAM
upon floral induction is unlikely to be the acti-
vation of AP1. In contrast, induction of SOC1
expression in the SAM is detected much
earlier than AP1 expression, approximately
16 h after a shift from SD to LD and prior to
macroscopic changes at the meristem (12, 80)
(Figure 4). Induction of SOC1 is strongly

delayed in either ft or fd mutant plants, so
that FT and FD are required for the earliest
marker of floral induction in the meristem
that is currently available (80), consistent
with gene activation by FT/FD as the earliest
step in the floral transition that occurs at the
meristem.

SOC1 acts as a floral integrator and is acti-
vated by FT-dependent and FT-independent
pathways (50, 65, 77, 100). Mutations in SOC1
cause late flowering under LDs or SDs (12).
So far, there has not been a report on the
identification of direct SOC1 target genes,
so the order of events after SOC1 activation
is unclear. However, the inverse correlation
of SOC1 and AP1 expression (Figure 4) may
be indicative of a complex feedback loop re-
lationship between different FT/FD target
genes (54).

FT-RELATED GENES
IN ARABIDOPSIS

A small family of six FT-like genes exists
in Arabidopsis, and these genes might have
related functions in floral induction. The
proteins encoded by these genes contain a
phosphatidylethanolamine binding domain
(PEPB) (16). The physiological function of
PEPB proteins is widely studied in animals in
which they are proposed to act in signaling
cascades via protein-protein interactions (16).
In Arabidopsis the PEPB family comprises, in
addition to FT and TSF, BFT (BROTHER
OF FT), ATC (ARABIDOPSIS THALIANA
RELATIVE OF CENTRORADIALIS),
MFT (MOTHER OF FT AND TFL1), and
TFL1 (TERMINAL FLOWER 1) (13, 61,
97, 101).

Of these proteins TSF is the most similar
to FT, such that the proteins are 81.3% identi-
cal. FT and TSF show similar, but not overlap-
ping, expression patterns in the phloem and
significant homology is detected in the prox-
imal parts of their promoters. However, in
contrast to FT, TSF is also expressed at low
levels in the basal part of the apical meristem.
Expression analyses confirmed that, similar to
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FT, TSF responds rapidly to varying levels
of CO and is repressed by FLC and EARLY
BOLTING IN SHORT DAYS (EBS) (97).
In contrast to FT, TSF expression is not in-
creased in tfl2/lhp1 mutants, although chro-
matin immunoprecipitation on chip data sug-
gest TFL2/LHP1 is associated with the TSF
locus (90). At least in young plants, TSF is
expressed at a low level, possibly because of
the presence of large retrotransposon and
repetitive sequence insertions at the 3′ end
of the gene. The tsf mutation has only a mi-
nor effect on flowering time under LDs in
the presence of an active FT gene, but ft tsf
double mutants show an additive phenotype,
indicating genetic redundancy between the
genes (97). The spatial requirement for FT
and TSF mRNA was analyzed using an arti-
ficial microRNA directed against both genes
(59). Transgenic plants expressing the amiR-
FT/TSF in the phloem phenocopied the ft tsf
double mutant, but flowering time was not af-
fected when amiR-FT/TSF was expressed in
the FD domain. This experiment indicates
that TSF mRNA, like FT mRNA, is active
in the companion cells of the phloem and is
not required in the meristem. Taken together
these data indicate that TSF could regulate
flowering by a mechanism similar to that pro-
posed for FT, but so far it has not been re-
ported whether TSF protein can move to the
SAM along with FT (Figure 3).

TFL1 has an antagonistic effect on FT in
the regulation of flowering. Loss-of-function
tfl1 mutant plants flower early independently
of day length and form a terminal flower, sim-
ilar to FT-overexpressing plants (13, 40, 44).
Conversely, 35S::TFL1 plants flower late in
LDs and have a prolonged inflorescence phase
in which cauline leaves rather than flowers are
produced, a phenotype related to that of ft mu-
tants (71). Paradoxically, the TFL1 transcript
is upregulated in the inflorescence meristem
through activation of CO (82). A current hy-
pothesis is that TFL1 acts as a competitor of
FT in the apex to prevent FT from converting
the SAM into a floral meristem (2). Consistent
with this hypothesis, whereas TFL1 mRNA is

TERMINAL
FLOWER 2/LIKE-
HETERO-
CHROMATIN
PROTEIN 1
(TFL2/LHP1): a
repressor of genes
that are regulated by
the Polycomb
pathway in
Arabidopsis

restricted to the center of the SAM, the TFL1
protein moves beyond its mRNA expression
domain and spreads into the entire meristem
(17) (Figure 4). Although a mechanism of re-
ciprocal competitive binding of FT and TFL1
to FD has been proposed as the mechanism
underlying this function, at present it is not
clear whether the TFL1 and FD proteins can
physically interact, because two reports have
shown contradictory yeast two-hybrid results
(1, 95). A reciprocal single amino acid ex-
change of FT and TFL1 is sufficient to re-
verse the function of these proteins (29). The
homologs most similar to TFL1 are BFT and
ATC, but their roles in plant development are
unclear. No mutant alleles of BFT have been
described so far, and atc mutants do not show
any obvious alteration in flowering time or
flower development (61).

The third class of FT-like protein is rep-
resented by MFT (101). MFT is equally re-
lated to FT and TFL1 and, at the critical po-
sition proposed to distinguish FT and TFL1,
MFT has an amino acid different from both.
MFT does not belong to the FT/TSF category;
nevertheless, overexpression of MFT can also
cause slightly early flowering in LDs (101), al-
though mutations in MFT do not have a per-
ceptible effect on flowering. Nevertheless, to
fully understand how these genes contribute
to the systemic signaling and meristem func-
tions currently ascribed to FT, it will be im-
portant to describe the patterns of expression
of each gene, to systematically combine null
alleles of the different family members, and to
determine how these combinations alter flow-
ering time.

FLOWERING OF ARABIDOPSIS
UNDER SHORT DAYS

Arabidopsis is a facultative long-day plant and
therefore eventually flowers under SDs. Un-
der LDs ft mutants are late flowering, but re-
ports on the effects of FT/TSF under SDs
differ. For example, whereas Michaels and
colleagues (60) found no effect of ft or tsf mu-
tations under SDs, Yamaguchi and coworkers
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(97) found an effect of tsf and a strong en-
hancement in the ft tsf double mutant (60, 97).
Nevertheless, even in the absence of both FT
and TSF, flowering does occur under SDs,
indicating that absence of the systemic sig-
nal represented by FT/TSF can eventually be
overcome under SDs.

An attractive possibility is that an alterna-
tive pathway promotes flowering in the ab-
sence of FT/TSF and under SDs. Genetic data
suggest a major role for GA in controlling
flowering of Arabidopsis under SDs (96). The
ga1-3 mutation, which strongly impairs GA
biosynthesis, prevents flowering under SDs
and strongly enhances the co2 mutation un-
der LDs, so that the co2 ga1-3 double mutant
never flowers under these conditions (72). GA
may therefore compensate for the reduced ef-
fect of the FT system on SD-grown plants
and co mutants, and GA does accumulate at
the meristem of Arabidopsis during the transi-
tion to flowering under SDs (21). In Lolium
GA was proposed to represent a systemic sig-
nal that induces flowering at the apex, and GA
could represent a second signal in Arabidopsis
that acts in parallel to the FT system and is not
as strongly regulated by photoperiod (42).

CONSERVATION OF THE
CO/FT MODULE AND ITS
REGULATION IN
OTHER SPECIES

Homologs of the CO and FT genes have been
isolated from many monocotyledonous and
dicotyledonous species (26, 33, 41, 45, 55, 58,
69, 73, 81, 91, 98). In particular, the function
of FT as a promoter of flowering appears to
be remarkably conserved in all species tested
in detail. Overexpression of FT homologs
causes extreme early flowering in the dicotyle-
donous plants poplar (10, 33), tomato, tobacco
(51), and Pharbitis nil (31) as well as in the
monocotyledonous plant rice (45). If FT di-
rectly encodes the floral stimulus, as discussed
above, then this would be consistent with the
physiological data suggesting that at least in
some cases different plant species produce

the same systemic signal. Furthermore, FT
mRNA abundance is increased in response to
exposure to photoperiods that induce flower-
ing in barley and rice as well as Arabidopsis (30,
85, 91, 99). However, in the day-neutral plant
tomato, expression of the FT ortholog SFT is
not regulated by photoperiod, although over-
expression of SFT promotes early flowering
and sft mutations delay flowering (52). These
observations indicate that regulation of FT ex-
pression by photoperiod through the activ-
ity of CO homologous proteins is likely to be
highly conserved in plants as distantly related
as Arabidopsis and rice, but that this connec-
tion can be severed in photoperiod-insensitive
plants such as tomato.

Activation of CO under LDs can be ex-
plained by an external coincidence model, as
described above. However, in the short-day
plant rice, the regulation of the FT ortholog
is reversed so that its transcription is activated
under SDs and repressed under LDs (45). El-
egant genetic experiments based on natural
genetic variation for photoperiod response in
rice, isolation of induced mutations, and con-
struction of transgenic plants demonstrated
that the core photoperiod pathway is con-
served and promotes flowering under SDs.
In rice the HEADING DATE 1 (Hd1) locus
encodes the CO ortholog (98) and Hd3a en-
codes an FT homolog (45). Hd3a plays a role
similar to that of FT in Arabidopsis, so that
Hd3a mRNA levels are higher under SDs than
under LDs, Hd3a loss-of-function alleles de-
lay flowering under SDs, and overexpression
of Hd3a causes early flowering (45). How-
ever, the role of Hd1 in rice is more com-
plex than the role of CO in Arabidopsis, be-
cause Hd1 both promotes flowering and Hd3a
expression under inductive SDs and delays
flowering and represses Hd3a expression un-
der noninductive LDs, whereas in Arabidopsis
CO only promotes flowering under inductive
LDs (98) (Figure 5). How does Hd1 have op-
posite effects on Hd3a expression under LDs
and SDs? The repression of Hd3a expression
under LDs could be explained by an external
coincidence model similar to that proposed
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for Arabidopsis. According to this model,
under LDs Hd1 expression coincides with
exposure of plants to light, leading to the
modification of Hd1 protein and to the re-
pression of Hd3a expression. In contrast un-
der SDs, Hd1 mRNA accumulates only during
the night, and in a dark-synthesized form, the
Hd1 protein would activate Hd3a transcrip-
tion and thereby induce flowering. Although
these results provide a convincing model for
how flowering of rice responds to short pho-
toperiods, the response of other short-day
plants might be controlled by different mech-
anisms. Recent evidence suggests that flower-
ing of Pharbitis nil, a classical short-day model
species for physiological experiments, is con-
trolled by a circadian rhythm set by dusk
that induces Pharbitis nil FT (PnFT ) expres-
sion only if the night is sufficiently long (31)
(Figure 5). The role of PnCO in activation
of PnFT remains unclear. These experiments
suggest that Pharbitis measures day length by
a different mechanism than that of rice.

Analysis of the CO/FT system in poplar
provided evidence for the importance of these
genes in adaptation to growth at different lat-
itudes. In poplar, the FT ortholog PnFT1 has
important functions in bud dormancy as well
as flowering (10, 33). In poplar, growth ter-
minates in autumn and bud dormancy is ini-
tiated. This is a photoperiodic response in-
duced by exposure to SDs during autumn, and
in wild-type plants PnFT1 expression is re-
duced on exposure to SDs. Transgenic poplar
plants overexpressing PnFT1 do not terminate
growth on exposure to SDs, whereas those
with reduced PnFT1 expression are more sen-
sitive to SDs. Böhlenius and colleagues (21)
then tested whether the day length recog-
nized as an SD in the regulation of PnFT1 ex-
pression differed between poplar accessions,
and whether this was related to the timing
of PnCO expression. They studied four ac-
cessions collected from locations extending
from Germany at 51◦N to northern Sweden
at 63◦N. In day lengths of 17, 19, and 21
h they observed that PnCO is expressed at
an earlier phase in the southern accessions.

FT

Clock controlled
gene

CO mRNA

Hd1 mRNA

SD

SD

SD

Hd3a

PnFT

Hd3a Hd3a

Arabidopsis

Rice

Pharbitis
LD

LD

LD

Figure 5
Regulation of FT mRNA expression by day length in different species. In
Arabidopsis the expression of CO at the end of a LD and the light-induced
stabilization of the CO protein cause activation of FT transcription. Under
SD the CO protein does not accumulate, FT transcription is not activated,
and flowering is delayed. In rice the photoperiodic response is reversed
so that the CO ortholog HEADING DATE 1 (Hd1) activates HEADING
DATE 3a (Hd3a) transcription under SD but represses it under LD. The
effect of Hd1 on Hd3a activation is proposed to be due to light-induced
modification of Hd1. According to this model, when rice plants are exposed
to light the Hd1 protein is synthesized in a form that represses Hd3a
transcription, whereas in a dark-synthesized form the same protein acts as
a promoter of Hd3a expression. In Pharbitis PnFT transcription is induced
under SD, when the rhythm in the activity of a clock-controlled gene (CCG)
reaches its peak of expression during the long night. In contrast, during LDs
PnFT does not accumulate because expression of the CCG is suppressed
by light at dawn and never reaches a critical threshold sufficient for
PnFT induction. White areas denote light, blue areas denote darkness. The
blue arrows represent transcriptional activation of the gene named in the
arrow. The red hexagons represent transcriptional repression of Hd3a. FT,
FLOWERING LOCUS T; CO, CONSTANS; SD, short day; LD, long day.

Under 19-h day lengths, PnCO mRNA ex-
pression coincides with exposure of plants to
light for the two most-southern accessions
but not for the two northern accessions and
PnFT is expressed under these conditions for
the southern accessions but not the northern
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accessions. Northern accessions recognize
longer day lengths as SDs and therefore in-
duce bud dormancy earlier in the autumn
in anticipation of the earlier onset of winter
conditions, and this response appears to be
adapted to the latitude in which poplar acces-
sions grow through modification of the tim-
ing of PnCO expression and the consequent
expression of PnFT.

PERSPECTIVES

Tremendous progress has been made in recent
years in understanding the basis of florigen
and the control of its expression by photope-
riod (see above). However, major questions
remain to be solved both in understanding the
mechanistic basis of the system in the Ara-
bidopsis model and in determining how vari-
ation in the system confers the diversity in
flowering behaviors observed in nature. Un-
derstanding long-distance signaling by FT
crucially requires determining whether FT
protein is sufficient for this process and acts
alone or whether it requires other molecules
that are transported along with FT. Similarly,
little is known of the mechanisms by which
the protein is transported through the phloem
and loaded into the meristem. We do not
know in which cells FT first acts to promote
the earliest steps in floral induction nor the
nature of the first signaling steps that are ini-
tiated by the arrival of FT protein.

Although the core photoperiod pathway
appears to be widely conserved, the broader
context in which the photoperiodic response
functions is likely to differ significantly in
other angiosperm systems. For example, the
intersection between photoperiod response
and pathways controlling other environmen-
tal responses appears not to be conserved. In
Arabidopsis the vernalization and photoperiod

responses appear to be independent and con-
verge on the regulation of transcription of FT
and other floral integrators. However, tran-
scription of the wheat VERNALIZATION 2
gene, which encodes a repressor of flower-
ing that plays a central role in the vernaliza-
tion response, is reduced either by exposure to
vernalization or by exposure to noninductive
SDs (19). Such observations suggest that in
other species environmental responses that
influence flowering time are likely to inter-
sect with the photoperiod pathway and reg-
ulate FT transcription in ways that could not
be predicted from the analysis of Arabidopsis.

Finally, time of flowering of widely used
summer annual accessions of Arabidopsis such
as Landsberg erecta and Columbia seems
to be determined largely by whether FT is
expressed. Within 1 day of inducing FT ex-
pression in the leaves the mRNAs of genes
associated with flowering are detected at the
meristem, and within three days Landsberg
erecta plants are stably committed to flower.
Such observations indicate that regulatory
steps in the meristem do not play a large part
in determining the flowering time of these
accessions, but rather that the meristem re-
sponse is determined by the timing of FT ex-
pression in the leaves. However, this cannot be
the case in all plants. For example, in peren-
nials different meristems on the same plant
respond differently to floral induction, so that
some remain vegetative, whereas others are
induced to form flowers. Such polycarpic be-
havior suggests either the existence of mech-
anisms in the meristem to regulate respon-
siveness or that leaf-derived signals such as
FT are transported differently to particular
meristems. The nature of such processes will
be elucidated by future experiments and will
add to the surprises this beautiful system has
given us during the past 70 years.
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