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Quantitative genetics in the age
 of omics
Joost JB Keurentjes1,2,3, Maarten Koornneef1,4 and Dick Vreugdenhil2
The use of natural variation in the genetic dissection of

quantitative traits has a long-standing tradition. Recent

advances in high-throughput technologies for the

quantification of biological molecules have shifted the focus in

quantitative genetics from single traits to comprehensive large-

scale analyses. So-called omic technologies now enable

geneticists to take a look in the black box that translates

genetic information into biological function. These processes

include transcriptional and (post) translational regulation as well

as metabolic signaling pathways. The progress made in

analytical and statistical techniques now allows the

construction of regulatory networks that integrate the different

levels of the biological information flow from gene-to-function.
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Introduction
For most organisms, including plants, variation between

individuals of the same species is observed in nature, which

can partly be explained by genetic differences [1]. Natural

variation among different genotypes (accessions, varieties,

etc.) can be classified as qualitative or quantitative. Qual-

itative traits are characterized by distinct phenotypic

classes and are often a result of differences at single genes.

Such traits can relatively easily be dissected genetically

because of their clear segregation pattern in the progeny of

crosses. Quantitative traits, on the contrary, often display a

more continuous variation in phenotypes because of a

multiplicity of genes involved and a relatively large effect

of environmental factors on the expression of the trait.

Recombination of genes results in a large number of

phenotypic classes, which cannot unambiguously be
www.sciencedirect.com
associated with genotypic classes [2] because various genes

can contribute positively or negatively to a quantifiable

trait. The complexity of quantitative traits is further

enhanced by the presence of epistatic interactions and

interactions between genes and the environment [3��].

Quantitative natural variation controls adaptive strategies

of organisms to cope with biotic and abiotic influences and

its understanding can provide insight into ecological mech-

anisms and the evolutionary history of plants [4]. Moreover,

it is the basis of variation for many agronomic traits [5].

Arabidopsis thaliana has proven to be a very efficient model

plant because of a number of biological properties and

available genetic resources that make genetic and molecu-

lar analyses very efficient [6]. These advantages also make

A. thaliana very suitable for the genetic analysis of natural

variation [7]. Because of the growing impact of large-scale

molecular detection techniques (collectively nicknamed

‘omics’ technologies) in the dissection of complex traits, we

aim to present a brief overview of the key technological

advances and some of the recent findings in the field with

emphasis on A. thaliana.

Genetic analysis of natural variation in
quantitative traits
Despite the complexity in genetic regulation of quanti-

tative traits much progress has been made over the past

decades in dissecting these traits using molecular mar-

kers. The increasing ease by which molecular markers can

be generated [8] in combination with the application of

sophisticated mapping methods [9�] has led to a strong

interest in the use of natural variation for studying quan-

titative traits [10]. Specific advantages are associated with

the study of multiple natural perturbations in the same

mapping population. This allows for the genetic analysis

of an almost indefinite number of traits in the same

genetic resources [9�]. For this type of study so-called

immortal mapping populations, consisting in most cases

of homozygous genotypes that can be tested in replicates

and in different experiments, have proven to be very

useful. Although various types of mapping populations

have been developed for a variety of species, the relative

ease of generating recombinant inbred lines (RILs) has

led to their favorable use for quantitative trait locus

(QTL) analysis in A. thaliana and many other plants

[11]. However, especially for the study of differences

between less related material, introgression or backcross

inbred lines have proven to be very useful too [12].

Another genetic approach that makes use of a much larger

part of the available genetic variation within a species is

association or linkage disequilibrium (LD) mapping using

historical recombination events [13].
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Genetical genomics: variation in genome
sequence and expression
In A. thaliana as well as in other species, genome-wide

analyses of genomic polymorphisms in a large collection

of accessions have revealed extensive sequence variation

[1,14,15,16�]. Polymorphisms, when converted to mol-

ecular markers, are indispensable for (fine) mapping of

quantitative traits in experimental populations. When

surveyed in natural populations at high density, poly-

morphisms will enable high-resolution mapping through

linkage disequilibrium [17]. The best marker, however, is

the polymorphism causal for the observed variation. By

definition, natural genetic variation is a result of genomic

differences and therefore the extent of variation in quan-

titative traits is largely dependent on the level of DNA

sequence variation. Although many of the polymorphisms

will be functionally neutral, it leaves little doubt that the

study of quantitative traits can benefit enormously from

genomic analyses [18]. Nonsynonymous polymorphisms

in coding sequences of genes might alter protein function

or stability, introducing phenotypic variation. Polymorph-

isms in regulatory sequences on the other hand might

result in differences in transcriptional efficiency of genes.

It is therefore conceivable that genetically controlled

expression differences, or variation in mRNA stability,

contribute to natural variation in A. thaliana [19]. Given

the extensive variation in phenotype and genomic

sequence within A. thaliana, it is therefore not surprising

that for many genes expression differences are observed

between accessions [20,21,22�].

The genetic regulation of natural variation in gene

expression should not be different from any other ‘clas-

sical’ quantitative trait and therefore, all statistical tools of

quantitative genetics can be applied. The combination of

linkage analysis (genetics) and expression profiling (geno-

mics) was coined ‘genetical genomics’ [23��] and exper-

iments were first reported in yeast [24�], soon followed by

data of higher eukaryotes [25]. Because of the available

high quality mapping populations and the commercially

available genome-wide microarrays, A. thaliana is ideally

suited for these kinds of analyses and several studies in

various RIL populations have indicated extensive genetic

regulation of gene expression [26–29].

Genome-wide expression analysis of fully sequenced

genomes, like A. thaliana, offers the unique possibility

to compare genomic positions of genes with the map

positions of the QTL(s) affecting the expression of these

genes (eQTLs). Such comparative analyses reveal either

local or distant regulation of gene expression. Local

regulatory variation is often a result of polymorphisms

in cis-acting regulatory elements affecting transcriptional

activity. Distant regulatory variation most probably acts in
trans, that is polymorphisms in another gene (e.g. a

transcription factor) affect transcription of the gene for

which the distant eQTL was detected. Nonetheless,
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other mechanisms of local and distant regulation, both

in cis and in trans, are imaginable [30��]. Experimental

data show that approximately half of the eQTLs map at

the position of the gene itself (cis) and the other half at

other loci (trans). However, when significance thresholds

are made less stringent the proportion of trans-eQTLs

increases [29]. This indicates that, in contrast to major-

effect cis-eQTLs, many small-effect eQTLs act in trans.

Genetic regulation of complementary omic
traits
The impact of variation in gene expression on quantitat-

ive traits is now widely acknowledged and the use of high-

throughput genomic analyses has become an important

tool in genetic analyses of natural variation [31]. An

important mechanism in controlling transcriptional

activity is through epigenetic modulation of cis-regulatory

elements by cytosine methylation. With the recent de-

velopment of genome-wide detection techniques [32],

comprehensive genetic analyses of variation in methyl-

ation are at hand (Justin Borevitz, unpublished data).

Transcription, however, is only a first link in the chain

from genotype to phenotype and successive entities like

proteins and metabolites (quality and quantity) are prob-

ably sources for natural phenotypic variation but have

been largely under-exploited. Yet, high-throughput tech-

nologies, that is proteomics and metabolomics, have

shown that much variation is observed upon physiological

perturbation and between genetic variants [33,34]. More-

over, small-scale targeted analyses and subsequent QTL

analysis revealed strong genetic regulation [35,36].

Analogous to genetical genomics, the combination of

high-throughput proteomics and metabolomics and mul-

tifactorial genetic analyses would therefore allow study-

ing the functional consequences of natural genetic

variation at a much larger scale [37]. However, full-scale

analyses for proteins and metabolites, equivalent to gen-

ome-wide expression analysis, are not available yet. This

is mainly because proteins and metabolites are much

more diverse in their properties than nucleic acids, mak-

ing it difficult to extract and analyze all different classes

using a single protocol. Even for a fully sequenced

genome one cannot predict all protein variants and

metabolites that a plant may contain. Moreover, the

dynamic range of protein and metabolite abundance is

far greater than for nucleic acids and no amplification

techniques are available for these entities, making sample

volume and detection range (sensitivity versus saturation)

critical limitations. Nevertheless, several complementing

high-throughput technologies covering together a large

part of the proteome [38] and metabolome [39–41] have

been developed. Noteworthy, more or less comprehen-

sive platforms for large-scale analyses of plant elemental

content and enzyme activity are now available [42,43].

Applications in experimental mapping populations have

not been reported yet for most platforms but several
www.sciencedirect.com
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Figure 1

Natural variation affecting the various interconnected transducers of the biological information flow. Variation in gene expression because of

polymorphisms in cis-regulatory elements (blue boxes) or expression differences of regulators (trans) may cause quantitative differences in protein

content and metabolic fluxes resulting in altered function. Polymorphisms in coding regions of genes (yellow boxes) may result in qualitative

differences affecting molecular functioning. Feedback and metabolic signaling mechanisms further complicate the delicate regulation of quantitative

traits.
studies involving enzyme activity and proteomics are

underway (author’s unpublished work).

The progress made in metabolomics already enabled

large-scale genetic analyses, which has first been demon-

strated for primary metabolites [44�]. However, variation

in secondary metabolism is probably more extensive and

may determine much of the phenotypic variation. In A.
thaliana alone already hundreds of secondary metabolites

representing numerous chemical classes have been dis-

covered [45]. Given the wide global distribution range of

A. thaliana and the diverge range of site plants have been

collected, it is conceivable that metabolites play an

important role in local adaptation strategies. It is therefore

not surprising that the high level of natural variation in A.
thaliana is also reflected in metabolite composition and

content [46]. Indeed, the successful combination of large-

scale untargeted metabolomics and quantitative genetic

approaches has revealed extensive genetic control of, and

high flexibility in metabolic profiles [47��].

Regulatory network construction
To functionally link the large data sets obtained in ‘omic’

experiments as an order of events that ultimately result in

a specific phenotype, network construction provides a

useful tool. Biological networks describe relationships

between individual components of a biological process

[48]. Such components can either be genes, proteins,

metabolites, or a combination thereof (Figure 1).

Depending on the data source, networks can be con-
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structed in various ways but all aim at resolving the

complex regulation of biological processes.

One type of network does not rely on experimental data

but rather predicts in silico connections based on genome-

wide sequence information. Most notably are genome-

scale metabolic connectivity networks, where metabolites

are connected when the genome contains a gene encod-

ing an enzyme able to catalyze the conversion of one of

the metabolites into the other [49]. However, genetic

networks have also been predicted in silico by analyzing

regulatory elements of genes for binding sites of known

transcription factors [50]. Although powerful in hypoth-

esis formation such studies require empirical data for

confirmation of predicted pathways and interactions.

Therefore, many approaches for network construction

are based on experimental data, which also allows the

identification of relationships unable to be predicted from

genomic information only. Protein–protein interactions

for instance, are difficult to deduce from sequence infor-

mation but require immuno-precipitation or two-hybrid

screens. Similar analyses, like chromatin immuno-pre-

cipitation (ChIP-Chip), can also be used to identify

and confirm transcriptional regulation of target genes

by transcription factors or other known regulators [51].

In yeast, much progress in regulatory network construc-

tion was made by expression and metabolic profiling of

deletion strains [52,53] and genetic interaction analyses

using double mutants (synthetic lethals) [54]. However,

for most higher eukaryotes such genome-wide analyses
Current Opinion in Plant Biology 2008, 11:123–128
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are not realistic because of the much higher gene number,

the presumably more complex genetic architecture, and

aspects of subcellular and tissue specific compartmenta-

tion. Many attempts in regulatory network construction

therefore rely on indirect approaches of establishing

associations between network components.

A straightforward approach is correlation analysis over a

large set of data compiled from numerous perturbation

experiments [55]. Exemplary are the widely applied gene

coexpression analyses, where correlation in gene expres-

sion patterns is surveyed under a large number of diverse

conditions [56�,57]. The rationale for this kind of analysis is

that genes participating in the same biological process are

often coregulated and hence exhibit similar expression

patterns. Following the same line of reasoning, metabolic

correlation networks have been constructed [58]. How-

ever, the reliability of, and information contained in con-

structed networks would gain much strength from inte-

grated analyses of interdisciplinary approaches [59,60].

Such integrated studies can either combine experimental

data with in silico analyses [61] or benefit from multiparallel

analyses of diverse biological samples [62–64]. These

approaches already enabled the identification of novel

regulatory steps in metabolic biosynthesis pathways [65].

Although demonstrably effective, correlation analyses

depend on large compendia of publicly available data

or suffer from the limited number of physiological con-

ditions that can be analyzed in dedicated experiments.

However, sometimes coregulation is displayed only in

particular conditions [57], which may remain undiscov-

ered, even in large data sets because of dilution effects.

The largest drawback of correlation analyses, however, is

that no information can be retrieved about the nature of

the underlying genetic regulation. Correlation does not

necessarily imply functional relatedness nor does it

address causality issues. Correlation may be a result from

coregulation by a common regulator or because of inde-

pendent pathways that occur in parallel, possibly because

of developmental or spatial control. Otherwise, a highly

correlated cluster of biological elements, such as genes,

proteins, and metabolites, can also result from down-

stream effects of the regulation of a single member but

no information about cause and consequence can be

extracted from genetic correlations.

Mapping populations combine a high number of genetic

perturbations by which numerous quantitative traits seg-

regate in a single experiment. Moreover, genetic analysis

offers the unique possibility of identifying genomic loci

causal for observed variation in, and possible correlation

between traits. When applied to genome-wide expression

analysis or other large-scale ‘omic’ analyses this therefore

allows the identification of true gene-to-gene or gene-to-

function regulation. The successful (re)construction of

metabolic and genetic regulatory networks [29,47��] has
Current Opinion in Plant Biology 2008, 11:123–128
shown the usefulness of combining quantitative genetics

and large-scale omic analyses. Unfortunately, mapping

resolution is often not high enough to identify causal genes

underlying detected QTLs directly and will require further

analysis such as fine mapping, the study of overexpressors

and mutants of candidate genes, etc. However, differently

regulated genes, because of polymorphic cis-regulatory

elements, are obvious candidates and coregulated traits

can effectively be identified through colocation of detected

QTLs [47��]. Yet, coinciding QTLs not necessarily repre-

sent the same causal gene because effects of closely linked

genes are difficult to distinguish from true pleiotropic

effects of a single gene. Without further experimentation

genetic interactions can be predicted computationally by

comparing QTL profiles and correlation analyses [66].

However, the accuracy of constructed networks can benefit

tremendously from the integration of additional infor-

mation like gene ontology [29,67], sequence data [68]

and related quantitative trait data for end traits including

metabolites and plant performance [35,69].

Conclusions
The combination of genetic analyses and large-scale omic

analyses in experimental mapping populations has shown

to have great potential in unraveling meaningful bio-

logical regulatory networks. The dissection of the genetic

architecture of quantitative traits will require multipar-

allel analyses of the different transducers of the biological

information flow. The ultimate goal is to link genetic

variation to phenotypic variation and the identification of

the molecular pathway from gene-to-function. The first

reports where natural variation at the metabolite level is

linked to growth-related phenotypes have already been

published [44�,70,71]. The recent progress made in

humans by combining LD mapping and transcriptomics

[72] holds great promises for high-resolution association

mapping and identification of regulatory genetic factors.

Future directions will include additional dimensions such

as genotype � environment interactions and temporal

and spatial control of regulation. Such studies will need

ceaselessly advancing genetic resources, bioinformatics

and cost-effective omic tools.
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