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Abstract Reduction of the plastoquinone (PQ) pool is
known to activate phosphorylation of thylakoid proteins. In
the Arabidopsis thaliana mutants psad1-1 and psae1-3, oxi-
dation of photosystem I (PSI) is impaired, and the PQ pool
is correspondingly over-reduced. We show here that, under
these conditions, the antenna protein Lhca4 of PSI becomes
a target for phosphorylation. Phosphorylation of the mature
Lhca4 protein at Thr16 is suppressed in stn7 psad1 and stn7
psae1 double mutants. Thus, under extreme redox condi-
tions, hyperactivation of thylakoid protein kinases and/or
reorganization of thylakoid protein complex distribution
increase the susceptibility of PSI to phosphorylation.
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Abbreviations
LHCI (II) Light-harvesting complex I (II)
PQ Plastoquinone
PSI (II) Photosystem I (II)
WT Wild type

Introduction

Photosynthetic organisms have evolved regulatory mech-
anisms that allow them to adapt their photosynthetic per-
formance to changes in light conditions (Rochaix 2007).
In the short term, this involves the phosphorylation of
several core subunits of photosystem II (PSII), as well as
some of its light-harvesting proteins (LHCII; Vener
2007). In Xowering plants, the reversible phosphorylation
of thylakoid proteins is regulated by light, temperature
and redox state (Allen 1992; Bergantino et al. 1995;
Vener et al. 1998; Aro and Ohad 2003). Changes in thyla-
koid protein phosphorylation have been associated with a
number of regulatory and adaptive responses, including
state transitions (Wollman 2001) and long-term photosyn-
thetic acclimation (Bonardi et al. 2005). Technological
improvements in the Welds of chromatography and mass
spectrometry have enhanced our ability to identify phos-
phoproteins within complex mixtures of polypeptides,
and a number of novel thylakoid phosphoproteins have
been described in the last few years (Vener 2007). The
PSI-D1 subunit was the Wrst phosphoprotein to be isolated
from light-adapted PSI complexes (Hansson and Vener
2003). In the same work, the TMP14 protein was also
shown to be phosphorylated. The latter was recently
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found to be a subunit of PSI and renamed PSI-P
(Khrouchtchova et al. 2005).

Several homologous protein kinases involved in the
phosphorylation of thylakoid proteins have been identiWed
recently, namely, the thylakoid-associated Ser/Thr protein
kinases STT7 in Chlamydomonas reinhardtii (Depege et al.
2003), and STN7 and STN8 in Arabidopsis thaliana (Bell-
aWore et al. 2005; Bonardi et al. 2005; Vainonen et al.
2005). STT7 and STN7 are required for the phosphoryla-
tion of LHCII proteins, whereas STN8 is necessary for
modiWcation of PSII subunits. However, the possibility that
STN7 and STN8 do not directly phosphorylate antenna and
PSII core proteins, respectively, but are components of par-
tially overlapping phosphorylation cascades cannot be
excluded (Bonardi et al. 2005).

The aim of our study was to identify novel thylakoid
phosphoproteins, and to this purpose the photosynthetic
mutants psad1-1 and psae1-3 (Ihnatowicz et al. 2004,
2007) with a general and drastic increase in the phosphory-
lation of thylakoid proteins were analysed. In these
mutants, the mature Lhca4 protein is phosphorylated near
its N-terminus, at Thr16, and the analysis of psad1-1 stn7-1
and psae1-3 stn7-1 double mutants implies that the phos-
phorylation depends on STN7.

Materials and methods

Plant materials

The A. thaliana mutants psad1-1, psae1-3 and stn7-1 have
already been described (Ihnatowicz et al. 2004; Bonardi
et al. 2005; Ihnatowicz et al. 2007). The lhca4-1 mutant,
corresponding to the line Salk_138555 (ecotype Col-0),
was identiWed by screening the insertion Xanking database
SIGnAL (http://signal.salk.edu/cgi-bin/tdnaexpress). Details
of the T-DNA insertion and the primers used for segrega-
tion analysis are given in Supplementary Fig. 1. The double
mutants psad1-1 stn7-1, psae1-3 stn7-1 and psae1-3 lhca4-
1 were generated by crossing the corresponding single
mutants and identifying homozygous F2 plants by PCR.
Wild-type (WT) Arabidopsis thaliana (L.) Heynh., ecotype
Columbia 0 (Col-0), and mutant plants were grown as
described (Pesaresi et al. 2002) and, unless otherwise indi-
cated, all analyses were performed on light-adapted plants
at the eight-leaf rosette stage.

Protein complex isolation and immunoblot analysis

Leaves were harvested in the middle of the light period, and
thylakoids were prepared as described previously (Bassi
et al. 1985). For the isolation of PSI complexes, the
membranes were washed twice with 5 mM EDTA (pH 7.8),

centrifuged (5 min, 10000g) and resuspended in ddH2O to
reach 2 mg/ml of total chlorophyll concentration. After solu-
bilization with 2% (w/v) �-dodecyl maltoside (10 min, 4°C),
PSI isolation and fractionation by 16–23% gradient SDS-
PAGE was carried out as described before (Jensen et al.
2000) and proteins were visualized by Coomassie Blue
staining. Western analysis of thylakoid proteins (for phos-
phothreonine) or PSI complexes (for phospothreonine and
Lhcb2) was performed as reported (Pesaresi et al. 2002) and
signals were detected using the Enhanced Chemilumines-
cence Western Blotting Kit (Amersham Biosciences).

Phosphopeptide analysis

PSI complexes were subjected to proteolysis with trypsin
and chymotrypsin (overnight at 37°C) and undigested pro-
teins were removed by ultraWltration (Microcon YM-3,
Millipore). The phosphorylated and non-phosphorylated
peptides at the Thr residue were obtained from PSL GmbH
(Heidelberg, Germany).

PuriWed samples were analysed by Multidimensional Pro-
tein IdentiWcation Technology (MudPIT) (for details see Sup-
plementary Methods). MS/MS data were analysed with the
SEQUEST algorithm (Eng et al. 1994). To ensure reliable
protein identiWcation, only peptides with a �Cn score > 0.1
were considered. In addition, a peptide had to be partially
tryptic or chymotryptic to be accepted and the cross-correla-
tion scores of single, double and triple charged peptides had to
be >1.8, >2.5 and >3.5, respectively. Peptides were manually
evaluated as described elsewhere (Washburn et al. 2001).

Results

A novel 22-kDA phosphoprotein is present 
in psad1-1 and psae1-3 thylakoids

Because phosphorylation of thylakoid proteins is increased
under conditions, which augment the reduction of the plas-
toquinol pool (Aro and Ohad 2003), the PSI mutants psad1-1
and psae1-3, both of them showing a reduction by about 60%
of the subunits of the stromal ridge of PSI (Varotto et al.
2000; Ihnatowicz et al. 2004, 2007), were examined for the
presence of novel thylakoid phosphoproteins. As expected,
phosphorylation of PSII and LHCII proteins was markedly
increased in light-adapted psad1-1 and psae1-3 thylakoids, as
revealed by Western analysis with an antibody speciWc for
phosphothreonine (pThr) residues (Fig. 1). In addition to thy-
lakoid phosphoproteins with apparent molecular weights
between 8 and 20 kDa, which include PSI-P (Hansson and
Vener 2003; Khrouchtchova et al. 2005) and TSP9 (Carlberg
et al. 2003), a novel species of about 22 kDa appears in the
mutant thylakoids (see asterisk in Fig. 1).
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Phosphorylation of the novel PSI phosphoprotein 
depends on STN7

Because the migration behaviour of the 22-kDa phospho-
protein resembles that of PSI antenna proteins (LHCI), PSI
complexes were isolated from WT, psad1-1 and psae1-3
leaves, fractionated by SDS-PAGE (Fig. 2a), and subjected

to Western analyses with pThr- (Fig. 2b) and Lhcb2-spe-
ciWc antibodies (Fig. 2c). In addition to the highly phos-
phorylated LHCII fraction (pLHCII) described before
(Pesaresi et al. 2002), the 22-kDa phosphoprotein, which
comigrates with Lhca1 and Lhca4, was found to be associ-
ated with PSI in psad1-1 and psae1-3, but not in WT leaves
(Fig. 2).

To test whether phosphorylation of the novel PSI protein
depends on the kinase STN7, the double mutants psad1-1
stn7-1 and psae1-3 stn7-1 were generated and their PSI
phosphorylation patterns were analysed as above. The
novel PSI phosphoprotein was not detectable in the double
mutants (Fig. 2), implying that its phosphorylation requires
STN7 activity. The pLHCII-PSI complex is also absent in
the double mutants, which supports the notion that phos-
phorylation of LHCII is essential for its interaction with
PSI (Pesaresi et al. 2002).

The N-terminal portion of Lhca4 is phosphorylated 
at Thr16

To identify the novel PSI phosphoprotein, PSI complexes
isolated from psad1-1 and psae1-3 thylakoid membranes
were subjected to proteolysis with trypsin and chymotryp-
sin, and analysed by automated multidimensional protein
identiWcation technology (MudPIT), which combines
biphasic liquid chromatography with electrospray ioniza-
tion tandem mass spectrometry (MS/MS). In both psae1-3
(Fig. 3a) and psad1-1 (Supplementary Fig. 2), but not in
WT samples, the phosphorylated peptide sequence
TGSLAGDNGFDPLGLAEDPENLK, which originates
from Lhca4, was identiWed with a cross correlation value of
4.15 for the doubly charged fragment ion, where the b- and
y-ion series showed close-to-complete coverage of this
peptide. The m/z ratio of the precursor ion selected for MS/

Fig. 1 Thylakoid protein phosphorylation. a Identical amounts of thy-
lakoid proteins corresponding to 5 �g of total chlorophyll from WT,
psad1-1 and psae1-3 leaves were fractionated by SDS-PAGE and visu-
alized by Coomassie Blue staining. Note that only the portion of the
Coomassie-stained gel containing phosphoproteins is shown. b Immu-
nolabelling was performed with a pThr-speciWc antibody. The results
shown are representative of those obtained in three independent exper-
iments

Fig. 2 PSI phosphorylation. 
a Identical amounts of PSI com-
plexes isolated from WT and 
mutant (psae1-3 stn7-1, psad1-1 
stn7-1, psae1-3, psad1-1) leaves 
were fractionated by SDS-
PAGE and visualized by Coo-
massie Blue staining. Positions 
of subunits previously identiWed 
by immunodetection (Jensen 
et al. 2000) are indicated. 
b Western analyses for pThr 
residues were performed on 
identical amounts of PSI com-
plexes derived from WT and 
mutant leaves. c A similar Wlter 
to that shown in (b), but probed 
with an Lhcb2-speciWc antibody
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MS analysis was 1,206.8, which was 0.63 Da higher than
expected. However, for database search algorithms like
SEQUEST, an error of §1 to 2 Da is tolerable for reliable
characterization of peptides.

In addition, the typical neutral loss (NL) of a phosphory-
lated peptide was obvious in the spectrum (see peak indi-
cated as “NL”). These data, together with the fact that the
novel phosphoprotein could be detected with a pThr-spe-
ciWc antibody (see Figs. 1 and 2) but not with an antibody
speciWc for phosphoserine (data not shown), imply that
Lhca4 is indeed phosphorylated at Thr16 in psad1-1 and
psae1-3 plants. To further investigate this aspect, the Lhca4
peptide was synthesized in its threonine-phosphorylated
(Fig. 3b) and threonine-non-phosphorylated forms (Fig. 3c).
The MS/MS spectrum of the phosphorylated peptide is very
similar to the spectrum shown in Fig. 3a and the predomi-
nant NL of the phosphate group (¡49) is characteristic for
the phosphorylated peptide. In contrast, the non-phosphory-
lated peptide shows no NL. Since the b-ion series is not as
predominant as the y-ion series, only very little but still
some NL loss is observed from fragment ions (e.g. predom-
inant b18 m/z = 1812 shows ¡98 loss at m/z = 1714; Fig. 3a
and Supplementary Fig. 2).

To conWrm that the novel phosphoprotein detected corre-
sponds to pLhca4, an insertion mutant for LHCA4 was iso-
lated and crossed to psae1-3 plants to generate the double
mutant psae1-3 lhca4-1. Western analysis of thylakoid pro-
tein preparations from WT, psae1-3 and psae1-3 lhca4-1
plants with a pThr-speciWc antibody showed that thylakoid
membranes isolated from the double mutant resembled
those of psae1-3, except for the speciWc absence of the
novel phosphoprotein (Fig. 4). This strongly suggests that
pLhca4 is the novel phosphoprotein that accumulates in an
STN7-dependent manner in the mutants psad1-1 and
psae1-3. The possibility that Lhca1 is also phosphorylated

Fig. 3 Sequencing of a phosphopeptide released, by proteolysis with
trypsin and chymotrypsin, from PSI complexes isolated from psae1-3
leaves. a Fragmentation spectrum (MS2) of the doubly protonated and
phosphorylated peptide from psae1-3. b MS2 spectrum of the synthe-
sized phosphorylated peptide tGSLAGDNGFDPLGLAEDPENLK.
c MS2 spectrum of the synthesized non-phosphorylated peptide
TGSLAGDNGFDPLGLAEDPENLK. Note that no neutral loss of
H3PO4 (NL; m/z = ¡49) is observed. The b- and y-ions are indicated in
the spectra and in the corresponding peptide sequence. The peptide
fragment that underwent neutral loss of H3PO4 is indicated as NL. The
lowercase t designates pThr Fig. 4 Thylakoid protein phosphorylation in WT, psae1-3 and psae1-

3 lhca4-1 leaves. a Identical amounts of thylakoid proteins (corre-
sponding to 5 �g of total chlorophyll) from WT, psae1-3 and psae1-3
lhca4-1 leaves were fractionated by SDS-PAGE and visualized by
Coomassie Blue staining. Note that only the portion of the Coomassie-
stained gel containing phosphoproteins is shown. b Western analysis
was performed with a pThr-speciWc antibody. The results shown are
representative of those obtained in three independent experiments
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cannot be excluded, because depletion of Lhca4 results in a
concomitant decrease in the level of Lhca1 (Fig. 4a; Klim-
mek et al. 2005). However, only non-phosphorylated Lhca1
peptides were detected by MudPIT analysis (data not
shown).

As in the case of the majority of thylakoid phosphopro-
teins, the phosphorylatable Thr in Lhca4 is found in the N-
terminal region, which protrudes into the stroma. However,
the target amino acid residue is not strictly conserved in
most Xowering plants (Fig. 5), thus a conserved physiologi-
cal function of N-terminal Lhca4 phosphorylation appears
rather unlikely.

Discussion

Taken together, our data clearly show that the over-reduc-
tion of the plastoquinone pool associated with impaired PSI
oxidation in psae1-3 and psad1-1 thylakoids leads to the
accumulation of a novel thylakoid phosphoprotein, pLhca4,
phosphorylated at Thr16 of the mature protein in an
STN7-dependent manner. This can be accounted for by
hyperactivation of the kinase STN7 and/or by a change in
the accessibility of Lhca4. Because the phosphorylatable
Thr residue in Lhca4 is not strictly conserved in most Xow-
ering plants and the pLhca4 protein could not be detected in
WT plants under standard conditions (unpublished results
of our lab; Vener 2007), the identiWed phosphopeptide is
most probably a peculiarity of the extremely high reduction
of the PQ pool in mutant thylakoids.

Nevertheless, our Wndings suggest that, under the
extreme redox conditions prevailing in psad1 and psae1
mutants, the cytochrome b6/f complex, STN7 and PSI must
be located in close proximity to each other. The reduced
number of disks per granum observed in psae1 mutant thy-
lakoids (Pesaresi et al. 2002) might induce a general reor-
ganization of thylakoid complex distribution, and thus
make PSI complexes accessible to thylakoid kinases. A

similar process, although more subtle, might take place in
WT plants, thus making possible the phosphorylation of the
PSI-D1 and -P proteins (Hansson and Vener 2003;
Khrouchtchova et al. 2005). Additionally, the general reor-
ganization of thylakoid protein complex distribution upon
over-reduction of the thylakoid electron transport chain is
associated with important adaptative processes, such as
state transitions (Wollman 2001). Certainly, the hyperacti-
vation of thylakoid kinases in psad1 and psae1 might also
contribute to the phosphorylation of Lhca4 and to the
hyperphosphorylation of other thylakoid proteins.
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