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The conserved eukaryotic protein SGT1 (for Suppressor of G2 allele of skp1) has characteristics of an HSP90 (for heat shock

protein 90 kD) cochaperone and in plants regulates hormone responses and Resistance gene–triggered immunity. We affinity-

purified SGT1-interacting proteins from Arabidopsis thaliana leaf extracts and identified by mass spectrometry cytosolic heat

shock cognate 70 (HSC70) chaperones as the major stable SGT1 interactors. Arabidopsis SGT1a and SGT1b proteins associate

with HSC70 in vivo and distribute with HSC70 in the cytosol and nucleus. An intact C-terminal SGT1-specific (SGS) domain that

is required for all known SGT1b functions in immunity and development is needed for HSC70 interaction and for the nuclear

accumulation of SGT1b. Interaction assays of transiently expressed proteins or their domains in Nicotiana benthamiana point

to a role of SGT1 as a HSC70 cofactor. Expression of two HSC70 isoforms is upregulated by pathogen challenge, and while loss

of function of individual cytosolic HSC70 genes has no defense phenotype, HSC70-1 overexpression disables resistance to

virulent and avirulent pathogens. Moreover, mutations in SGT1b lead to a similar degree of heat shock tolerance as dereg-

ulation of HSC70-1. We conclude that an HSC70-SGT1 chaperone complex is important for multiple plant environmental re-

sponses and that the evolutionarily conserved SGS domain of SGT1 is a key determinant of the HSC70–SGT1 association.

INTRODUCTION

Molecular chaperones are essential for cell viability by ensuring

the proper folding of nascent polypeptides, protein complex

maturation, and the translocation of proteins through mem-

branes. In eukaryotic cells, the conserved chaperones of the

Hsp90 (for heat shock protein 90 kD) and DnaK/Hsc70 (for heat

shock cognate 70 kD) families control cellular protein homeosta-

sis through ATP-dependent cycles (Young et al., 2003). Hsc70

predominantly binds nonnative polypeptides and folding inter-

mediates that are either newly synthesized or stress-induced

(Erbse et al., 2004; Bukau et al., 2006). By contrast, Hsp90 chap-

erones bind proteins in their near-native state and mediate the

maturation and activation of signaling complexes (Young et al.,

2003). In yeast and mammalian cells, the activities of Hsp90 and

Hsc70 are modulated by a complex network of cochaperones

that define the balance of protein assembly and degradation by

the ubiquitin-proteasome machinery (Esser et al., 2004; Bukau

et al., 2006).

Sgt1 (for Suppressor of G2 allele of skp1) is a conserved,

essential protein in eukaryotes that interacts with multiple protein

complexes and has features of a cochaperone (Shirasu and

Schulze-Lefert, 2003). The Sgt1 protein has three domains: an

N-terminal tetratricopeptide repeat (TPR) domain that resembles

the folds of Hop/Sti1 (for Hsp70/Hsp90 organizing protein); a

central CHORD-Sgt1 (CS) domain that is similar to the Hsp20/

a-crystallin domain of the human p23 cochaperone family; and a

C-terminal Sgt1-specific (SGS) domain that is structurally less

well defined although highly conserved relative to the other SGT1

domains (Dubacq et al., 2002; Garcia-Ranea et al., 2002; Lee

et al., 2004). Yeast Sgt1p associates with Skp1p (for Suppressor

of kinetochore protein) and Hsp90p through its TPR and CS

domains, respectively, and is needed to assemble an active cen-

tromere binding factor3 kinetochore complex in cell cycle pro-

gression (Kitagawa et al., 1999; Bansal et al., 2004; Lingelbach

and Kaplan, 2004; Catlett and Kaplan, 2006). Yeast Sgt1p is also

required for activation of an SCF (for Skp1-Cul1-F box) ubiquitin

ligase complex that mediates the ubiquitination of Sic2p, an inhib-

itor of Cdc28 kinase (Kitagawa et al., 1999). A Skp1p-independent

but essential function of Sgt1p was identified in the activation of

the yeast adenylyl cyclase (Cyr1p) protein through interaction

between the Sgt1p SGS and Cyr1p leucine-rich repeat (LRR)

domains (Dubacq et al., 2002). Thus, Sgt1 has a role in diverse

signaling processes.
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Plant SGT1 proteins associate with cytosolic HSP90s in vivo,

consistent with a conserved cochaperone activity (Hubert et al.,

2003; Takahashi et al., 2003; Liu et al., 2004). Also, in tobacco

(Nicotiana benthamiana) and barley (Hordeum vulgare) extracts,

SGT1 coimmunoprecipitated with the SCF structural subunits

SKP1 and CUL1 and the COP9 signalosome that regulates the

SCF ubiquitin-proteasome degradation system (Azevedo et al.,

2002; Liu et al., 2002a). A link between SGT1 in plants and yeast

(Kitagawa et al., 1999; Lyapina et al., 2001) with components of

the ubiquitin-proteasome machinery suggests that SGT1 may

assist in the controlled degradation of target proteins. Indeed,

the loss of Arabidopsis thaliana SGT1b (one of two functional

Arabidopsis SGT1 genes, SGT1a and SGT1b) compromised the

functions of SCFTIR1 and SCFCOI1 that mediate the ubiquitination-

dependent degradation of proteins in response to the phytohor-

mones auxin and jasmonic acid, respectively (Gray et al., 2003).

Plant SGT1 interacts through its CS domain with another

cytosolic HSP90 binding protein, RAR1 (for Required for Mla12

Resistance) (Hubert et al., 2003; Takahashi et al., 2003; Liu et al.,

2004), and both RAR1 and SGT1 were identified as components

of plant resistance mediated by intracellular nucleotide binding–

leucine-rich repeat (NB-LRR) immune receptors (Shirasu et al.,

1999; Austin et al., 2002; Azevedo et al., 2002; Liu et al., 2002b;

Muskett et al., 2002; Tornero et al., 2002). A body of genetic and

molecular evidence points to functions of plant SGT1 and RAR1

as cofactors in HSP90-mediated stabilization of preactivated

NB-LRR protein complexes (Tornero et al., 2002; Hubert et al.,

2003; Lu et al., 2003; Bieri et al., 2004; Liu et al., 2004; Azevedo

et al., 2006). These receptors (also known as R proteins) are

present in the cell in a constrained conformation and can be

specifically activated by the action of pathogen-derived effectors

(Shirasu and Schulze-Lefert, 2003). Pathogen recognition po-

tentiates low-level basal defense that limits the growth of virulent

pathogens and is often accompanied by localized programmed

cell death (Chisholm et al., 2006). SGT1 can interact with the LRR

domains of certain NB-LRR proteins and may assist in their

proper folding (Bieri et al., 2004; Leister et al., 2005). There is no

evidence for a direct association of RAR1 with NB-LRR proteins;

therefore, RAR1 may operate at another level of immune receptor

assembly or maintenance. While genetically additive contribu-

tions of SGT1b and RAR1 were observed in resistance mediated

by the NB-LRR genes Arabidopsis RPP5 and barley MLA6

(Austin et al., 2002; Azevedo et al., 2002), an antagonistic re-

lationship was found between SGT1b and the assembly roles of

RAR1 and HSP90 in certain Arabidopsis NB-LRR conditioned

responses (Holt et al., 2005). This likely reflects a fine balance

between the assembly and degradative activities of the chaper-

one/cochaperone machineries in maintaining NB-LRR proteins

poised for activation. Also, the Arabidopsis SGT1 homolog SGT1a

may compensate for the loss of SGT1b in controlling the steady

state levels of certain NB-LRR proteins, since SGT1a has intrin-

sic SGT1 activity but is expressed at a lower level than SGT1b

(Azevedo et al., 2006). SGT1a and SGT1b have redundant es-

sential roles in early embryo development, but only mutations in

SGT1b compromise plant immunity or auxin signaling (Azevedo

et al., 2006).

Therefore, SGT1 is necessary for plant development and dis-

ease resistance, but it is unclear how it operates molecularly and

whether its activity as a HSP90 cofactor accounts entirely for its

diverse cellular functions. We report here that affinity purification–

tagged Arabidopsis SGT1 protein interacts stably with cytosolic/

nuclear HSC70 chaperones in vivo. This interaction occurs with

native SGT1 protein and requires an intact SGS domain for which

no direct partners were known. Mutations in SGT1b and dereg-

ulation of HSC70-1, the predominant cytosolic HSC70 isoform in

Arabidopsis, disable R protein–specified and basal disease

resistance and lead to increased heat shock tolerance. We

conclude that the SGT1–HSC70 association is important for the

regulation of plant responses to biotic and abiotic stresses.

RESULTS

Functional Characterization of SGT1 Proteins Tagged by

the StrepII Epitope

In order to search for biochemical interactors of the Arabidopsis

SGT1 proteins, SGT1a and SGT1b were fused to a C-terminal

StrepII (Strep) affinity purification tag under the control of the

constitutive cauliflower mosaic virus 35S promoter or their re-

spective native promoters. SGT1b constructs were transformed

into the Landsberg erecta (Ler) sgt1b-3 null mutant (Austin et al.,

2002), and SGT1a constructs were transformed into a Ler/

Wassileskija (Ws-0) hybrid that was homozygous for sgt1b-3

(Ler) and heterozygous for sgt1a-1 (Ws-0 background) (Azevedo

et al., 2006). Multiple transgenic lines were selected that ex-

pressed the SGT1a-Strep and SGT1b-Strep fusion proteins in

the appropriate mutant backgrounds, as shown for representa-

tive lines in Figure 1. The functionality of the SGT1b-Strep fusion

proteins was tested based on complementation of the known

sgt1b-3 mutant defects. The SCF ubiquitin E3 ligase–dependent

functions of SGT1b (root growth sensitivity to auxin and jasmonic

acid) were fully complemented irrespective of the promoter used

(Figure 1; see Supplemental Figure 1 online). RPP5 resistance to

the oomycete pathogen Hyaloperonospora parasitica was not

restored (Figure 1; see Supplemental Figure 1 online), because

transgenic plants exhibited a delayed cell death response. The

double homozygote mutant sgt1a-1 sgt1b-3 is embryo-lethal

(Azevedo et al., 2006). Therefore, we crossed SGT1b-Strep trans-

genic plants into the Ler/Ws-0 hybrid that was homozygous for

sgt1b-3 and heterozygous for sgt1a-1. Double homozygote

sgt1a-1 sgt1b-3 mutants expressing SGT1b-Strep could be se-

lected and were fully viable, indicating that SGT1b-Strep com-

plements the lethality of sgt1b-3 sgt1a-1 (Figure 1). Therefore,

SGT1b-Strep complemented three of the four known sgt1b mu-

tant phenotypes in Arabidopsis. SGT1a-Strep expressed under

its own promoter complemented the embryo lethality of sgt1b-3

sgt1a-1, which is the only sgt1a mutant phenotype known to date.

In Planta Interaction of StrepII-Tagged Arabidopsis SGT1

with Cytosolic HSC70 Chaperones

We previously reported the identification of a 70-kD band that

specifically copurifiedwithStrepII-and tandem affinitypurification–

tagged Arabidopsis SGT1b expressed under the control of the 35S

promoter in healthy plant tissues (Witte et al., 2004). This protein
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band was processed for mass spectrometric analysis. All 14 tryptic

peptides belonged to cytosolic Arabidopsis HSC70 (predicted

molecular mass of 71 kD; see Supplemental Table 1 online). The

Arabidopsis genome encodes 14 HSC70 proteins of the DnaK

superfamily, five of which (HSC70-1 to -5) are predicted to be

cytosolic and/or nuclear due to the presence of predicted nuclear

localization signals (Lin et al., 2001). Despite the high sequence

similarity within the family (83 to 94% amino acid identity), identi-

fication of the HSC70 isoforms in the sample was achieved based

on two informative tryptic fragments, C and G (see Supplemental

Figure 2 online), whose identities were confirmed by quadrupole

time-of-flight tandem mass spectrometry. From this analysis,

HSC70-1 (CAB85987) and HSC70-3 (AAF14038) were unambigu-

ously identified and could explain all 14 peptides detected by mass

spectrometry. Therefore, HSC70-1 and HSC70-3 are two novel

SGT1b-Strep interactors in healthy leaf tissue.

We tested whether the interaction with cytosolic HSC70s is

specific to SGT1b compared with SGT1a or is influenced by

pathogen challenge by performing a StrepII affinity purification of

SGT1a-Strep and SGT1b-Strep expressed under the control of

their respective native promoters (Figure 2). Leaf material was

either nontreated or collected at 24 h after inoculation with the

avirulent bacterial pathogen Pseudomonas syringae pv tomato

(Pst) DC3000 expressing the effector AvrRpm1 (recognized by

RPM1) (Figure 2A). As observed by silver staining and on an

immunoblot probed with anti-HSC70 antiserum (which does not

discriminate between the different isoforms), HSC70s could be

purified with SGT1a-Strep or SGT1b-Strep expressed under the

control of their native promoters (Figure 2B). These data show

that cytosolic HSC70s do not discriminate strongly between

SGT1a and SGT1b in their binding and that the observed SGT1–

HSC70 interaction is not due to SGT1 overexpression. The

amounts of purified HSC70 were globally proportional to the

amounts of SGT1a or SGT1b purified. For example, SGT1a-

Strep accumulated to higher levels in total extracts after path-

ogen challenge, and this was reflected in the levels of purified

SGT1a and HSC70 proteins (Figure 2B). We reasoned that SGT1

and HSC70 most likely interact directly, since no other protein

could be detected by silver staining in several independent

purification experiments. This analysis also confirmed indirectly

that the tagged SGT1 proteins are soluble and present in the

cytosol and/or the nucleus, since they interact with cytosolic/

nuclear HSC70s.

We tested whether the spectrum of HSC70 isoforms copurified

was affected by pathogen challenge. Unchallenged and pathogen-

treated leaf samples were processed as above, and SGT1-Strep

protein was collected using the Strep-Tactin-Macroprep resin,

which allows higher recovery. Copurified HSC70 protein amounts

were too low to perform the analysis with SGT1a-Strep. For

SGT1b-Strep, HSC70-1 and HSC70-3 remained the principal

interactors of SGT1b expressed under the control of its native

promoter in both samples (Figure 2C; see Supplemental Figure 2

online). Weak but reproducible signals were also unambiguously

identified as HSC70 isoforms 2 (CAB85986) and 4 (BAB02269) in

the pathogen-treated samples only.

Expression of Cytosolic HSC70-2 and HSC70-4

Is Pathogen Inducible

Previous studies showed that HSC70-1 and HSC70-3 transcripts

are the most abundant of the cytosolic isoforms in young healthy

Arabidopsis tissue (Lin et al., 2001). In order to establish whether

pathogen challenge modulates SGT1 affinity to individual HSC70

isoforms or simply reflects HSC70 abundance in the cell, we

measured mRNA accumulation for the different cytosolic HSC70

isoforms by RT-PCR (Figure 3A). Ecotype Columbia (Col-0)

plants were infiltrated with MgCl2 buffer, virulent Pst DC3000

containing an empty vector, or avirulent Pst DC3000 expressing

either AvrRpm1 or AvrRps4 (recognized by RPS4). Expression of

Pathogenesis-Related1 mRNA was also measured to assess the

responsiveness of tissues and ensure that unchallenged plants

were not stressed prior to infection. Standardization of cDNA

samples used for RT-PCR was done by measuring the expres-

sion of a constitutive Tubulin gene. HSC70-1 and HSC70-3 ex-

pression did not change significantly after pathogen infection. By

contrast, HSC70-2 and HSC70-4 expression was barely detect-

able in untreated samples and was weakly induced in plants

Figure 1. Stability and Functionality of StrepII-Tagged SGT1 Proteins in

Transgenic Arabidopsis.

Total leaf protein extracts were prepared from 3-week-old plants and

analyzed by SDS-PAGE and immunoblotting using anti-SGT1b and anti-

SGS antibodies or the Strep-Tactin-AP conjugate, as indicated. The

open and closed arrowheads mark SGT1b-Strep and SGT1a-Strep,

respectively. 1/2, 3/4, and 6/7 indicate independent transgenic lines. Line

5 is derived from a cross between a Ler/Ws-0 hybrid, sgt1b-3/sgt1b-3

sgt1a-1/SGT1a, and plant 4. Equal loading of samples was checked by

Ponceau red staining of the blot. Background refers to the SGT1 alleles:

wt, wild-type SGT1a and SGT1b; a, homozygous sgt1a-1; b, homozy-

gous sgt1b-3; ab, double sgt1a-1 sgt1b-3 homozygotes. þ indicates

plants that have wild-type sensitivity to 0.075 mM 2,4-D or 10 mM methyl

jasmonate in root growth inhibition assays, and � indicates plants that

are insensitive to these hormone concentrations. nd, not determined.

RPP5 gene–mediated resistance assays were performed using H. para-

sitica avirulent isolate Noco2. For RPP5 resistance,þ indicates wild-type

hypersensitive response and � indicates trailing necrosis/sporulation.

See Supplemental Figure 1 online for detailed phenotypic characterization.
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infiltrated with MgCl2. HSC70-2 and HSC70-4 mRNA levels

increased substantially following inoculation with avirulent Pst

DC3000 strains, the response to AvrRpm1 being earlier than that

to AvrRps4. A weaker induction of HSC70-2 mRNA was also ob-

served in samples responding to virulent Pst DC3000. HSC70-5

mRNA was barely detectable but was slightly induced at 24 h

after inoculation with Pst DC3000/AvrRpm1. SGT1a mRNA ac-

cumulated to high levels in avirulent pathogen-treated samples,

whereas SGT1b expression was not strongly pathogen-responsive,

consistent with earlier analysis of SGT1 promoter:b-glucuronidase

(GUS) fusions (Azevedo et al., 2006). Samples taken from the same

material used for RT-PCR analysis were processed for immunoblot

analysis with anti-HSC70 antibody. The results (Figure 3B) reveal

that HSC70 levels increased at late time points (6 to 24 h) in the

incompatible interactions, consistent with the constitutive expres-

sion of the HSC70-1 and HSC70-3 isoforms and the pathogen-

inducible expression of HSC70-2 and HSC70-4. Since the HSC70

isoforms interacting with SGT1b broadly mirror the HSC70 ex-

pression pattern, we conclude that SGT1b does not discriminate

strongly in its interaction with different HSC70 isoforms present

in the cytoplasm and/or nucleus.

Arabidopsis SGT1b Interacts with HSC70 in Vivo

We considered that interaction between SGT1-Strep and HSC70s

may be due to incorrect folding of SGT1, making it a HSC70

substrate (Erbse et al., 2004). Therefore, we tested whether native

SGT1 proteins associate with HSC70 in wild-type tissues. This

was examined by coimmunoprecipitation from plant soluble

protein extracts using either anti-SGT1b antibodies that bind

only SGT1b or anti-SGS antibodies that recognize both SGT1

isoforms (Austin et al., 2002) (Figure 4A). HSC70s could be

coimmunoprecipitated in Ler and Col-0 total extracts with anti-

SGT1b but not in extracts of the Ler sgt1b-3 mutant that lacks

SGT1b protein (Austin et al., 2002). Anti-SGS antibody coimmu-

noprecipitated lower amounts of HSC70s from Ler sgt1b-3 ex-

tracts that contain SGT1a. These results indicate that native SGT1a

and SGT1b interact with HSC70 in vivo, implying a physiologi-

cally relevant association.

In order to characterize the interaction further, soluble protein

extracts fromhealthyLerplantswerepreparedas for thecoimmuno-

precipitations and analyzed by size-exclusion chromatography

Figure 2. Interactions of StrepII-Tagged SGT1 Proteins with Cytosolic

HSC70 Chaperones in Arabidopsis Transgenic Lines.

(A) Total leaf protein extracts were prepared from Ler sgt1b-3 mutants

transgenic for SGT1a-Strep or SGT1b-Strep expressed from their native

promoters (np). A parallel experiment was performed with leaf tissue

sampled at 24 h after infiltration with a bacterial suspension of Pst

DC3000/avrRpm1 (107 colony-forming units [cfu]/mL). Protein extracts

were analyzed by SDS-PAGE and immunoblotting with anti-HSC70 and

anti-SGS antibodies. The open and closed arrowheads mark SGT1b-

Strep and SGT1a-Strep, respectively. The closed circle indicates the

SGT1b-GFP (for green fluorescent protein) fusion protein used as a

negative control in the StrepII purification.

(B) Elution fractions from the purification were analyzed by SDS-PAGE

and silver staining or immunoblotting with anti-HSC70 and anti-SGS

antibodies. The asterisk marks 70-kD SGT1-interacting proteins. Molec-

ular masses of protein markers are indicated at right in kilodaltons.

(C) SGT1b-Strep expressed from its native promoter was purified using

the Strep-Tactin Macroprep resin and boiled off the resin. A parallel

experiment was performed with leaf tissue sampled at 24 h after

infiltration with Pst DC3000/avrRpm1 (107 cfu/mL). Extracts were ana-

lyzed by SDS-PAGE and Coomassie blue staining. The 70-kD bands

were sampled, digested by trypsin, and analyzed by quadrupole time-of-

flight tandem mass spectrometry. The relative abundance of the five

cytosolic HSC70 isoforms was determined: �, not detected; (þ), weak

signal; þ, clear signal; þþ, strong signal.
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on a Superdex 200 column. Fractions were then collected and

analyzed on an immunoblot (Figures 4B and 4C). SGT1a (39 kD)

and SGT1b (40 kD) were collected in fractions containing proteins

with apparent molecular mass ranges of 41 to 89 kD and 41 to 115

kD, respectively. This observation suggests that SGT1 proteins

are either not globular or that their apparent mobility is affected by

interaction with other protein partners. Fractions that contained

SGT1 proteins (41 to 115 kD) also contained the major HSC70

pool, consistent with a SGT1–HSC70 association and direct inter-

action in a 1:1 stoichiometric ratio. Under these conditions, we

didnotdetecthighermolecular masscomplexes containingSGT1.

The SGT1 SGS Domain Is Necessary and Sufficient for

Interaction with HSC70

To better define the relationship between SGT1 and HSC70 pro-

teins, we characterized the domains responsible for the SGT1–

HSC70 interaction. First, we tested the effect of the enhancer of

tir1-1 auxin resistance3 (eta3) mutant allele of Arabidopsis SGT1b

on HSC70 interaction. The sgt1beta3 mutation causes a splicing

error that results in a frame shift and a premature stop codon,

leading to the synthesis of a truncated SGT1b protein that lacks

the last 36 amino acids and therefore has a disrupted 94–amino

acid C-terminal SGS domain (Gray et al., 2003). Although the

mutant SGT1beta3 protein is more stable than wild-type SGT1b,

sgt1beta3 phenotypes are indistinguishable from those of the Ler

sgt1b-3 protein null mutant (Gray et al., 2003). Levels of HSC70

recovered in immunoprecipitates of sgt1beta3 extracts were

reduced compared with those in the wild type in 7 of 11

repetitions, as shown in Figure 4A. This result indicates that an

intact SGS domain is needed for efficient HSC70 binding in vivo.

The association between SGT1 and HSC70s was confirmed

and analyzed further using Agrobacterium tumefaciens–mediated

transient coexpression of Arabidopsis SGT1 (Strep-tagged) and

HSC70-1 (hemagglutinin [HA]-tagged) domains in Nicotiana

benthamiana followed by detection of StrepII copurified protein

on immunoblots (Figures 4D and 4E). In this analysis, SGT1b-

Strep protein bound significant amounts of HSC70-1, whereas

RAR1-Strep or SGT1beta3-Strep did not (Figure 4D). SGT1a ac-

cumulated to similar levels as SGT1b in N. benthamiana extracts

but bound lower amounts of HSC70-1 protein (Figure 4E). In an-

other N. benthamiana interaction assay, we assessed the efficiency

with which endogenous HSC70 copurified with approximately

equivalent amounts of transiently expressed Strep-tagged SGT1b

or the individual CS and SGS domains (Figure 5A). The CS do-

main from SGT1a (the SGT1b CS domain was not expressed)

and a GFP-Strep control protein failed to bind HSC70. By con-

trast, SGT1b-Strep and SGSb-Strep bound significant amounts

of HSC70. These results indicate that the SGS domain is nec-

essary and sufficient for SGT1 association with HSC70. The loss

of function of SGT1beta3 is more likely due to the loss of inter-

action with HSC70-1, since HSP90-1 and RAR1 still interacted

with SGT1beta3 tested in a yeast two-hybrid assay (see Supple-

mental Figure 3 online).

We then tested which of the HSC70-1 domains interacts most

efficiently with SGT1b by coexpressing its HA-tagged ATPase

domain (N-terminal; 45 kD) or client binding domain (C-terminal;

19 kD) with SGT1b-Strep in N. benthamiana. Interaction between

SGT1b and HSC70-1 was again strong (Figure 5B). We detected

no interaction between SGT1b and the ATPase domain of

HSC70-1 and very weak or no interaction with the client binding

domain of HSC70-1. These results argue against SGT1b being a

substrate of HSC70 and suggest that effective SGT1b binding is

probably only achieved with the complete HSC70-1 protein.

Subpools of SGT1b and HSC70 Localize to the Nucleus

We reasoned that colocalization of SGT1 and HSC70 in one

or more compartments would be necessary for functional inter-

action. We first investigated the subcellular localizations of

fluorescent protein–tagged HSC70-1 and SGT1b after biolistic

transfection of N. benthamiana epidermal cells (Figures 6A and

6B). SGT1b fused to Cerulean (a derivative of cyan fluorescent

protein) localized to the cytosol but could be seen in nuclei of

;25% of 55 transformed cells examined (Figure 6A), suggesting

Figure 3. Expression of HSC70-2 and HSC70-4 Is Pathogen Inducible.

Four-week-old Col-0 plants were nontreated (NT), hand-inoculated with

Pst DC3000 strains (107 cfu/mL) as indicated, or treated with 10 mM

MgCl2 as a control (MgCl2). Samples were harvested at 0, 2, 6, and 24 h

after inoculation (hpi).

(A) RNAs were isolated from leaves, and RT-PCR products were sep-

arated by agarose gel electrophoresis. Ethidium bromide–stained gels

are shown.

(B) Total leaf protein extracts were analyzed by SDS-PAGE and immu-

noblotting with anti-HSC70 antibodies. Equal loading of samples was

checked by Ponceau red staining of the blot.
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movement of SGT1b between the cytosol and nucleus. In

agreement with a predicted nuclear localization signal in cyto-

solic HSC70s (Sung and Guy, 2003), yellow fluorescent protein

(YFP)–HSC70-1 was detected in the cytosol and nuclei of 100%

of cells examined and colocalized with cytosolic and nuclear

SGT1b-Cerulean (Figure 6B). We then tested the subcellular

distribution of SGT1a and SGT1b and cytosolic HSC70 proteins

in Arabidopsis by preparing nuclear extracts from leaves of Col-0,

eta3, and the defense signaling mutant Col eds1-2. HSC70 and

SGT1b signals were detected in both cytosolic and nucleus-

enriched fractions of Col-0 and eds1-2 (Figure 6C). Notably,

SGT1beta3 protein (detected by anti-SGT1b antibody) accumu-

lated only in the nucleus-depleted fraction but stimulated the

nuclear accumulation of SGT1a (detected by anti-SGS antibody)

compared with wild-type and eds1-2 tissues (Figure 6C). These

data show that subpools of SGT1 and HSC70 protein colocalize

in the cytosol and nucleus and that the SGS domain of SGT1b,

which is needed for HSC70-1 interaction, is also required for

nuclear accumulation. While nuclear import of SGT1b appears to

predominate in wild-type cells, SGT1a has the capacity to enter

nuclei in the absence of functional SGT1b.

HSC70-1 Overexpression Disables Plant

Immune Responses

To explore whether cytosolic HSC70s are involved in plant

processes known to require SGT1b, T-DNA insertion mutants

of HSC70-1 to HSC70-3 were isolated (see Methods) and char-

acterized for resistance to pathogens. One insertion found in

HSP70-4 did not diminish transcript levels (see Supplemental

Figure 4 online) and was not analyzed further. We did not detect

alterations in the phenotypes of the hsc70-1, hsc70-2, and

hsc70-3 mutants after infection with virulent or avirulent strains

of H. parasitica and Pst (see Supplemental Figure 4 online). Gene

silencing of the HSC70 gene family causes embryo lethality (Sung

and Guy, 2003) and therefore was not an option to overcome

likely functional redundancy within these highly conserved pro-

teins. Also, no specific HSC70 inhibitors have been described

Figure 4. SGT1b Interacts with HSC70s in Vivo.

(A) Total leaf protein extracts of 3-week-old healthy plants were immunoprecipitated with anti-SGT1b or anti-SGS antibodies as indicated. Plant

genotypes used were Ler, Ler sgt1b-3, Col-0, and Col-0 sgt1beta3. Total extracts and immunoprecipitates (IP) were analyzed by SDS-PAGE and

immunoblotting with anti-HSC70 and anti-SGS antibodies.

(B) and (C) Wild-type Ler leaf protein extracts were separated by size-exclusion chromatography. Collected fractions were analyzed by SDS-PAGE and

immunoblotting with anti-HSC70 and anti-SGS antibodies. Molecular mass ranges of the fractions are indicated in kilodaltons based on the column

calibration.

(D) and (E) HA-tagged HSC70-1 and Strep-tagged SGT1 were coexpressed using Agrobacterium-mediated transient transformation of N. benthamiana

leaves. Total protein extracts (Input) were subjected to affinity purification of the Strep-tagged protein using Strep-Tactin Sepharose and specifically

eluted (IP Strep). Protein extracts were analyzed by SDS-PAGE and immunoblotting with anti-HA antibody or the Strep-Tactin-AP conjugate, as

indicated. SGT1beta3 indicates residues 1 to 322.
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(Brodsky and Chiosis, 2006). In animal and yeast cells, overex-

pression of HSC70 enhances tolerance to heat stress by increasing

protein disaggregation but impairs normal HSC70 cellular func-

tion in protein maturation, degradation, and transport (Krobitsch

and Lindquist, 2000; Brodsky and Chiosis, 2006). Therefore, we

examined the effect of modulating HSC70 function on the plant

immune response through overexpression. Several available Col-0

transgenic lines that express HSC70-1 under the control of the

35S promoter (Sung and Guy, 2003) were characterized, and

lines 8-7 (a single T-DNA insertion; sevenfold overexpression) and

8-9 (multiple T-DNA insertions; fourfold overexpression) were

selected for further study. These lines exhibited some develop-

mental defects, such as a dwarf stature and a short root system,

as described before (Sung and Guy, 2003), but they did not have

altered photosynthetic efficiency (Sung and Guy, 2003), root

architecture, or responsiveness to auxin (L.D. Noël, unpublished

data). The HSC70-1 overexpression lines displayed a partial break-

down of resistance specified by four different Arabidopsis R

genes tested (Figure 7). H. parasitica isolates Cala2 (recognized

by RPP2) and Emwa1 (recognized by RPP4) were able to

complete their life cycles in lines 8-7 and 8-9. Pathogen coloni-

zation was almost as extensive as that observed in the Col-0

sgt1beta3 mutant, measured by the production of conidiospores

(Figures 7A and 7B) and trypan blue staining of leaves (Figure

7C). Partial loss of resistance was visualized by the appearance

of trailing necrosis around pathogen hyphae, similar to that seen

in Col sgt1beta3 (Figure 7C). RPM1-mediated recognition of Pst

DC3000/avrRpm1 and RPS4 recognition of Pst DC3000/avrRps4

were also compromised (Figures 7D and 7E). Thus, HSC70-1

overexpression partially disables R gene–conditioned resistance

to avirulent isolates of H. parasitica and Pst. Combining the

sgt1beta3 mutation and HSC70-1 overexpression caused an

additive loss of RPP4-mediated resistance (see Supplemental

Figure 5 online), in support of a genetic interaction between these

two components.

In order to test the effect of HSC70-1 overexpression on R

protein accumulation, line 8-7 was crossed with Col-0 plants

expressing a functional RPM1-myc protein (Boyes et al., 1998),

and plants homozygous for the RPM1-myc and HSC70-1 over-

expression constructs were selected. As shown in Figure 7F,

HSC70-1 overexpression did not alter RPM1-myc steady state

levels. It is unlikely, therefore, that perturbation of the assembly

or maintenance of preexisting R proteins is the cause of the

resistance defects arising from HSC70-1 overexpression.

We considered whether the above phenotypes might reflect a

defect in basal resistance that normally restricts the growth of

virulent pathogen isolates. Growth of the virulent H. parasitica

isolate Noco2 (Figure 8A) and Pst DC3000 (Figure 8B) was

greater in lines 8-7 and 8-9 than in wild-type Col-0 but not as

extreme as in the basal defense mutant eds1-2. This observation

prompted us to investigate the contribution of SGT1b to basal

defense. Growth of the virulent H. parasitica isolate Cala2 was

higher in Ler sgt1b-1 and sgt1b-3 null mutants compared with

the Ler wild type (Figure 8C). We conclude that SGT1b and

HSC70-1 modulate both basal and R protein–specified immune

responses.

Mutations in SGT1b and Deregulation of HSC70-1 Lead to

Heat Shock Tolerance

We explored whether the interaction between SGT1 and HSC70

cytosolic isoforms has broader biological significance by exam-

ining the requirement for SGT1 in the Arabidopsis heat shock

response, one of several abiotic stresses that recruit HSC70

chaperone functions (Sung and Guy, 2003). Data from a gene

expression microarray experiment that traced the heat shock

response of 18-d-old Arabidopsis plantlets grown in liquid at

258C and then incubated at 388C for 30, 60, or 180 min (L. Nover

and P. von Koskull-Doring, http://www.Arabidopsis.org/servlets/

TairObject?type¼expression_setandid¼1007967124) were ex-

amined. After 60 and 180 min at 388C, SGT1a mRNA accumu-

lated to 3- and 12-fold higher levels, respectively, than in control

samples incubated at 258C, whereas SGT1b and UBQ10 ex-

pression remained unchanged (Figure 9A). HSP70-1 was mod-

erately and HSC70-2 was strongly induced by heat shock

Figure 5. Mapping of HSC70-1– and SGT1b-Interacting Domains in

Transient Plant Expression Assays.

Strep-tagged SGT1 domains (A) and HA-tagged HSC70-1 domains with

Strep-tagged SGT1 (B) were expressed using Agrobacterium-mediated

transient transformation of N. benthamiana leaves. Total protein extracts

(Input) were subjected to affinity purification of Strep-tagged protein

using Strep-Tactin Sepharose and specifically eluted (IP Strep). Protein

extracts were analyzed by SDS-PAGE and immunoblotting with anti-HA

antibody, the Strep-Tactin-AP conjugate, or the anti-HSC70 antibody to

detect endogenous Nb HSC70, as indicated. Different volumes of the

elution fraction were analyzed on the gel in order to normalize the

amounts of purified Strep-tagged proteins. GFP-Strep was used as a

non-HSC70-interacting protein in the purification process. ATPase,

ATPase domain of HSC70-1 (residues 1 to 405); CBD; client binding

domain of HSC70-1 (residues 374 to 543); CSa, SGT1a CS domain

(residues 149 to 260); SGSb, SGT1b SGS domain (residues 268 to 357).
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treatment, as described previously (Lin et al., 2001). There was

also a dramatic increase in the activity of the SGT1a promoter

followed by a GUS reporter gene (Azevedo et al., 2006) after heat

shock. In seedlings grown at 258C, detectable pSGT1a:GUS

activity was restricted to two cell lineages of the root pericycle

(Figure 9B). After 3 h of incubation at 378C, GUS activity was

detected in cotyledon tissues and was expressed in outer cell

layers of the root (Figure 9B). The strong induction of mRNAs for

SGT1a and the comparative low responsiveness of SGT1b after

heat shock broadly mirror their modes of expression in response

to pathogens (Figures 2 and 3) (Azevedo et al., 2006). We then

tested the heat shock tolerance of plants by immersing 4-week-

old plants grown at 258C in a water bath at 41 to 488C for 10 min,

as described (Sung and Guy, 2003). Three days after treatment,

extensive tissue collapse was observed in leaves of wild-type

Col-0 and in the sgt1a mutant after treatment at 42.58C (Figure

9C). By contrast, sgt1beta3 mutant plants displayed reduced

tissue damage resembling that of the thermotolerant HSC70-1

–overexpressing lines 8-7 and 8-9 (Sung and Guy, 2003). The

extent of cell collapse in these lines was quantified in five plants

by measuring the percentage of total ions that leaked from leaves

after heat shock. One hundred percent refers to the total ion

content in the plant sample after it had been microwaved to

release all ions. sgt1beta3 exhibited a similar degree of heat shock

tolerance as the HSC70-1–overexpressing lines 8-7 and 8-9

(Figure 9D). Ler sgt1b-3 mutant plants were also more tolerant of

heat shock than was the Ler wild type (Figure 9E). We conclude

that SGT1 and HSC70 proteins have some overlapping functions

in modulating responses to biotic and abiotic stresses. A corre-

lation between the loss of HSC70 interaction of the sgt1beta3

mutant protein and the increased thermotolerance of sgt1beta3

plants further implies that heat shock sensitivity in the wild type

involves the interaction of HSC70 with SGT1.

DISCUSSION

We present evidence that two functional isoforms of Arabidopsis

SGT1, SGT1a and SGT1b, form stable interactions with cyto-

solic/nuclear HSC70 chaperones in vivo and that these interac-

tions depend on the SGS domain of SGT1. Several observations

point to SGT1 behavior as a HSC70 cofactor rather than a sub-

strate. First, SGT1 is not bound strongly by the HSC70 client bind-

ing domain. Second, interaction between SGT1beta3 and HSC70

is reduced, arguing against potentially misfolded SGT1 serving

as an HSC70 client. Third, the 36 residues that are missing in

SGT1beta3 form part of a hydrophilic domain with helices that are

not optimally recognized as a substrate by HSC70 chaperones

(Rudiger et al., 1997; Lee et al., 2004). Resistance responses in

Arabidopsis to virulent and avirulent pathogen isolates are com-

promised both by mutations in SGT1b and by deregulation of

HSC70-1 expression. This newly identified connection between

SGT1 and HSC70 activities correlates with an enhanced heat

Figure 6. Subcellular Localization of SGT1b and HSC70 Proteins.

(A) and (B) Plasmids containing p35S:SGT1b-Cerulean (A) or p35S:

SGT1b-Cerulean/35S:YFP-HSC70-1 (B) were delivered to N. benthami-

ana epidermal cells using a particle gun. Imaging with a confocal laser

scanning microscope was done at 18 to 48 h after transformation. Bars¼
20 mm.

(A) SGT1b enters the nucleus of some cells (n ¼ 15 of 55 examined). The

top panel shows two representative cells with SGT1b excluded from the

nucleus, and the bottom panel shows two representative cells with

SGT1b inside the nucleus. White arrowheads mark the nuclei. Enlarged

views of the right nuclei are also shown.

(B) SGT1b colocalizes with HSC70-1. The top panel depicts the colocali-

zation of both proteins outside the nucleus. The yellow arrowhead indi-

cates the nuclear localization of YFP-HSC70-1 but not SGT1b-Cerulean.

The bottom panel shows a representative cell with both proteins colo-

calized outside and within the nucleus. The white arrowhead indicates

the nuclear localization of both YFP-HSC70-1 and SGT1b-Cerulean.

(C) Nucleus-depleted and -enriched protein extracts from Col-0, Col

eds1-2, and sgt1beta3 leaves were analyzed by SDS-PAGE and immuno-

blotting with anti-SGS, anti-SGT1b, anti-HSC70, anti-histone H3 (nuclear

marker), and anti-PEPC (for phosphoenolpyruvate carboxylase; cyto-

solic marker) antibodies, as indicated. Nuclear samples were 16 times

more concentrated than nuclei-depleted preparations. The open and

closed arrowheads indicate SGT1b and SGT1a signals, respectively. The

asterisk marks the SGT1eta3 protein, and the closed circle marks a weak

nonspecific signal with anti-SGT1b antibody.
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shock tolerance of sgt1b mutants, resembling the HSC70-1 over-

expression phenotype. Together with the colocalization of SGT1

and HSC70 proteins in the cytosol and nuclei, these data lead us to

propose that the interaction between SGT1 and HSC70 chap-

erones is important for plant defense against pathogens and

some other stress responses that are controlled by HSC70 chap-

erones. Our findings are reinforced by a global study of the yeast

Hsp90 interaction network that identified Sgt1 as an Hsc70

(Ssa1, Ssa2) interactor (Zhao et al., 2005). Also, coimmunopre-

cipitation of human Sgt1 and Hsp70 was recently reported after

transfection of cultured cells and in ELISAs of recombinant pro-

teins (Spiechowicz et al., 2007). The analysis by Spiechowicz et al.

(2007) and results from our size-exclusion and N. benthamiana

interaction assays (Figures 4 and 5) support direct chaperone–

cochaperone binding. However, we did not observe any specific

interaction between recombinant SGT1 and HSC70-1 in vitro or

Figure 7. HSC70-1 Overexpression Disables R Gene–Mediated Resistance to Pathogens.

Arabidopsis Col-0 transgenic lines 8-7 and 8-9 overexpressing HSC70-1 were inoculated with avirulent H. parasitica ([A] to [C]) or strains of Pst DC3000

([D] and [E]). Two-week-old seedlings were inoculated with H. parasitica isolates Cala2 ([A] and [C]) or Emwa1 (B). Spores were counted at 6 d after

inoculation ([A] and [B]), and leaves were stained with trypan blue (C) to visualize fungal structures and tissue necrosis. Ler and Ws-0 plants are

susceptible to Cala2 and Emwa1, respectively. Ler eds1-2 and Ws-0 eds1-1 display enhanced susceptibility to Cala2 and Emwa1, respectively. FW,

fresh weight; HR, hypersensitive response; M, mycelium; TN, trailing necrosis. Growth of Pst DC3000 strains expressing avrRpm1 (D) or avrRps4 (E)

was measured at 0 and 3 d after vacuum infiltration of different lines, as indicated. Col-0 rps3-3 is an rpm1 mutant that has lost recognition of Pst

DC3000/avrRpm1. The rar1-13 mutation (Ler ecotype) disables RPS4. Each data point was analyzed in triplicate, and error bars indicate SE. Three

independent experiments gave similar results. Statistically significant differences for values compared with the wild type were determined by Student’s t

test (* P < 0.05, ** P < 0.005). For (F), HSC70-1 overexpression (OE) does not affect RPM1-myc accumulation. Total leaf protein extracts were prepared

from 3-week-old plants homozygous for RPM1-myc and HSC70-1 overexpression (line 8-7) transgenes and analyzed by SDS-PAGE and immuno-

blotting using anti-Myc and anti-HSC70 antibodies. Equal loading was checked by Ponceau red staining of the membrane.
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in yeast two-hybrid assays; therefore, we cannot exclude the

possibility that their association is mediated or assisted by an-

other component.

Cytosolic HSC70s and SGT1 Function in Plant

Postinvasive Defense

Consistent with a role of cytosolic HSC70s in plant resistance,

transcripts of the HSC70-2 and HSC70-4 isoforms were respon-

sive to bacterial pathogen infiltration (Figure 3A). Induction of

HSC70-2 and HSC70-4 mRNAs preceded the appearance of cell

death (data not shown) and SGT1a mRNA accumulation (Figure

3A) and exhibited slightly faster kinetics than was reported for

Arabidopsis HSP90-1, which is preferentially recruited in RPS2

resistance (Takahashi et al., 2003). Therefore, the observed

boost in cytosolic HSC70 levels (Figure 3B) is unlikely to be a

consequence of plant cell death. There was no impairment of the

response of the Arabidopsis sgt1beta3 mutant or the HSC70-

1–overexpressing lines to a host nonadapted fungal pathogen,

Blumeria graminis f. sp. hordei (V. Lipka, personal communication).

Resistance to this pathogen in wild-type Arabidopsis is expressed

prior to the invasion of cells and is not associated with pro-

grammed plant cell death (Lipka et al., 2005). Also, virus-induced

gene silencing of SGT1 in N. benthamiana showed that it is neces-

sary for multiple cell death–associated disease resistance pro-

grams (Peart et al., 2002). Therefore, the activities of both cytosolic/

nuclear HSC70s and SGT1 appear to be most important for plant

resistance to pathogens once they have invaded host cells.

We did not observe alterations in resistance phenotypes as-

sociated with the depletion of specific cytosolic HSC70 mRNAs,

probably due to high levels of functional redundancy. Consistent

with this, combining the hsc70-1 and hsc70-3 mutations pro-

duced seedling lethality (data not shown). However, overexpres-

sion of Arabidopsis HSC70-1 disabled immune responses (Figure

7) and enhanced tolerance to heat shock (Figure 9). Given that

sgt1b mutants displayed similar immune response (Figures 7 and 8)

and heat stress phenotypes (Figure 9) as HSC70-1 overexpres-

sion and that an sgt1b mutation enhanced the disease suscep-

tibility of an HSC70-1 overexpression line (see Supplemental

Figure 5 online), SGT1 could behave as an important modulator

of HSC70, balancing its various activities and interactions within

the chaperone–cochaperone network.

Arabidopsis SGT1b did not discriminate in association with

particular cytosolic HSC70 isoforms in leaves (Figure 2C), con-

sistent with the presence of stable SGT1-HSC70 complexes in

healthy and pathogen-treated tissues. However, we observed

stronger binding of SGT1b than SGT1a to HSC70-1 in N. ben-

thamiana interaction assays (Figure 4E). SGT1a was also reported

to bind to HSP90 less strongly than SGT1b (Hubert et al., 2003). In

healthy Arabidopsis leaves, SGT1b protein accumulates to ap-

proximately fourfold higher amounts than SGT1a, although SGT1a

is strongly pathogen-induced (Figure 3) and can compensate for

the loss of SGT1b when expressed at high levels (Azevedo et al.,

2006). The lower abundance of SGT1a coupled with the reduced

affinity for HSC70 may account for the preferential genetic recruit-

ment of SGT1b in immunity and auxin or jasmonic acid sensing

(Austin et al., 2002; Gray et al., 2003). Also, differences in the sub-

cellular distribution of SGT1a and SGT1b observed here (Figure 6C)

may influence their competence as cochaperones. Notably, SGT1b

import to nuclei predominated over SGT1a in wild-type tissues. The

finding that SGT1a accumulated in nuclear preparations of mutant

plants expressing the nonfunctional SGT1eta3 protein suggests that

SGT1 nuclear accumulation is an important aspect of SGT1 activity

and possibly also HSC70 interaction.

HSC70 and SGT1b Modulate Basal Resistance to

Virulent Pathogens

An unexpected finding was the partial disabling of basal resis-

tance to H. parasitica isolates in sgt1b null mutants and the

Figure 8. HSC70 and SGT1 Modulate Plant Basal Resistance.

Different Arabidopsis lines were inoculated with virulent isolates of H.

parasitica Noco2 (A) and Cala2 (C) or Pst DC3000 (B). Pathogen growth

was measured as described for Figure 7. 8-7 and 8-9 are two transgenic

lines (Col-0) overexpressing HSC70-1. Ler eds1-2 and rar1-13 have

compromised basal resistance. Ler sgt1b-1 and sgt1b-3 are two inde-

pendent sgt1b null mutants. Statistically significant differences for values

compared with the wild type were determined by Student’s t test (* P <

0.05, ** P < 0.005). FW, fresh weight.
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HSC70-1 overexpression lines (Figure 8). This form of low-level

resistance restricts pathogen colonization in the absence of cell

death (Chisholm et al., 2006). Since in yeast and plants, SGT1

affects the functions of several unrelated protein complexes

(Muskett and Parker, 2003; Shirasu and Schulze-Lefert, 2003), it

is conceivable that SGT1 controls several molecularly indepen-

dent steps in plant immunity. HSP90 and SGT1 are needed for

the steady state accumulation of at least one NB-LRR receptor,

Rx (Azevedo et al., 2006), but it is not known whether this is

universal for NB-LRR proteins. An absence of obvious effects of

HSC70-1 overexpression on RPM1-myc accumulation (Figure

7F) supports HSC70 action at a site other than NB-LRR protein

stabilization. There were no differences in SGT1a and SGT1b

protein accumulation between HSC70-1 overexpression lines

and the wild type (data not shown), arguing against the depletion

of SGT1 being an explanation for the loss of resistance. Never-

theless, HSC70 may cooperate with SGT1 (and HSP90) to reg-

ulate the levels of numerous low-affinity immune receptors that

together could constitute basal resistance to invasive virulent

pathogens (Holt et al., 2005).

A broader biological relevance of an SGT1-HSC70 complex is

suggested by the finding that exposure of plants to heat shock

elicits strong induction of SGT1a expression (Figures 9A and 9B),

as found in pathogen responses (Azevedo et al., 2006), and en-

hanced heat shock tolerance in sgt1b leaves, as seen in the

HSC70-overexpressing lines (Figures 9C to 9E). We think that

these related phenotypes reflect a functional connection be-

tween SGT1 and cytosolic/nuclear HSC70 chaperones. However,

HSC70-1 overexpression does not mirror all sgt1b loss-of-function

phenotypes, since it did not compromise sensitivity to auxin by

the root growth inhibition assay (L.D. Noël, unpublished data).

Does SGT1 Bridge HSP90-HSC70 Chaperone Activities?

An association between Sgt1 and Hsp90 in multiple systems and

our finding that Arabidopsis SGT1 and HSC70 interact in vivo

Figure 9. Arabidopsis sgt1b Mutants Exhibit Enhanced Tolerance to Heat Shock.

(A) SGT1a, SGT1b, HSC70-1, HSC70-2, and UBQ10 gene expression after heat shock (388C) relative to control conditions (258C) was determined by

meta-analysis of Arabidopsis gene expression microarray hybridization experiments. Samples were harvested after 30, 60, or 180 min. The red line

indicates the induction level of genes whose expression is not affected by heat shock at 388C. UBQ10, ubiquitin constitutive control.

(B) SGT1a promoter activity. Transgenic plants expressing the GUS reporter gene under the control of the SGT1a promoter were grown for 7 d at 258C

(left panel) and placed at 378C (right panel) for 3 h before staining for GUS activity (shown in blue). Bar ¼ 0.4 mm. The open arrowhead marks the site of

intense GUS activity in the root after heat shock. One representative transgenic line is shown (AB1-1; Azevedo et al., 2006).

(C) Appearance of 5-week-old plants at 3 d after a 10-min incubation at 42.58C. Open arrowheads indicate tissue collapse. Bar ¼ 1 cm.

(D) and (E) The extent of cell collapse was measured in different lines by ion leakage at 3 d after a 10-min incubation at 41 to 45.58C (D) or at 44 and 458C

(E). Ion leakage was normalized to the total ion content in the plant sample after it had been microwaved to release all ions. The percentage of total ions

leaking from leaf tissue after heat shock reflects the proportion of cells that have lost cell integrity. Values are means from five individual plants. Error

bars indicate SD. Statistically significant differences for values compared with the wild type were determined by Student’s t test (* P < 0.005).
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prompt the question of whether SGT1 serves to coordinate HSP90-

HSC70 chaperone functions. Although Hsp90 and Hsc70 proteins

have distinct biochemical roles, there is a substantial degree of

cooperativity between these two chaperones in regulating pro-

tein complex assembly and subcellular trafficking (Pratt et al.,

2004). Such coordinated activities are in large part mediated by

cochaperones. For example, the TPR protein Hop (known as Sti1

in yeast) binds Hsc70 and Hsp90 and ensures optimal substrate

channeling within a single multiple-chaperone complex (Hernandez

et al., 2002). Another cochaperone, CHIP (for C terminus of Hsc70-

interacting protein) directs Hsp90/Hsc70 chaperone complexes to

the proteasome by attaching a ubiquitin signal onto the chaperone-

bound client protein (Connell et al., 2001; Esser et al., 2004). Anal-

ysis in yeast and human showed that the Hsp90–Sgt1 association

is transient (Kitagawa et al., 1999; Lee et al., 2004; Lingelbach

and Kaplan, 2004; Catlett and Kaplan, 2006), and this is likely

also to be the case in plants, since only a very small proportion of

the total SGT1 pool was bound to HSP90 in vivo (Hubert et al.,

2003). We failed to identify HSP90 in SGT1-Strep affinity purifi-

cation experiments. We also could not detect RAR1 or ASK1 (the

major Arabidopsis SKP1 protein in leaves), probably due to the

transient and unstable nature of these associations, as reported

for interactions between Sgt1p and Skp1p in yeast (Kitagawa

et al., 1999; Lyapina et al., 2001). In yeast, human, and plant cells,

Sgt1 interaction with the Hsp90 ATPase domain is mediated

principally through its central CS (p23-like) domain, although

Sgt1 binding does not influence the ATP hydrolysis rate of Hsp90,

in contrast with other cochaperones such as Hop/Sti1 and Hip/

p60 (Takahashi et al., 2003; Lee et al., 2004; Catlett and Kaplan,

2006). Thus, the Sgt1 CS domain is both necessary and sufficient

for Hsp90 binding and should not be affected directly by SGS

modifications (Takahashi et al., 2003; Lee et al., 2004). Consistent

with this model, the SGT1a CS domain failed to bind HSC70 in N.

benthamiana interaction assays (Figure 5A) and the SGT1eta3

mutant protein retained interaction with RAR1 and HSP90 in a

yeast two-hybrid assay (see Supplemental Figure 3 online).

Yeast Sgt1p appears to behave as an adaptor for client

proteins and in this capacity is able to link Skp1 to Hsp90 (Catlett

and Kaplan, 2006). Hop/Sti1 is one of a number of TPR domain

cochaperones that bind HSP90 at its C-terminal EEVD domain

and acts as a coupling factor between Hsp70 and Hsp90 to fold

proteins such as the glucocorticoid receptor or to assemble pro-

tein complexes (Hernandez et al., 2002; Pratt et al., 2004). Hsp70

promotes the initial steps of glucocorticoid receptor folding and

transfers its substrate to Hsp90 to complete maturation. Yeast

Sgt1p can form ternary complexes with Hsp90 and Hop (Catlett

and Kaplan, 2006), and this might influence substrate channeling

between the two chaperones as well as their binding of other co-

factors. Our finding that the plant SGT1 interaction with cytosolic/

nuclear HSC70s requires its SGS domain could allow coopera-

tive binding of HSP90 through the CS domain and an association

with SKP1 and the core SCF ubiquitin E3 ligase system through

the SGT1 TPR motif. However, the role of the TPR domain in

plant SGT1 remains unclear, since it was dispensable for Arabi-

dopsis SGT1 activity in R protein–triggered immunity and auxin

sensing (Azevedo et al., 2006). If the association between SGT1

and SKP1 is solely through the TPRs (Catlett and Kaplan, 2006),

this would argue against the SGT1–SKP1 interaction being im-

portant for SGT1 function in the plant immune and hormone

responses. Another possibility is that SGT1 in plants connects

with particular SCF E3 ligase complexes through an interaction

between its SGS domain and the LRRs of certain F box proteins,

such as TIR1 in SCFTIR1 and COI1 in SCFCOI1. In support of this,

yeast two-hybrid interaction analysis by Dubacq et al. (2002)

showed that yeast Sgt1p has a propensity to associate with

LRRs or WD-40 repeats that are highly represented in F box and

other signaling proteins. Also, interactions were observed be-

tween SGT1 and the LRR domains of barley MLA1 in yeast two-

hybrid assays (Bieri et al., 2004) and pepper (Capsicum annuum)

BS2 in transient N. benthamiana expression assays (Leister et al.,

2005). Notably, the SGT1–MLA association was observed with

TPR deletants and with a truncated SGT1 protein containing only

the SGS domain (Bieri et al., 2004). We propose, therefore, that

SGT1 may bridge the HSP90-HSC70 chaperone machinery with

a selected number of domains during protein complex matura-

tion and/or activation. The stable interaction of SGT1 with cytosolic

HSC70 observed in our study may reflect a default state that is

then directed toward assembly or disassembly functions through

transient interaction with HSP90 and the activities of other co-

chaperones.

Significance of the SGT1 SGS Domain

The SGS domain is necessary and sufficient for the binding of

SGT1 to HSC70 in N. benthamiana transient interaction assays.

Several SGS domain mutant alleles (e.g., in sgt1-5) were iden-

tified in yeast Sgt1 that block the G1/S transition in cell cycle

progression and are affected in the SCF-dependent degradation

of Cln1p/Cln2p cyclins and Sic1p Cdk inhibitor (Kitagawa et al.,

1999; Bansal et al., 2004). These contrast with mutations in the

yeast Sgt1p TPR domain (such as those encoded by sgt1-3) that

lose interaction with the kinetochore component Skp1p and are

blocked in the G2/M transition of the cell cycle. Thus, in yeast, the

SGS domain mediates distinct SGT1 functions, consistent with

its genetic requirement for adenylyl cyclase Cyr1p activation

(Dubacq et al., 2002). To our knowledge, HSC70 chaperones are

the only direct SGS interactors to date. The SGS domain is the

most highly conserved in SGT1 (59% identity between human

SGT1 and Arabidopsis SGT1b) but is unfolded with a limited

degree of helical structure (Lee et al., 2004). Due to the high

conservation of the SGS domain in eukaryotes and the ability of

an SGT1b TPR domain deletant to complement the sgt1b-1 mu-

tation (Azevedo et al., 2006), we propose that sgt1beta3 may rep-

resent a plant sgt1 G1 allele. This raises the question of whether

yeast sgt1 G1 phenotypes could in part be due to a loss of SGT1–

HSP70 interaction. To date, HSP70 has been implicated in cell

cycle regulation as a high-copy suppressor of the G2 cell cycle

arrest induced by human immunodeficiency virus (Iordanskiy et al.,

2004). A role of HSC70 in the cell cycle may be worth exploring.

METHODS

Plant Materials, Growth Conditions, and Pathology Assays

Wild-type Arabidopsis thaliana accessions used were Col-0, Ler, and

Ws-0. The Ler sgt1b-3 and sgt1b-1(Austin et al., 2002), Ler eds1-2 (Falk
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et al., 1999), Ler rar1-13 (Muskett et al., 2002), Ws-0 eds1-1 (Parker et al.,

1996), Col-0 rps3-3 (Bisgrove et al., 1994), Col-0 sgt1beta3 (Gray et al.,

2003), Col-0 pad4-1 (Glazebrook et al., 1997), and Ws-0 sgt1a-1 (Hubert

et al., 2003) mutants have been described. Lines overexpressing SGT1b-

Strep (Ler sgt1b-3 pXCS-SGT1b-Strep) were described previously (Witte

et al., 2004). Homozygous Col-0 plants overexpressing HSC70-1 (Sung

and Guy, 2003) were used: lines 8-7 (single insertion) and 8-9 (multiple

insertions). Col-0 plants expressing functional RPM1-myc protein (Boyes

et al., 1998) were crossed with HSC70-1–overexpressing line 8-7, and

plants homozygous for RPM1-myc and HSC70-1 transgenes were se-

lected in the progeny. Col-0 T-DNA insertion mutants in HSC70-1 (SALK_

135531), HSC70-2 (SALK_085076), HSC70-3 (GK_758E01), HSC70-4

(SALK_029571), and SGT1a (GK_266H09) were ordered from the SALK

and GABI-KAT databanks, and the insertions were verified by PCR and

made homozygous. HSC70 gene expression was measured in these lines

by RT-PCR. Two independent transgenic lines expressing the GUS gene

reporter under the control of the SGT1a promoter have been described

(Azevedo et al., 2006).

For pathogenicity tests, plants were grown in soil under a 10-h pho-

toperiod at 228C with light intensity of 180 to 200 mE�m�2�s�1 and 65%

humidity. Hyaloperonospora parasitica and Pseudomonas syringae pv

tomato DC3000 isolates were cultured and prepared for inoculation as

described (Aarts et al., 1998; Muskett et al., 2002). Two-week-old seed-

lings were sprayed with 4 3 104 H. parasitica conidiospores/mL in dis-

tilled water. Infection phenotypes were scored at 6 to 7 d after infection by

lactophenol trypan blue staining and counting of conidiospores as de-

scribed (Muskett et al., 2002). Bacterial growth tests were performed by

vacuum infiltration of a bacterial suspension (1 3 105 cfu/mL) into leaves

of 5- to 6-week-old plants. Each data point was analyzed at least in trip-

licate.

Arabidopsis Hormone and Heat Shock Response Assays

For root growth inhibition assays, seedlings were grown in sterile condi-

tions on vertically oriented Murashige and Skoog (MS/10) medium con-

taining 0.5% sucrose in a white light growth chamber under a 16-h

photoperiod at 24/218C (light/dark). Five-day-old seedlings were trans-

ferred to MS/10 medium containing different concentrations of methyl

jasmonate (Duchefa) or 2,4-D (Sigma-Aldrich). Root length was measured

at 3 d after transfer. To induce a heat shock response, 7-d-old plantlets

growing on MS/10 medium at 258C were incubated at 388C for 3 h or kept

at 258C (control condition) and stained for GUS activity for 1 to 2 h as

described (Jefferson, 1987). Heat shock tolerance was tested as de-

scribed (Sung and Guy, 2003). Values are means of at least three bio-

logical replicates.

Generation of Strep-Tagged SGT1 Variants

In order to express SGT1a-Strep and SGT1b-Strep from their own

promoters, SGT1 coding regions with their 1.3-kb upstream promoter

sequences (Tor et al., 2002) were amplified from Col-0 genomic DNA.

Primer sequence information is available upon request. Amplicons were

cloned into pENTR/D-TOPO (Invitrogen) and transferred into pXCG-Strep

by LR recombination (Invitrogen), giving pXCG-SGT1a-Strep and pXCG-

SGT1b-Strep, respectively. A pXCSG-Strep derivative, pXCG-Strep

(Witte et al., 2004), without the 35S promoter, was obtained by AscI/

XhoI digestion of pXCSG-Strep, fill-in, and religation. To express SGT1

CS and SGS domains and the truncated SGT1beta3 protein with a

C-terminal StrepII tag under the control of the 35S promoter, the cor-

responding SGT1 sequences were PCR-amplified from Ler cDNA clones

and cloned into pENTR/D-TOPO (Invitrogen). Amplicons were transferred

by LR recombination into pXCSG-Strep, giving pXCSG-CSa-Strep,

pXCSG-SGSb-Strep, and pXCSG-ETA3-Strep.

Generation of HA-Tagged HSC70-1 Derivatives

Amplicons corresponding to the full-length ATPase domain and the client

binding domain (CBD) of HSC70-1 were PCR-amplified from a Col-0

cDNA library and cloned into pENTR/D-TOPO (Invitrogen). The amplicons

were transferred by LR recombination into pJ2B-3HA-GW (N. Medina-

Escobar and J.E. Parker, unpublished data), giving pJ2B-3HA-HSC70FL,

pJ2B-3HA-HSC70ATPase, and pJ2B-3HA-HSC70CBD.

RT-PCR Analysis

Four-week-old Col-0 plants were hand-inoculated with Pst DC3000

strains (107 cfu/mL) in 10 mM MgCl2 or with 10 mM MgCl2 alone as a

control. RNA was isolated from leaves using Tri reagent (Sigma-Aldrich)

for use as RT-PCR template. One microgram of total RNA was subjected

to reverse transcription using SuperScript II (Invitrogen). Primer specificity

was confirmed by direct sequencing of RT-PCR amplicons. The number

of cycles used was determined empirically to be within the linear ampli-

fication phase. RT-PCR products were separated by agarose gel elec-

trophoresis and visualized by ethidium bromide staining.

Plant Transformations

Agrobacterium tumefaciens strain GV3101TpMP90RK was used for

transient protein expression in Nicotiana benthamiana using pXC/pXN

binary derivatives, as described (Witte et al., 2004). Stable transformation

of Arabidopsis was done by flower dipping as described (Clough and

Bent, 1998). Transformants were selected by spraying soil-grown 7-d-old

seedlings with 0.1% Basta (Aventis). Resistant T1 transgenic lines ex-

pressing detectable amounts of the fusion proteins were self-pollinated to

produce T2 seeds. Single insertion lines were selected by segregation

analysis of the resistance in T2 populations on MS medium containing

10 mg/mL phosphinotricin (Duchefa).

StrepII Affinity Purification and Immunoprecipitation

StrepII affinity purifications were performed as described (Witte et al.,

2004). For immunoprecipitation experiments, 1 g of leaf tissue was ho-

mogenized in 2 mL of W buffer (50 mM Tris, pH 8, 150 mM NaCl, 0.05%

Triton X-100, and 2 mM DTT) supplemented with plant protease inhibitor

cocktail (Sigma-Aldrich P9599; diluted 1:200). After centrifugation, 500

mL of the cleared protein extract was incubated with 10 mL of antibody by

end-over-end rotation at 48C for 2 h. The following antibodies were used:

rabbit anti-SGS (raised against the SGT1a SGS domain; S. Betsuyaku, A.

Takahashi, K. Shirasu, and J.E. Parker, unpublished data) and rabbit anti-

SGT1b (Austin et al., 2002). Washed Protein A–Sepharose Fast Flow

(Amersham Biosciences) was added to samples and incubated for 1 h.

Beads were washed three times with 1 mL of W buffer and finally resus-

pended in 25 mL of Laemmli buffer.

SDS-PAGE and Immunoblotting

Proteins were separated by SDS-PAGE on 10 or 12% gels and transferred

onto nitrocellulose or polyvinylidene difluoride membranes. Immunoblots

with the Strep-Tactin-AP conjugate (catalog number IBA 2-1503-001) was

performed as described (Witte et al., 2004). The following antibodies were

used: monoclonal mouse anti-spinach HSP70 (Stressgen SPA-817); rat

anti-HA antibody (Roche 1 867 423); mouse anti-c-Myc (clone 9E10; Santa

Cruz Biotechnology); anti-SGS antibody (as above); rabbit anti-SGT1b

antibody (Austin et al., 2002); rabbit anti-PEPC (Rockland); rabbit anti-

histone H3 (Abcam) antibodies; goat anti-rabbit IgG horseradish per-

oxidase (HRP) conjugate (Santa Cruz Biotechnology sc-2004); goat

anti-mouse IgG HRP conjugate (Santa Cruz Biotechnology sc-2005); and

goat anti-rat IgG HRP conjugate (Santa Cruz Biotechnology sc-2006). AP and
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HRP activities were detected with p-nitroblue tetrazolium and enhanced

chemiluminescence (SuperSignal West Femto chemiluminescent sub-

strate; Pierce), respectively. Silver staining was performed as described

(Shevchenko et al., 1996).

Preparation of Arabidopsis Nuclear Extracts

Nuclei-enriched/depleted fractions were prepared from leaves of 4-week-

old-seedlings as described (Feys et al., 2005).

Yeast Two-Hybrid Analysis

Sequences encoding RAR1, HSP90-1, HSP90ATPase, SGT1b, SGT1beta3,

and HSC70-1 were recombined into Gateway-converted versions of the

vectors pGADT7 and pGBKT7 (Clontech) (T. Lahaye, unpublished data).

Plasmids were transformed into yeast strains AH109 and Y187 (Clontech).

Diploids containing both bait and prey constructs were constructed by

mating. Expression of the fusion proteins was checked by protein gel blot

analysis using c-Myc and HA antibodies. Dilution series of the obtained

diploids were plated on synthetic defined selective medium to screen for

interaction according to the manufacturer and grown for 3 d at 288C.

Construction of Cerulean and YFP Fusions

To generate fluorescent protein destination vectors for Gateway (GW)

cloning technology (Invitrogen), PCR-amplified Cerulean (Rizzo et al.,

2004) and eYFP (Shah et al., 2002) and a Gateway recombination cas-

sette were inserted into the pXCS-HisHA vector (Witte et al., 2004),

resulting in p35S-GW-Cerulean-nos and p35S-eYFP-GW-nos, respec-

tively. The cDNA sequences of SGT1b (Witte et al., 2004) and HSC70-1

cloned into pENTR/D-TOPO (Invitrogen) were recombined into p35S-

GW-Cerulean-nos and p35S-eYFP-GW-nos, respectively.

Transient Single-Cell Gene Expression Assays

Detached leaves from 5- to 6-week-old N. benthamiana plants cultivated

as described (Witte et al., 2004) were used for transient gene expression

in epidermal cells mediated by particle bombardment (Bhat et al., 2005).

For colocalization, equimolar amounts of plasmids were coated onto the

gold particles. After bombardment, leaves were incubated for 18 to 48 h

at room temperature prior to microscopic analysis.

Confocal Laser Scanning Fluorescence Microscopy

Transient intracellular fluorescence was observed by confocal laser

scanning microscopy using a Leica SP2 AOBS inverted confocal micro-

scope (Leica Microsystems) equipped with argon ion (458-, 476-, 488-,

496-, and 514-nm laser lines) lasers. Additionally, a 405-nm diode laser

(BDL 405 SMC; Becker and Hickl) was also installed into the Leica SP2

AOBS system. SGT1b-Cerulean was excited either with the 405-nm

diode laser or the 458-nm argon laser line, while eYFP was excited with

the 514-nm argon laser line. In cells coexpressing both SGT1b-Cerulean

and eYFP-HSC70-1, the imaging was done in sequential mode. Cerulean

fluorescence was detected using the Leica AOBS system and a custom

485- to 505-nm band-pass emission filter, while eYFP fluorescence was

detected using the Leica AOBS system and a custom 515- to 560-nm

band-pass emission filter. A 633 HCX PLAN-APO water-immersible

objective lens (numerical aperture ¼ 1.2) was used for imaging.

Mass Spectrometry

Tryptic digestion of proteins separated by SDS-PAGE was performed

using a protocol based on that of Shevchenko et al. (2000). Digests were

desalted for electrospray mass spectrometry with a C18 reverse-phase

resin (ZipTip; Millipore). A Micromass Q-Tof-2 mass spectrometer oper-

ating with nanospray and the Masslynx software (version 3.5) were used

for analysis.

Gel-Filtration Analysis

A 25-mL Ler protein sample prepared as for immunoprecipitation was

loaded on a Superdex 200 HR 10/30 column (Amersham Biosciences) at

0.2 mL/min flow with W buffer without Triton X-100. Then, 0.5- and 1-mL

fractions were sampled, precipitated using 10% trichloracetic acid, and

analyzed by SDS-PAGE and immunoblotting. Column calibration was

performed using the gel filtration low molecular weight and high molecular

weight calibration kits (Amersham Biosciences).

Meta-Analysis of Arabidopsis Gene Expression Microarray Data

A microarray dataset describing the response of Arabidopsis plantlets to

heat shock at 388C was downloaded from The Arabidopsis Information

Resource site (for detailed experimental setup and results, see http://

www.Arabidopsis.org/servlets/TairObject?type¼expression_setandid¼
1007967124) and processed using Genespring software (Silicon Genet-

ics). Normalization per gene and per chip of the log2 values was

performed, allowing comparison of the two independent replicates avail-

able. Normalized gene expression levels of duplicates were averaged and

used to determine levels of induction relative to control growth conditions

(258C).

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative database under the following accession numbers: At4g16860

(RPP5); At3g48090 (EDS1); At3g52430 (PAD4); At5g51700 (RAR1);

At4g23570 (SGT1a); At4g11260 (SGT1b); At5g02500 (HSC70-1);

At5g02490 (HSC70-2); At3g09440 (HSC70-3); At3g12580 (HSC70-4);

At1g16030 (HSC70-5); At2g14610 (PR1); At5g44340 (TUB4); At3g07040

(RPM1); At4g05320 (UBQ10); At2g39940 (COI1); and At5g52640 (HSP90-1).
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Supplemental Figure 1. Functionality Tests of the StrepII-Tagged

SGT1 Proteins in Transgenic Arabidopsis Described in Figure 1.

Supplemental Figure 2. Mass Fingerprinting of Two Peptides Dis-

criminating between Cytosolic HSC70 Isoforms.

Supplemental Figure 3. Interaction Studies between SGT1 and

RAR1 or HSP90-1 Using the Clontech Matchmaker GAL4 Yeast

Two-Hybrid System.

Supplemental Figure 4. Individual Loss of Arabidopsis Isoforms 1, 2,

and 3 Does Not Affect Plant Immune Responses.

Supplemental Figure 5. SGT1b Loss of Function and HSC70-1

Overexpression Have Additive Effects on R Gene–Mediated Resis-

tance to H. parasitica.

Supplemental Table 1. Tryptic Fragments Observed by Mass Spec-

trometry of 70-kD Proteins Copurified with Overexpressed SGT1b-
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