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Members of the complex family of WRKY transcription factors

have been implicated in the regulation of transcriptional

reprogramming associated with plant immune responses.

Recently genetic evidence directly proving their significance as

positive and negative regulators of disease resistance has

accumulated. WRKY genes were shown to be functionally

connected forming a transcriptional network composed of

positive and negative feedback loops and feed-forward

modules. Within a web of partially redundant elements some

WRKY factors hold central positions mediating fast and

efficient activation of defense programs. A key mechanism

triggering strong immune responses appears to be based on

the inactivation of defense-suppressing WRKY proteins.
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Introduction
The plant’s innate immune system consists of two

interconnected branches termed PAMP-triggered imm-

unity (PTI) and effector-triggered immunity (ETI)

[1] that initiate massive transcriptional reprogramming

[2,3]. PTI is elicited by pathogen/microbe-associated mol-

ecular patterns (PAMPs/MAMPs), molecular signatures
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ubiquitously decorating certain types of pathogens. PAMP

perception activates distinct MAP-kinase cascades [4–6].

Multiple microorganisms secrete effector proteins into

host cells that intercept PAMP-triggered defense signals

and thereby attenuate PTI [7]. The remaining weak

immune response, termed basal defense, is insufficient

to prevent disease. Co-evolution of virulent pathogens

with their hosts resulted in the establishment of ETI, a

manifestation of gene-for-gene resistance [1]. ETI is trig-

gered by plant disease resistance (R) proteins that activate

highly efficient defense reactions upon specific recognition

of pathogen effectors. Besides local immune responses,

PTI and ETI activate long-distance defense reactions,

such as systemic acquired resistance (SAR) [8]. In Arabi-
dopsis thaliana (Arabidopsis) and other higher plants, local

and systemic defense responses are controlled by the

balanced action of distinct, but partially interconnected

pathways involving the hormones salicylic acid (SA) and

jasmonic acid (JA) [9].

Global expression profiling revealed that the major differ-

ences between PTI, ETI, basal defense, or SAR are

quantitative and/or temporal rather than qualitative [3].

This suggests that most pathogens trigger a common/

interconnected plant signaling network. The graded tran-

scriptional responses associated with immunity clearly

indicate the existence of a complex regulatory circuitry

comprising transcriptional activators and repressors fine-

tuning the expression of defense genes [2]. Members of

several transcription factor (TF) families modulate the

defense transcriptome [2,10]. In particular, the presence

of WRKY TF binding sites (C/TTGACC/T, W boxes) in

numerous co-regulated Arabidopsis defense gene promo-

ters provided circumstantial evidence that zinc-finger-

type WRKY factors play a broad and pivotal role in

regulating defenses [10].

The role of WRKY factors in plant defense
Functional redundancy among certain family members has

hampered attempts to causally link specific WRKY TFs to

plant defense [11]. In Arabidopsis, there are 72 expressed

WRKY genes (http://www.arabidopsis.org/browse/

genefamily/WRKY.jsp). However, recent publications

have provided conclusive genetic proof that Arabidopsis

WRKY factors are crucial regulators of the defense tran-

scriptome and disease resistance. AtWRKY52/RRS1 was

shown to confer resistance toward the bacterium Ralstonia
solanacearum, but the encoded protein is quite exceptional

and appears to act as an R protein (see below) [12].

Several groups have reported on the importance of

AtWRKY70, which appears to affect the balance between
www.sciencedirect.com
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signaling branches promoting SA-dependent and

suppressing JA-dependent responses [13,14�]. Loss-of-

AtWRKY70 function rendered plants susceptible to the

bacteria Erwinia carotovora and Pseudomonas syringae as

well as the fungi Erysiphe cichoracearum and Botrytis cinerea
[13,15,16��]. Moreover, AtWRKY70 is required for both

basal defense and full R-gene (RPP4)-mediated disease

resistance against the oomycete Hyaloperonospora para-
sitica [17�] Similarly, mutants compromised in AtWRKY33
were more susceptible to infection by B. cinerea and

Alternaria brassicicola [18]. Several WRKY factors act as

negative regulators of resistance. For instance, basal plant

resistance triggered by a virulent P. syringae strain was

enhanced in Atwrky7 and Atwrky11/Atwrky17 insertional

mutants [19�,20] thereby also revealing partly redundant

functions for these closely related TFs.

A small clade (subgroup IIa) of WRKY genes, comprising

AtWRKY18, AtWRKY40, and AtWRKY60, play important

and partly redundant functions in regulating plant disease

resistance. Xu et al. [21��] showed that Atwrky18/Atwrky40
and Atwrky18/Atwrky60 double mutants were more resist-

ant to P. syringae DC3000 but more susceptible to B.
cinerea infection. Atwrky18/Atwrky40 double mutants were

also highly resistant toward an otherwise virulent pow-

dery mildew, Golovinomyces orontii [22��]. In both studies

single Atwrky mutants behaved similar to wild-type

plants. Interestingly, AtWRKY18 was also identified as

a positive regulator required for full SAR, but here

AtWRKY40 does not seem to be involved [16��]. Differ-

ences in the experimental set-ups employed by Xu et al.
[21��] and Wang et al. [16��] may be responsible for the

apparent discrepancy observed in the Atwrky18 mutant

when challenged by virulent P. syringae strains. Xu et al.
used 10-fold higher bacterial inoculum that may have

masked the effect on basal resistance caused by loss-of-

AtWRKY18 function.

In barley, two IIa WRKY members were shown to sup-

press basal defense to virulent Blumeria graminis in silen-

cing and transient overexpression experiments [22��,23].

These results demonstrate that subgroup IIa members

can have both positive and negative roles in plant

defense. Consistent with this, AtWRKY18 overexpression

alone resulted in enhanced basal P. syringae resistance,

while combined overexpression of AtWRKY18 with other

IIa WRKYs reversed this effect [21��].

Finally, two additional WRKY factors, AtWRKY53 acting

as a positive regulator and AtWRK58 as a negative reg-

ulator, were identified as modulators of SAR [16��].

Conserved structural features may integrate
WRKY TFs in the defense network
WRKY TF classification was based on phylogenetic

relationships and conservation of peptide motifs [24–26].
www.sciencedirect.com
Unfortunately, a solution structure exists only for the

common zinc-finger-containing WRKY DNA-binding

domain [27�] and thus no topological information regarding

subgroup-specific motifs are available. Nevertheless, some

of these structural hallmarks, which appear largely con-

served throughout the plant kingdom, have recently been

associated with defined molecular or biological functions.

It is very likely that they functionally link individual

WRKY molecules to each other or to additional defense

signaling components. The ‘D motif’ of AtWRKY25 and

AtWRKY33 that is conserved at the N-termini of multiple

group I WRKY TFs [24] can be phosphorylated by

MPK4, a MAP-kinase that represses SA signaling [28�].
AtWRKY25/33 appear not to directly interact with MPK4,

but rather are associated to it via the nuclear localized

coupling factor MKS1 [28�]. One notable feature of D

motif is a conserved pattern of ‘Ser-Pro’ dimers, the pre-

ferential site of MAP-kinase phosphorylation [29]. In

agreement with this, the D motif-containing NtWRKY1,

a tobacco group I WRKY, was shown to be phosphorylated

by the defense-activating MAP-kinase SIPK [5]. SIPK-

mediated phosphorylation enhanced in vitro the W box-

binding activity of NtWRKY1, and co-expression of SIPK

and NtWRKY1 led to rapid hypersensitive response (HR)-

like host cell death.

The N-terminal leucine zipper motifs of Arabidopsis IIa

WRKY proteins were shown to mediate homodimerization

or heterodimerization between members of this subgroup

[21��]. Consistent with this, IIa representatives from rice

(OsWRKY71) and barley (HvWRKY1, HvWRKY2) were

found in vivo to engage in homomeric associations

[22��,30]. The ability of IIa WRKY factors to form combi-

natorial dimers with potentially different functions may

partly explain the conflicting data regarding a positive

[16��] or a negative [21��] regulatory role of IIa WRKY

TFs in basal defense of P. syringae. Concentration disturb-

ances caused by environmental conditions, mutations, or

overexpression could affect the balance between different

IIa WRKY dimer associations, and thereby, alter the out-

come of plant–pathogen interactions.

The conserved ‘C motif’ present among IId WRKY mem-

bers was shown to constitute a calmodulin-binding domain

[31�]. Hence, like several other known defense regulators

[32], IId WRKY TFs may sense and respond to pathogen-

triggered fluctuations of intracellular Ca2+ levels.

Two other conserved sequences of unknown function are

unique to IId WRKY members, namely GHARFRR and a

plant specific zinc cluster directly preceding their single

WRKY domains [24,33�]. Mutation of a strictly conserved

residue within this zinc cluster region reduced binding

of AtWRKY11 to a W box (Ciolkowski and Somssich,

unpublished), suggesting a role of this motif in enhancing

DNA affinity. As described above, the IId members

AtWRKY7, AtWRKY11 and AtWRKY17, act as negative
Current Opinion in Plant Biology 2007, 10:366–371
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defense regulators [19�,20]. How they exert this effect,

either directly by repressing transcription or indirectly by

activating an undefined defense-suppressor, remains

unresolved. However, both AtWRKY7 and AtWRKY11

can act as transcriptional repressors ([20]; Ciolkowski and

Somssich, unpublished).

It will be important to determine whether repression of

defense and transcription is a general attribute of IId

WRKY TFs and if these functions can be assigned to

specific structural features of this subgroup.

The WRKY web
Plant immune responses are associated with the concerted

modulation of a large number of different WRKY tran-

scripts and proteins [15,34–36,37��]. Upon triggering of SA-

dependent defenses, at least 49 AtWRKY genes exhibited

differential regulation representing separate waves of tran-

script accumulation or repression [34]. Their promoters are

statistically enriched for W boxes, suggesting that they are

autoregulated or controlled by other WRKY proteins [34].

Consistent with this, multiple WRKY TFs interacted with

the promoters of their own and other WRKY genes in co-

transfection experiments [38–40]. Furthermore, Arabidop-

sis insertion mutant studies revealed that some WRKY
genes positively or negatively influence expression of other

family members [19�,35]. These observations point toward

a functional linkage of many WRKY genes by auto-regu-

latory and cross-regulatory mechanisms. They form the

core of a transcriptional network that along with additional

signaling components controls a multitude of defense

genes. This WRKY web appears to consist of positive

and negative control elements possibly allowing for an

efficient yet balanced amplification and diversification of

defense signals.

Details of auto-regulation or cross-regulation by WRKY

factors were provided for the parsley group I member

PcWRKY1 and its ortholog AtWRKY33 [37��,39,41]. In

response to PAMP treatment PcWRKY1 transcripts

accumulate rapidly and transiently [42]. AtWRKY33 is

activated with similar kinetics by defense-related stimuli

[18,34,41]. This rapid response is mediated by a conserved

arrangement of three synergistically acting W boxes

(WABC). Chromatin immunoprecipitation (ChIP) revealed

that in vivo these orthologous W boxes are constitutively

occupied by WRKY proteins [37��,41]. PAMP treatment

triggered simultaneous recruitment of PcWRKY1 to WABC

and to another target site, the W box-containing region of

the PcPR1 promoter. Binding of PcWRKY1 to these sites

coincided with the downregulation of PcWRKY1 and upre-

gulation of PcPR1 transcript levels, suggesting a dual role of

this factor as a repressor of its own gene and as an activator

of PcPR1. This illustrates the wiring of two basic circuits

within the WRKY web, the negative feedback loops and

feed-forward modules both requiring an induced transcrip-

tion factor to repress its own expression or to activate
Current Opinion in Plant Biology 2007, 10:366–371
additional steps within a transcriptional cascade, respect-

ively [43]. The early PAMP-triggered upregulation of

PcWRKY1 may be mediated either via rapid displacement

of pre-bound WRKY repressors by activated family mem-

bers or via post-translational activation of the pre-bound

WRKY proteins (Figure 1).

Some architectural features of the WRKY web are emer-

ging. As motif D containing group I WRKY TFs can be

phosphorylated by MAP-kinases, they are likely to serve

as the first WRKY proteins activated in response to

PAMP-triggered MAPK signaling. Their targets may

include the IIe WRKY genes AtWRKY22 and AtWRKY29,

which are upregulated by a PAMP-induced MAPK cas-

cade and contain multiple W boxes within their respect-

ive promoters [4]. Co-transfection experiments further

suggested that AtWRKY22 and AtWRKY29 can amplify

expression of their own genes via a positive feedback loop

[4]. The synthesis of SA and the expression of NPR1, a

key regulator of some PAMP-triggered responses, appear

to be partly controlled by WRKY factors. NPR1 is

regulated by WRKY TFs interacting with two W box

elements in its 50UTR [44]. Defense-associated SA pro-

duction is strongly dependent on pathogen-inducible

expression of ICS1 [45]. This gene is a likely target of

WRKY TFs, as its promoter is enriched for W boxes.

However, the identities of the specific WRKY factors

controlling ICS1 and NPR1 are unknown.

Eight WRKY genes (AtWRKY18, -38, -53, -54, -58, -59, -66
and -70) were identified as direct targets of NPR1 [16��].
A nuclear-targeted NPR1-glucocotricoid receptor fusion

conditionally expressed in the npr1-1 mutant induced their

transcription in the absence of protein biosynthesis [46].

Consistent with the role of NPR1 in stimulating transcrip-

tion via interactions with TGA-bZIP transcription factors,

expression of all eight NPR1-targeted WRKY genes was

reduced or abolished in the npr1-1 or tga2/tga3/tga5/tga6
mutants. Use of T-DNA insertion mutants confirmed roles

for most of these WRKY genes in NPR1-dependent

defenses (see above).

Finally, AtWRKY51 was identified as a potential SA-de-

pendent downstream target of TGA2 by ChIP and whole-

genome microarrays [47].

These data illustrate that WRKY TFs operate at multiple

levels within complex PAMP-triggered transcriptional cas-

cades. The activity of defense-promoting WRKY TFs is

counteracted by that of PAMP-inducible WRKY factors

with negative effects on defense, suggesting that feedback

mechanisms limit the amplitude and duration of basal

immune responses. Intriguingly, such negative feedback

mechanisms seem to provide a functional interface be-

tween PTI and ETI [22��]. Upon AVR-effector recog-

nition barley MLA resistance proteins were found to

translocate to the nucleus and to physically interact with
www.sciencedirect.com
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Figure 1

Hypothetical modules of the WRKY web. Cellular defense signaling is triggered by recognition of pathogen-derived PAMPs via distinct plasma

membrane (PM) localized receptors and transduced partly by MAP kinase cascades. Defense responses are also initiated upon detection of

effector/avirulence (AVR) products of the pathogen within the host cell by major plant R proteins. In both cases, rapid alterations of gene

expression ensues mediation by the action of distinct transcription factors such as WRKY TFs. ETI can be triggered by effector-mediated

activation of R proteins (R inactive! R active) and subsequent inhibition of defense suppressing WRKY TFs. Pathogen-triggered SA signaling

releases NPR1 from oligomer complexes resulting in the accumulation of NPR1 monomers in the nucleus and association with TGA TFs at

promoter sites. A set of WRKY genes dependent on NPR1 function influence, both positively and negatively, downstream targets genes as

indicated [16��]. MEKK1, MAP kinase kinase kinase; MEK1, MKK2, MKK4, MKK5, MAP kinase kinases; MPK3, MPK4, MPK6, MAP kinases. For

details see text.
HvWRKY1 and HvWRKY2. These IIa WRKY proteins

function as PAMP-inducible suppressors of basal defense.

High-level expression of HvWRKY2 attenuated MLA10-

mediated ETI, indicating antagonistic interactions be-

tween these proteins. These observations imply that

MLA-mediated effector recognition activates high-ampli-

tude defense reactions by directly interfering with IIa

WRKY TFs and thereby de-repressing PAMP-dependent

basal defense. The existence of additional shortcuts in

effector-triggered defense activation is supported by the

unusual structure of the AtWRKY52/RRS1 R gene product

[12]. Besides a group III-type WRKY domain, this protein

contains domains characteristic for R proteins. Like barley

MLAs, it interacts in the nucleus with its cognate effector,

PopP2 [48]. Interestingly, a missense mutation within its

WRKY domain results in conditional activation of defense

responses and loss of in vitro binding to W boxes suggesting

a negative role of this factor in defense signaling [49]. Thus,
www.sciencedirect.com
it is tempting to speculate that the interaction with PopP2

excludes AtWRKY52/RRS1 from its proper DNA target

sites and activates defenses by de-repression.

Conclusions
Transcription factors interact with other TFs as well as

with additional nuclear proteins including co-activators/-

repressors and components of the general transcriptional

machinery to enable proper context-dependent expres-

sion of genes. As discussed above, several WRKY factors

act as negative regulators of plant defense whereas others

positively modulate this response implying their associ-

ation with distinct regulatory complexes. Discrimination

can part be determined by distinct topological features

present in selected WRKY proteins.

An inherent feature of WRKY genes is their func-

tional redundancy in defense programs. The existence
Current Opinion in Plant Biology 2007, 10:366–371
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of redundant elements within the WRKY web may reflect

a strong need to backup essential regulatory functions

[33�] and could suggest that some WRKY TFs are mani-

pulated by pathogen effectors to promote virulence.

Multiple pathogen effectors are targeted to host nuclei

and modify expression of the defense transcriptome [50].

However, except for AtWRKY52/RRS1 and HvWRKY1/

2, interactions of pathogen effectors with WRKY TFs

have not yet been reported. Still, on the basis of the

enormous progress made within the past two years we can

expect exciting novel revelations about WRKY TFs in

the very near future.
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