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Abstract The eukaryotic N-end rule pathway mediates ubiqui-
tin- and proteasome-dependent turnover of proteins with a bulky
amino-terminal residue. Arabidopsis locus At5g02310 shows sig-
nificant similarity to the yeast N-end rule ligase Ubr1. We dem-
onstrate that At5g02310 is a ubiquitin ligase and mediates
degradation of proteins with amino-terminal Arg residue. Unlike
Ubr1, the Arabidopsis protein does not participate in degrada-
tion of proteins with amino-terminal Phe or Leu. This modified
target specificity coincides with characteristic differences in do-
main structure. In contrast to previous publications, our data
indicate that At5g02310 is not identical to CER3, a gene in-
volved in establishment of a protective surface wax layer.
At5g02310 has therefore been re-designated PROTEOLYSIS
6 (PRT6), in accordance with its ubiquitin ligase function.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Ubiquitin, a highly conserved 76 amino acid polypeptide,

can be covalently linked to other proteins by enzymatic cas-

cades consisting of ubiquitin activating and conjugating en-

zymes (UBA or E1, and UBC or E2, respectively), and of

ubiquitin protein ligases (E3). Ubiquitin conjugation often

leads to rapid degradation of substrate proteins by the large

protease complex proteasome. Ubiquitin ligases are instrumen-

tal in substrate selection, and usually catalyze the linkage of

ubiquitin’s carboxyl-terminal Gly residue to e-amino groups

of internal Lys residues in substrates (for reviews, see [1–7]).

Domains within the ligases serve for substrate binding, and

therefore display sequence diversity. Similar diversity is found

in the domains of substrate proteins that mediate association

with ubiquitin ligases. The first degradation signal (degron)

identified was a bulky amino-terminal residue of a protein

[8]. The resulting set of degrons was termed the N-degrons

[9,10]. In contrast, amino acids with small side chains such

as Ala or Ser, which are frequently present at the amino ter-
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mini of cellular proteins, do not target these proteins for deg-

radation. Substrates of the eukaryotic N-end rule pathway

include components of NO signaling in animals [11], and pro-

teins important for pathogen defense and senescence in plants

[12,13].

Saccharomyces cerevisiae was found to have a single ubiqui-

tin ligase devoted to the N-end rule, termed Ubr1 [14], whereas

mammals have several isoforms encoded by distinct genes [15].

A previous screen in Arabidopsis identified genes PRT1–5

(PROTEOLYSIS 1–5) as potential components of the plant

N-end rule pathway [16]. PRT1 was subsequently demon-

strated to function as a ubiquitin ligase of the plant N-end rule

pathway, but its restricted substrate specificity strongly sug-

gested the existence of additional N-end rule ligases in plants

[17,18].

In this work, we investigated the function of locus

At5g02310, which encodes the Arabidopsis protein most simi-

lar to yeast N-end rule ligase Ubr1. Previous studies annotated

this locus as ECERIFERUM 3 (CER3), a gene essential for

epicuticular wax biosynthesis [19,20]. cer mutants [21] are most

easily identified by the glossy green color of their stems, be-

cause they lack the whitish layer of protective surface wax crys-

tals. Numerous genes that are required for wax biosynthesis

and transport have been identified (for recent reviews, see

[22,23]). Based on these data, it appeared that At5g02310/

CER3 could provide a link between the N-end rule pathway

of protein degradation and wax biosynthesis or transport.

We show that At5g02310 codes for a functional ubiquitin

ligase of the N-end rule pathway of protein degradation. How-

ever, in contrast to previous claims, null mutations in this gene

have a normal wax layer, implying that it is not the CER3

locus. Consistent with previous designations in the Arabidopsis

N-end rule pathway, At5g02310 was renamed PRT6

(PROTEOLYSIS 6).
2. Materials and methods

2.1. Plant growth and genotyping
Plants were grown on soil under standard greenhouse long day con-

ditions, with 16 h light/8 h dark cycles. Young plantlets were germi-
nated on agar plates containing MS salts and 1% sucrose. Plant
transformation of Col-0 accession was done by the floral dip method.
The original cer3 mutant seeds (line N33) were obtained from the Not-
tingham Arabidopsis Stock Centre. T-DNA insertion allele prt6-1 was
a kind gift of Syngenta Inc. (SAIL 1278_H11; Ref. [24]). The prt6-1
insertion was detected by PCR, using oligonucleotides Garlic LB1
blished by Elsevier B.V. All rights reserved.
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(GCC TTT TCA GAA ATG GAT AAA TAG CCT TGC TTC C) and
ubrdn3 (GTT TCT TGT TCT GGG GAG GAT GGT TT) and LA
Taq polymerase (TaKaRa). Similar PCR conditions, but with primers
ubrdn3 and ubrup3 (AGG ACA ATA GGT ACA TAC TCA TTT
GTT), served to detect wild-type sequence at the prt6-1 T-DNA inser-
tion site. T-DNA insertion allele prt6-2 was identified in the GABI-
KAT collection (GK270G04; Ref. [25]). The insertion was monitored
using primers o8760 (GGG CTA CAC TGA ATT GGT AGC TC)
and CER3up (CAA TGC AAA TCT GCG CAC AGA GAC T).
Wild-type sequence at the prt6-2 insertion site was monitored by
PCR with oligonucleotides CER3up and CER3dn (TCC CTC TGC
CAT GAC CCA GAT TC) and LA Taq polymerase (TaKaRa). Both
prt6 alleles were backcrossed several times to wild-type (Col-0). Calcu-
lation of map distance between cer3 and prt6-2 used the formulae
N(2r � r2)/4 for relative frequency of plants with (sulfadiazine resis-
tance conferring) T-DNA insert in PRT6 and cer3 mutant phenotype,
and N(3 � 2r � r2)/4 to assess sulfadiazine-resistant plants with CER3
(WT) phenotype. r is the frequency of recombination between the two
loci, and N the total number of individuals analyzed (see Section 3).

2.2. DNA constructs
A fragment of pUPR vectors [18], containing the Glyn-lacI exten-

sion, was amplified by PCR and linked to a fragment encoding a triple
HA epitope tag. The sequence was cloned into pSK vector and ex-
tended by inserting a GUS cassette from vector pRT104GUS (a kind
gift of R. Töpfer) to obtain vector pSKlacIHAGUS. The lacIHAGUS
insert from this vector was inserted between Bgl II and Xba I sites of
vectors pUPR-X (Ref. [18]; X denotes the amino acids Met, Arg, Leu,
or Phe) to generate fusions of the stable reference protein DHFR-HA-
ub with the X-lacI-3HA-GUS test proteins (called pUPR-GUS-X).
Details of cloning, and sequences of the constructs, can be provided
upon request. Xho I Xba I fragments from vectors pUPR-GUS-X
were inserted into plant binary vector p3 [26]. The constructs, called
p3GUS-X, were used for plant transformation and allow expression
of the inserted ORF under control of a triple CaMV 35S promoter.
The ensuing protein products are referred to as X-GUS (X being the
single letter code for the amino acid exposed after cleavage of the
translation product by ubiquitin-specific proteases).

2.3. GUS staining
Staining of plants to visualize GUS activity was carried out as de-

scribed [27].

2.4. Western blotting
Leaf extracts were prepared and separated on polyacrylamide gels as

described [18]. The gel was further processed as recommended for fluo-
rescence detection (Odyssey Li-Cor), starting with protein transfer
onto BA85 nitrocellulose membranes (Whatman). After saturation of
residual protein binding sites (Odyssey blocking buffer; Li-Cor), the
blot was incubated with rat anti-HA antibody (Roche), followed by
IRdye 800-conjugated goat anti-rat IgG secondary antibody (Rock-
land). The Odyssey Infrared Imager (Li-Cor) was used for band detec-
tion and quantification with an excitation wavelength of 780 nm, to
record emission at 820 nm.
2.5. Wax analysis
Procedures used for GC–MS analysis of cuticular wax composition

have been described previously [28].
2.6. Bioinformatic analysis
Sequence database searches were performed by BLAST [29], and by

generalized profile method [30]. Multiple sequence alignments were cal-
culated by the MUSCLE program [31].
3. Results

Sequence analysis of potential Arabidopsis ubiquitin ligases

revealed that gene At5g02310 shows significant similarity to

the yeast ubiquitin ligase gene UBR1. As At5g02310 has been

reported earlier to encode ECERIFERUM 3 (CER3), specify-
ing an important function in wax biosynthesis, it appeared

interesting to examine the possible ubiquitin ligase activity of

the At5g02310 gene product. Revisiting the details of CER3

cloning by Hannoufa et al. [19], we noticed that the available

data, for instance regarding chromosomal location of CER3,

were not fully consistent. The wax-deficient cer3 mutant was

first identified by Koornneef et al. (Ref. [21]; allele cer3-1),

and mapped to the bottom arm of chromosome 5. Hannoufa

et al. [19] described an allele inducted by T-DNA insertional

mutagenesis, and reported that the T-DNA insertion was

localized in the untranslated 3 0 terminal portion of an open

reading frame (ORF). A standard set of experiments, including

mutant complementation by a fragment of genomic DNA, led

the authors to propose that this ORF is the CER3 gene, which

was accordingly deposited in the EMBL database (EMBL

accession number X95962). Completion of the chromosome

5 sequence revealed that X95962, corresponding to the

At5g02310 gene, is in fact located on the top arm of chromo-

some 5, far away from the previously determined position of

the cer3-1 mutation [21,32]. Gene prediction models further

suggested that At5g02310, and the adjacent ORF At5g02300,

encode a single protein, showing sequence similarity to yeast

Ubr1 (Fig. 1). Current annotation (GenBank accession num-

ber NP_195851) therefore lists this larger ORF as a single tran-

scription unit, using designation At5g02310. Based on the

report of Hannoufa et al. [19], At5g02310 was annotated by

genome curators as the ubiquitin-protein ligase CER3 required

for wax biosynthesis, notwithstanding the fact that the frag-

ment used in Ref. [19] for the complementation of a cer3 mu-

tant did not contain the complete At5g02310 gene.

Homologous sequence segments between At5g02310 and

yeast UBR1 extend across the entire ORF, indicating that

the proteins could perform a similar function (Fig. 1B, and

Supplementary Figure). For this reason, and for reasons de-

scribed in detail in the following, we used abbreviation

PRT6 (PROTEOLYSIS 6) instead of CER3 to designate

At5g02310. Ubr1 is the ubiquitin ligase of the yeast N-end rule

pathway of protein degradation [14] (see also Section 1). It was

previously shown that the N-end rule pathway exists in plants

[13,16,33,34], and a function for PRT6 in the plant N-end rule

pathway was tested using loss-of-function mutants, and model

substrates.

In view of possible ambiguity regarding the CER3 locus, T-

DNA insertion lines with defined sites of integration within

At5g02310 were obtained from the SAIL and GABI-KAT col-

lections. Characterization of these T-DNA tagged mutants

showed that the SAIL 1278_H11 (prt6-1) mutant carried an

insertion in sequences originally annotated as At5g02300,

interrupting PRT6 close to the 5 0 end (Fig. 1A). In the

GABI-KAT GK270G04 (prt6-2) mutant, the T-DNA insertion

interrupted the genomic DNA fragment that was originally

used for cer3 complementation in Ref. [19]. Much to our sur-

prise, homozygous plants carrying either the prt6-1, or the

prt6-2 mutant allele failed to display visually an eceriferum

phenotype.

To further investigate the discrepancy to previously pub-

lished genetic data of the CER3 locus, we compared the pheno-

types of homozygous T-DNA insertion mutants with the

original cer3-1 allele. Because cer3-1 was generated in Ler

background, whereas the prt6-1 and prt6-2 mutations were

in the Col-0 background, we performed prt6-1 · cer3-1

and prt6-2 · cer3-1 crosses along with a control cross Col-0
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Fig. 1. The gene PRT6/At5g02310 (formerly CER3). (A) Structure of the transcribed region. Blocks represent parts of the open reading frame.
Arrowheads indicate positions of T-DNA insertions in mutant alleles prt6-1 and prt6-2. (B) Schematic alignment of protein domains of PRT6 and its
yeast sequelog, Ubr1. Sequence blocks with particularly high conservation are indicated as thick bars. UBR, UBR domain; ClpS, region with
similarity to Escherichia coli ClpS; RF, region containing a RING finger motif; C-term, carboxyl-terminal similarity region. A sequence alignment
that formed the basis for these assignments is available as Supplementary material.
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(wild-type) · cer3-1. When performing these complementation

tests, we also reasoned that, if any of the prt or cer alleles

would result in a leaky or semi-dominant phenotype, the hemi-

zygous state would be most sensitive in revealing such more

subtle deviations from wild-type. Koorneef et al. [21] demon-

strated that the cer3-1 allele is recessive, and as expected, F1

plants from the cross Col-0 · cer3-1 were visually wild-type,

and were readily distinguishable by eye from cer3-1. Whereas

cer3-1 plants had darker, iridescent green stems and were al-

most completely sterile under the intermediate humidity condi-

tions of our greenhouses, F1 hybrids were fully fertile and had

a whitish stem color due to a wax coating. F1 hybrids from the

two other crosses, prt6-1 · cer3-1 and prt6-2 · cer3-1, were

indistinguishable from Col-0 · cer3-1 progeny. The presence

of these T-DNA insertions in the F1 hybrids was confirmed

by PCR (data not shown). We thus conclude that prt6 and

cer3-1 are not allelic.

As cer3 mutants accumulate significantly lower levels of wax

in both stems and leaves [35], the cer3-1, prt6-1 and prt6-2 mu-

tants, and all F1 hybrids were subjected to leaf wax analysis

(Table 1). The amount of compounds from the sterol family

(cholesterol, campesterol) was similar in all genotypes, and

served as a control. Likewise, C26 alcohol and C28 alcohol

content was not decreased in cer3-1 mutants compared to

wild-type and the prt6 mutants. In contrast, the amounts of

alkanes with chain length 29 or higher, alcohols with chain

length 30 or 32, and fatty acids with chain length 30 or 32 were

at least 10-fold reduced in the cer3-1 mutant compared to prt6

mutants. The observed values of wax constituents in cer3-1

and prt6 mutants were in good agreement with published data

for cer3 and wild-type plants, respectively [35,36]. Our conclu-

sion that PRT6 is not allelic to CER3 was also supported by

the fact that all F1 plants had comparable lipid content (Table

1). In all those cases where the abundance of a lipid constituent

was significantly reduced in the cer3-1 mutant, we observed a

reduction of up to 50% in the F1 hybrids compared to prt6 mu-

tant lines. This finding indicated a gene dose effect, i.e. 50%

CER3 gene dose in the F1 plants resulted in approximately

50% abundance of those lipid compounds that depended on

CER3 gene activity. Because all F1 plants had the same Ler–

Col-0 genetic background, we concluded that prt6 mutant

plants contained an intact copy of the CER3 gene.

To determine the genetic distance between CER3 and the

At5g02310 locus, we analyzed F2 selfed progeny of the cer3-
1 · prt6-2 cross. For linkage analysis, we took advantage of

the sul gene encoded by the prt6-2 T-DNA insertion. This

allowed for efficient selection of sulfadiazine-resistant plants.

If CER3 and At5g02310 were closely linked, no cer3 plants

resistant to the antibiotic would be expected in the F2 genera-

tion. Altogether, 313 plants survived sulfadiazine selection, and

62 of these displayed the cer3 phenotype, while 251 were wild-

type. As detailed in 2.1, recombination between loci At5g02310

and CER3 occurred with frequency 33% (r = 0.330), suggesting

that CER3 is on chromosome 5, but maps at quite a distance

from At5g02310. This result is in good agreement with the

original mapping by Koornneef et al. [21], who determined

that cer3 maps to the bottom arm of chromosome 5. To

further substantiate the conclusion that PRT6 (At5g02310)

and CER3 genes are therefore not allelic, we re-

sequenced the PRT6 gene in the cer3-1 mutant N33 line and

found no mutations compared to the Ler parent (data not

shown).

To determine the possible involvement of PRT6 in the Ara-

bidopsis N-end rule pathway, we used model ubiquitylation

substrates. Table 2 summarizes the known enzymology of

the plant N-end rule pathway, including data presented below.

Our assays were based on the ubiquitin fusion degradation

technique. This method allows assessment of the metabolic sta-

bility of a test protein by comparison to a metabolically stable

reference protein that is co-translated with, but cleaved from

the test protein after synthesis (Fig. 2). Cleavage is carried

out by ubiquitin-specific intracellular proteases that recognize

the ubiquitin moiety present at the carboxyl end of the refer-

ence protein. This method, developed by Varshavsky and co-

workers [37,38], was previously applied in different variations

in plants [18,39]. prt6-1 plants were crossed to transgenic lines

harboring N-end rule test substrates (Fig. 2). As a control, we

included the previously characterized prt1 mutation in these

experiments. As indicated in Table 2, our previous studies sug-

gested that ubiquitin ligase PRT6 would not mediate turnover

of N-end rule substrates with an aromatic first amino acid res-

idue, because these are substrates of PRT1 [18]. We expected

that if PRT6 functions as ubiquitin ligase, the substrates

should either start with basic amino termini (represented by

Arg in this investigation) or with aliphatic hydrophobic resi-

dues such as Leu. In contrast to that, the yeast PRT6 sequelog,

Ubr1, has two distinct binding sites for destabilizing amino

termini, one for basic residues and one for (aliphatic and



Table 1
Plants with mutations in At5g02310 have normal wax content

Lipid constituent Genotypea Quantityb

(lg/cm2 leaf area)

Cholesterol cer3-1 0.019 ± 0.004
prt6-1 0.023 ± 0.003
prt6-2 0.031 ± 0.004
F1 Col-0 · cer3-1 0.025 ± 0.004
F1 prt6-1 · cer3-1 0.029 ± 0.001
F1 prt6-2 · cer3-1 0.029 ± 0.001

Campesterol cer3-1 0.041 ± 0.005
prt6-1 0.048 ± 0.003
prt6-2 0.050 ± 0.005
F1 Col-0 · cer3-1 0.040 ± 0.004
F1 prt6-1 · cer3-1 0.028 ± 0.001
F1 prt6-2 · cer3-1 0.039 ± 0.011

C29 alkane cer3-1 0.012 ± 0.002
prt6-1 0.160 ± 0.005
prt6-2 0.205 ± 0.028
F1 Col-0 · cer3-1 0.076 ± 0.005
F1 prt6-1 · cer3-1 0.112 ± 0.005
F1 prt6-2 · cer3-1 0.131 ± 0.008

C31 alkane cer3-1 Below det. level
prt6-1 0.219 ± 0.013
prt6-2 0.293 ± 0.047
F1 Col-0 · cer3-1 0.130 ± 0.002
F1 prt6-1 · cer3-1 0.163 ± 0.010
F1 prt6-2 · cer3-1 0.153 ± 0.025

C33 alkane cer3-1 Below det. level
prt6-1 0.051 ± 0.001
prt6-2 0.053 ± 0.009
F1 Col-0 · cer3-1 0.022 ± 0.002
F1 prt6-1 · cer3-1 0.021 ± 0.001
F1 prt6-2 · cer3-1 0.020 ± 0.005

C26 alcohol cer3-1 0.024 ± 0.002
prt6-1 0.016 ± 0.002
prt6-2 0.022 ± 0.005
F1 Col-0 · cer3-1 0.013 ± 0.002
F1 prt6-1 · cer3-1 0.022 ± 0.002
F1 prt6-2 · cer3-1 0.018 ± 0.001

C28 alcohol cer3-1 0.032 ± 0.004
prt6-1 0.036 ± 0.004
prt6-2 0.047 ± 0.011
F1 Col-0 · cer3-1 0.024 ± 0.002
F1 prt6-1 · cer3-1 0.039 ± 0.004
F1 prt6-2 · cer3-1 0.027 ± 0.005

C30 alcohol cer3-1 0.003 ± 0.001
prt6-1 0.028 ± 0.001
prt6-2 0.084 ± 0.017
F1 Col-0 · cer3-1 0.018 ± 0.004
F1 prt6-1 · cer3-1 0.013 ± 0.001
F1 prt6-2 · cer3-1 0.012 ± 0.001

C32 alcohol cer3-1 Below det. level
prt6-1 0.127 ± 0.006
prt6-2 0.169 ± 0.018
F1 Col-0 · cer3-1 0.096 ± 0.005
F1 prt6-1 · cer3-1 0.068 ± 0.001
F1 prt6-2 · cer3-1 0.108 ± 0.007

C30 acid cer3-1 Below det. level
prt6-1 0.014 ± 0.003
prt6-2 0.032 ± 0.001
F1 Col-0 · cer3-1 0.016 ± 0.004
F1 prt6-1 · cer3-1 0.012 ± 0.001
F1 prt6-2 · cer3-1 0.028 ± 0.006

Table 1 (continued)

Lipid constituent Genotypea Quantityb

(lg/cm2 leaf area)

C32 acid cer3-1 0.005 ± 0.001
prt6-1 0.090 ± 0.008
prt6-2 0.082 ± 0.017
F1 Col-0 · cer3-1 0.022 ± 0.003
F1 prt6-1 · cer3-1 0.020 ± 0.001
F1 prt6-2 · cer3-1 0.032 ± 0.004

aThe cer3-1 allele was in Ler background. All other mutations were in
Col-0 background. The F1 hybrids therefore represent isogenic com-
parisons, devoid of variations due to different genetic background.
bIndicated are mean values of samples from three (in rare cases two)
plants, ± standard error of the mean.
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aromatic) hydrophobic residues [40,41]. Fig. 3 shows a histo-

chemical staining assay, detecting substrate GUS proteins in

different mutant backgrounds. In contrast to the stable M-

GUS, the N-end rule substrates F-GUS, L-GUS and R-GUS

were short-lived in wild-type plants. As expected, plants

expressing F-GUS from a transgene accumulate this protein

in the prt1 background, so that plantlets stain blue with

GUS enzyme substrate. The prt6-1 mutation alters the degra-

dation rate of R-GUS, but the mutation did not affect the

turnover of F-GUS (an expected result), or L-GUS. Finally,

plants harboring both prt1 and prt6-1 mutations showed accu-

mulation of stable F-GUS and R-GUS substrates, but still de-

graded the L-GUS reporter construct. The results depicted in

Fig. 3 thus suggested that PRT6 is a ubiquitin ligase of the

N-end rule pathway specific for basic amino termini.

The accumulation of R-GUS protein in prt6-1 mutants is

genetically linked to the T-DNA insertion in PRT6. Ninety-

one plantlets from an F2 population segregating for the prt6-

1 mutation and containing the R-GUS transgene were

analyzed by GUS staining of leaves, and PCR-based genotyp-

ing. We found 100% co-segregation of the trait ‘‘GUS-positive

staining’’ with homozygous T-DNA insertion at the PRT6

locus. 26 of the 91 plants were GUS-positive and homozygous

for the prt6-1 T-DNA insertion, whereas the remaining 65

plants were GUS-negative and harbored at least one wild-type

allele of the PRT6 locus. From this result we concluded that

the prt6-1 allele is recessive and directly responsible for stabil-

ization of the R-GUS test protein.

In order to obtain quantitative confirmation of the above de-

scribed qualitative data (Fig. 3), another property of the N-end

rule test constructs was exploited. The presence of influenza

hemagglutinin (HA) tags allows immunological detection of

both the GUS test protein and the co-translated, metabolically

stable reference protein (Fig. 2). Protein extracts from different

mutants were prepared, separated by SDS–PAGE, and sub-

jected to Western blotting with anti-HA primary, and fluores-

cent dye-coupled secondary antibody. The dye conjugate used

in these experiments permitted quantification of the HA epi-

tope-containing proteins (Fig. 4A). Whereas extract from

non-transformed plants gave a background of bands due to

non-specific binding of the secondary antibody (or due to

auto-fluorescence of some plant proteins), the gel regions con-

taining reference protein (one asterisk) or the test protein (two

asterisks) were almost devoid of such non-specific bands. Band

intensity was quantitatively assessed by excitation and fluores-

cence detection. Fig. 4B shows that the measured values

confirm the qualitative assays of Fig. 3. R-GUS protein



Table 2
The plant N-end rule pathway

Destabilizing residue Ubiquitin ligase/transferasea Gene identifier number Reference

Arg, (Lys, His)b PRT6 At5g02310 This work
Phe, Tyr, Trp PRT1 At3g24800 [18]
Leu, (Ile) ?
Asp, Glu, (ox. Cys) DLS1a At5g05700 [13]
(Asn, Gln ) ?

aSimilarity considerations suggested that DLS1 (delayed leaf senescence 1)/AtATE1 is an aminoacyl-tRNA protein transferase, transferring Arg
residues to extend the amino-terminal Asp or Glu.
bFirst amino acids that are destabilizing in animals or fungi, but were not directly tested for their destabilizing effect in plants, are shown in
parentheses. Amino acid abbreviations are in standard three letter code; ox. Cys is Cysteine with SH group oxidized to give cysteic acid, which
resembles Asp.

HA

GUSXDHFR UB

3xHA

DHFR UB GUSX

In vivo cleavage by
ubiquitin-specific proteases

Fig. 2. Test constructs for plant N-end rule proteolysis assays. The
stable, monomeric protein murine dihydrofolate reductase (DHFR,
white) was fused to the amino terminus of ubiquitin (variant K48R;
UB, light grey), followed by Escherichia coli beta glucuronidase (GUS,
black). The GUS ORF was extended by unstructured amino acids
(dark grey) to enhance the effect of destabilizing amino-terminal
residues. During or briefly after translation, the fusion protein is
cleaved into two parts by ubiquitin-specific proteases, a step that
exposes variable amino acid X (light grey). HA epitopes allow
immunological detection and quantitation of both cleavage products
with the same antibody.

Fig. 3. Histochemical assay of GUS reporter protein in seedlings
expressing ubiquitin fusion degradation test substrates (cf. Fig. 2).
M-GUS, F-GUS, R-GUS, or L-GUS constructs were expressed in
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accumulated at least 10-fold higher in prt6 plants compared

to wild-type or prt1 plants, and R-GUS levels approached

the value obtained for the stable M-GUS construct. Because

relative R-GUS abundance in the prt6 mutant was still about

3-fold lower than M-GUS abundance in the wild-type, we

could not rule out that another Arabidopsis ubiquitin ligase

contributes to R-GUS turnover. In contrast, abundance of

L-GUS substrate was not changed by the prt6 mutation.

Therefore, we concluded that Arabidopsis contains at least

one more component of the N-end rule pathway, which is

responsible for turnover of proteins with hydrophobic ali-

phatic amino termini, represented by L-GUS substrate in

our assays.
different genetic backgrounds, and plants were subsequently stained
for GUS activity. Whereas M-GUS is stable in all genotypes, giving
rise to blue coloration, F-GUS is stabilized only in presence of the prt1
mutation, and R-GUS is stabilized in the prt6 mutants. L-GUS
abundance is unaffected by both mutations.
4. Discussion

The N-end rule regulates a protein’s half life according to its

amino-terminal residue. Proteins with bulky first amino acids

and unmodified amino-terminal amino groups are channeled

into degradation pathways. In eukaryotes, degradation occurs

via the ubiquitin proteasome system. In this work, we show

that the gene product of At5g02310 is a sequelog of yeast N-

end rule ligase Ubr1, and operates in degradation of N-end

rule substrates with basic amino termini. We also show that

previous reports stating that At5g02310 is the CER3 gene

are unsubstantiated. We therefore re-named the locus

At5g02310 as PRT6 (PROTEOLYSIS 6).
Arabidopsis PRT6 and yeast Ubr1 differ functionally in one

important aspect. Whereas the yeast protein mediates turnover

of proteins based on either hydrophobic, or basic amino ter-

mini, the plant protein has apparently lost its ability to mediate

degradation of proteins with hydrophobic amino termini. This

finding is in agreement with the existence of a second ubiquitin

ligase in the plant N-end rule pathway, PRT1 (Table 2). The

latter ubiquitin ligase, however, only mediates degradation of



Fig. 4. Detection and quantitative measurement of N-end rule
substrates by protein blotting using fluorescent secondary antibody
excitation. (A) Crude protein extracts from plants (genotypes listed
above lanes) were separated by SDS–PAGE and transferred onto a
membrane. Primary antibody incubation (anti-HA antibody) was
followed by incubation with secondary antibody coupled to infrared
fluorescent dye IR800. The processed blot was irradiated to record a
fluorescence image. (1) Extract from prt1 plants expressing R-GUS
substrate. The prt1 mutation does not affect degradation of R-GUS, as
evidenced by the low intensity of the corresponding band. (2) Same as
lane 1, but genotype prt1 prt6. (3) Same as lane 1, but plant genotype
prt6. PRT6 mediates degradation of R-GUS, indicated by stabilization
of R-GUS in its absence. (4) Extract from non-transgenic wild-type
plant. (5) Extract from wild-type plant carrying the stable M-GUS
control construct. Bands marked by one (stable reference protein – see
Fig. 2) or two (GUS test protein) asterisks contain an HA epitope.
Other bands correspond to cross-reacting proteins also present in
plants carrying no transgene. (M) molecular mass markers (values in
kDa to the left). (B) The ratio of fluorescence values for test versus
reference protein in different transgene and genotype combinations
were obtained from gels as shown in (A). The baseline value of ca. 3 for
construct M-GUS results from the presence of three HA epitope tags
on the test protein, versus one HA tag on the reference protein.
Consistent with the visual assay of Fig. 3, R-GUS, but not L-GUS or
F-GUS is stabilized in the prt6 mutant background.
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proteins with aromatic amino termini (Ref. [18]; Table 2). As a

test protein with the aliphatic hydrophobic amino acid Leu at
its amino terminus is metabolically unstable in both single prt1

and prt6 mutants, and in the prt1 prt6 double mutant (Figs. 3

and 4), we postulate the existence of at least one additional

ubiquitin ligase in the plant N-end rule pathway.

It has been previously shown that basic and hydrophobic

amino termini bind to different pockets on Ubr1 [40,41]. The

so-called UBR domain is hypothesized to mediate interaction

with basic amino termini. The proposed binding site for hydro-

phobic amino termini contains a region with similarity to bac-

terial ClpS protein. Escherichia coli ClpS can bind to proteins

with hydrophobic amino-terminal residues and mediates their

turnover in the (ubiquitin-independent) bacterial N-end rule

pathway [42]. Interestingly, the inability of PRT6 to mediate

degradation of proteins with hydrophobic amino termini cor-

relates with poor conservation of this ClpS homology region

(Fig. 1B and Supplementary Figure).

A recent report from Tasaki et al. [15] lists two additional

proteins in Arabidopsis with UBR domain, At3g02260 and

At4g23860. The former protein, designated BIG (big protein),

is a regulator of auxin transport [43]. The latter, a sequelog of

mammalian Ubr7, has no currently assigned name or function.

The data presented in this work do not answer the question as

to whether either of these two proteins operates in turnover of

proteins with basic amino termini. We observed that the model

substrate R-GUS (first amino acid Arg, see Fig. 2) is not com-

pletely stabilized in prt6 mutants (Fig. 4). Residual instability

in comparison to the proteolytically stable M-GUS may be

due to conformational differences that make R-GUS a better

substrate for other protein turnover pathways. Alternatively,

the residual instability of R-GUS in prt6 could be caused by

active participation of BIG or At4g23860 in the plant N-end

rule. The presence of a UBR domain in these two proteins cer-

tainly suggests that both can bind peptides with basic amino

termini, but this does not necessarily imply that ubiquitylation

is a consequence of binding. Yeast Ubr1, the founding member

of UBR domain proteins, can bind large proteins with easily

accessible basic amino-terminal residue, but the same pocket

can bind short peptides as allosteric regulators [40,44]. This

precedent leaves open the additional possibility that the func-

tion of UBR domains in either BIG or At4g23860 is the bind-

ing of regulatory peptides.

Our genetic and biochemical data clearly show that PRT6 is

not identical with the previously described CER3 gene. Han-

noufa et al. [19] presented the sequence X95962 (corresponding

to the carboxyl-terminal half of PRT6) as the CER3 gene, and

work from the same group confirmed in a follow-up study that

sequences of the 3’ half of the PRT6 gene can complement a

cer3 mutation [20]. However, the cer3-1 mutation was mapped

to the bottom arm of chromosome 5 [21], whereas PRT6 is

located at the top of this chromosome. CER3 gene location

was therefore an inconsistency between the genetic map and

the genome sequencing data [32]. This inconsistency is now

resolved, as CER3 was incorrectly assigned to the At5g02310

locus. Simple visual inspection of homozygous prt6 mutants

indicated that mutant stems were covered by a normal wax

layer, whereas the cer3-1 mutant had drastically reduced sur-

face wax. In addition, complementation tests between prt6

and cer3 mutations, as well as direct quantitative measure-

ments of wax components, demonstrated that mutations in

the At5g02310 (PRT6) gene cause no alteration in leaf wax

composition. As interesting result related to regulation of

wax production, we found an intermediate amount of long
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chain wax constituents when there was heterozygosity at the

CER3 locus (Table 1). The biochemical data suggested that

CER3 is necessary to produce significant amounts of primary

alcohols of chain length C30 or higher (but not for those with

chain length C26 or C28), and to produce alkanes of chain

length C29 or higher. Similarly, long chain fatty acids of chain

length C30 and C32 were reduced more than 10-fold in cer3-1

mutants.

In summary, our data exclude CER3 as the Arabidopsis gene

At5g02310, which instead encodes PRT6, a ubiquitin ligase of

the N-end rule pathway. In confirmation of this result, work

by Rowland et al. (unpublished) positively identifies CER3

as a gene distinct from PRT6. We further demonstrate the

specificity of PRT6 for proteins with basic amino-terminal res-

idues and show that the Arabidopsis N-end rule pathway

encompasses at least one additional ubiquitin ligase, which

controls the proteolysis of proteins carrying aliphatic hydro-

phobic amino acids at their amino termini.
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[27] Schlögelhofer, P., Garzón, M., Kerzendorfer, C., Nizhynska, V.
and Bachmair, A. (2006) Expression of the ubiquitin variant
ubR48 decreases proteolytic activity in Arabidopsis and induces
cell death. Planta 223, 684–697.

[28] Kurdyukov, S., Faust, A., Nawrath, C., Bar, S., Voisin, D.,
Efremova, N., Franke, R., Schreiber, L., Saedler, H., Metraux,
J.P. and Yephremov, A. (2006) The epidermis-specific extracellu-
lar BODYGUARD controls cuticle development and morpho-
genesis in Arabidopsis. Plant Cell 18, 321–339.

[29] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman,
D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215,
403–410.

[30] Bucher, P., Karplus, K., Moeri, N. and Hofmann, K. (1996) A
flexible motif search technique based on generalized profiles.
Comput. Chem 20, 3–23.

[31] Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment
method with reduced time and space complexity. BMC Bioinfor-
matics 5, 113.

http://dx.doi.org/10.1016/j.febslet.2007.06.005


3196 M. Garzón et al. / FEBS Letters 581 (2007) 3189–3196
[32] Meinke, D.W., Meinke, L.K., Showalter, T.C., Schissel, A.M.,
Mueller, L.A. and Tzafrir, I. (2003) A sequence-based map of
Arabidopsis genes with mutant phenotypes. Plant Physiol. 131,
409–418.

[33] Worley, C.K., Ling, R. and Callis, J. (1998) Engineering in vivo
instability of firefly luciferase and Escherichia coli b-glucuronidase
in higher plants using recognition elements from the ubiquitin
pathway. Plant Mol. Biol. 37, 337–347.
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