
Endosperm: an integrator of seed growth and development
Frédéric Berger1, Paul E Grini2 and Arp Schnittger3
Plant reproduction relies on interactions between parental and

zygotic components. Elaborate reciprocal signaling pathways

enable coordination of the genetic programs between these

components. A first and important step in this communication

is the tight control of cell cycle events in the gametes prior to

fertilization. This prepares for coordinated fertilization and the

initiation of seed development. The dialog between the various

actors of reproduction extends after fertilization, with the

endosperm taking a central role. Importantly, the endosperm

mediates a maternal input that is based on memory of the

transcriptional states of imprinted genes, which is crucial for

harmonious seed growth. Our current knowledge suggests that

the endosperm is an integrator of the different components and

genetic programs that are involved in seed development.
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Introduction
In plants, the diploid generation produces a special lineage

leading to meiosis. The haploid meiotic products (spores)

then develop as morphologically distinct life forms, the

male and female gametophytes, which will differentiate a

germ-line and produce the male and female gametes

(Figure 1). In flowering plants, double-fertilization has

evolved parallel to specialization of the haploid gameto-

phyte towards reproduction. The gametophytic life form

has been drastically reduced to be nearly equivalent to the

germ line. In Arabidopsis, as in the majority of flowering

plants, the pollen grain develops from an initial asymmetric

division of the haploid meiotic product, Pollen Mitosis I

(PMI) (Figure 1). The smaller generative cell undergoes

PMII and divides again, giving rise to two sperm cells. The
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female embryo sac develops from only one of the meiotic

products and typically undergoes three successive syncy-

tial divisions followed by cellularization into seven cells,

including the two female gametes, namely the egg cell and

the central cell (Figure 1; [1]).

At the time of fertilization, the pollen grain grows a pollen

tube that delivers the two sperm cells to the embryo sac.

Despite significant advances in our understanding of

guidance mechanisms for the pollen tube and the tran-

scriptional activity of the gametes [2–4], our knowledge

on the actual mechanism of fertilization remains extre-

mely limited. A remarkable recent study has shown,

however, that the fusion between the sperm cells and

the female gametes involves the conserved protein

GENERATIVE CELL SPECIFIC 1 (GCS1) [5��].
One sperm cell fertilizes the egg cell, giving rise to a

zygote from which the embryo develops. The other

sperm cell fuses with the central cell generating the

endosperm, which nurtures embryo development in

the seed (Figure 1).

In this review, the signaling events that follow double-

fertilization in flowering plants are outlined with parti-

cular emphasis on the following points. What signals

control the cell cycle at fertilization? What mechanisms

co-ordinate the relative growth of the three main seed

components, the embryo, the endosperm and the mater-

nal seed integuments? Finally, what roles do gametes play

in embryo and endosperm development?

Control of cell cycle progression before
and after fertilization
In contrast to cell cycle control in animal gametes, cell

cycle control in plant gametes has remained largely

unknown until recently. In Arabidopsis, direct measure-

ments of DNA content suggest that sperm cells enter a

new S-phase after PMII, which is presumably completed

either before or during pollen tube growth [6,7]. Thus,

when delivered to the embryo sac, sperm cells are likely

to be in G2 phase [8]. Further evidence of a fusion at G2

phase comes from a mutant in the Arabidopsis cyclin-

dependent kinase gene CDKA;1, which encodes a homo-

log of the yeast cdc2a kinase. In cdka;1 mutant pollen, the

generative cell fails to enter PMII and remains in the G2

phase with a DNA content of about 2C [9��,10]. Impor-

tantly, this mutant pollen is able to complete fertilization

[9��]. To prevent aneuploidy and allow proper develop-

ment of the zygote, the two nuclei of the gametes need to

fuse in the same cell cycle phase. The simplest assump-

tion derived from the cell cycle phase of the male gamete

is that female gametes also reach the G2 phase, matching
www.sciencedirect.com
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Figure 1

Life cycle of flowering plants. In flowering plants, the predominant life form is the sporophyte (the green plant). In the flowers, the sporophyte will

asexually generate female and male spores. The male spore will undergo two rounds of cell divisions, PMI and PMII. The mature pollen

comprises a large vegetative cell and embedded in this, two sperm cells, the actual gametes (shown with red cytoplasm). Female gametogenesis

includes three rounds of nuclear divisions followed by cellularization, resulting in a seven-cell embryo sac. The embryo sac contains the egg

cell (again shown with red cytoplasm) flanked by two synergid cells and the central cell (shown in yellow), which contains a large nucleus.

During the double fertilization process, sperm cells are delivered by the pollen tube to the embryo sac. One sperm cell fuses with the egg

cell and generates the zygote, whereas the second sperm cell fuses with the central cell, giving rise to the endosperm. The endosperm supports

the developing embryo. Double-fertilization represents the end of the gametophytic life stage and the beginning of the sporophytic phase.
the cell cycle stage of sperm cells. This assumption was

recently supported by measurements of DNA content in

tobacco gametes [8].

Conserved chromatin remodeling Polycomb group (Pc-G)

complexes control the arrest of the Arabidopsis female

gametophyte. The Pc-G complex FERTILIZATION

INDEPENDENT SEED (FIS) contains the SET domain

protein MEDEA (MEA) [11], the VEFS domain protein

FIS2 [12], and the WD40 domain protein FERTILIZA-

TION INDEPENDENT ENDOSPERM (FIE) [13].

Loss-of-function mutations of FIS genes cause autono-

mous onset of cell division in the central cell in the absence

of fertilization [14,15]. The FIS complex also includes the

WD40 protein MULTICOPY SUPPRESSOR OF IRA 1

(MSI1) [16,17]. Unexpectedly, when compared to the fis
mutants, msi mutants show additional autonomous division

in the egg cell that leads to a non-viable parthenogenetic
www.sciencedirect.com
embryo [18�]. This suggests that partially distinct mechan-

isms control the arrest of the egg cell and the central cell

(Figure 2a).

MSI1 interacts with plant homologs of the mammalian

tumor suppressor protein Retinoblastoma (Rb) [19].

Autonomous cell proliferation in the embryo sac has been

reported in plants that carry null alleles of the Arabidopsis
Rb homolog RBR1 [20]. However, the pleiotropy of the

phenotype has prevented unambiguous identification of

the origin of proliferating cells in rbr1. The rbr1 mutant

phenotype is likely to be compound. RBR1 can interact

with components of the FIS-complex [21], but could also

act upstream of the FIS Pc-G complex and together with

MSI1 to directly control cell cycle progression in the

female gametophyte. In analogy to its function in root

stem cells, RBR1 might also be involved in specifying

gamete identity [22].
Current Opinion in Plant Biology 2006, 9:664–670
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Figure 2

Interactions between seed components. (a) Before fertilization, a negative signal embodied by the action of the chromatin remodeling

complex FIS restricts the premature proliferation of the central cell. An equivalent repression depends on MSI1 and targets the egg cell. After

fertilization, a positive signal is derived from the fertilization of the egg cell that triggers endosperm development if the central cell is not fertilized. The

origin and nature of this positive signal is currently not known. (b) During later stages, reciprocal signaling between the endosperm (yellow with black

nuclei), the embryo (blue) and the seed integuments (green) is required to achieve proper seed growth. The endosperm takes a central role as an

integrator and mediator of these signals. The endosperm controls cell elongation (black double arrows) in the seed integuments (dark red arrows).

Reciprocally, the seed integuments restrict the potential growth of the endosperm (red arrows). As a result, the final seed size is determined.

(c) Finally, endosperm trophic inputs and potential signals to the embryo sustain cell proliferation in the embryo. (d) At the mature stage, the embryo

occupies most of the space initially created by the interactions between the endosperm and the seed integuments.
In conclusion, the cell cycle arrest of the central cell is

controlled by the FIS pathway, whereas the egg cell arrest

probably depends on a MSI1-dependent action that is

independent of the Polycomb Group FIS pathway.

Proper differentiation of both female gametes might

involve the function of RBR1. A recent report [9��] on

a functional knock-out of the Arabidopsis CDKA1;1 has

provided evidence for mechanisms that might be

involved in cell-cycle control prior to fertilization.

Co-ordination of growth between the different
seed components
During seed growth, co-ordination is necessary between

the embryo, the endosperm, the maternally contributed

seed integuments and the nucellus, which is also of

maternal origin. No experimental data have yet been

obtained for the role of the nucellus, but recent advances

have demonstrated that interplay between endosperm

and seed integument growth is essential for seed size

determination in Arabidopsis (Figure 2). Mutations in the

HAIKU (IKU) genes decrease endosperm size and even-

tually embryo and seed size [23]. The HAIKU genes IKU2
and MINISEED3 (MINI3) encode a leucine-rich-repeat

kinase and a WRKY transcription factor, respectively [24].

These genes are expressed in endosperm immediately

after fertilization. The decreased endosperm size of iku
mutants is accompanied by a decrease in cell elongation

in the seed integuments, indicating communication

between these two genetically distinct seed components

(Figure 3c–f; [25�]). Similarly, reducing the degree of cell

elongation in the seed integuments reduces endosperm

growth. Conversely, increasing the number of seed inte-

gument cells causes a symmetrical increase in endosperm
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growth [26,27]. In Arabidopsis, the final size of the seed is

determined before the embryo initiates the major phase

of cell proliferation after the heart embryo stage

(Figure 2). These results indicate the capacity of seed

integuments to regulate endosperm growth by a maternal

sporophytic effect (Figure 2b). In cereal species, the

embryo remains confined to a small volume in the mature

seed and the endosperm extends its development until

seed maturity and stores reserves. Hence, the model of

seed size control established in Arabidopsis is likely to be

applicable to seed development in cereals. The mechan-

istic nature of the communication between the endo-

sperm and the integuments remains unknown. A likely

factor could be biophysical forces; a growing endosperm

might exert mechanical tensions on the integument cells

[25�,28].

How the embryo adjusts its degree of cell proliferation to

the space available (as seen in iku seeds) is not yet

understood. However, this observation indicates some

kind of communication from the endosperm to the

embryo. Communication from the embryo to the endo-

sperm has been revealed by analysis of the mutant for the

Arabidopsis homolog of the cyclin dependent kinase cdc2a,

CDKA;1 [9��]. In heterozygous cdka;1 null mutants, 50%

of the pollen contain a single sperm cell [9��,10] that

exclusively fertilizes the egg cell. The development of

the zygotic embryo has a dramatic effect because it

triggers nuclear divisions of the central cell and initiates

endosperm development (Figures 3a,b; [9��]). Thus,

either the fertilization process or the developing embryo

provides a signal that counteracts cell cycle arrest in the

central cell and stimulates endosperm development
www.sciencedirect.com
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Figure 3

Phenotypes of mutants in which seed development is affected. (a,b) The

effects of pollination of wildtype ovules by cdka;1/+ plants. (a) One and a

half days after self-fertilization, the seeds contain an octant stage

embryo (e) and stage VI (26–30 nuclei) endosperm (ed) surrounded by

seed integuments (int). (b) By contrast, wildtype ovules that are fertilized

with cdka;1 mutant pollen produce seeds that have a two- or four-cell-

stage embryo one day after pollination. (c,d) In comparison to (c)

wildtype seeds, (d) iku seeds contain an endosperm (ed) that is reduced

in size and whose seed integuments (int) do not elongate, whereas

embryo growth is not altered.
(Figure 2a). The developing endosperm in cdka;1-ferti-

lized seeds arrests after a few rounds of the cell cycle,

whereas the embryo develops until the globular stage.

Such seeds remain small because they do not expand the

seed integument. These observations support the essen-

tial role played by endosperm and the comparatively

limited role played by the embryo in controlling seed size.

Coordination of maternal and zygotic cues
during seed development
Although extensive screens have been performed, only a

handful of mutations that cause maternal effects have

been isolated over the past few years [29,30]. However,

using a transposon-based mutagenesis approach, a recent

study discovered a larger number of such mutants [31],

and suggests that there might be a larger diversity of

maternal effects than previously thought.
www.sciencedirect.com
The maternal influence might be inherited by the endo-

sperm by two routes. First, the central cell as progenitor of

the endosperm contributes much cytoplasm to the endo-

sperm. The endosperm could inherit maternally derived

mRNA and proteins that are located at specific sub-

domains in the central cell. Indeed, the central cell shows

cytological evidence of polarity, which could prefigure the

future endosperm antero-posterior organization [32].

Direct maternal effects that originate from the central

cell constitute an attractive hypothesis, but one that is

supported by little, if any, direct evidence to date. The

origin of the maternal effect of DICER-LIKE 1 remains

mysterious [33], and the maternal effects that are asso-

ciated with PROLIFERA (a homolog of MINICHRO-

MOSOME MAINTENANCE 7) are complex and might

involve several mechanisms [34].

The second origin of maternal influence on seed develop-

ment appears to be a specific activation of maternal alleles

and silencing of paternal alleles, resulting in maternal

genomic imprinting. Two of the components of the FIS

complex are subject to maternal genomic imprinting

[35,36]. The paternal allele of MEA and FIS2 is silenced.

As a consequence, the maternal inheritance of a null allele,

mea or fis2, cannot be rescued by a paternal wildtype MEA
or FIS2 allele and is sufficient to cause maternal effects on

endosperm development [11,14,15,17].

The mechanisms that lead to MEA and FIS2 imprinting

are in part distinct ([35,36]; Figure 4). FIS2 is silenced

throughout most of the plant life cycle by DNA methyla-

tion on a specific region in its promoter [36]. DNA

methylation is maintained by the methyltransferase

MET1 during vegetative development and male game-

togenesis. At the end of female gametogenesis, however,

FIS2 silencing is relieved in the central cell by the DNA

glycosylase DEMETER (DME). Hence, a transcription-

ally active maternal FIS2 allele is provided to the endo-

sperm whereas the paternal FIS2 allele remains silenced

by MET1. By contrast, MEA silencing depends on the

repressive methylation marks on lysine residue 27 of

HISTONE 3 (H3K27) [37��,38��]. H3K27 methylation

of the MEA locus depends on the activity of Pc-G com-

plexes that are active during the vegetative phase and

male gametogenesis. In endosperm, a loop involving

negative feedback by the Pc-G complex, including

MEA and FIS2 maintains the silencing of the paternal

MEA allele ([37��,38��]; Figure 4).

The activation of the maternal allele of MEA in the

central cell depends on several mechanisms. Real-time

quantitative PCR has shown that MEA expression in the

central cell is inhibited by MEA itself [39]. DME is

required for MEA activation [40] and is able to remove

methylated cytosine from domains linked to the MEA
locus [38��]. However, the degree of DNA methylation of

MEA varies depending on natural Arabidopsis accessions
Current Opinion in Plant Biology 2006, 9:664–670
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Figure 4

A model for dual control of parental genomic imprinting of MEA in Arabidopsis. The gene MEA is silenced during vegetative development

and male gametogenesis by the continuous action of Pc-G complexes that are responsible for maintenance of H3K27 methylation (pink circles)

at the MEA locus. MEA expression is activated in the central cell at the end of female gametogenesis by the DNA glycosylase (DME) and

potentially by other activities that lead to the removal of H3K27 methylation. After fertilization, the MEA maternal allele (m) is expressed in

endosperm and produces the MEA subunit of the Pc-G complex, which contains FIS2, FIE and MSI1 and is responsible for maintaining the

silencing of the paternal MEA allele (p).
[38��,41]. Moreover, DNA methylation does not play a

major role in silencing MEA in vegetative tissues or in

pollen [37��], and loss of DNA methylation on MEA
paternal allele does not alter their silenced state in

endosperm [36,38��]. Hence, DNA methylation probably

plays a limited regulatory role in MEA imprinting. What

mechanism is responsible for the removal of H3K27

methylation that is essential for MEA imprinting is

unclear. DME DNA glycosylase activity causes single-

strand breaks in DNA [38��]. It is possible, therefore, that

DNA repair mechanisms that follow DME action involve

the deposition of new chromatin and that methylated

H3K27 are removed, causing loss of repression of MEA
transcriptional activity (Figure 4).

Although accumulating evidence on epigenetic regula-

tion mechanisms has contributed to our understanding of

how differential genetic programs are set up in the

different components of the seed, little is known about

the downstream targets that are controlled by, for exam-

ple, the Pc-G FIS complex. Small-scale microarray

analyses using combinations of fis mutants have to
Current Opinion in Plant Biology 2006, 9:664–670
date discovered two genes that are repressed by the

FIS-complex, and these genes encode the MADS-box

protein PHERES1 (PHE1) and the SKP1-like protein

MEIDOS [16]. What functions these proteins have in

seed development and growth is not known, but PHE1
has been shown to be expressed exclusively from the

paternal genome after fertilization [42�]. In contrast to the

gametophytic maternal effects discussed previously,

genes such as PHE1 might thus be responsible for acti-

vating paternal-specific gene sets in endosperm.

Conclusions
Our current knowledge on seed development underlines

the importance of the endosperm not only as a source of

nutrients but also as an integrator of seed growth and

development. Different signaling routes are now emer-

ging between the embryo, the endosperm and seed

integuments. A reciprocal signaling process between seed

integuments and endosperm appears to coordinate the

proper course of seed growth. Signals between embryo

and endosperm are probably also important for proper

seed development but remain to be characterized.
www.sciencedirect.com
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Significant progress has been made in the understanding

of maternal effects and the role of the endosperm as a

relay between the mother and the embryo. Here, a

possible role of gametophytic maternal factors that are

already present in the unfertilized egg and central cell

calls for attention.

A major constraint to isolate these signaling components

is the small size of reproductive structures in Arabidopsis.
This will be overcome in the future, however, by utilizing

recent advances in ‘genomics’ tools, including new sam-

pling techniques, such as laser-assisted micro-dissection,

or mRNA-tagging approaches [43,44]. The establishment

of general as well as spatial and temporal transcriptomes

or proteomes is likely to lead to the generation of specific

profiles for each reproductive cell type and will be a new

source of information [45,46].

Note added in proof
Three important papers have appeared since we drafted

this review [47�–49�].
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