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1School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK,
2Department of Biochemistry of Food Technology, Budapest University of Technology and Economics, M}uegyetem rkp. 3, 1111

Budapest, Hungary,
3Institute of Plant Biology, BRC, H-6701 Szeged, Hungary,
4Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK,
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Summary

Plants sense pathogens through both pathogen-associated molecular patterns and recognition of race-specific

virulence factors, which induce basal defence or an accelerated defence (often manifest in the form of local cell

death), respectively. A mitogen-activated protein kinase (MAPK) module in Arabidopsis was previously

proposed to signal from perception of the bacterial elicitor flagellin to the activation of basal defence-related

genes. Here, we present evidence for a parallel MAPK-signalling pathway involved in the response to flg22, a

peptide corresponding to the most conserved domain of flagellin. The endogenous Arabidopsis MAP kinase

kinase MKK1 is activated in cells treated with flg22, phosphorylates the MAPK MPK4 in vitro, and activates it in

vivo in protoplasts. In mkk1 mutant plants, the activation by flg22 of MPK4 and two other flg22-induced MAPKs

(MPK3 and MPK6) is impaired. In the mkk1 mutant, a battery of both flg22-induced and flg22-repressed genes

show altered expression, indicating that MKK1 negatively regulates the activity of flagellin-responsive genes.

Intriguingly, in contrast to the mpk4 mutant, mkk1 shows no morphological anomalies and is compromised in

resistance to both virulent and avirulent Pseudomonas syringae strains. Thus, the MKK1 signalling pathway

modulates the expression of genes responding to elicitors and plays an important role in pathogen defence.

Keywords: mitogen-activated protein kinase signalling, flagellin, pathogen resistance, defence-related genes,

signalling networks, Arabidopsis.

Introduction

Plants are equipped with various defence mechanisms,

some being constitutive barriers to pathogen spread, such

as waxy cuticle or preformed antimicrobial compounds,

while others rely on the recognition of pathogens and the

induction of a variety of defence responses (Dangl and

Jones, 2001; Jones and Takemoto, 2004). A broad range of

pathogens is recognized by plants through so-called

pathogen-associated molecular patterns (PAMPs), which are

highly conserved molecular fragments of pathogenic mole-

cules usually playing pivotal roles in microorganisms. Some

known examples of this innate immune response are the

recognition of a conserved 22-amino acid fragment derived

from the bacterial flagellin flg22, of a 13-amino acid oligo-

peptide from a Phytophthora sojae 42-kDa glycoprotein

(Pep13), and of the 22-kDa fungal protein xylanase (Boller,

2005). The contribution of PAMPs responses to disease

resistance was demonstrated by spraying flg22 on Arabid-

opsis plants, which restricted bacterial invasion through a

mechanism independent of the known systemic plant de-

fence-signalling molecules salicylic acid (SA), jasmonic acid
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(JA) and ethylene (ET; Kim et al., 2005; Zipfel et al., 2004).

Signalling mechanisms and cellular responses acting

downstream of the recognition of largely unrelated PAMPs

are believed to be similar, and are known to include medium

alkalinization, release of Ca2þ, generation of signalling

phospholipids and activation of mitogen-activated protein

kinases (MAPKs), as well as rapid production of reactive

oxygen species (ROS; Nurnberger et al., 2004). How pre-

cisely these signalling events are connected and function in

a network is not well understood, but they are known to

lead to an extensive defence-oriented transcriptional repro-

gramming and major changes in cellular metabolism

(Navarro et al., 2004).

Pathogens have evolved mechanisms to suppress or

mask basal plant defence and redirect plant cell functions

for their benefit. This process commonly involves secretion

of race-specific virulence factors to the host cells. Some of

these virulence factors, such as AvrPto, are potent suppres-

sors of receptor function and MAPK activation (He et al.,

2006). Perhaps adapting from PAMPs recognition, plants are

armed with specific R gene-encoded receptors that recog-

nize avirulence (avr) gene-encoded factors from particular

races of pathogens or plant proteins modified in response to

Avr factors. The match of a particular combination of R gene

and avirulence factor triggers the well known hypersensitive

response (HR), restricting spread of the pathogen by induc-

tion of local cell death (Martin et al., 2003). Transcription

profiling experiments revealed a surprising overlap between

the responses to flg22 and Avr factors (Navarro et al., 2004).

Moreover, signalling events downstream of PAMPs and avr

products are known to share a number of signalling com-

ponents, such as Ca2þ, phospholipids, ROS and MAPKs.

Furthermore, the development of disease symptoms on

infection by a virulent pathogen also follows some of the

signalling events and gene-expression changes associated

with resistance (del Pozo et al., 2004). How specific

responses are subsequently selected to trigger defence, HR

or necrosis is not known.

MAPK cascades are used widely by eukaryotes to integ-

rate signal inputs and connect them to specific cellular

responses (Pedley and Martin, 2005). A MAPK signalling

module consists of three protein kinases sequentially acti-

vated through phosphorylation by the upstream compo-

nent: a MAP kinase kinase kinase (MAPKKK or MEKK); a MAP

kinase kinase (MAPKK or MKK) and a MAP kinase (MPK).

MAPK components are particularly abundant in plants: there

are 80 putative MEKKs, 10 MKKs and at least 20 MPKs in

Arabidopsis, but so far there is functional information for

only few of these (Jonak et al., 2002; Nakagami et al., 2005).

Molecular, genetic and biochemical data demonstrated

the involvement of MAPK pathways in defence responses

(Pedley and Martin, 2005). A complete MAPK module in

Arabidopsis transmitting signal from the flg22 elicitor

through the FLS2 receptor was assembled based on over-

expression experiments. This MAPK module is proposed to

consist of MEKK1 connected to MKK4 or MKK5 and down-

stream to MPK3 or MPK6, and eventually leads to gene

induction through the WRKY22 and WRKY29 transcription

factors (Asai et al., 2002). Transient overexpression of

constitutively active MEKK1, MKK4, MKK5 or WRKY29 in

Arabidopsis leaves causes enhanced resistance to bacterial

and fungal pathogens, indicating that these MAPK-signal-

ling components might trigger defence responses to a broad

range of pathogens (Asai et al., 2002). In variation from

these results, interaction screens and functional comple-

mentation assays in yeast placed MEKK1 in a distinct MAPK

module consisting of two closely related MKKs, MKK1 and

MKK2, and the MAPK MPK4 (Ichimura et al., 1998; Mizogu-

chi et al., 1998). Strengthening these data, MPK4 is specif-

ically phosphorylated and activated in vitro by MKK1 in

response to various stress treatments, suggesting in vivo

connection between these two kinases (Huang et al., 2000;

Matsuoka et al., 2002; Teige et al., 2004). Although MKK1

and MKK2 form complexes with identical upstream and

downstream kinases, they appear to have distinct functions.

MKK2 was shown to phosphorylate MPK4 in response to

abiotic stress signals, while MKK1 was activated by patho-

genic elicitors and ROS (Teige et al., 2004). Consistently, the

endogenous MPK4 was found to be activated both by biotic

stresses, such as the bacterial elicitors flagellin or harpin,

and by a variety of abiotic stresses (Desikan et al., 2001;

Droillard et al., 2004; Ichimura et al., 2000; Teige et al., 2004).

Genetic studies place MPK4 as negative regulator of patho-

gen responses, as the mpk4 knockout mutant has elevated

SA levels, constitutively expresses pathogenesis-related

(PR) genes, and shows increased resistance to virulent

biotroph pathogens. Expression of the SA hydroxylase

NahG in mpk4 plants abolishes PR gene expression and

bacterial resistance, indicating that the mpk4 phenotype

requires SA. Furthermore, the mpk4 mutant is impaired in

the induction of JA- and ET-responsive genes, irrespective of

SA levels (Brodersen et al., 2006; Petersen et al., 2000). Both

the SA-repressing and the ET/JA-activating functions appear

to depend on the defence regulators EDS1 and PAD4

(Brodersen et al., 2006). A yeast two-hybrid screen recently

identified a substrate for MPK4, designated MAP kinase 4

substrate 1 (MKS1). Analyses of transgenic plants and

transcriptional profiling indicated that MKS1 is required for

full SA-dependent resistance in mpk4 mutants (Andreasson

et al., 2005). The tobacco orthologue of MPK4 has been

isolated, and is activated by wounding. In NtMPK4-silenced

tobacco plants, the induction by wounding of JA-responsive

genes was inhibited (Gomi et al., 2005).

While MPK4 is in a pathway including MKK1 and MKK2,

the two other MAPKs implicated in flagellin response, MPK3

and MPK6, are activated by MKK4 and MKK5 (Asai et al.,

2002). Overexpression of a gain-of-function mutant form of

MKK4, MKK5 or their closest tobacco orthologue NtMKK2
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ª 2006 The Authors
Journal compilation ª 2006 Blackwell Publishing Ltd, The Plant Journal, (2006), 48, 485–498



triggers HR-like lesions with a concomitant elevation of ROS

and ET production (Jin et al., 2003; Liu and Zhang, 2004; Liu

et al., 2003; Ren et al., 2002). Consistently, silencing of

NtMKK2, or of the tobacco orthologues of MPK6 and MPK3

(SIPK and WIPK, respectively), compromises N-gene-medi-

ated resistance and HR (Jin et al., 2003). Silencing of SIPK

was also shown to enhance sensitivity to harpin-induced cell

death (Samuel et al., 2005), whereas silencing of MPK6 was

reported to render Arabidopsis plants slightly more sensitive

to both virulent and avirulent pathogens (Menke et al., 2004).

It appears now that, rather than linear pathways, multiple

interconnected MAPK pathways are required to transmit

pathogen-derived signals and integrate defence responses

(Pedley and Martin, 2005). Indeed, gene silencing and

biochemical works in tomato identified multiple MAPK

signalling components that are activated and required for

resistance to bacterial infection on recognition of Pseudo-

monas syringae pv. tomato strains expressing AvrPto or

AvrPtoB, and placed them in a complex network (del Pozo

et al., 2004). The individual contributions to defence re-

sponses of each distinct MAPK pathway are not well

understood yet.

In this study, we investigate the role of MKK1 in defence

responses using a loss-of-function mkk1 mutant and study-

ing in vivo interactions and activation of endogenous MAPK

signalling components. We show that MKK1 is an integral

component of flagellin responses in Arabidopsis and con-

tributes to resistance to both virulent and avirulent bacterial

pathogen strains.

Results

Flagellin activation of MPK4 is mediated by MKK1

A study based on transient overexpression of selected wild-

type and gain-of-function MAPK-signalling components

suggested a linear flagellin-induced pathway in Arabidopsis

consisting of a MEKK1–MKK4/MKK5–MPK3/MPK6 module

(Asai et al., 2002). MPK4 was not included in this report, but

later work clearly showed the activation of endogenous

MPK4 on flagellin treatment (Droillard et al., 2004). MPK4

was placed in a MAPK cascade downstream of MKK1 spe-

cifically on flagellin stimulation, based on their interaction

and the activation of MPK4 when MKK1 was overexpressed

(Teige et al., 2004). Therefore, we decided to compare the

respective roles played by MKK1 and MKK4 in the activation

of the three known flagellin-induced MAPKs (MPK3, MPK4

and MPK6) using firstly transient transfection of Arabidopsis

protoplasts.

To this end, protoplasts were transfected with the HA

epitope-tagged MPKs, alone or co-expressed with myc

epitope-tagged MKK1 or MKK4, and subsequently treated

for 10 min with 500 nM flg22. After immunoprecipitation of

the MPKs with anti-HA antibody, their activity was deter-

mined by in vitro kinase assays using myelin basic protein

(MBP) as an artificial substrate. None of the MAP kinases

was activated in the untreated conditions, whether ex-

pressed alone or in the presence of MKKs (Figure 1a). On

flagellin treatment, MPK3 and MPK6, but not MPK4, showed

activation without a co-expressed upstream MKK. Flagellin-

induced activation of MPK3 and MPK6 was increased further

in the presence of overexpressed MKK4, while MPK4 was

activated only when co-expressed with MKK1. Surprisingly,

overexpression of MKK1 also resulted in decreased MPK3

and MPK6 activation in flg22-treated protoplasts (Figure 1b).

The relatively high endogenous levels of MKK4/5 are

presumably sufficient for the activation of MPK3/6, which

can be further increased by co-expression of MKK4. In

contrast, based on publicly available microarray data, the

expression level of MKK1 is low and accordingly the

endogenous MKK1 protein is scarce (Matsuoka et al.,

2002), hence MKK1 co-expression is needed for flg22-

induced activation of overexpressed MPK4. In order to

provide experimental data for this hypothesis, protoplasts

were transformed with RNAi constructs specifically target-

ing MKK1 or its closest homologue, MKK2, to decrease the

levels of potential upstream activators of MPK4. MKK2 was

shown previously to be an upstream activator of MPK4, as

well as MPK6, in response to cold and salt stress (Teige

et al., 2004). First, we tested the specificity of RNAi con-

structs by co-transforming protoplasts with different com-

binations of myc epitope-tagged MKK1, MKK2 and MKK1,

MKK2 RNAi constructs. Immunoblot analysis demonstrated

that the RNAi constructs specifically target the relevant MKK

RNAs (Figure 1c). Next, protoplasts were transformed with

MKK1 or MKK2 RNAi constructs to reduce the levels of

endogenous MKK1 or MKK2, and the activity of the endog-

enous MPK4 was measured after immunoprecipitation with

a specific antibody. We observed a reduced activation in

response to flg22 treatment in protoplasts transfected with

the RNAi constructs (Figure 1d). Furthermore, MPK4 induc-

tion by flg22 was significantly more decreased when the

transfection was done with MKK1 RNAi compared with

MKK2 RNAi. It should be kept in mind that the protoplast

transfection has around 50% efficiency in our hands, and

results not in a homogeneous population, but in a mixture of

wild-type and transformed cells. Therefore, no complete

abolishment of the MAPK activation can be expected, even if

the MAPK-activating pathway is disrupted in transformed

cells. Taken together, these data show that at least three

MAPKs are involved in flagellin-induced signalling, and that

the activation of MPK4 is dependent on MKK1.

MKK1 is activated in vivo by flagellin elicitation and phos-

phorylates MPK4

Previously it was shown that MKK1 interacts with, and

phosphorylates in response to H2O2 specifically MPK4 but
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not MPK3 and MPK6 (Teige et al., 2004). To confirm that the

endogenous MKK1 is activated by flagellin, and that MPK4

activation occurs through direct phosphorylation by MKK1,

we expressed and purified recombinant kinase-dead GST

fusion proteins of MPK3, MPK4 and MPK6, and used them as

substrates to test MKK activity. Arabidopsis cells in sus-

pension were treated for 10 min with 500 nM flg22. Endog-

enous MKK1 was immunoprecipitated using a commercial

MKK1-specific antibody and subsequently tested for its

ability to phosphorylate kinase-dead MPK3, MPK4 and MPK6

in vitro. The specificity of the commercial MKK1-specific

antibody was tested on bacterially expressed MKK1 and

MKK2 proteins tagged with GST and myc (Figure S1 in

Supplementary Material). On flg22 treatment, phosphoryla-

tion of MPK4 and, to a lesser extent, of MPK6 increased, but

the phosphorylation of MPK3 remained at basal level (Fig-

ure 2a,b). These results show that the endogenous MKK1 is

activated in vivo by flg22 elicitation and confirms that its

preferred substrate is MPK4.

mkk1 mutant plants show reduced MPK3, MPK4 and MPK6

activation on flagellin elicitation

To study the in planta function of MKK1 in flagellin-

responsive MAPK pathways, we identified an MKK1 mutant

line. As no mkk1 mutant was publicly available, we screened

our library of Arabidopsis T-DNA insertion lines (Rios et al.,

2002), and isolated a mutant that carries a single insertion in

the second intron of the MKK1 gene (Figure 3a). The T-DNA

insertion resulted in the complete loss of the corresponding

mRNA expression, as found by RT–PCR analysis (Figure 3b).

In contrast to the drastic dwarf phenotype of the previously

described mpk4 knockout mutant (Petersen et al., 2000),

detailed phenotypic analysis of homozygous mkk1 plants

revealed no obvious developmental defects under normal

growth conditions (Figure 3c).

Next, we investigated the activation of endogenous

MPK3, MPK4 and MPK6 in wild-type and mkk1 mutant

plants in response to flagellin elicitation in vivo. Wild-type

and mkk1 seedlings grown in vitro were incubated in liquid

medium containing 1 lM flg22, and samples were collected

at different time points. Protein extracts were used for in-gel

kinase assays using MBP as a substrate. In wild-type plants,

three MBP-phosphorylating kinases were activated within

5 min and their activity remained high until 20 min, and

returned to near basal level after 60 min (Figure 4a, left

panel). The three kinases of apparent molecular weights 44,

39 and 37 kDa correspond to MPK6, MPK3 and MPK4,

respectively, as published previously (Droillard et al., 2004)

and as found by our experiments on mpk3, mpk4 and mpk6

knockout mutants where the corresponding bands were

missing. In mkk1 mutant seedlings, surprisingly the activity

(a) (c)

(b) (d)

Figure 1. MKK1 mediates MPK4 activation in response to flagellin in Arabidopsis protoplasts.

(a, b) MPK3, MPK4 and MPK6 were transiently expressed alone or in co-expression with MKK1 or MKK4 in Arabidopsis protoplasts. Kinase activity of the

immunoprecipitated MPKs was measured using MBP as an artificial substrate. MPK activity in untreated protoplasts is shown in (a); MPK activity in response to flg22

treatment is shown in (b). The signal detected by autoradiography has been quantified in (b) for better visualization (arbitrary units). Expression of MPKs and MKKs

was detected by Western blot analysis with anti-HA (MPKs) or anti-c-myc (MKKs) antibody.

(c) Protoplasts were transformed with different combinations of myc-tagged MKK1 and MKK2 in co-transfection with RNAi constructs designed specifically to target

MKK1 or MKK2. The effect and specificity of silencing were assessed by measuring the reduction in expression level of the targeted MKK. Western blotting using an

antitubulin antibody is shown as a loading control.

(d) Effect of silencing MKK1 or MKK2 on MPK4 elicitation by flagellin. RNAi constructs targeting MKK1 or MKK2 were transfected into Arabidopsis protoplasts, and

the activity of endogenous MPK4 in absence or presence of flg22 was measured using a specific antibody for immunocomplex kinase assays. The activities detected

by autoradiography have been quantified for better visualization (arbitrary units). The expression of MPK4 was detected by Western blot using an MPK4-specific

antibody.
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of all three MPKs was still detected, but to a significantly

lower level (Figure 4a, right panel). Although the activation

of MPK4 decreased considerably in the mkk1 plants, it

remained detectable, suggesting that MPK4 has more than

one upstream activator, or that another MKK can substitute

for MKK1 in mkk1 mutants. It was also surprising that the

mkk1 mutation affects MPK3 and MPK6 responses to flg22

as well. Immunoblot analysis of the same protein extracts

with MAPK-specific antibodies showed that the levels of all

three kinases remained constant throughout the time course

in both wild-type and mutant backgrounds, confirming that

the MAPK activation occurs primarily through post-transla-

tional modifications (Figure 4b). Moreover, there was no

detectable difference in protein levels between wild-type

and mutant seedlings, indicating that the lower kinase

activities observed in mkk1 plants reflect reduced activation,

not reduced levels of proteins.

To further confirm the identity of the activated kinases, we

used specific antibodies raised against MPK3, MPK4 and

MPK6 for immunocomplex kinase assays, using MBP as a

substrate. In wild-type plants, all three MPKs showed a

similar activation pattern on flg22 elicitation: they were

activated within 5 min of treatment and remained high until

20 min (Figure 4c, left panel). In mkk1 mutant seedlings, the

activation of all three MPKs was lowered compared with

wild-type (Figure 4c, right panel). The reduction in MPK3,

MPK4 and MPK6 activities in the mkk1 mutant is not

dramatic, but was observed reproducibly in all our experi-

ments. Two additional examples are provided in Figure S2

and S3.

Taken together, these results demonstrate that MKK1 is an

integral component of MPK signalling pathways responding

to flagellin, and contributes directly or indirectly to the

activation of the three flagellin-induced MPKs.

The MKK1 mutation deregulates the expression of flagellin-

responsive genes

Changes in gene expression are an important aspect of plant

responses to a pathogenic infection. The early transcrip-

tional response to flagellin elicitation has been studied

extensively (Navarro et al., 2004; Zipfel et al., 2004). More

than 1000 genes were found to be activated or repressed by

flg22 application; a vast majority can be classified as being

involved in signal transduction, transcriptional regulation

(a)

(b)

Figure 2. MKK1 is activated in vivo by flagellin and phosphorylates MPK4.

(a) Activity of endogenous MKK1 on purified kinase-dead MPKs. Arabidopsis

cells were treated with flg22; MKK1 was then immunoprecipitated with a

commercial MKK1-specific antibody and its activity determined by in vitro

kinase assays using recombinant kinase-dead GST-MPK3, GST-MPK4 and

GST-MPK6 as substrates (upper panel). Coomassie staining of a gel with

equivalent amounts of the same protein samples is shown as a loading

control (lower panel).

(b) Quantification of the signals detected by autoradiography in (a). The

control signals, which represent basal phosphorylation activity in untreated

conditions, were set to 100%.

(a)

(c)

(b)

Figure 3. Isolation of an mkk1 null mutant.

(a) Intro–exon structure of the MKK1 gene according to the TIGR database and

position of the T-DNA insertion in the mkk1 line, determined by PCR and

sequencing of the flanking regions as described in Methods.

(b) RT–PCR analysis of transcript levels in leaf tissue in wild-type Col-0 and

mkk1 mutant plants. The MKK1 transcript is absent in mkk1 plants.

(c) mkk1 plants grown under normal conditions are morphologically indis-

tinguishable from the wild type.
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and potential antimicrobial action (Zipfel et al., 2004). To

gain insight into the role of MKK1 in the regulation of these

genes, we compared flg22-induced changes in wild-type and

mkk1 mutant seedlings. Ten-day-old seedlings (stage 1.02

according to Boyes et al., 2001) were treated for 30 min with

1 lM flg22, and RNA was extracted and hybridized to full-

genome Arabidopsis thaliana ATH1 chips (Affymetrix, Santa

Clara, CA, USA).

Analysing the data from wild-type Col-0 plants showed

that we could closely reproduce published results on early

gene expression changes induced by flagellin treatment on

young seedlings of Ler-0 ecotype (Zipfel et al., 2004; Table

S1). We then compared wild-type and mkk1 mutant plants in

the absence of flagellin (Table S2). Surprisingly, although

mkk1 plants do not show any morphological phenotypes,

we found that the expression of a large number of genes

representing a wide spectrum of functional categories was

affected by the MKK1 mutation. To delineate the role of

MKK1 in flagellin response, we decided to focus on MKK1-

dependent genes that changed in expression on flagellin

treatment (Table S3). These genes belonged to various

classes, including resistance-associated genes, signalling

components (receptor kinases, transcription factors), and

genes relating to cell wall structure and modification. We

selected some representative genes from both flg22-

repressed and flg22-induced categories, and performed

quantitative RT–PCR analysis on RNA samples from wild-

type versus mkk1 mutant plants in control and flg22-treated

conditions (Figure 5). A number of WRKY-type transcription

factors are known to be induced by flagellin, including

WRKY22 and WRKY29, which were placed downstream of

MPK3 and MPK6 (Asai et al., 2002). We found WRKY22,

WRKY40 and WRKY53 to be strongly upregulated by flag-

ellin treatment, as reported previously (Asai et al., 2002;

Navarro et al., 2004; Zipfel et al., 2004), and their expression

was induced to slightly higher levels in mkk1 plants. The

MAP kinase MPK3, also known to be transcriptionally

induced by flg22, was induced to comparable levels in Col-

0 and mkk1 (Figure 5a), consistent with the presence of

similar amounts of MPK3 protein in mutant versus wild-type

plants (Figure 4b). Among flagellin-induced genes, we tes-

ted the expression of three oxidative stress-related genes:

two peroxidases (At5g39580 and At5g64120) and a blue

copper-binding protein (At5g20230). These three genes

showed more than 10-fold induction on flagellin application

in Col-0 plants; in mkk1 plants their expression level was

much higher in control conditions compared with the wild

type, and their expression was still induced by the treatment

(Figure 5b). Similarly, we found three cell wall-related

genes, encoding a pectinesterase (At4g02330), an extensin-

like protein (At4g22470) and a xyloglucan endotransglyco-

sylase (At4g25810), to be expressed at more than fivefold

higher levels in mkk1 plants (Figure 5b). Rapid repression of

auxin-related genes occurs on flagellin treatment, possibly

contributing to the growth inhibition observed in flg22-

treated seedlings (Gomez-Gomez et al., 1999; Navarro et al.,

2004, 2006). Three flagellin-repressed auxin-response genes

(At2g21210, At4g38840, At4g38860) were expressed to sig-

nificantly lower levels in mkk1 compared with the wild type

in control conditions, and their expression was decreased

further on flagellin application (Figure 5c). A xylosidase

(At5g49360) and an expansin (At1g69530) had a similar

expression pattern, having lower expression in mutant

plants and being further repressed by the elicitor (Figure 5c).

The microarray data combined with the real time RT–PCR

experiments indicated that MKK1 negatively regulates the

expression of flagellin-responsive genes.

mkk1 mutant plants are more susceptible to pathogen

infection

To assess whether impaired flagellin activation of MAPKs

and deregulated gene expression in mkk1 plants affect their

resistance to pathogens, we studied their sensitivity to

virulent and avirulent isolates of P. syringae pv. tomato by

(a)

(c)

(b)

Figure 4. mkk1 plants show decreased MPK3, MPK4 and MPK6 activation on

flagellin treatment.

(a) Flagellin-induced activation of MPK3, MPK4 and MPK6 in wild-type versus

mkk1 mutant plants determined by in-gel kinase assays. Ten-day-old seed-

lings were treated with flg22 and collected at different time points. The assay

showed activation by flg22 of three MBP-phosphorylating kinases of apparent

molecular weight 44, 39 and 37 kDa, corresponding to MPK6, MPK3 and

MPK4, respectively.

(b) Western blots showing protein levels of MPK3, MPK4 and MPK6 along the

time course.

(c) Immunokinase assays performed on the same samples. MPK3, MPK4 and

MPK6 were immunoprecipitated with specific antibodies and their activity

was measured using MBP as a substrate.
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measuring bacterial growth in infected leaves of soil-grown

plants. By 3 days post-inoculation (dpi) with the virulent P. s.

tomato strain DC3000, mkk1 leaves contained an approxi-

mately 10-fold greater titre of bacteria than Col-0 control

leaves (Figure 6a), suggesting that MKK1 plays a role in

maintaining basal resistance. Inoculation with avirulent P. s.

tomato strains expressing AvrRpm1, AvrRpt2 or AvrPphB

also resulted in significantly higher bacterial titres in the

leaves of mkk1 plants compared with the wild type (Fig-

ure 6b–d). This shows that race-specific resistance mecha-

nisms are also compromised in mkk1 plants, or that the

defective basal resistance renders them more sensitive to

avirulent pathogens. Both basal and race-specific resistance

rely on the formation of ROS (Torres and Dangl, 2005).

Therefore, we measured the production of ROS in wild-type

and mkk1 plants on flagellin application. We did not observe

any difference, which indicates that the hypersensitivity to

bacterial infection in the mutant plants is not caused by

impaired production of ROS (Figure 6e,f).

Discussion

A MAPK module was delineated downstream of the FLS2

receptor in experiments using transient overexpression of

various signalling components, and was proposed to con-

sist of MEKK1, MKK4/5 and MPK3/6, which eventually acti-

vate the WRKY22 and WRKY29 transcription factors and

presumably further downstream target genes (Asai et al.,

2002). In this study, we provided evidence for the existence

of a parallel or alternative signalling module that transmits

signal from flagellin elicitation and incorporates MKK1 and

MPK4. Our conclusions are based on experiments showing

the activation of endogenous MPK4 in addition to MPK3 and

MPK6 on flagellin treatment. We confirm that MPK3 and

MPK6 are activated when MKK4 is overexpressed, and show

that MKK1 specifically activates MPK4. Furthermore, we find

that the endogenous MKK1 is activated by flagellin and

phosphorylates MPK4, while in the mkk1 mutant the acti-

vation in response to flagellin of MPK4, as well as of MPK3

and MPK6, is compromised. Finally, we found that mkk1

mutant plants are more sensitive to both virulent and avir-

ulent bacterial pathogen strains.

As both upstream MKK-activating MEKKs and down-

stream MAPK targets considerably outnumber the MKKs, it

is commonly believed that MKKs are convergence points

within MAPK signalling in plants, while MEKKs and MAPKs

provide specificity to upstream signals and downstream

responses, respectively. Contradictory to this notion is the

fact that very different signals can activate the same set of

MAPKs, most commonly MPK3, MPK4 and MPK6 in Arabid-

opsis (Nakagami et al., 2005). Likewise, the alfalfa MAPK

MMK3 or its tobacco orthologue Ntf6 were implicated in

cytokinesis, oxidative stress signalling and pathogenesis

(Calderini et al., 1998; Cardinale et al., 2000; Nakagami et al.,

2004; del Pozo et al., 2004). How such distinct signals are

then transmitted by these MAPKs to lead to specific

responses is not known. Similarly, although few MEKKs

among the numerous existing in plants have been studied

so far, several were proposed to have multiple roles. For

instance AtANP1 and its tobacco orthologue NPK1 are

(a)

(c)

(b)

Figure 5. Quantitative RT–PCR analysis of flagellin-responsive genes.

Ten-day-old seedlings of Col-0 and mkk1 were treated with flagellin for 30 min

and RNA was extracted for microarray hybridization. Based on the microarray

data, flagellin-responsive genes with altered expression in mkk1 plants

compared with Col-0 were identified and their expression tested using

quantitative RT–PCR. Some other known flagellin-induced genes were tested

to confirm that they were expressed normally in the absence of MKK1.

(a) Flagellin-induced genes, expression of which in mkk1 is similar to wild-

type.

(b) Flagellin-induced genes, expression of which is upregulated in mkk1 in

untreated conditions, and further upregulated on flagellin treatment.

(c) Flagellin-repressed genes, expression of which is downregulated in mkk1

in control conditions, and further repressed by flagellin application.
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involved in regulating cytokinesis, oxidative stress and N-

gene-mediated resistance (Jin et al., 2002; Kovtun et al.,

2000; Soyano et al., 2003). While MEKKs and MAPKs are

used flexibly in multiple signalling events, MKKs in plants

appear to be more stringent in function. MKK1 and MKK2

have been allocated to the same MAPK module, and are also

the most similar in sequence among the Arabidopsis MKKs

(62% identity); however, several experiments indicate that

they differ in function and thus could provide specificity to

the module. MKK1 and MKK2 have selective interactions

with MPK4 and MPK6, and distinct potential to suppress

yeast MAPK-signalling mutations (Mizoguchi et al., 1998;

Teige et al., 2004). We found that endogenous MKK1

activated by flagellin treatment phosphorylated MPK4 in

vitro and, to a lesser extent, MPK6. However, in our transient

expression experiments we did not observe in vivo activa-

tion of MPK6 by overexpressed MKK1, suggesting that

MKK1 and MPK6 are not part of an in vivo complex, although

MPK6 can be a substrate for MKK1 to a certain extent in vitro.

Correspondingly, MKK1 was also found to phosphorylate

specifically MPK4, but not MPK3 and MPK6, in response to

H2O2 (Teige et al., 2004). According to previous additional

biochemical and genetic data, MKK2 is specifically activated

by salt and cold, while MKK1 is activated by pathogenic

elicitors and H2O2; mkk2 mutant is hypersensitive to salt and

cold stress, while we find mkk1 mutant to be compromised

in pathogen resistance (Teige et al., 2004). These results

suggest that MKKs might be able to channel signalling by

selective interactions with upstream activators and down-

stream MAPKs.

Although MKK1 was reported previously to be an up-

stream activator for MPK4, and this is largely confirmed by

our present results, knockout mutations for MKK1 and MPK4

genes yield very different phenotypes. While mpk4 knockout

was severely dwarfed and pathogen-resistant, mkk1 plants

show no obvious growth defect, but are more sensitive for

pathogen attack. Furthermore, biochemical analysis of flag-

ellin-treated mpk4 and mkk1 seedlings revealed opposite

changes in kinase activation in comparison with wild-type

plants. In contrast to the impaired activation of MPK3, MPK4

and MPK6 in mkk1 mutant plants, mpk4 seedlings showed

elevated MPK3 and MPK6 kinase activity (Figure S4 and S5).

Our results are in conflict with those reported by Droillard

et al. (2004), who found in a single time point that MPK3 and

MPK6 are activated comparably in wild-type and mpk4

mutant plants in response to flg22 and hypo-osmolarity.

Increased MPK3 and MPK6 activities in the mpk4 mutant are

in agreement with a positive role for MPK3/6 and a repressor

role for MPK4 in pathogen response, as reported (Asai et al.,

2002; Menke et al., 2004; Petersen et al., 2000). The results of

our mkk1 study appear to be in conflict with these data, but

could be explained by a possible scaffolding function of

Arabidopsis MEKK1. In budding yeast, the Ste11 MAPKKK

participates in two different MAPK pathways; tethering

Ste11 to the appropriate scaffold protein is sufficient to

elicit the corresponding signalling pathway (Park et al.,

2003). Scaffolding could also control the specificity of plant

MAPK modules, although these complexes still await iden-

tification. A recent publication showed that the closest

known alfalfa homologue of MEKK1, OMTK1 directly inter-

(a) (c)(b)

(f)(e)(d)

Figure 6. mkk1 mutant plants display enhanced sensitivity to Pseudomonas syringae pv. tomato. Four-week-old plants were inoculated with various strains of P. s.

pv. tomato, and leaf discs were harvested at 0 and 3 dpi. Each strain was tested at least twice. Bacterial growth is expressed as colony-forming units (cfu) cm)2. The

inoculum used was 105 cfu ml)1, a concentration that does not lead to the appearance of HR-like lesions on the leaves within 3 days of inoculation.

(a–d) Inoculation with: (a) virulent P. s. tomato; (b) avirulent P. s. tomato expressing AvrRpm1; (c) avirulent P. s. tomato expressing AvrRpt2; (d) avirulent P. s. tomato

expressing AvrPphB. Detached leaves of 6-week-old Col-0 and mkk1 plants were treated with flagellin and the production of ROS was monitored for 20 min after

elicitor application, using a luminol-based assay.

(e,f) Measurement of ROS production in (e) Col-0; (f) mkk1.
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acts with the MAPK MMK3, suggesting a possible scaffold-

ing function for OMTK1. The truncation of the N-terminal

regulatory domain of OMTK1 weakens the MAPK binding

and compromises the capacity of OMTK1 to trigger cell

death, underlining the importance of the regulatory domain

(Nakagami et al., 2004). We have not studied the MAPKKK

layer of the MAPK module, but it was shown previously that

MEKK1 interacts specifically through its C-terminal kinase

domain with MKK1 and MKK2, while its N-terminal regula-

tory domain allows interaction with MPK4 (Ichimura et al.,

1998). Moreover, MKK1 specifically interacts with, and

phosphorylates, MPK4 (Teige et al., 2004). Thus, the cata-

lytic interactions between MEKK1 and MKK1, and between

MKK1 and MPK4, as well as the scaffolding function of the

MEKK1 regulatory domain for MPK4, are consistent with the

existence of a flagellin-induced MAPK module comprising

MEKK1-MKK1 and MPK4. We find that in the mkk1 mutant a

number of early flagellin-induced genes are upregulated,

consistent with other reports placing the MPK4 pathway as a

negative regulator of pathogen response (Andreasson et al.,

2005; Petersen et al., 2000).

The scaffolding would provide an insulated flg22-respon-

sive MEKK1–MKK1–MPK4-signalling pathway. However, we

know that in response to a number of biotic and abiotic

stress stimuli, MPK4 is simultaneously activated with MPK3

and MPK6 (Droillard et al., 2004) or with MPK6 (Desikan

et al., 2001; Ichimura et al., 2000). We also find that, in the

mkk1 mutant, the activation not only of MPK4, but also of

MPK3 and MPK6 is compromised in response to flg22. In the

mkk2 mutant, MPK6 activation is also lowered in response to

cold (Teige et al., 2004). What couples these two pathways

together? MKK2 was suggested to activate both MPK6 and

MPK4 in response to abiotic stresses, while in the yeast two-

hybrid assay, MKK1 specifically interacted with MPK4 but

not the other Arabidopsis MAPKs (Teige et al., 2004).

Furthermore, MKK1 appears specifically to activate MPK4,

but not MPK6 and MPK3, when overexpressed in transfected

protoplasts, and MKK1 cannot phosphorylate MPK3 in vitro,

suggesting that the MPK4 and MPK3/6 pathways are separ-

ate. That these pathways are independent and can be

uncoupled under certain conditions is also indicated by

their different activation kinetics and different sensitivities to

pharmacological perturbations, for example, their disrup-

tion by MEK inhibitors (Desikan et al., 2001; Ichimura et al.,

2000). One way in which these pathways might be coupled is

by sharing the upstream MAP3K, MEKK1, but with their

activation kept sequential (Figure 7a). As we discussed,

MEKK1 tethers MPK4 and MKK1 through its N- and C-

terminal domains, respectively. This would prevent the

association of MKK4/5 until MEKK1 is activated and disso-

ciates the MKK1–MPK4 complex. In the mkk1 mutant the

inactive MPK4 might remain associated with MEKK1, thus

blocking the activation of the MKK4/5–MPK3/6 pathway.

Conversely, in the mpk4 mutant the coupled activation

mechanism would be lost, and MKK4/5 could freely associ-

ate, leading to inappropriately high MPK3/6 activation by

flg22. Although this model can be reconciled with all

currently available experimental evidence, it is unusual that

a MAP3K, through its scaffolding function, couples two

functionally distinct MAPK-signalling pathways, because

scaffolds are meant to insulate rather than connect path-

ways. MEKK1 was described as the upstream activator for

MKK4/5–MPK3/6 based on overexpression of a truncated

form lacking the regulatory domain where MPK4 binds (Asai

et al., 2002). This truncated form could have an altered

function, and might inappropriately activate downstream

signalling events. Whether MKK4/5, and consequently

MPK3/6, are then activated via MEKK1 or by an as-yet

unknown MAP3K is not known, but could be addressed by

analysing MPK3/6 activities in mekk1 mutant plants.

If two distinct MAP3Ks regulate these pathways, what

connects them, and what can account for the apparent

contradiction that two components of the same pathway,

MKK1 and MPK4, have opposing effects on the activity of

MPK3/6 within the other pathway and on the pathogen

response of the plant? The overexpression of a kinase-

inactive mutant form of MEKK1 was shown to lower the

(a)

(b)

Figure 7. Proposed alternative working models for flagellin-induced MAPK

signalling.

(a) Sequential model: activation of the two flg22-induced signalling pathways

is coupled and sequential because they share the same MAP3K, MEKK1 that

binds to MPK4, and restricts the activation of the other pathway until MKK1

and MPK4 are dissociated.

(b) Trapping model: the MEKK1–MPK4 complex restricts availability of MKK4/

5 by trapping it in an inactive complex, thus MKK4/5 release and MPK3/6

activation depend on the presence and activity of MEKK1, MKK1 and MPK4.
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activation of flagellin-responsive genes, and thus is able to

interact with and block MKK4/5 activation (Asai et al., 2002).

This could provide an alternative model to explain how the

two pathways are coupled (Figure 7b). Perhaps MEKK1

when bound to MPK4 also associates with MKK4/5, but as

MKK4/5 is unable to activate MPK4, this complex would

become trapped. The release of MKK4/5 would thus depend

on the activity of MKK1 and on the presence of MPK4. This

model would also explain the higher MPK3/6 activation in

the mpk4 mutant and the interdependence of the two

pathways.

Both models depict two functions for MEKK1 and MPK4:

they are part of a signalling cascade with MKK1 to repress

pathogen-responsive gene expression, and they negatively

regulate MKK4/5–MPK3/6, a pathway known to induce a

number of pathogen responses. Although MPK4 is a central

part of a flexible scaffolding module, we believe that it also

directly mediates responses to stress stimuli by phosphory-

lating its target proteins. Indeed, the phenotype of the mpk4

knockout mutant could not be rescued by complementation

using a kinase-inactive version of MPK4 (Petersen et al.,

2000).

The MKK4/5–MPK3/6 pathway was shown to activate the

expression of flagellin-responsive genes through the

WRKY22/29 transcription factors (Asai et al., 2002), while

the MPK4 interacting proteins MKS1 and WRKY25/33 are

part of a mechanism for repression of defence signalling

(Andreasson et al., 2005). Why do these two opposing

pathogen-responsive pathways coexist? Both models imple-

ment the default state as the repression of pathogen

response by the MPK4 pathway, which is rapidly tilted

towards triggering the defence responses through the

interconnection of the MPK4 and MPK3/6 pathways. Sig-

nal-dependent protein stability and chromatin remodelling

were suggested to regulate the switch from gene repression

to activation on pathogen elicitation (Andreasson et al.,

2005; Navarro et al., 2004).

Interestingly, comparing gene expression between the

mkk1 mutant and the MKK2 overexpressor indicated an

interchanging potential for MKK1 and MKK2. All three auxin-

responsive genes studied were downregulated in both

backgrounds, while the cell wall-related xyloglucan endo-

transglycosylase and pectinesterase, the WRKY22 and

WRKY40 genes and the blue copper-binding protein gene

were upregulated (Teige et al., 2004). Similar changes in the

expression of certain genes could indicate redirection of

signalling modules relying on these two MKKs. As endog-

enous MKK1 protein levels are low, it might be that

overexpressed MKK2 inadequately replaces MKK1, there-

fore preventing the formation of a functional MKK1 complex

and, to some extent, mimicking the mkk1 mutant in which

MKK2 might substitute for MKK1. According to this inter-

pretation, the observed changes in expression level

could not be attributed distinctly to MKK1 or MKK2, illustra-

ting the drawbacks of overexpressing and knockout mutant

analysis.

We observed no constitutive expression of late PR genes

in mkk1 plants, such as genes encoding PR-1 or plant

defensin protein (PDF1.4), but these were upregulated in

the mpk4 mutant. However, some early flagellin-respon-

sive genes were upregulated, such as chitinases, disease-

related proteins and receptor-like kinases (Table S3).

Transcriptional analysis based on microarrays was per-

formed on mpk4 plants and revealed a surprisingly low

number of genes affected by the mutation (Andreasson

et al., 2005; Petersen et al., 2000). These data cannot be

compared strictly with our experiments as they were

performed on 18-day-old plants grown in soil, allowing

possible exposure to various environmental stresses, while

we used 10-day-old seedlings grown in vitro. It is worth

noting, however, that both mutants showed upregulation

of genes relating to cell wall synthesis or modification. The

plant cell wall is not a simple physical barrier to pathogen

invasion, but is also an important sensor and integrator of

biotic stress (Vorwerk et al., 2004). Surprisingly, a number

of cell wall mutants are resistant to pathogens. A pmr6

mutant, defective in a pectate lyase-like gene, is resistant

to powdery mildew, independently of SA and of the ability

to perceive JA or ET (Vogel et al., 2002). In contrast, the

resistance of a cev1 cellulase mutant was attributed to

constitutive JA signalling (Ellis et al., 2002), while the

callose synthesis mutant pmr4 had SA-dependent dis-

ease resistance (Nishimura et al., 2003). On the other

hand, mpk4 mutant bacterial resistance was dependent on

SA (Petersen et al., 2000). The mkk1 mutant is hypersen-

sitive to bacterial infection and does not appear to have

elevated SA or JA levels, as none of the SA and JA

responsive genes was found to be upregulated in our

microarray data. Changes in cell wall composition can

therefore result in different outcomes in terms of pathogen

susceptibility, and the observed defect in pathogen resist-

ance in mkk1 plants might relate to alteration of the cell

wall composition.

Flagellin and other elicitors are known to induce ROS

production, and oxidative stress was previously reported

to activate MAPK pathways (Kovtun et al., 2000; Nakagami

et al., 2004; Teige et al., 2004). Our measurements also

demonstrated rapid increase of ROS in response to

flagellin. Considering the ROS production, mkk1 seedlings

are indistinguishable from wild-type ones, suggesting that

MKK1 functions downstream or independently of ROS.

The respiratory burst oxidase homologue (Rboh) gene

family plays an important role in ROS production in

response to pathogen attack (Torres et al., 2002). We have

found that MAPK activation on flagellin treatment still

occurs in an atrbohd/f mutant background (T.M., A.H. and

L.B., unpublished data), indicating that RbohD/F-depend-

ent ROS production might not be required. Similarly to
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Pep13-induced activation of parsley MAP kinases (Kroj

et al., 2003), flg22 activation of MPK3, MPK4 and MPK6 in

Arabidopsis might not rely on ROS signalling.

Our results show that MKK1 is a regulator of pathogen

responses and modulates the activity of the previously

reported parallel pathway comprising MKK4 and MKK5.

Modularity and cross-talk between the numerous plant

MAPK-signalling components have become increasingly

evident over recent years. We now face the challenge of

assigning them functions as components of intricate net-

works, not as separated signal transducers.

Methods

Cell culture, protoplasting and transfection

Arabidopsis cell-suspension culture was maintained as described
(Mathur and Koncz, 1998). Protoplast isolation and polyethylene
glycol-mediated transfection were performed as described by
Anthony et al. (2004). MPK vector constructs were described by
Kovtun et al. (2000). MKK and RNAi constructs were based on
pK2GW7 and pK7GWIWG2(I) Gateway plasmids for overexpression
and silencing, respectively (Karimi et al., 2005). For transfection,
5 lg of each plasmid DNA was transfected into 4 · 105 protoplasts,
which were cultured for 16 h before treatment and harvesting.
The elicitor peptide flg22 was synthesized by Sigma Genosys
(Sigma, St. Louis, MO, USA) and added in solution to cells or pro-
toplasts to a final concentration of 500 nM.

Plant material

All Arabidopsis plants used in this study were of the Columbia (Col-0)
ecotype, except for the mpk4 mutant, which is of the Lansdberg
(Ler) background. The mkk1 mutant was identified by screening a
T-DNA tagged population using gene- and T-DNA-specific primers
(Rios et al., 2002). The T-DNA insertion site was determined by DNA
sequencing and found to be located in the second intron. Southern
analysis confirmed the presence of a single insertion. Lines puta-
tively homozygous for the T-DNA insertion were subjected to RT–
PCR analysis and Southern blotting.

Plant treatments

After 48 h vernalization, seeds were sown on half-strength Mur-
ashige and Skoog medium (Duchefa M0255) supplemented with 1%
sucrose, and grown under short-day condition (8 h light, 16 h dark
at 22�C). Nine days after germination, seedlings at stage 1.02 were
transferred to liquid germination medium (12 seedlings per 2 ml
medium in 24-well plates). At 16 h after transfer the medium was
supplied with flg22 peptide to a final concentration of 1 lM. The
RNA samples for microarray analysis were produced from seed-
lings collected from different plates and treated independently
before pooling to account for biological variation.

Antibody production

Polyclonal rabbit MAPK antibodies were raised against Imject
Maleimide activated mcKLH (Pierce, Rockford, IL, USA)-coupled
C-terminal amino acids of AtMPK3 (CALNPTYG), AtMPK4

(CETVKFNPQDSV) and AtMPK6 (CAHPYLNS). Cross-reactivity and
specificity of the sera were tested by Western blot analysis using
AtMPK3, AtMPK4 and AtMPK6 recombinant proteins expressed in
Escherichia coli, and Arabidopsis crude protein extracts. The sera
were precipitated with 40% (NH4)2SO4, and pellets were dis-
solved in PBS and stored at )70�C. Cross-reactivity of the MKK1
aD-15 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
was tested by immunoblotting using AtMKK1 and AtMKK2
recombinant proteins expressed in E. coli.

In vitro kinase assays

Protein extracts were prepared either from protoplasts by sonica-
tion in 100 ll Lacus buffer or from frozen cells/seedlings in 150 ll
Lacus buffer with quartz sand as described by Bogre et al. (1999). In-
gel kinase assays were carried out according to Shibuya et al. (1992)
with modifications. Briefly, 25 lg total protein were fractionated on
a 10% SDS–PAGE gel containing 0.5 mg ml)1 bovine brain MBP
(Sigma). SDS was removed by three 20-min washes in 50 mM Tris
pH 8.0, 20% 2-propanol and one wash in buffer A (50 mM Tris pH 8.0,
5 mM DTT). Proteins were denatured in 6 M guanidine hydrochlo-
ride, 20 mM DTT, 50 mM Tris–HCl pH 8.0 for 1 h at room tempera-
ture. Kinase renaturation was achieved overnight at 4�C in buffer A
containing 0.04% Tween 40 with five changes of buffer. The phos-
phorylation assay was performed in 10 ml kinase reaction (50 mM

HEPES–HCl pH 8.0, 2 mM DTT, 20 mM MgCl2, 0.1 mM EGTA, 30 lM

ATP and 50 lCi c-32P-ATP) in a sealed plastic bag at room tem-
perature for 1 h. The gel was washed at room temperature for at
least 5 h in 10% (w/v) trichloroacetic acid, 1% sodium pyrophos-
phate before drying and autoradiography. Immunocomplex kinase
assays were performed as described by Meskiene et al. (2003).
Samples were analysed by 15% acrylamide SDS–PAGE and subse-
quent autoradiography.

For measurement of MKK activity on purified MPKs, the cloning
and expression of inactive GST-MPKs is described by Teige et al.
(2004). A commercial MKK1 aD-15 antibody (Santa Cruz Biotechno-
logy) was used for immunoprecipitation of endogenous MKK1 from
100 lg total protein extract, and 3 lg kinase-inactive MPK3, MPK4
and MPK6 were used as substrate.

Pathogen infection tests and ROS measurements

Maintenance of pathogens and pathogen assays were performed as
described previously (Aarts et al., 1998). Measurement of ROS was
essentially as described by Gomez-Gomez et al. (1999). Briefly, leaf
discs were cut into strips and incubated on water overnight. The
solution was exchanged for 100 ll water containing 10 g ml)1

horseradish peroxidase, and 50 lM Luminol with and without 1 lM

flg22. Real-time luminescence data were acquired using an inten-
sified CCD camera (model HRPCS3) with a 16-mm F1.4 C mount lens
and the manufacturer’s software package IFS32, all from Photek Ltd
(St Leonards on Sea, UK).

RNA isolation and quantitative RT–PCR

Treated seedlings were snap-frozen in liquid nitrogen. RNA was
isolated using the RNeasy plant mini kit (Qiagen, Valencia, CA, USA)
according to the manufacturer’s instructions. Concentration and
purity of RNA were determined by measuring optical density at 260
and 280 nm.

cDNA was produced from 1 lg purified RNA using the RETRO-
script kit (Ambion, Austin, TX, USA) with provided random decamer

Arabidopsis MKK1 in defence responses 495

ª 2006 The Authors
Journal compilation ª 2006 Blackwell Publishing Ltd, The Plant Journal, (2006), 48, 485–498



primers, following the manufacturer’s two-step RT–PCR protocol.
The cDNA solution was diluted eight times and 4 ll were used for
each RT–PCR, except for At5g64120 and At5g20230, where double
this amount was used. The PCR was performed using the QuantiTect
SYBR Green PCR kit (Qiagen) in 20 ll volume with 0.5 lM primer
concentration. The following primers were used to detect target
gene transcripts: At2g21210: 5¢-GAGATTCGTGGTTCCAGTGA-3¢
and 5¢-AGAGGCGAGATCGATGAAGA-3¢; At4g38840: 5¢-AAGCA-
GATTCTCCGACAAG-3¢ and 5¢-GAAGGCTGGTCCAAGTACGA-3¢,
At4g38860: 5¢-ACAATGCTACGACGAGGAA-3¢ and 5¢-TTCCTCTGCT-
TGTTGAAGAA-3¢; At4g02330: 5¢-CTTTTGCTGTTACATCGCCG-3¢
and 5¢-AAGCTTCGAAACTGCAACTA-3¢; At5g39580: 5¢-CTCTTGTT-
GGAGGAGGACAC-3¢ and 5¢-AGATCAACACGTGCTGATCC-3¢,
At5g64120: 5¢-AAGGAACAGGCTGGCAAGTA-3¢ and 5¢-GTGTCCTC-
CGACGAGGACG-3¢; At4g22470: 5¢-AGCCATGTTGTTCCATCGTA-3¢
and 5¢-CTGCGACCACAAACCTTAAA-3¢; At4g25810: 5¢-TGGGAA-
ACCTAAGTGGTGAT-3¢ and 5¢-CGGAGAATATGATGCGTTGT-3¢;
At1g69530: 5¢-TGTCGTCACAGCCACAAAC-3¢ and 5¢-ACGGCACTC-
TTCGGTAAGC-3¢; At5g20230: 5¢-GCGACGAGCTCGAATTTGA-3¢
and 5¢-TGTGGTCCAGTGGTGTTTAG-3¢; At4g23810: 5¢-CCGAG-
CGTACAACTTATTCC-3¢ and 5¢-TGATGACTCTCGCTAGAACC-3¢;
At5g60390: 5¢-GTGTTGTAACAAGATGGATGCC-3¢ and 5¢-CAGTC-
AAGGTTGGTTGACCTC-3¢; At3g45640: 5¢-GGAATCGTTTGCTCTG-
TGTTG-3¢ and 5¢-CATGATCAAGATGACGAAGAAGC-3¢; At4g01250:
5¢-CCATATCCAAGAGGATACTACAG-3¢ and 5¢-TGTCGGAGCTG-
GATGATTAT-3¢; At5g49360: 5¢-GTCTCAATGGGTACATTGTCTC-3¢
and 5¢-CTTCACTGCACCTTCCGTG-3¢; At1g80840: 5¢-AAGATCC-
ACCGACAAGTGC-3¢ and 5¢-CCTCTCGGTTATGTTGCTCTTG-3¢.
The recommended PCR program for the iCycler machine was
followed with an annealing temperature of 55�C. PCR efficiency
was calculated using the DART program (Peirson et al., 2003) and
ratios of gene expression were determined with Genex (Bio-Rad,
Hercules, CA, USA) using the At5g60390 transcript level for normal-
ization.
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