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Variation for metabolite composition and content is often
observed in plants. However, it is poorly understood to what
extent this variation has a genetic basis. Here, we describe
the genetic analysis of natural variation in the metabolite
composition in Arabidopsis thaliana. Instead of focusing on
specific metabolites, we have applied empirical untargeted
metabolomics using liquid chromatography–time of flight mass
spectrometry (LC-QTOF MS). This uncovered many qualitative
and quantitative differences in metabolite accumulation
between A. thaliana accessions. Only 13.4% of the mass peaks
were detected in all 14 accessions analyzed. Quantitative trait
locus (QTL) analysis of more than 2,000 mass peaks, detected
in a recombinant inbred line (RIL) population derived from the
two most divergent accessions, enabled the identification of
QTLs for about 75% of the mass signals. More than one-third
of the signals were not detected in either parent, indicating the
large potential for modification of metabolic composition
through classical breeding.

Metabolites are critical in biology, and plants are especially rich in
diverse biochemical compounds. It has been estimated that over
100,000 metabolites can be found in plants, and each species may
contain its own chemotypic expression pattern1. Moreover, substantial
quantitative and qualitative variation in metabolite composition is
often observed within plant species2.

Although knowledge on the regulation of metabolite formation is
increasing, for thousands of metabolites, their function in the plant,
their biosynthetic pathway and the regulation thereof is still unknown.
QTL analysis of natural variation, which can affect metabolites3, in
segregating populations can identify loci explaining the observed
variation4. In recent years, a few studies have focused on identifying
QTLs regulating a specific group of known metabolites using detection
methods directed toward specific metabolite groups5–9. However,
recent advances in mass spectrometry–based metabolomics and data
processing techniques should now allow large-scale QTL analyses of
untargeted metabolic profiles, which may uncover previously
unknown regulatory functions of loci in metabolic pathways. Using

dedicated alignment software, it is now possible to perform an
unbiased comparison of large numbers of metabolite-derived masses
detectable in large numbers of samples arising from inherently large
sets of genotypes (which are required for accurate mapping of QTLs)
in an RIL population10,11. QTL mapping will result in the localization
of loci, and ultimately genes, causal for the observed variation and will
allow the discovery of coregulated compounds. In this way, genome-
wide genetic correlative metabolic analysis now becomes feasible, as
we demonstrate here.

RESULTS
Metabolite variation is abundant and genetically controlled
To assess the natural variation in metabolite content present in
A. thaliana, we performed HPLC-QTOF MS–based untargeted meta-
bolic fingerprinting of acidified aqueous methanol extracts from
seedlings of 14 different accessions originating from various parts of
the global distribution range of A. thaliana (Supplementary Table 1
online). We observed considerable quantitative and qualitative varia-
tion in the mass profiles of the different accessions. Although a
metabolite may be represented by one to several mass signals in
these analyses, depending on its chemical structure and abundance,
each mass signal was treated as a separate element in subsequent
analyses. On average, we detected 964 mass peaks per accession, with a
minimum of 826 (Col) and a maximum of 1,337 (Cvi). We detected a
total of 2,475 different mass peaks; 706 were unique to single
accessions, and only 331 were present in all 14 accessions (Fig. 1a).
We found an average of 50 unique mass peaks per accession, with a
minimum of 14 (Bay-0) and a maximum of 235 (Cvi). Although there
might be a slight bias toward an overestimation of the number of
accession specific mass peaks owing to low-abundance peaks detected
around the threshold level, the observed frequency distribution
pattern was similar when the threshold level was increased from six
to ten times local noise. It can therefore be assumed that many of the
differences observed between accessions are due to qualitative differ-
ences. For most masses, a large part of the observed variation can be
assigned to genetic factors, as concluded from their often high broad-
sense heritabilities (Fig. 1b). This, together with the substantial
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variation in metabolite composition observed within a single plant
species promises great opportunities for metabolic engineering by
classical breeding12.

Most of the metabolic variation can be mapped
To uncover loci controlling the observed variation in metabolic
profiles, we subsequently analyzed an RIL population derived from a
cross between Landsberg erecta (Ler) and Cape Verde Islands (Cvi)13.
These were the two biochemically most distinct accessions for which
such a mapping population was available (Supplementary Methods
and Supplementary Fig. 1 online). We found it striking that 853 of a
total of 2,129 mass peaks identified in the RIL population were not
detected in either parent (Fig. 2a). Although the number of lines
analyzed in the RIL population (160 lines measured in duplicate)
exceeded that of the number of parental lines (five replicates of each
parent measured in duplicate), making the chance of detecting mass
peak intensities around the threshold level higher, the observed ratio
did not differ much when the threshold was increased modestly (data
not shown). This suggests that many metabolites not present in either
parent are produced as a result of the recombination of the genomes of
the two parents. For 1,592 mass signals (74.8%), we detected at least
one significant (P o 0.0001) QTL using a two-part parametric
model14. This P threshold corresponded to a q value of 0.0002 in
Storey’s genome-wide false discovery rate (FDR) method15. On aver-
age, we found nearly 2.0 QTLs per analyzed mass, leading to a total of
4,213 QTLs (Supplementary Fig. 2 online). Thus, after crossing these
two distinct genotypes, variation in the presence and abundance of
B75% of the detected masses in their offspring could be at least partly
explained by mappable genetic factors (Fig. 2a), consistent with the
relatively high heritabilities found for many masses (Supplementary
Fig. 3 online). At more stringent P value thresholds of 5.0 � 10–5,
1 � 10–5 and 1 � 10–6, corresponding to q values of 1 � 10–4, 2.9 �
10–5 and 4.1 � 10–6, respectively, 1,500 (70.5%), 1,306 (61.3%) and
1,068 (50.2%) mass signals showed at least one significant linkage.

Analysis of the genomic distribution of the detected QTLs shows
that these are not evenly distributed over the A. thaliana genome.
Instead, we observed hot and cold spots for the regulation of
metabolic content (Fig. 2b,c). This unequal distribution of QTLs
may occur for a number of reasons. Many of the metabolites detected
by the approach chosen may be biochemically related and therefore

have similar genetic control. In addition, genetic factors such as degree
of genetic differentiation and effects of differential recombination rates
might contribute to this heterogeneity. Finally, hot spots may reflect
false-positive QTLs of traits highly correlated owing to technical or
environmental factors16. We therefore computed empirical confidence
levels by permutation tests (Supplementary Methods online) and
found that in most cases, the frequency of QTLs occurring at hot spots
was much higher than was expected by chance (Fig. 2c).

Map positions can uncover metabolic pathways
Colocation of QTLs coincides with clusters of highly correlated mass
peaks, which are assumed to be enriched for masses regulated by the
same genes. Coregulated metabolites may indicate that a specific
biological function controls different components or that a specific
step in a biochemical pathway is affected17. To demonstrate the latter
possibility, we first focused on the mass signals corresponding to
glucosinolates, for which over 30 different structures have already been
identified in A. thaliana18. The largest class comprises the aliphatic
glucosinolates, which are all derived from methionine (Fig. 3a).
Studies targeted to this class of metabolites have shown large quanti-
tative and qualitative differences in accumulation of aliphatic gluco-
sinolates between A. thaliana accessions19. In addition, QTL analysis
of these glucosinolates in the Cvi � Ler RIL population uncovered two
major loci explaining the observed variation for most aliphatic
glucosinolates7. The MAM locus at the top of chromosome 5 is
responsible for the observed variation in chain length20, whereas the
AOP locus at the top of chromosome 4 is responsible for the observed
variation in side chain modification21. Moreover, both loci, which
contain multiple copies of genes having different biochemical func-
tions, seem to control the quantitative variation in glucosinolate
accumulation, with substantial interaction between the two loci
(Supplementary Note online).

By making use of the mass accuracy of the TOF-MS, we were able to
identify most of the aliphatic glucosinolates reported for A. thaliana.
Subsequent QTL analysis showed that all masses corresponding to an
aliphatic glucosinolate indeed mapped to the AOP and/or MAM
loci (Fig. 3b), thus confirming previous findings. Epistatic analysis
of the two loci uncovered strong interactions for many of the
detected glucosinolates (Supplementary Methods and Supplemen-
tary Table 2 online).

The fact that we did not detect all glucosi-
nolate QTLs found in another study7 is most
likely explained by the use of a different stage
of plant development and differences in grow-
ing conditions. This is supported by the fact
that they found different QTLs in seeds versus
leaves. The observation that our MAM QTL
was much stronger than in their study pro-
vides another example of such a genotype �
environment or genotype � developmental
stage interaction, which can be expected
also for metabolites. Furthermore, we
mapped individual glucosinolates, whereas
the other study7 mapped total aliphatic
glucosinolate content.

To assess the extent of genetic overlap
between any two masses, we computed the
correlation coefficients between QTL profiles
(vectors of P values associated with markers
along the genome for each mass) (Supple-
mentary Note online). We observed strong
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Figure 1 Natural variation in A. thaliana metabolite accumulation. (a) Frequency distribution of the

number of different accessions each mass peak was detected in. (b) Frequency distribution of broad-

sense heritability of each mass peak detected in the different accessions. Data are based on at least

two biological replicates per accession.
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Figure 2 Genetic analysis of metabolite profiles in the A. thaliana Cvi � Ler RIL population. (a) Number of masses detected in the RIL population and its

parents. The triangle is subdivided into masses not detected in either parent (upper part), detected in one parent only (left and right) and detected in both

parents (lower part). The number of masses for which at least one significant (P o 0.0001) QTL was detected is shown in parentheses. (b) Heat map of

each mass in the RIL population for which at least one significant (P o 0.0001) QTL could be detected. Colors are according to their additive effects (red,

Cvi; green, Ler), and intensities represent significance of QTL likelihood (–log10P). (c) Frequency distribution of the number of significant QTLs detected at

each marker position at four significance levels. When, for a certain mass signal, consecutive markers showed significant linkage, only the most significant

marker was counted. Markers are evenly spaced over the genome with an average distance of 5 cM between them. Chromosomal borders are indicated by

vertical gray lines. The dashed lines represent the 95% genome-wide frequency confidence thresholds for regulation hotspots obtained from 1,000

permutations. The corresponding values are 31, 23, 8 and 2 QTLs per marker expected by chance for significance levels of 10–4 (green), 5 � 10–5 (blue),

10–5 (yellow) and 10–6 (red), respectively. Data represent two biological replicates per RIL and five biological replicates for each parent measured in two

replicate extractions.
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genetic correlations among aliphatic glucosinolates due to the coloca-
tion of QTLs (data not shown). To extract the most relevant relation-
ships between different glucosinolates, we also calculated second-order
correlations defined by correlation between two glucosinolates inde-
pendent of covariance with any other pair22. We empirically estimated
the significance threshold for the second-order correlations by per-
mutation (Supplementary Methods online). Significant coefficients
are shown in Figure 3c as edges between metabolites; 0.1 false positive
edges are expected by chance. The resulting network is essentially a
reconstruction of a known pathway for glucosinolate formation and
groups glucosinolates according to their specific biosynthesis steps.

The fact that the reconstructed network has similarities to the known
pathway validates our methods, and the dissimilarities suggest possible
previously unknown steps in the formation of glucosinolates.

Even if no prior information had been available, our mapping data
alone suggest that at least two loci contribute to the observed variation
in aliphatic glucosinolate formation. The fact that most MAM-
regulated compounds do not show a QTL at the AOP locus and all
AOP-regulated compounds also show a QTL at the MAM locus
(Fig. 3b) suggests that AOP acts downstream of MAM. Furthermore,
we observed high levels of side chain–modified compounds in
unexpected genotypic classes (Supplementary Table 3 online). In
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Figure 3 Genetic regulation of aliphatic glucosinolate accumulation in A. thaliana. (a) Scheme of aliphatic glucosinolate formation. Corresponding loci of

enzymatic steps are shown in bold next to the arrows. (b) QTL likelihood profiles of aliphatic glucosinolates detected in the RIL population. The first QTL,

at 303.3 cM, is at the AOP locus, the second, at 409.4 cM, is at the MAM locus. The sign of the value is related to the additive effect at each marker

position (+, Cvi; –, Ler). Solid lines represent glucosinolates before side chain modification and dotted lines glucosinolates after side chain modification.

Chromosomal borders are indicated by vertical gray lines. (c) Second-order genetic correlations between aliphatic glucosinolates detected in the RIL

population. Upper panel contains glucosinolates before side chain modification; lower panel contains glucosinolates after side chain modification. All edges

depicted are significant at a ¼ 0.05, as determined by permutation. Corresponding correlation values are placed next to edges. In b and c, colors represent

different chain lengths (red, 3 C; blue, 4 C; green, 44 C).
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contrast to previous findings21, this suggests that both AOP2 and
AOP3 are expressed in seedlings, indicating that regulation of gluco-
sinolate formation is dependent on developmental stage. The reverse
additive effect of the AOP locus for 4-hydroxybutyl, 2-propenyl and 4-
benzoyloxybutyl formation shows that regulation can be completely
different for different growth stages, although a previous study21 also
suggested alternative loci for 4-hydroxybutyl formation. These results
validate our combined genetic and metabolomic approach to identify
coregulated masses and provide an independent line of evidence to
validate or modify current knowledge. An untargeted approach should
therefore facilitate the annotation of metabolites to existing or even to
as-yet-unknown pathways.

Untargeted metabolomics uncovers new biosynthetic steps
To demonstrate the power of our untargeted metabolomics approach
in uncovering previously unknown potential regulatory relationships
between metabolites, we focused on a locus on chromosome 1 at
88.6 cM, where a number of mass signals could be mapped with high
significance. We first determined the extent of QTL overlap, expressed
as the correlation coefficient, of the mass with the most significant

QTL with all other masses. Next, masses
showing significant correlation were identi-
fied by calculating their accurate mass, inter-
preting their absorbance spectra (photo
diode array (PDA) signals) and using MS/
MS fragmentation techniques (Supplemen-
tary Table 4 online). Most of the mass signals
sharing this single QTL on chromosome 1
corresponded to different glycosylated flavo-
nols (Fig. 4a). The direction of the additive
effect, however, suggests that genotypic var-
iation at this locus exerts opposite effects on
the glycosylation pattern. Lines carrying the
Ler allele(s) at this locus accumulate flavonols
containing dihexosyl glycosides, whereas lines
carrying the Cvi allele(s) at this position do
not. Ler genotypes, however, are able to
synthesize all flavonols detected in Cvi geno-
types (Table 1 and Fig. 4b,c). The present
findings suggest that a specific, not-pre-
viously-identified glycosyl transferase, cata-
lyzing the production of flavonol-
dihexosides, is active in Ler but not in Cvi,
thus affecting total flavonol composition.
Two genes putatively annotated as UDP-
glucose:glycosyltransferases (UGTs) based on
consensus sequence homology with Family 1

UGTs coincide with the support interval of the QTL (that is,
UGT79B10 and UGT79B11)23. UGT79B10 has been expressed as
recombinant protein in Escherichia coli, but it showed no activity
against quercetin glucosides in an in vitro analysis24. However,
the coding sequence was obtained from the Columbia accession,
which might harbor allelic differences compared with Ler or Cvi.
No information about activity of UGT79B11 is currently available,
but its sequence is highly homologous to UGT79B10, and the two
genes probably arose from a duplication event. Therefore, both genes
cannot be ruled out a priori as candidates for the observed QTL.
Another possibility might be the presence of a gene in Ler that is
absent in Cvi and Col and therefore is not annotated in the Col
sequence. Fine-mapping of this locus should demonstrate whether the
QTL represents an encoding structural gene or a regulator thereof.
Thus, the untargeted detection and subsequent mapping of metabo-
lites enabled us to identify a number of putative flavonol-glycosides
not previously reported in A. thaliana25. Colocation of QTLs suggests
that variation in the accumulation of these flavonol species is
attributable to a single locus affecting glycosylation of the basic
flavonoid backbone.
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Figure 4 Genetic variation in flavonol-glycoside accumulation in A. thaliana. (a) QTL likelihood profiles

of putatively identified flavonol glycosides in the RIL population. The sign of the value is related to the

additive effect at each marker position (+, Cvi; –, Ler). Dotted and solid lines represent flavonols with

and without dihexosyl residues, respectively. Chromosomal borders are indicated by vertical gray lines.

(b) Typical example of relative levels of flavonol-dihexoside versus flavonol-monohexoside in the RIL

population. Each symbol represents the average of two measurements per RIL. Squares and triangles

represent lines carrying a Cvi or Ler genotype at the QTL position, respectively. (c) Typical example of

flavonol dihexoside and flavonol monohexoside accumulation in the parental lines Ler (black) and Cvi

(gray). Data represent five biological replicates for each parent measured in two replicate extractions.

In b and c, values represent mass signal intensities (MC, counts at maximum peak height). Error bars

represent s.e.m.

Table 1 Characteristics of putatively identified flavonols

Aglycone Glycosylation Significance (–log10P ) Effect (MC) Ler (MC ± s.e.m.) Cvi (MC ± s.e.m.)

Isorhamnetin Deoxyhexosyl-hexoside 30.7 199 247 ± 54 212 ± 10

Isorhamnetin Deoxyhexosyl-dihexoside 24.0 –123 258 ± 18 4 ± 0

Kaempferol Dideoxyhexosyl-hexoside 39.1 197 13 ± 2 329 ± 40

Kaempferol Deoxyhexosyl-dihexoside 29.5 –1,326 1,334 ± 164 7 ± 0

Quercetin Deoxyhexosyl-hexoside 50.7 2,659 1,293 ± 291 4,928 ± 517

Quercetin Deoxyhexosyl-dihexoside 24.3 –1,721 3,031 ± 167 4 ± 0

Each flavonol is presented as its aglycone with its distinguishing glycosylation pattern. Significance of the detected QTL on chromosome 1 at 88.6 cM for each flavonol is shown as
–log10P values and additive effect and relative abundance of each flavonol in the parental lines is given as mass signal intensities (MC, counts at maximum peak height).
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DISCUSSION
The framework proposed here involves the untargeted detection
of hundreds to potentially thousands of metabolites in a mapping
population, thus enabling the mapping of QTLs for individual
metabolites. This creates new opportunities for pathway elucidation
and identification even when background knowledge is highly
limited. We show that the biochemical variation in A. thaliana is
extensive but is nevertheless largely under genetic control, as
concluded from the observation that genomic loci could be assigned
for 75% of the LC-MS–detected mass peaks. The use of untargeted
metabolomics is particularly useful in this context, because it
allows the detection of previously unidentified metabolites.
When such metabolites are coregulated with known metabolites,
this may facilitate the functional assignment of those unknown
metabolites. Similarly, unexpected co-occurrence of well-known
metabolites can also be discovered that would otherwise have
been missed if detection were targeted to a specific subset of
compounds. Genetic variation for metabolite composition might
be important in adaptation to the specific environmental conditions
in which the different accessions grow. In addition, they determine
many aspects of the nutritional, sensory and other aspects of crop
plant quality.

Biological systems are often regulated at various molecular levels,
including the influence of metabolites on plant development. A
number of studies have indicated the influence of metabolites on
whole plant morphology during early stages of development26,27.
Thus, our understanding of biological function would benefit
greatly from quantitative measurements of different classes of com-
pounds (such as proteins and metabolites) and various processes
(such as gene expression) carried out in parallel, preferably combined
with other classical phenotypic analyses28. The implementation
of different technologies then enables association analyses based
on similar genetic control, as shown by similar QTL positions. In
particular, the use of a perpetual mapping population such as an
RIL population will have added value because colocating QTLs
can identify the genetic basis for these associations even when different
experiments have been performed29,30. Our study can therefore
easily be extended by using different extraction and analysis methods
or by examining contrasting plant developmental stages. Moreover,
the recent progress made in genetic analyses of gene expression31,32

can also readily be exploited, and this will aid further the construction
of genetic regulatory networks33. In the past, numerous studies
have shown the usefulness of natural biodiversity for the elucidation
of agronomically important traits, and pleiotropic loci have been
identified controlling different traits simultaneously34. The parallel
genetic analysis of physiological, transcriptional and biochemical
profiling can greatly enhance our understanding of metabolic
regulatory circuitry and its relationship with phenotypic traits that
segregate in the same population. The definitive identification
of the most interesting chemical compounds represented by the
various mass peaks would require additional chemical analysis. How-
ever, setting priorities for these analyses can now be performed
effectively based on the identified map positions of QTLs controlling
such phenotypic traits.

Understanding the mechanisms that explain natural variation in
metabolite profiles and how this correlates with phenotype is a
primary challenge for evolutionary research and research geared to
defining natural biodiversity and maximizing its use through directed
plant breeding approaches. The strategy described here has universal
application and can be used for any set of metabolites analyzed in
mapping populations of any organism.

METHODS
A. thaliana accessions and mapping population. We analyzed 14 accessions of

A. thaliana representing different regions of the global distribution of the

species for quantitative genetic variation in metabolite content. A population of

160 recombinant inbred lines derived from a cross between the accessions Cape

Verde Islands (Cvi) and Landsberg erecta (Ler) was used for QTL mapping of

metabolite content. The F10 generation has been extensively genotyped13 and is

available from the Arabidopsis Biological Resource Center. All lines were

advanced to the F13 generation, and residual heterozygous regions, estimated

to be 0.71% in the F10 generation, were genotyped again using molecular PCR

markers. In addition, all lines were genotyped with a few extra markers to

improve the quality of the genetic map. Because each line is almost completely

homozygous, individual plants of the same line are genetically identical,

which allows the pooling of replicate individuals and repeated measure-

ments to obtain a more precise estimate of phenotype values and broad

sense heritabilities.

Germination, growth conditions and harvesting. Seeds of accessions and

RILs were sown on 10 ml twice-diluted Murashigi and Skoog medium

containing 2% agar in 6-cm Petri dishes. For each line, five replicate dishes

were sown on five consecutive days with a density of a few hundred seeds per

Petri dish. Petri dishes were placed in a cold room at 4 1C for 7 d in the dark to

promote uniform germination. Subsequently, dishes were randomly placed in

five blocks in a climate chamber where each block contained one replicate dish

of each line. Growing conditions were 16 h light (30 W m–2) at 20 1C, 8 h dark

at 15 1C and 75% relative humidity. After 6 d, the lids of the Petri dishes were

removed to ensure seedlings were free of condensed water on the day of

harvesting. On day 7, seedlings were harvested by submerging the complete

Petri dish briefly in liquid nitrogen and scraping off the aerial parts with a

razor blade. Harvesting started 7 h into the light period, and all lines were

harvested in random order within 2 h. Plant material was stored at –80 1C until

further processing.

Extract preparation and LC-MS analysis. For each line, plant material from

two dishes was harvested to make one replicate sample and material from the

other three dishes was harvested for the second sample. Samples were ground

in liquid nitrogen, and 100 mg of each sample was weighed in 2.2 ml

Eppendorf tubes. Aqueous-methanol extracts were prepared by adding 400 ml

of ice-cold 92% methanol acidified with 0.1% (vol/vol) formic acid to the plant

sample (final methanol concentration 75%, assuming 90% water in tissues).

After sonication for 15 min and centrifugation (20,000g) for 10 min, the

extracts were transferred to 96-well protein filtration plates (Captiva 0.45 mm,

Ansys Technologies), vacuum filtrated and collected in 700-ml glass inserts in

96-well autosampler plates (Waters), using a Genesis Workstation (Tecan

Systems). Samples were automatically injected (5 ml) and separated using an

Alliance 2795 HT system (Waters) equipped with a Luna C18-reversed phase

column (150 � 2.1 mm, 3 mm; Phenomenex). Separation was performed at

40 1C by applying a 20 min gradient from 5–75% acetonitrile in water, acidified

with 0.1% formic acid, at a flow rate of 0.2 ml/min. Compounds eluting from

the column were detected online, first by a Waters 996 photodiode array

detector at 200–600 nm and then by a Q-TOF Ultima MS (Waters) with an

electron spray ionization (ESI) source. Ions were detected in negative mode in

the range of m/z 100 to 1,500, using a scan time of 900 ms and an interscan

delay of 100 ms. Desolvation temperature was 250 1C with a nitrogen gas flow

of 500 l/h, capillary spray was 2.75 kV, source temperature was 120 1C, cone

voltage was 35 V with 50 l/h nitrogen gas flow and collision energy was 10 eV.

The mass spectrometer was calibrated using 0.05% phosphoric acid in 50%

acetonitrile and leucine enkaphalin (Sigma), detected online through a separate

ESI interface every 10 s, was used as a lock mass for exact mass measurements.

MassLynx software version 4.0 (Waters) was used to control all instruments and

for calculation of accurate masses.

Data pre-processing. The dedicated software program METALIGN was used

for unbiased and unsupervised comparison of all LC-MS datasets10,11. In short,

the program performs automated peak centering, local noise calculation,

baseline correction and extraction of all relevant mass signals (that is, signal-

to-noise ratio of 3 or higher) from all LC-MS datasets, and it subsequently uses
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landmark-dependent alignment algorithms to correct for local chromato-

graphic drifts and obtain an ordered data matrix (‘aligned mass peaks’ versus

samples). Mass peak signals generated are calculated as mass intensities (ion

counts) at maximum peak height.

Quality improvement by reduction of the data set. For each sample, the

number of detected masses was reduced to improve the quality of the data set.

Only masses that were detected in the optimized gradient phase11 (between 3

and 20 min retention time) and that had a signal intensity higher than six times

local noise were selected for further data analysis. For the RIL population,

masses that had a signal intensity higher than six times local noise but that were

detected in fewer than ten lines were discarded as well.

Statistical analyses. Total phenotypic variance was partitioned into sources

attributable to genotype and error. Components of variance were used to

estimate broad-sense heritability according to the formula H2 ¼ VG / (VG +

VE), where VG is the among-genotype variance component, and VE is the

residual (error) variance component of the analysis of variance (ANOVA).

Linkage map construction. Genotype data for the Ler/Cvi population indivi-

duals are available at the web address listed below. The genetic map was

constructed from a subset of the markers available with a few new markers

added. The computer program JOINMAP 3.0 (ref. 35) was used for the

calculation of linkage groups and genetic distances. Recombination frequencies

were converted to distances in cM using the Kosambi mapping function.

QTL analysis. For many masses, a spike in the phenotype distribution was

observed, causing a departure from the assumption of normal distribution. The

spike was caused by the absence of a mass peak in a considerable number of

RILs, consequently leading to signal intensities equal to the detection threshold

value (four times local noise). Because distributions were normal if only

RILs were taken into account when signal intensities were above the

detection threshold, we carried out a single-marker analysis using a two-part

parametric model14.

The first part describes a binominal model that tests for association of

markers with presence or absence of mass peaks. For each mass peak, let yi
denote the mass intensity for ith RIL. Let zi ¼ 0 if yi ¼ 4 and zi ¼ 1 if yi 4 4. We

then tested each marker for significant differences between the two genotypes

for the probability of presence of the mass peak: H0: p{z ¼ 1 | g ¼ Ler} ¼ p{z ¼
1 | g ¼ Cvi} versus the alternative hypothesis H1: p{z ¼ 1 | g ¼ Ler} a p{z ¼ 1 |

g ¼ Cvi}, where g is the genotype (Ler or Cvi) of a marker under analysis.

The second part describes a parametric model that tests for association of

markers with intensity of the mass signal for those lines where yi 4 4. Under

the assumption of normal distribution, we tested each marker for significant

differences in the mean values between two genotypes: H0: u{g ¼ Ler} ¼ u{g ¼
Cvi} versus the alternative hypothesis H1: u{g¼ Ler} a u{g¼ Cvi}. The P value

of the two-part model was then determined by the multiple of the P values

from the two separate analyses (P1 and P2, respectively).

To calculate significance thresholds, we performed a simulation study

following ref. 14. Each individual had probability 40% (the median proportion

of null phenotype observed in mass data) of having a null phenotype and

probability 60% of having a phenotype drawn from a normal distribution with

mean 13 (the median value of mass phenotype data) and standard deviation 1.

For each of 10,000 replicates, we simulated such data under the null hypothesis

of no QTL, applied the two-part model and stored the genome-wide minimum

P value. The 98th percentile of the P values corresponded to 0.0001. With the

real data, the q values corresponding to P values were estimated using Storey’s

genome-wide false discovery rate (FDR) method15.

We then calculated the proportion of QTL significance explained by the

binominal part by logP1/(logP1 + logP2), where P1 and P2 are the P values

from the two separate parts of the model, respectively (Supplementary Fig. 4

online). The variance explained by QTLs was calculated for both parts

separately (Supplementary Fig. 5 online). In the quantitative model

(part II), we used ANOVA to estimate the total sum of squares (SStotal) and

the sum of squares between QTL genotypes (SSQTL). The proportion of

variance explained by QTL was then calculated as SSQTL/SStotal. For the

binominal model (part I), we used the deviance instead of the sum of squares.

We fitted the binominal data into a generalized linear (probit) model to

estimate the deviances (dev)36. The proportion of variance explained by the

QTL in the binominal model was then calculated as devQTL/devtotal.

Calculation of genetic correlations. Various methods have been developed and

applied to uncover gene regulatory networks from expression profiles22,37,38 or

from QTL profiles39. We combined and modified the methods from refs. 37

and 39 and calculated the second-order partial correlation on QTL profiles

between any pair of masses to assess the strength of their genetic relationship.

The calculation took three steps: (i) for each QTL significant at Po 0.0001, the

QTL support interval was determined by setting left and right border positions

associated with max(–log10P) ± 1.5; that is, the 1.5-lod drop-off interval.

Subsequently, –log10P values for positions outside the support intervals were set

to zero. (ii) Pairwise correlation coefficients between any two masses were then

calculated as

rxy ¼
2
Pn
i¼1

xi � yi
Pn
i¼1

x2
i +

Pn
i¼1

y2
i

where rxy is the correlation coefficient between mass x and y, and i (i¼ 1yn) is

a marker. xi and yi represent –log10P values for marker i. (iii) Finally, second-

order partial correlations were calculated. The first-order correlation between

variable x and y conditional on a single variable z is given by

rxyjz ¼
rxy � rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � r2
xzÞð1 � r2

yzÞ
q

where rxy , rxz and ryz are correlation coefficients on mass expression profiles

between x and y, x and z, and y and z, respectively. The second-order partial

correlation between x and y, conditional on a pair of variables z and k, is a

function of first-order coefficients.

rxyjzk ¼
rxyjz � rxkjzrykjzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � r2
xkjzÞð1 � r2

ykjzÞ
q

For each pair x and y, the second-order partial correlations were calculated

conditional on each pair z and k, and the minimal value was stored. Having

calculated these minimal values for all pairs x and y for aliphatic glucosinolates,

the empirical threshold was obtained by permutation (Supplementary Meth-

ods online). The second-order partial correlation coefficients between QTL

profiles were computed in each of 20,000 permutations and sorted to derive the

threshold of 0.14 at a ¼ 0.05, Bonferroni adjusted for 17, the number of

correlation tests for each glucosinolate. We did not correct a level for the

number of all pairwise analyses (17 � 18/2) to avoid overcorrection. At this

threshold, on average 0.1 correlation coefficients are significant by chance.

URLs. METALIGN is available at http://www.metAlign.nl. Genotype data for

the Ler/Cvi population individuals are available at http://nasc.nott.ac.uk/.

JOINMAP is available at http://www.kyazma.nl.

Note: Supplementary information is available on the Nature Genetics website.
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