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In the fungal phylum Ascomycota, the ability to cause
disease in plants and animals has been gained and lost
repeatedly during phylogenesis1. In monocotyledonous
barley, loss-of-function mlo alleles result in effective immunity
against the Ascomycete Blumeria graminis f. sp. hordei, the
causal agent of powdery mildew disease2,3. However,
mlo-based disease resistance has been considered a barley-
specific phenomenon to date. Here, we demonstrate a
conserved requirement for MLO proteins in powdery mildew
pathogenesis in the dicotyledonous plant species Arabidopsis
thaliana. Epistasis analysis showed that mlo resistance in
A. thaliana does not involve the signaling molecules ethylene,
jasmonic acid or salicylic acid, but requires a syntaxin,
glycosyl hydrolase and ABC transporter4–6. These findings
imply that a common host cell entry mechanism of
powdery mildew fungi evolved once and at least 200 million
years ago, suggesting that within the Erysiphales (powdery
mildews) the ability to cause disease has been a stable trait
throughout phylogenesis.

Immunity of barley (Hordeum vulgare) to the biotrophic grass
powdery mildew (Blumeria graminis f. sp. hordei (Bgh)), is predomi-
nantly controlled by resistance (R) proteins that are presumed to
detect the presence of isolate-specific fungal effectors3. However,
because of its narrow spectrum and ephemerality, R gene resistance
to powdery mildews is of limited agronomic value. In contrast,
induced3 and natural7 loss-of-function barley mlo alleles provide
durable broad-spectrum powdery mildew resistance. Owing to the
exceptional efficacy and longevity of mlo resistance, elite barley lines
carrying introgressed mlo alleles have been successfully used in
European agriculture for about three decades2. The barley MLO
protein is thought to modulate defense responses to Bgh via a
vesicle-associated and SNARE protein–dependent mechanism8.

To test whether mlo-based resistance may occur in other plant
species, we selected homozygous insertion lines for 14 of the 15
A. thaliana MLO genes9 and challenged them with a virulent powdery
mildew species, Golovinomyces orontii. Macroscopic inspection
demonstrated that all mutants retained susceptibility to the fungal
pathogen except Atmlo2, which showed no disease symptoms (Sup-
plementary Fig. 1 online and Fig. 1a). Microscopic examination
showed that resistance in Atmlo2 was incomplete and characterized by
a diminished rate of entry into host epidermal cells and substantially
reduced conidiophore formation (Fig. 1b).
AtMLO2 belongs to a phylogenetic clade of three A. thaliana genes

(AtMLO2, AtMLO6 and AtMLO12) that represent co-orthologs of
barley Mlo10. We generated double and triple mutants by intermutant
crosses of respective insertion lines (Supplementary Fig. 1). When
challenged with G. orontii, Atmlo6 and Atmlo12 single mutant lines
and Atmlo6 Atmlo12 (Atmlo6/12) double mutant lines supported wild-
type levels of secondary hyphae formation and conidiophore produc-
tion, whereas Atmlo2 Atmlo6 (Atmlo2/6) and Atmlo2 Atmlo12
(Atmlo2/12) double mutant lines supported lower levels of fungal
growth than Atmlo2. Reminiscent of barley mlo mutants, the Atmlo2
Atmlo6 Atmlo12 (Atmlo2/6/12) triple mutant was fully resistant to the
fungal pathogen (Fig. 1). Similar results were obtained with another
virulent powdery mildew species, Golovinomyces (formerly Erysiphe)
cichoracearum (Supplementary Fig. 1 and data not shown). These
results indicate a partial functional redundancy among the three co-
orthologs, with a predominant role for AtMLO2 in the establishment
of compatibility with two powdery mildew species.

A previous screen for powdery mildew resistant (pmr) A. thaliana
mutants identified six PMR loci, five of which are required for full
susceptibility to both G. cichoracearum and G. orontii11–13. Notably,
PMR2 resides in the same genomic region as AtMLO2 (ref. 11),
suggesting that PMR2 might be allelic to AtMLO2. Analysis of the
AtMLO2 genomic sequence uncovered nucleotide changes in all pmr2
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alleles (Supplementary Fig. 1 and Supplementary Table 1), demon-
strating that AtMLO2 is allelic to PMR2.

To test whether efficient mlo-based resistance can be engineered via
dsRNA interference (dsRNAi)–mediated gene silencing, we con-
structed a vector designed to simultaneously silence the three
A. thaliana MLO co-orthologs (Supplementary Fig. 1). Among
progeny (T2 families) of 25 transgenic lines, one was fully resistant
to G. orontii, whereas others supported varying levels of fungal growth
(Supplementary Fig. 1 and data not shown). Disease resistance in the
strongly resistant line was characterized by early termination of fungal
infection owing to failed host cell invasion (Supplementary Fig. 1).
AtMLO2, AtMLO6 and AtMLO12 transcript levels were much lower in
the resistant line than in wild-type and noneffective dsRNAi plants, as
shown by RT-PCR (Supplementary Fig. 1). These data illustrate that
mlo resistance may, in principle, be extended to crop species for which
genetic or mutational approaches are not practical.

We challenged the Atmlo mutant lines (including the double and
triple mutants) with compatible pathogens unrelated to powdery
mildew, such as the biotrophic oomycete Hyaloperonospora parasitica
and the bacterium Pseudomonas syringae. Like wild-type plants, Atmlo
mutants were fully susceptible to P. syringae and to H. parasitica as
assessed by disease symptoms, bacterial growth or sporangiophore
production, respectively (data not shown). In extension of findings
reported in ref. 11, these data indicate that even mutations in multiple
MLO genes do not interfere with compatible A. thaliana–P. syringae
and A. thaliana–H. parasitica interactions.

To determine whether Atmlo-mediated resistance was also involved
in immunity to nonadapted powdery mildew species, we analyzed the
interaction of Atmlo mutants with two powdery mildew fungi that
show low levels of invasion on A. thaliana wild-type plants, E. pisi (a
pathogen of pea) and Bgh5. Microscopic analysis demonstrated a
pattern of disease susceptibility and resistance comparable to the
interactions with the adapted mildews (Supplementary Fig. 2). In
all genotypes and in both plant-fungus interactions, the incidence of
cell death roughly correlated with the frequency of successful host cell
entry by the nonadapted powdery mildews. We assume that the cell
death response is a second line of defense that is activated when the

nonadapted fungi are able to successfully invade epidermal cells5.
These data demonstrate that AtMLO proteins are essential for fungal
entry of not only adapted powdery mildew species but also for two
nonadapted fungal species.

Besides resistance to Bgh, barley mlo mutants also show enhanced
susceptibility to the hemibiotroph Magnaporthe grisea and the necro-
troph Bipolaris sorokiniana14,15. To investigate whether Atmlo mutants
were similarly more susceptible to such pathogens, we challenged
them with Alternaria alternata, A. brassicicola and Phytophthora
infestans, which have a necrotrophic (Alternaria spp.) or a hemibio-
trophic lifestyle (P. infestans), respectively. This consistently resulted in
enhanced disease symptoms and cell death in Atmlo2/6 double and
Atmlo2/6/12 triple mutants compared with the wild-type lines (Sup-
plementary Fig. 2). These data strengthen the notion that MLO
proteins influence the infection outcomes of diverse pathogen species,
promoting susceptibility to powdery mildews and resistance to some
necrotrophs and hemibiotrophs.

When grown under axenic conditions, barley mlo plants show
developmentally controlled phenotypes, including spontaneous cell
wall appositions, cell death and senescence-like chlorosis and necro-
sis16–18. We observed developmentally controlled callose deposition in
unchallenged Atmlo2, Atmlo2/6, Atmlo2/12 and Atmlo2/6/12 mutants
from six weeks onwards (Fig. 2a,b). Callose deposition coincided with
the production of reactive oxygen species (Fig. 2c). In addition,
beginning at 8 weeks, Atmlo2 mutants also had leaf chlorosis and
necrosis, which was enhanced in Atmlo2/6, Atmlo2/12 and Atmlo2/6/12
mutants (Fig. 2d). Reminiscent of barley mlo mutants, the extent of
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Figure 1 Loss of AtMLO2 function confers powdery mildew resistance in

A. thaliana. (a) Infection phenotypes of representative Col-0 wild-type

and Atmlo mutant individuals at 10 d post-inoculation with G. orontii.

(b) Quantitative analysis of host cell entry (determined at 48 h (light gray

bars) and 72 h post-inoculation (dark gray bars)) and conidiophore formation

(6 d post inoculation; black bars) on wild-type Col-0 and Atmlo mutant

plants. Results represent mean ± s.d. of seven (host cell entry) and four

(conidiation) independent experiments, respectively. Asterisks indicate a

significant difference from Col-0 (P o 0.01; Student’s t-test). Similar

results were obtained upon inoculation with G. cichoracearum.
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Figure 2 Atmlo2 plants show developmentally controlled callose deposition

and early senescence-like phenotypes. Micrographs showing callose

accumulation (as shown by Aniline blue staining) in rosette leaves of Col-0

wild-type and Atmlo mutants grown under powdery mildew–free conditions

at 6 weeks (a) and 7 weeks (b). Fluorescent needle-like structures high-

lighted by white arrowheads represent leaf hairs (trichomes). Bars ¼ 100mm.

(c) 3,3-Diaminobenzidine tetrahydrochloride (DAB) stain of 7-week-old

plants showing sporadic accumulation of H2O2 in wild-type and Atmlo

mutants. Bar ¼ 100 mm. (d) Macroscopic phenotypes of representative

unchallenged Col-0 wild-type and Atmlo mutant plants at 8 weeks.
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this senescence-like phenotype was modulated by unknown condi-
tions, as it varied between Germany and the USA. These data suggest a
negative regulatory function for these MLO co-orthologs in senescence
and defense mimic phenotypes.

In dicots, salicylic acid is an essential signaling molecule that has a
major role in disease resistance19. We measured free and conjugated
salicylic acid levels of 4-, 5-, 6- and 7-week-old wild-type and triple
mutant plants (Fig. 3). Although younger, fully resistant Atmlo2/6/12
plants did not possess higher levels of free and conjugated salicylic acid
than wild-type plants, these levels markedly increased in older plants.
Salicylic acid levels were highly variable in 6-week-old plants, possibly
owing to intrinsic changes of salicylic acid levels at around this time.
Six-week-old Atmlo2 single mutants as well as Atmlo2/6 and Atmlo2/12
double mutants also showed higher levels of conjugated and free
salicylic acid than wild-type plants (Supplementary Fig. 3) These
results indicate that in the mutants containing Atmlo2, there is a
developmentally controlled increase of constitutive salicylic acid levels
that correlates approximately with the onset of spontaneous callose
deposition (Fig. 2a).

To determine directly if the powdery mildew resistance in Atmlo2
was dependent on salicylic acid, ethylene or jasmonate signaling, we
crossed Atmlo2 plants to mutants that had defects in each of these
signaling pathways. Whereas double mutants affecting the ethylene or
jasmonate pathway did not have altered infection phenotypes, salicylic
acid double mutants and NahG transgenics showed a modest
increase in visible powdery mildew growth (Fig. 4a). However, fungal
growth was considerably enhanced only in Atmlo2 NahG double
mutants (Fig. 4b), suggesting that the non–salicylic acid–dependent

defenses associated with NahG expression and catechol production20

are more important for Atmlo2 resistance than is salicylic acid
(Supplementary Fig. 4).

Given the role of salicylic acid in senescence21 and the increased
levels of salicylic acid in Atmlo2 plants, we investigated the role of
salicylic acid in callose accumulation and the senescence-like pheno-
type observed in Atmlo2 plants, using double mutants. In uninfected
plants, the accumulation of callose was suppressed in double mutants
affected in AtMLO2 and the salicylic acid signaling pathway (Fig. 4c).
This was the same for the early senescence-like phenotype (Fig. 4d),
demonstrating that, in contrast to previous belief 17,18, the pleiotropic
effects can be uncoupled from mlo-based resistance. In contrast,
double mutants affected in AtMLO2 and the jasmonate signaling
pathway had a more severe senescence-like phenotype, which may be
due to the antagonistic effect of jasmonate on salicylic acid signaling22.
PEN1, PEN2 and PEN3, which encode a syntaxin, a glycosyl

hydrolase and an ABC transporter, respectively, are required for
limiting invasion by nonadapted powdery mildews in A. thaliana4–6.
Previous results showed that the barley ortholog of PEN1, ROR2, is
required for barley mlo penetration resistance4,23. To address the
question of whether PEN1, PEN2 or PEN3 is required for Atmlo2
resistance, we conducted double mutant analysis. Although Atmlo2
pen1 plants supported near–wild-type levels of G. cichoracearum entry
rates, there was no significant increase in conidiophore production,
suggesting that a PEN1-independent mechanism restricts post-entry
growth of this fungus in Atmlo2 plants (Fig. 5a,b). In Atmlo2 pen1
double mutants, elevated levels of host cell entry were observed only
with G. cichoracearum but not with G. orontii (data not shown),
suggesting that the latter species might be insensitive to PEN1-
mediated defenses. Pathogen entry was restored to near–wild-type
levels in Atmlo2 pen2 and Atmlo2 pen3 double mutants. Conidiation of
G. cichoracearum on Atmlo2 pen2 and Atmlo2 pen3 was significantly
greater than on Atmlo2, indicating that PEN2 and PEN3 may have
additional roles in post-invasion host defenses. Notably, the sponta-
neous deposition of callose and the senescence-like phenotype were
suppressed only in Atmlo2 pen2, not in Atmlo2 pen1 or Atmlo2 pen3
(Fig. 5c,d), suggesting that a mutation in PEN2 compensates for all
known phenotypes associated with loss of AtMLO2. This result is in
contrast to findings in barley, in which pleiotropic phenotypes were
found to be considerably suppressed in an mlo ror2 genotype17.
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Figure 3 Atmlo2/6/12 mutants show a developmentally controlled increase

in salicylic acid levels. Time-course analysis of free and conjugated salicylic

acid (SA) levels in rosette leaves of wild-type and Atmlo2/6/12 triple mutant

plants grown in powdery mildew–free conditions. Data represent mean ± s.d.

of three experiments. Asterisks indicate a significant difference from Col-0

(P o 0.01; Student’s t-test).
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Figure 4 Salicylic acid has a role in the age-related phenotypes of Atmlo2.

(a) Macroscopic phenotypes of Col-0 wild-type, Atmlo2-11 and lines derived

from crosses with mutants defective in ethylene, jasmonate or salicylic acid

signaling pathways at 7 d post-inoculation with G. cichoracearum. Similar

results were obtained upon inoculation with G. orontii. (b) Quantitative

analysis of host cell entry (48 h post-inoculation) and conidiation (7 d

post-inoculation) of G. cichoracearum on individuals assessed in a. Data

represent mean ± s.d. of three independent experiments. Asterisks

indicate a significant difference from Col-0, and hashes a significant

difference from Atmlo2 (P o 0.01; Student’s t-test). Similar results were
obtained upon inoculation with G. orontii. (c) Micrograph showing callose

accumulation in rosette leaves at 7 weeks in powdery mildew–free

conditions. Bar ¼ 100 mm. (d) Macroscopic phenotypes of representative

unchallenged plants at 8 weeks.
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Both barley MLO and the PEN1 and ROR2 orthologous syntaxins
colocalize and become concentrated in plasma membrane microdo-
mains at attempted pathogen entry sites24. Thus, specific isoforms of
MLO and syntaxins represent ancient and antagonistically acting
components, promoting or restricting powdery mildew ingress,
respectively. In contrast, the peroxisome-associated PEN2 glycosyl
hydrolase5 seems to be a recent innovation of A. thaliana (ref. 25
and Supplementary Fig. 5). PEN2 seems to act together with the
plasma membrane-localized PEN3 ABC transporter in a pathway
distinct from PEN1 (refs. 5,6). Therefore, pen1 mutants might directly
suppress Atmlo2 resistance, and mutations in PEN2 or PEN3 may
open bypass routes for powdery mildew host cell entry.

For several decades, mlo resistance has been envisaged as a unique
feature of the monocot barley. Our results demonstrate that broad
spectrum immunity against powdery mildews based on loss-of-func-
tion mlo alleles can be achieved in at least one additional, distantly
related species, the dicot A. thaliana. This finding has several implica-
tions. First, it uncovers a role for these MLO co-orthologs as
antagonists of a resistance mechanism(s) preventing fungal ingress
at the cell periphery, which has been conserved over a time span of at
least 200 million years (the approximate time of the monocot-dicot
split; ref. 26). Second, the requirement for MLO proteins for host cell
entry of diverse powdery mildews suggests that at least one aspect of
pathogenesis is invariant and likely evolved before the monocot-dicot
split in an ancestral Ascomycete adapted to colonize an angiosperm
progenitor(s) of mono- and dicotyledonous plants. This hypothesis is
supported by data on the molecular phylogeny of the Erysiphales,
indicating that the evolution of powdery mildews has paralleled that
of angiosperm plants27. The durability of this mechanism seems
unusual given the assumed gains and losses of pathogenicity during
evolution of pathogenic fungi in the phylum Ascomycota1 in which
species that are pathogenic and non-pathogenic on animals and plants
occur within a single genus28.

Our data imply that it might be feasible to engineer broad spectrum
and potentially durable powdery mildew resistance in any higher plant
species either by conventional mutagenesis or via MLO gene silencing.
Finally, our findings indicate that, in principle, disease resistance
can be fully uncoupled from the unwanted pleiotropic effects by

second-site mutations. However, because double mutants in AtMLO2
and key mediators of salicylic acid–dependent defense are likely
to have enhanced susceptibility to other pathogens, further analysis
will be required to determine whether it is possible to uncouple
the pleiotropic trait from the resistance trait in an agronomically
beneficial manner.

METHODS
Plant material. Homozygous A. thaliana insertion mutants Garlic_0878_H12

(Atmlo2-5), Garlic_0523_D09 (Atmlo6-2) and SLAT 24-21 (Atmlo12-1) were

used in this study. Homozygous double and triple mutants were selected from

intermutant crosses using these lines as parents. pmr2-1 (Atmlo2-11) was

previously mapped to the top of chromosome 1 (ref. 11). We took a candidate

gene approach to identify PMR2 after AtMLO2 was observed in the mapping

interval. The identity of PMR2 was confirmed by sequencing PCR-amplified

genomic DNA containing AtMLO2 coding sequence in each pmr2 allele.

A. thaliana mutant alleles jar1-1, ein2-1, coi1-1, eds5-1, npr1-1, pad4-1, sid2-1,

pen1-1, pen2-1 and pen3-1 and the transgenic line expressing NahG were used

for intermutant crosses with either Atmlo2-5 or Atmlo2-11. All newly created

materials will be provided by the authors upon request. Seeds of newly

described A. thaliana single, double and triple mutants will be submitted to

the appropriate stock centers.

Cytology. To visualize epiphytic fungal structures, specimens were stained with

Coomassie brillant blue. For quantification of fungal host cell entry of

G. cichoracearum, G. orontii and E. pisi, the proportion of germinated fungal

sporelings that developed secondary hyphae served as an approximation of

penetration success. The number of mature conidiophores per colony was

counted at 6–7 d after inoculation. Penetration success of Bgh was quantified by

visualizing haustoria with Coomassie brilliant blue and Aniline blue staining.

To assay for Alternaria spp. and P. infestans disease symptoms, leaves were

spray- or drop-inoculated and kept at saturating humidity until analysis.

P. infestans–inoculated leaves were stained with trypan blue in lactophenol

and ethanol. For visualization of callose, samples were stained with aniline blue.

To assay for H2O2 accumulation, leaves were stained with 3,3-diaminobenzi-

dine tetrahydrochloride (DAB).

Transgenic dsRNAi lines. PCR amplicons of the C-termini of AtMLO2,

AtMLO6 and AtMLO12 were integrated into the binary dsRNAi vector

pJawohl3, and the ecotype Col-0 was transformed with the resulting construct.

Progeny of selected T1 lines were used for powdery mildew inoculations.

Semiquantitative RT-PCR was performed to analyze transcript abundance

with genomic DNA serving as a control to distinguish between cDNA and

genomic DNA.

Quantification of salicylic acid levels. Frozen leaf tissue was used to extract

salicylic acid via organic solvent-based extraction and subsequent acid hydro-

lysis. HPLC separation of salicylic acid was performed on a RP-C-18 Nucleosil

column (Bischoff). Online measurements of salicylic acid were performed

fluorimetrically at an excitation wavelength of 305 nm and an emission

wavelength of 407 nm.
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Figure 5 Atmlo2-mediated resistance requires components of non-host

resistance. (a) Macroscopic phenotypes of G. cichoracearum growth on

control plants, Atmlo2 mutants and crosses with mutants defective in

PEN1, PEN2 or PEN3. Similar results were obtained upon inoculation with

G. orontii. (b) Quantitative assessment of host cell entry (48 h post-

inoculation; gray bars) and conidiation (7 d post inoculation; black bars).

Data represent mean ± s.d. of three independent experiments. Asterisks

indicate a significant difference from Col-0, hashes a significant difference

from Atmlo2 (P o 0.01; Student’s t-test). Similar results were obtained

upon inoculation with G. orontii, with one exception; G. orontii host cell

entry and conidiation was similar on Atmlo2 and Atmlo2 pen1 plants.

(c) Micrograph showing callose accumulation in rosette leaves at 7 weeks

in powdery mildew–free conditions. Bar ¼ 100 mm. (d) Macroscopic
phenotypes of representative unchallenged plants at 8 weeks.
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Statistical analysis. Statistical analysis of data was based on Student’s t-test.

Calculations were performed on a minimum of three independent data sets,

assuming two-sample equal variance (homoscedastic) and a two-tailed

distribution. We considered P o 0.01 to be a significant result.

A detailed description of the methods employed in this study is provided in

Supplementary Methods online, and a list of primers is given in Supplemen-

tary Table 2.

Accession codes. GenBank: pJawohl3, AF404854.

Note: Supplementary information is available on the Nature Genetics website.
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