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Arabidopsis thaliana is a host to the powdery mildew Erysiphe cichoracearum and nonhost to Blumeria graminis f. sp

hordei, the powdery mildew pathogenic on barley (Hordeum vulgare). Screening for Arabidopsis mutants deficient in

resistance to barley powdery mildew identified PENETRATION3 (PEN3). pen3 plants permitted both increased invasion into

epidermal cells and initiation of hyphae by B. g. hordei, suggesting that PEN3 contributes to defenses at the cell wall and

intracellularly. pen3 mutants were compromised in resistance to the necrotroph Plectosphaerella cucumerina and to two

additional inappropriate biotrophs, pea powdery mildew (Erysiphe pisi) and potato late blight (Phytophthora infestans).

Unexpectedly, pen3 mutants were resistant to E. cichoracearum. This resistance was salicylic acid–dependent and

correlated with chlorotic patches. Consistent with this observation, salicylic acid pathway genes were hyperinduced in pen3

relative to the wild type. The phenotypes conferred by pen3 result from the loss of function of PLEIOTROPIC DRUG

RESISTANCE8 (PDR8), a highly expressed putative ATP binding cassette transporter. PEN3/PDR8 tagged with green

fluorescent protein localized to the plasma membrane in uninfected cells. In infected leaves, the protein concentrated at

infection sites. PEN3/PDR8 may be involved in exporting toxic materials to attempted invasion sites, and intracellular

accumulation of these toxins in pen3 may secondarily activate the salicylic acid pathway.

INTRODUCTION

Nonhost resistance is the type of nonspecific resistance that an

entire plant species exhibits against all genotypes within a

pathogen species (Thordal-Christensen, 2003). Although until

recently little was known about the biochemical defenses that

contribute to nonhost resistance, cytological descriptions sug-

gested that a majority of inappropriate fungal pathogens were

unable to breach the plant cell wall and infiltrate host cells (Yun

et al., 2003; Zimmerli et al., 2004). However, some variation in

penetration efficiency exists among different host and fungal

pathogen combinations (Mellersh and Heath, 2003). These stud-

ies also showed that plants respond actively to attack by

inappropriate pathogens and do not rely solely on preformed

and constitutive barriers for protection against inappropriate path-

ogens (Meyer and Heath, 1988; Zimmerli et al., 2004). Further-

more, it appears that operationally, nonhost resistance can be

divided into penetration resistance, barriers limiting entry of the

pathogen into cells, and postpenetration resistance, mecha-

nisms that act intracellularly if penetration resistance is over-

come (Fernandez and Heath, 1991; Huitema et al., 2003; Mellersh

and Heath, 2003; Yun et al., 2003; Zimmerli et al., 2004; Lipka

et al., 2005).

Both surveys of mutants with defects in various defense

functions and screens for mutants specifically compromised in

nonhost resistance have identified a diverse group of genes that

contribute to nonhost resistance. Among the mutants with de-

fects in the salicylic acid (SA) signal transduction pathway,

nonhost resistance was diminished in eds1 mutants and trans-

genic plants with the bacterial NahG gene relative to wild-type

plants (Parker et al., 1996; Mellersh and Heath, 2003; Yun et al.,

2003; Zimmerli et al., 2004). Using virus-induced gene silencing,

the chaperone and chaperone-like proteins HSP70, HSP90, and

SGT1, which are thought to stabilize resistance (R) proteins and

act upstream of EDS1, were shown to contribute to nonhost

resistance in Nicotiana benthamiana (Peart et al., 2002; Kanzaki

et al., 2003). Mutants with defects in the ethylene/jasmonate (ET/

JA) signal transduction pathways exhibited wild-type levels of

nonhost resistance in Arabidopsis thaliana, even though there is

evidence from microarray studies that this pathway is preferen-

tially induced after inoculation of plants with some inappropriate

pathogens (Huitema et al., 2003; Zimmerli et al., 2004). These

data suggest that the ET/JA pathway and components of the SA
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pathway acting downstream of eds1 play no role or only a limited

role in nonhost resistance. Alternatively, it is possible that these

pathways contribute to resistance to inappropriate pathogens

only after the other defenses have been defeated (Jones and

Takemoto, 2004). Because EDS1 contributes to basal resistance

(Parker et al., 1996), defenses that act to limit the growth of

appropriate pathogens even in compatible interactions, it seems

likely that there is some overlap between basal resistance and

nonhost resistance.

Additional host components, for which no clear role in basal

resistance has been demonstrated to date, contribute to nonhost

resistance. NHO1, a glycerol kinase, is required for nonhost resis-

tance in Arabidopsis to a bacterial pathogen of bean (Phaseolus

vulgaris), Pseudomonas syringae pv phaseolicola (Kang et al.,

2003). In physiological studies using inhibitors, the actin cytoskel-

eton was shown to be required for nonhost resistance against

barley (Hordeum vulgare) and wheat (Triticum aestivum) powdery

mildews in pea (Pisum sativum) and Arabidopsis, respectively

(Kobayashi et al., 1997; Yun et al., 2003). These genes do not fit

into a single pathway or process, but their identification does

suggest that diverse processes contribute to nonhost resistance.

This is consistent with an early model of nonhost resistance in

which it was proposed that this form of resistance consists of

several barriers operating in parallel to limit pathogen colonization

(Heath, 2000).

To identify the components required for nonhost resistance,

we screened for Arabidopsis mutants allowing increased pene-

tration by the barley powdery mildew Blumeria graminis f. sp

hordei, assuming that such mutants would carry defects in those

components of nonhost resistance that limit pathogen entry into

host cells. The syntaxin PEN1 (¼SYP121) and the glycosyl hydro-

lase PEN2 were recovered from this and related screens (Collins

et al., 2003; Lipka et al., 2005). Here, we describe a third mutant

isolated from this screen and show that PEN3 encodes the

putative ATP binding cassette (ABC) transporter PDR8. Subcel-

lular localization of PEN3 in the plasma membrane and extensive

gene interaction studies lead us to speculate that PEN3 mediates

the targeted export of toxins to penetration sites.

RESULTS

pen3 Lacks Penetration Resistance to Three

Inappropriate Pathogens

We conducted a screen for the loss of penetration resistance by

screening for Arabidopsis mutants that allowed B. g. hordei to

form haustoria within epidermal cells at a higher frequency than

on wild-type plants. Haustoria, which are fungal feeding struc-

tures encased in a specialized host membrane within epidermal

cells, are produced once the fungal germlings have successfully

breached the host cell wall. The few B. g. hordei haustoria that

formed in Arabidopsis were rapidly encased in callose and could

be recognized by their distinctive oval shape in inoculated leaves

stained with the callose stain aniline blue (Figure 1E, inset). Nine

pen mutants were recovered from;12,000 M2 plants from ethyl

methanesulfonate–mutagenized seeds. Mapping experiments

and crosses among the mutants were used to place the pen

mutants in complementation groups. When the identities of the

PEN genes became known, allelism among the various mutants

was confirmed by sequencing the appropriate gene (i.e., PEN1,

PEN2, orPEN3). pen1-4 (Collins et al., 2003), pen2-3 (Lipka et al.,

2005), pen3-1, and pen3-2 were recovered from this screen.

pen3-1, like the pen1 and pen2 mutants, supported a higher

frequency of fungal penetration (Figure 1A). Another feature of

the phenotype conferred by pen3 was that callose deposition

lining the entire periphery of invaded epidermal cells was more

common than in wild-type plants (Figures 1D and 1E). Compared

with wild-type plants, pen3-1 plants also allowed increased

frequency of formation of elongating secondary hyphae, an

indication that the underlying haustoria were functional (Figures

1A to 1C). Secondary hyphae are the hyphae that emerge from

the conidium after the first haustorium is established. Germ tube

growth is supported by reserves in the conidium, whereas the

emergence and growth of secondary hyphae are thought to be

dependent on nutrients acquired from the host via the hausto-

rium (Masri and Ellingboe, 1966; Ellingboe, 1972). Therefore,

pen3-1 mutants were partially compromised not only in pene-

tration resistance against B. g. hordei but also in a mechanism

restricting haustorium function. Loss of PEN3 function does not

allow B. g. hordei to complete its life cycle and form asexual

conidia on Arabidopsis as it does on barley, suggesting that

additional factors contribute to nonhost resistance toB. g. hordei

in Arabidopsis.

To determine whether increased pathogen entry was limited

to interactions with B. g. hordei, pen3-1 plants were inoculated

with two other inappropriate pathogens. Erysiphe pisi (tribe Ery-

sipheae), the powdery mildew pathogenic on pea, belongs to a

tribe distinct from Erysiphe cichoracearum (tribe Golovinomyce-

teae) and B. g. hordei (tribe Blumerieae) (Saenz and Taylor, 1999;

Braun et al., 2002). Similar to B. g. hordei, E. pisi was able to

initiate the formation of elongating secondary hyphae at a higher

frequency on pen3-1 than on wild-type plants (Figure 5D). Like-

wise, Phytophthora infestans, which is a hemibiotrophic oomy-

cete pathogen and the causal agent of late blight in potato

(Solanum tuberosum), formed invasive hyphae, which were

encased in callose (Figure 1I, inset), more often inpen3-1mutants

than in wild-type plants (Figure 1H). Inoculation with P. infestans

elicited little callose deposition in wild-type plants, whereas

dramatic callose deposition was observed in pen3-1 epidermal

cells (Figures 1H and 1I). When it occurred, penetration by P.

infestans into Arabidopsis epidermal cells was often accompa-

nied by local cell death at sites of infection (Huitema et al., 2003).

Although the wild type appeared healthy where droplets of P.

infestans zoospores had been applied (Figure 1F), pen3-1 ex-

hibited macroscopic cell death (Figure 1G), consistent with the

idea that a greater proportion of oomycete individuals had

penetrated into host cells and elicited cell death. Thus, pen3-1 had

a diminished capacity to restrict pathogen entry by three different

inappropriate pathogens.

PEN3 Encodes a PDR-Like ABC Transporter

Mapping populations were generated by crossing pen3-1 and

pen3-2 to Landsberg erecta (Ler). Mutant plants identified in the

F2 generation were used for bulk segregant mapping (Lukowitz
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et al., 2000). In both crosses, PEN3 mapped to the bottom of

chromosome 1 between markers nga280 and ciw1. These two

markers were used to identify additional recombinants in this ge-

netic interval from;3600 F2plants. In this manner, the interval con-

taining PEN3 was delimited to a region encompassed by BAC

F23H11. Nineteen T-DNA mutant populations with insertions in

1 of 15 genes in this interval were screened for the phenotype

conferred by pen after inoculation with B. g. hordei (Ecker,

2002). Two of these T-DNA populations (SALK__110926 and

SALK_000578) segregated plants with a penetration-deficient

phenotype. These mutants had predicted insertions in a PDR-like

ABC transporter (At1g59870). Both pen3-1 and pen3-2 carried

single nucleotide substitutions at nucleotides 1419 and 3335,

respectively, from the A of the ATG initiation codon of the geno-

mic sequence for this gene (Figure 2A). Two T-DNA alleles, pen3-

3 (SALK_110926) and pen3-4 (SALK_000578), had insertions

near the 59 end of the coding region (Figure 2A). The PEN3 gene

had previously been annotated as PDR8 based on its homology

with yeast PDR transporters (van den Brule and Smart, 2002). It

encodes a 4.3-kb cDNA and is predicted to encode a 1469–

amino acid protein with 13 transmembrane domains (Figure 2B).

Arabidopsis has 15 PDR family members, which are highly similar

at the amino acid level (van den Brule and Smart, 2002). An

alignment of these members showed that the point mutations in

pen3-1 and pen3-2 occurred in highly conserved regions of the

nucleotide binding folds (Figure 2C). The nucleotide binding folds

are thought to mediate ATP binding and consist of a Walker A

motif followed by an ABC signature motif and a Walker B motif

(van den Brule and Smart, 2002). The mutation in pen3-1 con-

verted a Gly to an Asp in the ABC signature motif of the first

nucleotide binding fold, whereas the mutation in pen3-2 con-

verted a Gly to a Ser in the Walker A motif of the second

nucleotide binding fold. PEN3 transcript was detected in pen3-1

and pen3-2 but not in the T-DNA mutants pen3-3 and pen3-4

(data not shown). Given that all four pen3 alleles have identical

phenotypes, we assume that proteins encoded by pen3-1 and

pen3-2 are nonfunctional, at least in nonhost resistance.

Figure 1. pen3 Nonhost Resistance Phenotypes.

(A) Mean of the frequency of B. g. hordei penetration (left) and hyphal

elongation (right) on Arabidopsis at 2 DAI, expressed as a percentage of

total germinated spores. Wild-type controls are represented in red,

pen1-4 plants in blue, pen2-3 plants in yellow, and pen3-1 plants in

green. Asterisks denote statistically significant differences between

mutants and the wild type by Student’s t test (** P < 0.0001, * P< 0.001).

(B) and (D) B. g. hordei inoculation on Columbia-0 (Col-0). Conidia (sp;

arrowhead) germinate and produce appressoria but seldom are able to

penetrate and establish functional haustoria (B). Papillae (p; arrowhead),

callose-rich cell wall appositions, form at penetration sites whether or not

the powdery mildew pathogen is able to successfully breach the cell wall

and form a haustorium (D). Papillae were used as markers for attempted

penetration sites.

(C) and (E) B. g. hordei inoculation on pen3-1. A higher proportion of

conidia are able to penetrate, establish haustoria, and form elongating

secondary hyphae (hy) on pen3 plants relative to Col-0 ([C] and inset).

Haustorial formation (ha) is associated with callose deposition, encom-

passing the entire invaded host epidermal cell (ep; arrowhead) ([E] and

inset).

(F) to (I) Response to P. infestans inoculation. Cell death (dc; arrow) is

evident macroscopically after inoculation of pen3 (G) but not in Col-0 (F).

A small amount of callose is deposited in Col-0 (H), whereas widespread

callose deposition and occasional intracellular hyphae (hy; arrowhead)

are observed in pen3 ([I] and inset).

In (B) and (C), samples were stained with trypan blue at 2 DAI and

visualized by bright-field microscopy. In (D), (E), (H), and (I), samples

were stained with aniline blue at 2 DAI to detect callose and visualized by

fluorescence microscopy. Bars ¼ 30 mm.
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The Arabidopsis PDR family of ABC transporters has been

studied via RNA gel blotting and RT-PCR to determine in which

plant organs these transporters are expressed (van den Brule

and Smart, 2002). In addition, publicly available databases provide

microarray expression profiles of different Arabidopsis organs,

tissues, and environmental treatments (Rhee et al., 2003;

Zimmermann et al., 2004). These resources showed that PEN3

was expressed in all tissues, but most highly in leaves. Most

other PDR family members were expressed at low levels and in

specific plant organs (see Supplemental Table 1 online) (Rhee

et al., 2003). In leaves, PEN3 transcript accumulated to levels

comparable to those of metabolic housekeeping genes, such

as cytosolic glyceraldehyde-3-phosphate, and 1 to 2 orders

of magnitude higher than the other PDR family members (see

Supplemental Table 1 online) (Shih et al., 1991). The gene en-

coding PDR7, the ABC transporter most similar to PEN3 in se-

quence (90% amino acid similarity), was expressed primarily in

roots (see Supplemental Table 1 online), and T-DNA insertion

mutations in PDR7 (SALK_134725 and SALK_008761) did not

exhibit the penetration-deficient phenotype (data not shown).

These microarray data, together with RNA gel blot analyses,

indicate that PEN3 is highly and ubiquitously expressed in plant

tissues. These data further suggest that there is limited functional

redundancy among the PDR genes and PEN3.

Publicly available expression data were mined to determine

whether PEN3 expression was modified after pathogen attack

(see Supplemental Tables 2 and 3 online) (Zimmermann et al.,

2004). Induction was modest after inoculation with virulent path-

ogens (e.g., E. cichoracearum, Agrobacterium tumefaciens, and

the necrotroph Plectosphaerella cucumerina), inappropriate path-

ogens (e.g., B. g. hordei, P. infestans), and nonspecific elicitors

(e.g., chitin fragments, flg22 peptide) but dramatic after inocu-

lation with avirulent bacteria and the phloem-feeding aphid

Myzus persicae (see Supplemental Table 2 online) (Glombitza

et al., 2004; Zimmermann et al., 2004; De Vos et al., 2005;

Ramonell et al., 2005). Induction by the flg22 peptide, a synthetic

version of a conserved region of flagellin, was abolished in plants

lacking FLS2, a receptor-like kinase required for flagellin per-

ception (see Supplemental Table 2 online) (Gomez-Gomez and

Boller, 2000). Exposure to methyl jasmonate, ozone, and the

herbicides primisulfuron and prosulfuron also induced PEN3 ex-

pression (see Supplemental Table 2 online) (Glombitza et al., 2004;

Zimmermann et al., 2004). Although these two herbicides interfere

with the synthesis of branched-chain amino acids, an herbicide

that targets photosystem II, bromoxynil, did not induce PEN3

expression (Glombitza et al., 2004). Abscisic acid and heat shock

treatments downregulated the expression of PEN3 (see Supple-

mental Table 2 online) (Busch et al., 2005). Thus, PEN3 expression

is altered by pathogens and a subset of abiotic stresses.

Figure 2. Molecular Identity of PEN3 and of the pen3 Alleles.

(A) PEN3 gene structure indicating exons (gray boxes) and introns

(black lines connecting exons). The genomic sequence of PEN3 is

6.1 kb. Sequencing of the pen3-1 and pen3-2 alleles revealed single

nucleotide changes (asterisks) that result in amino acid substi-

tutions. Two T-DNA alleles (black arrowheads) carry insertions early in

the gene.

(B) Predicted architecture of the PEN3 protein. PEN3 is predicted to have

1469 amino acids. The amino acid changes in pen3-1 and pen3-2 occur

in the ABC signature motif and the Walker A motif of the first and second

nucleotide binding folds (NBF), respectively.

(C) Alignment of amino acids of the two nucleotide binding folds of the 15

members of the Arabidopsis PDR family and of tobacco PDR1. Mutations

in pen3-1 and pen3-2 result in changing highly conserved Gly (boldface,

underlined G) to larger amino acids, Asp and Ser, respectively. Both

changes occur in pockets thought to mediate ATP binding.
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Resistance to E. cichoracearum and Cell Death in pen3

Are SA-Dependent

To examine the possibility that pen3-1 plants were also defective

in basal resistance to virulent pathogens, they were infected with

the Arabidopsis powdery mildew, E. cichoracearum. Surpris-

ingly, pen3-1 plants underwent chlorosis and cell death after E.

cichoracearum infection (Figure 3A). Closer inspection indicated

that cell death was fungus-associated and did not spread exten-

sively beyond areas of fungal colonization (Figures 3C and 3E). By

5 d after inoculation (DAI), E. cichoracearum hyphae had elon-

gated on wild-type leaves, leaving a trail of callose-containing

papillae at each penetration site (Figure 3B). By contrast, hyphal

elongation on pen3-1 plants was accompanied by extensive

callose deposition, preceding the death of penetrated cells

(Figures 3C and 3E). By 7 DAI, extensive conidiation was ob-

served on wild-type plants, whereas colonies that formed on

pen3-1 were stunted, lacked conidiophores, and were overlaid

with patches of dead cells (Figure 3E).

Additionally, pen3 plants were inoculated with the broad host

range necrotrophs Botrytis cinerea and P. cucumerina (Berrocal-

Lobo et al., 2002). pen3-1 and pen3-2 mutants were more sus-

ceptible to P. cucumerina than wild-type plants (Figure 4). Leaf

tissue damage and fresh weight reduction caused by this fun-

gus were greater in pen3 mutants than in wild-type plants and sim-

ilar to the damage observed in the highly susceptible agb1-1

mutant, which is impaired in the b-subunit of Arabidopsis he-

terotrimeric G protein (Figure 4A) (Llorente et al., 2005). Resis-

tance of pen3-1 plants to B. cinerea did not differ from that of

wild-type plants (data not shown).

Cell death in response to pathogen attack is often associated

with the activation of the SA defense pathway (Greenberg and

Yao, 2004). Similarly, chlorosis is associated with high levels of

ET production (Schaller and Keiber, 2001). Double mutants were

generated betweenpen3-1 and mutants affecting the SA and ET/

JA pathways to determine whether these defense signaling path-

ways were necessary for the pathogen-induced chlorosis and

necrosis phenotype. TransgenicNahG plants, as well as mutants

lacking a functional SA pathway, such as eds1, pad4, and sid2,

suppressed the cell death and resistance phenotypes of pen3-1,

allowing E. cichoracearum to conidiate (Figure 3F). The effect of

Figure 3. pen3-1 Mutants Are Resistant to E. cichoracearum and Become Chlorotic after E. cichoracearum Infection.

(A) Single leaves at 7 DAI with the Arabidopsis powdery mildew, E. cichoracearum. Col-0 (left) supports good fungal conidiation, which is evident by eye

as the whitish powdery appearance of inoculated leaves. Col-0 does not develop lesions, whereas pen3-1(right) undergoes chlorosis and cell death.

(B) and (C) On Col-0, E. cichoracearum infection elicits discrete callose deposits at papillae (p) (B), whereas penetration attempts on pen3-1 plants elicit

widespread callose deposition and cell death (dc) (C). Leaves were stained with aniline blue at 5 DAI. Bars ¼ 100 mm.

(D) and (E) Lesions (dc) can be observed in pen3-1 (E) but not in Col-0 (D) under conidiophores (cp) and hyphae. Leaves were stained with trypan blue at

7 DAI. Bars ¼ 100 mm.

(F) Double mutant analysis to evaluate the role of the SA and ET/JA signal transduction pathways on resistance to E. cichoracearum in pen3-1 plants.

On double mutants with pen3-1 and mutants or transgenic plants with blocks in the SA pathway (e.g., eds1-1, NahG, pad4-1, sid2-1), powdery mildew

growth and conidiation exceed those observed in wild-type plants. The double mutant pen3-1 sgt1b-1 and the triple mutant pen3-1 sgt1b-1 rar1-10

support an intermediate level of powdery mildew conidiation that is slightly less than that observed on the wild type. Mutations in the ET pathway genes

(e.g., Etr1-1), the JA pathway genes (e.g., coi1-1, jar1-1), and in rar1-10 were not able to suppress the chlorotic and necrotic phenotype that develops on

pen3-1 mutants after infection with the Arabidopsis powdery mildew. Plants were photographed at 7 DAI.

(G) Double mutant analysis of the effect of pen1-1 and pen2-3 on pen3-1–associated resistance to E. cichoracearum. Plants were photographed at 6

DAI unless indicated otherwise.

(H) Double mutant analysis of the effect of the SA signal transduction pathway (eds1-1, NahG, sid2-1) and of the JA signal transduction pathway (coi1-1,

jar1-1) on light-induced chlorosis of pen3-1 plants. Plants were 4 weeks old when the photograph was taken.
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two other SA-related mutants, rar1 and sgt1b, on resistance to E.

cichoracearum in pen3-1 was also investigated. Mutations in

RAR1 did not affect the occurrence of cell death in inoculated

pen3-1 (Figure 3F). However, in pen3-1 sgt1b double mutants,

conidiation was observed initially but chlorosis and cell death

were delayed to ;10 DAI (data not shown). Triple pen3-1 sgt1b

rar1 mutants resembled pen3-1 sgt1b double mutants. Muta-

tions that affect the ET/JA pathway, such as jar1, coi1, and Etr1,

did not alter the pen3-1 cell death phenotype. Thus, pen3-1

resistance to the Arabidopsis powdery mildew is SA-dependent

and ET/JA-independent.

Disease development after P. cucumerina infection was mod-

estly enhanced in the SA-deficient lines sid2-1 and NahG, as

reported previously (Berrocal-Lobo et al., 2002), although to a

lesser extent than in pen3-1 (Figure 4B). The enhanced suscep-

tibility to P. cucumerina observed in pen3 mutants was further

enhanced in pen3-1 sid2-1 or pen3-1 NahG double mutant lines,

suggesting that PEN3 acts additively with the SA pathway to limit

P. cucumerina infections.

We considered the possibility that a propensity to become

chlorotic and necrotic could indirectly result in increased patho-

gen entry. To address this question, a set of 34 Arabidopsis

mutants that are resistant to the host powdery mildew pathogen

were examined for pen3-like phenotypes (see Supplemental

Table 4 online) (Greenberg and Ausubel, 1993; Frye and Innes,

1998; Rate et al., 1999; Clough et al., 2000; Petersen et al., 2000;

Vogel and Somerville, 2000; Clarke et al., 2001; Mach et al., 2001;

Rate and Greenberg, 2001; Maleck et al., 2002; Vogel et al., 2002,

2004; Liang et al., 2003). This collection included published

cpr, acd, agd, and pmr mutants as well as a set of mil (for

mildew-induced lesion) mutants (M. Nishimura, J. Vogel, and S.

Somerville, unpublished data). Only one of these mutants, mil9,

exhibited both increased penetration by B. g. hordei and resis-

tance to E. cichoracearum (see Supplemental Table 4 online). The

PEN3 gene from mil9 contained a point mutation at nucleotide

3985, which is predicted to change a Trp codon (TGG) to a stop

codon (TGA). Thus, mutants prone to chlorosis and cell death do

not commonly allow increased invasion by inappropriate patho-

gens.

Unlike pen3, pen1 and pen2 were not resistant to E. cichor-

acearum and did not become chlorotic upon infection (Collins

et al., 2003; Lipka et al., 2005). As shown by the more rapid

appearance of visible symptoms, pen2 was more susceptible to

E. cichoracearum than the wild type, indicating that PEN2 is

important for both basal and nonhost resistance (Figure 3G). The

pen1 mutation was not able to suppress the E. cichoracearum–

induced cell death of pen3-1 (Figure 3G). In a pen2-3 pen3-1

double mutant, however, cell death was delayed and resistance

was compromised relative to the pen3-1 mutant (Figure 3G).

Although some conidiation occurred, pen2-3 pen3-1 leaves un-

derwent cell death and chlorosis at;10 DAI (Figure 3G, data not

shown). Thus, pen3 resistance to E. cichoracearum plants is

partially dependent on PEN2. In addition, pen2, but not pen1,

was more susceptible to P. cucumerina than the wild type, but to

a lesser degree than pen3-1 and pen3-2 (Figure 4A). The double

mutants pen3-1 pen1-1 and pen3-1 pen2-3 resembled the pen3

single mutants in their susceptibility to P. cucumerina (Figure 4A)

(Lipka et al., 2005).

E. cichoracearum infection was not the only stress capable of

inducing chlorosis and cell death in pen3-1 plants. Although

pen3-1 plants were indistinguishable from wild-type plants up to

4 weeks after germination, eventually they became chlorotic and

senesced earlier than wild-type plants (data not shown). This

Figure 4. pen3 Mutants Are More Susceptible to the Broad Host Range,

Necrotrophic Pathogen P. cucumerina.

(A) pen3 and pen2 are highly susceptible to P. cucumerina. Plants were

inoculated with a suspension of 2 3 106 spores/mL and scored at 7 DAI.

* Significantly different from Col-0 using Student’s t test (P < 0.05).

(B) The susceptibility to P. cucumerina of the pen3-1 mutant does not

depend on the SA signal transduction pathway. Plants were inoculated

with a suspension of 1 3 106 spores/mL and scored at 10 DAI.

* Significantly different from pen3-1 using Student’s t test (P < 0.05).

The susceptibility of plants was scored by fresh weight reduction (mean

6 SD). At least 30 plants per genotype were inoculated with each

pathogen, and the experiment was repeated four times. The highly

susceptible agb1-1 mutant was used as a positive control for disease

development. FW, fresh weight.
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phenotype was exacerbated by growth in continuous high light

(24 h at 900 mE�m�2�s�1) (Figure 3H). High light–induced chloro-

sis and senescence were suppressed by mutations in the SA

pathway but not by those in the ET/JA pathway (Figure 3H). Thus,

the SA pathway appears to be necessary for heightened sensi-

tivity to abiotic stress in pen3-1 plants as well.

Effects of SA and ET/JA Pathway Mutations on Residual

Nonhost Resistance in pen3

None of the mutations in the SA and ET/JA pathways tested

reversed the loss of penetration resistance to B. g. hordei (Figure

5). However, plants carrying the NahG transgene and plants

carrying mutations in EDS1 were slightly compromised in their

ability to restrict B. g. hordei entry into epidermal cells relative to

wild-type plants (Figure 5) (Zimmerli et al., 2004). Microscopic

inspection of the invasion and growth ofB.g. hordeion double and

single mutants revealed that the frequencies of fungal penetration

onpen3-1NahG andpen3-1 eds1-1were higher than those on the

single mutants (Figure 5A). Colonies growing on these double

mutant combinations were typically twice the average size than

those growing on the single mutants (Figure 5B). This increase in

growth was accompanied by an increase in hyphal branching

(Figure 5C). Conidiation by B. g. hordei was not observed.

E. pisi epiphytic growth was increased on eds1 and pen3-1

mutants compared with wild-type plants (Figure 5D). A cumulative

effect was seen on pen3-1 eds1-1 double mutants, on which E. pisi

colonies consisted of dense leaf-spanning mycelia, accompanied by

occasional conidiophore formation (Figures5D and 5E, insets).E.pisi

conidia recovered from Arabidopsis double mutants were able to

successfully infect pea and cause disease (data not shown).

Expression Profiling of pen3-1 Plants

We compared the transcript profiles of wild-type and pen3-1

plants at 1 DAI with E. cichoracearum or B. g. hordei using full-

genome Affymetrix microarrays. Of the 22,810 probe sets

(genes) on the microarray, 4240 exhibited some change in

expression in this experiment. When considering the trends ob-

served in the expression patterns of these genes, two main clusters

were observed: genes induced by and genes repressed by

pathogen attack (see Supplemental Figure 1 online). As de-

scribed previously (Zimmerli et al., 2004), B. g. hordei elicited a

more dramatic response than E. cichoracearum. Transcripts with

increased levels after inoculation with the fungal pathogens

included defense-related transcripts primarily, whereas tran-

scripts with reduced levels consisted in large part of transcripts

encoding photosynthetic and metabolic components (Zimmerli

et al., 2004). It is possible that plants respond more dramatically

to B. g. hordei because it cannot evade or suppress basal

defenses as efficiently as the host powdery mildew, E. cichor-

acearum. In addition, responses to inoculation were more dra-

matic in pen3-1 than in the wild type. Included among these

genes were several SA-associated genes (Table 1). These in-

cluded genes of the SA pathway, such as PAD4, SID2, EDS1,

and EDS5, as well as downstream SA pathway markers, such as

PR-4, PR-5, chitinases, and glucanases (Shah, 2003). This

hyperactivation of SA defenses, together with the double mutant

analysis, suggests that the basis for the resistance to E. cichor-

acearum observed in pen3-1 plants is an enhanced activation of

the SA pathway.

A single transcript (At3g30720) was highly upregulated in

pen3-1–independent infection status (P ¼ 1.7 3 10�8). This

observation was confirmed by semiquantitative RT-PCR using

independent samples (data not shown). In addition, the ex-

pression of this gene did not change very much upon inocula-

tion with pathogens in either pen3 or the wild type (i.e., Col-0

uninoculated, 78 intensity units [average of four replicates];

Col-0 þ E. cichoracearum, 99; Col-0 þ B. g. hordei, 74; pen3-1

uninoculated, 1082;pen3-1þ E. cichoracearum, 916; pen3-1þB.

g. hordei, 978). No other gene exhibited this expression pattern.

This gene is predicted to encode a 59–amino acid polypeptide

with no significant homology with any known protein. ESTs have

been found for this transcript, and array data show that this

transcript responds to high CO2 and is constitutively upregulated

in the ET-insensitiveEtr1mutant (Zimmermann et al., 2004). Unlike

pen3-1, Etr1 mutants resemble wild-type plants in their ability to

restrict the entry ofB.g. hordei into epidermal cells, andEtr1plants

are susceptible to E. cichoracearum (data not shown). Thus, high

levels of expression of this uncharacterized gene are not sufficient

to account for the mutant phenotypes of pen3-1.

Of the PDR genes, only three, including PEN3, changed expres-

sion after inoculation with pathogens (see Supplemental Table 3

online) (Nishimura et al., 2003). AlthoughPDR4was repressed after

infection, PDR12 was induced, and its induction was dramatically

enhanced in B. g. hordei–inoculated pen3-1 plants.

Localization of PEN3 to Penetration Sites after

Pathogen Attack

In plants, ABC transporters have been localized to the tono-

plast, mitochondria, chloroplasts, and plasma membrane

(Kushnir et al., 2001; Moller et al., 2001; Goodman et al.,

2004; Pighin et al., 2004). Recently, proteomic studies of

different organelles have placed PEN3 in the plasma mem-

brane, mitochondria, and chloroplasts (Brugiere et al., 2004;

Kleffmann et al., 2004; Nühse et al., 2004). Given its high

abundance, PEN3 is likely a common contaminant in organelle

preparations and unlikely to be localized in all three subcellular

structures. To localize PEN3, a translational fusion to green

fluorescent protein (GFP) was made, transformed into pen3-1

plants, and shown to complement the phenotypes conferred

by the pen3-1mutant (data not shown). PEN3-GFP was localized

to the plasma membrane; no GFP signal was associated with

chloroplasts (Figure 6A). After inoculation with B. g. hordei,

PEN3-GFP accumulated to high levels in regions of the plasma

membrane just under fungal appressoria, in the shape of com-

pact disks surrounded by diffuse halos approximately the size of

papillae (Figures 6B to 6D). Occasionally, this disk of PEN3-GFP

signal was surrounded by a concentric circle of intense PEN3-

GFP label within the diffuse halo (Figure 6B). Closer inspection of

PEN3-GFP fluorescence at attempted entry sites revealed a

three-dimensional bubble-like shape, presumably reflecting

the invagination of the plant plasma membrane by the growing

fungal penetration peg and newly developing haustorium
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(Figures 6E and 6F). A funnel-like structure, which resembled a

hollow tube and extended into the plant cell, was sometimes

observed at penetration sites at later stages (Figures 6G and 6H).

Localization of PEN3-GFP after E. cichoracearum infection was

similar to that observed after inoculation with B. g. hordei. PEN3-

GFP accumulated in compact disks beneath appressoria, as well

as in diffuse halos around this domain, and in bubble-like struc-

tures (Figures 6I to 6K). When E. cichoracearum haustoria were

formed, the PEN3-GFP marker was also observed partially

surrounding the haustorium (Figure 6L).

Figure 5. Combined Mutations in PEN3 and EDS1or Introduction of the NahG Transgene Compromise Nonhost Resistance to B. g. hordei and E. pisi.

(A) Mean of the frequency of B. g. hordei penetration on Arabidopsis, expressed as a percentage of total germinated spores. Wassilewskija (Ws) is the wild-

type control for eds1-1; Ler sgt1b-1 rar1-10 is the control for double mutants with sgt1b-1 and rar1-10; and Col-0 is the wild-type control for npr1-1, sid2-1,

pad4-1, jar1-1, andNahG. Eight leaves per genotype were stained with aniline blue at 2 DAI, and the occurrence of callose-encased haustoria was monitored

as a measure of penetration efficiency. a Significantly different from the wild type; b significantly different from pen3 using Student’s t test (P < 0.001).

(B) Average hyphal length of B. g. hordei colonies growing on different mutants. Leaves were stained with trypan blue at 10 DAI, and hyphal lengths per

colony were measured from photographs using ImageJ software. A minimum of 10 colonies were measured for hyphal length. This experiment was

repeated twice. * Significantly different from the corresponding value for pen3 using Student’s t test (P < 0.001).

(C) Examples of B. g. hordei colonies growing on different lines. Infected leaves were stained with trypan blue at 10 DAI. Bars ¼ 30 mm.

(D) E. pisi growth on Col-0 leaves and the indicated mutant genotypes at 7 DAI. Light microscopic images were taken after visualization of fungal

structures using Coomassie Brilliant Blue. Bars ¼ 200 mm. The inset shows a close-up view of E. pisi conidiophores on the pen3-1 eds1-1double

mutant. Bar ¼ 50 mm.

(E) Cryogenic scanning electron micrograph of E. pisi growth on pen3-1 eds1-1 at 7 DAI. The inset shows an E. pisi conidiophore. Bars ¼ 50 mm.
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DISCUSSION

Like pen1 and pen2, the pen3 mutant allowed increased entry

into epidermal cells and haustorium formation by the inappro-

priate pathogen B. g. hordei (Collins et al., 2003; Lipka et al.,

2005). In addition, pen3 supported increased hyphal elongation

by the inappropriate fungus, indicating that a higher proportion of

haustoria remained functional long enough to support the es-

tablishment and growth of secondary hyphae (Figure 1).

Nonhost resistance to B. g. hordei was also slightly compro-

mised in the eds1 mutant and in NahG transgenic plants, as

shown for B. g. tritici, the powdery mildew pathogenic on wheat

(Figure 5) (Yun et al., 2003; Zimmerli et al., 2004). Double mutants

ofpen3-1 and eds1 allowed additional penetration and growth by

two separate inappropriate biotrophic pathogens, B. g. hordei

and E. pisi, and the necrotrophP. cucumerina, than either mutant

alone (Figures 4 and 5). Furthermore, E. pisi was able to repro-

duce asexually on plants with both pen3-1 and eds1-1 mutations

(Figures 5D and 5E). Although EDS1 and NahG affect the

functioning of the SA pathway, they both have additional poorly

characterized but SA-independent effects on resistance (Feys

et al., 2001; Heck et al., 2003; van Wees and Glazebrook, 2003).

Because sid2 and its double mutant with pen3 did not implicate

the SA pathway in nonhost resistance, it seems likely that the SA-

independent responses of EDS1 and NahG contribute to non-

host resistance. Furthermore, double mutant combinations of

pen3 and eds1 or NahG exhibited additive rather than epistatic

interactions, suggesting that PEN3 operates independently of

EDS1 and NahG in nonhost resistance. Therefore, it appears that

only two barriers, penetration resistance (e.g., PEN2 or PEN3)

and postpenetration or basal resistance (e.g., EDS1 or PAD4),

are sufficient to limit E. pisi invasion, growth, and asexual repro-

duction onArabidopsis (Lipka et al., 2005). However, an additional

barrier(s) appears to limit B. g. hordei infections of Arabidopsis.

Unexpectedly, pen3 mutants were more resistant to the

Arabidopsis powdery mildew pathogen. This resistance was

associated with the development of chlorosis and necrosis late in

the infection sequence (Figure 3). A survey of 34 Arabidopsis

mutants that exhibited chlorosis and necrosis upon pathogen

infection showed that these phenotypes are not commonly asso-

ciated with a lack of nonhost resistance (see Supplemental Table

4 online). Both double mutant analysis and microarray expres-

sion profiling suggested that the SA pathway was hyperactivated

in pen3 plants relative to wild-type plants and that this was

responsible for the chlorotic and E. cichoracearum–resistant

phenotypes of pen3 (Table 1, Figure 3). SGT1b has a role in cell

death signaling in addition to its role in modulating R protein

levels, which is consistent with the attenuation of chlorosis and

cell death observed in pen3 sgt1b double mutants (Figure 3) (Holt

et al., 2005). Because powdery mildews are obligate biotrophs

that grow only on living host tissue, the necrosis and chlorosis are

likely responsible for the resistance to E. cichoracearum in pen3

plants.

PEN3 encodes a putative PDR-like ABC transporter previously

designated PDR8. The Arabidopsis PDR gene family comprises

15 members, of which PEN3 is the most widely and highly

Table 1. Examples of SA-Induced or SA Pathway–Associated Genes That Are Hyperinduced in pen3-1 Mutants after Inoculation with Either the

Arabidopsis or the Barley Powdery Mildew

Locus Gene Description

Col-0 Col-0 pen3 pen3 pen3

Ec Bgh Unin Ec Bgh

At1g65690 Harpin-induced protein–related 3.04 6.67 1.35 7.42 17.87

At1g74710 Isochorismate synthase1 (ICS1 ¼ SID2) 2.23 5.67 1.15 4.13 10.14

At1g75040 Pathogenesis-related protein5 (PR-5) 4.89 9.18 2.55 12.81 26.13

At2g43570 Chitinase, putative similar to chitinase

class IV

2.88 7.50 1.59 8.24 24.39

At2g43590 Chitinase, putative similar to basic endo

chitinase CHB4

1.11 1.48 1.12 2.59 5.95

At2g46400 WRKY family transcription factor 2.16 4.80 1.52 3.63 8.42

At3g04720 Pathogenesis-related protein4 (PR4) 1.36 1.58 1.00 2.24 4.46

At3g12500 Basic endochitinase 1.05 1.28 1.14 2.37 8.39

At3g48090 Disease resistance protein, lipase-like

(EDS1)

2.33 3.49 1.34 3.50 4.11

At3g50480 Broad-spectrum mildew resistance RPW8 2.61 4.97 1.52 5.35 11.19

At3g52430 Phytoalexin-deficient4 (PAD4) 3.20 5.48 1.42 5.02 9.75

At3g57240 b-1,3-Glucanase (BG3) 5.43 6.07 1.78 7.11 6.67

At4g01700 Chitinase, putative similar to peanut type II

chitinase

3.79 6.91 1.36 6.28 8.26

At4g39030 Enhanced disease susceptibility5

(EDS5 ¼ SID1)

2.44 5.43 1.13 4.84 10.33

At4g39830 L-Ascorbate oxidase 5.29 11.70 1.78 9.58 14.99

At5g24210 Lipase class 3 family protein 2.80 4.62 1.17 3.92 8.86

At5g47120 Bax inhibitor1 putative 1.57 2.23 1.15 2.13 3.19

Ec, 1 DAI with Erysiphe cichoracearum; Bgh, 1 DAI with Blumeria graminis f. sp hordei; Unin, uninoculated. Based on the analysis of variance with a

Benjamini and Hochberg multiple text correction, the P values for these genes were <0.0008 for the factor genotype and for the factor infection. Values

shown indicate average fold induction relative to uninoculated Col-0 (n ¼ 4).
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expressed. Although other ABC transporter families in plants are

well characterized and their members have been implicated in

the transport of auxin, lipids, pigments, and chlorophyll precur-

sors, the PDR family is less well studied (Martinoia et al., 2002).

Among the plant PDR subgroup of ABC transporters, studies of

two Nicotiana species transporters, N. plumbaginifolia PDR1/

ABC1 and tobacco (Nicotiana tabacum) PDR1, which are most

similar in sequence to the Arabidopsis PDR12, suggest that they

may function in the export of toxic secondary plant metabolites

and/or in the detoxification of pathogen toxins. Similar to PEN3,

the expression of N. tabacum PDR1and N. plumbaginifolia PDR1

is induced by defense-related signals such as pathogen elicitors

and methyl jasmonate, and N. plumbaginifolia PDR1 is also

induced by the phytoalexin sclareol (Jasinski et al., 2001; Sasabe

et al., 2002). Arabidopsis does not produce sclareol; however,

PDR12 is induced by fungal pathogens, and plants carrying a

T-DNA insertion in PDR12 are reportedly more sensitive to

exogenous sclareol and to lead (see Supplemental Table 3

online) (Campbell et al., 2003; Lee et al., 2005). Given the broad

range of compounds and small peptides that can be transported

by ABC transporters, these studies of tobacco PDR transporters

cannot be used to suggest a candidate substrate for PEN3. A

single gene, encoding a small unknown protein, was strongly

upregulated in the pen3 mutant independent of infection status.

In yeast, an ABC transporter is responsible for exporting the 38–

amino acid mating factor A (Kuchler et al., 1989). Thus, it is

possible that the small unknown protein is a substrate for PEN3.

Alternatively, this gene could be a novel marker for the stress

experienced by pen3 plants. In spite of the expression re-

sponses, loss of PDR12 function inArabidopsis or PDR1 function

in N. plumbaginifolia did not lead to increased susceptibility to

several fungal and bacterial pathogens (Campbell et al., 2003;

Stukkens et al., 2005). However, N. plumbaginifolia plants lack-

ing PDR1 were highly susceptible to the necrotroph B. cinerea

(Stukkens et al., 2005). With this result and the cloning of PEN3,

PDR-type ABC transporters have been implicated in defense,

adding a new role to the diverse repertoire of the PDR-like ABC

transporter family.

ABC transporters have been shown to require phosphorylation

for activity or regulation (Kolling, 2002). A recent study of phos-

phorylated plasma membrane proteins identified PEN3 as a target

of flagellin-induced phosphorylation (Nühse et al., 2004), support-

ing the idea that PEN3 functions in nonhost resistance and de-

fenses elicited by nonspecific elicitors such as flagellin. Consistent

with this idea, PEN3 expression was 2.5-fold higher in flg22

peptide–treated seedlings compared with control seedlings, and

Figure 6. Localization of PEN3-GFP.

(A) PEN3-GFP localizes to plant plasma membranes (pm) in uninfected leaves.

(B) to (H) Localization of PEN3-GFP in leaves inoculated with B. g. hordei.

(B) Conidia germinate and produce appressoria (ap), which attempt penetration via penetration pegs (pp).

(C) Green channel image of an attempted penetration site, accompanied by the accumulation of PEN3-GFP directly around the peg and by diffuse

accumulation in a halo-like structure (hl).

(D) PEN3-GFP accumulates preferentially beneath penetration pegs.

(E) and (F) Accumulation of PEN3-GFP around the penetration peg persists in a bubble-like structure as penetration continues.

(G) and (H) At later stages, PEN3-GFP is seen in a funnel-like structure (f) around haustorial initials. This structure extends deep into the cell (side view

[G]) and does not fully encase the haustorial initial (bottom view [H]).

(I) to (L) Localization of PEN3-GFP in leaves inoculated with E. cichoracearum.

(I) to (K) Attempted penetrations by E. cichoracearum elicit PEN3-GFP aggregation around penetration pegs and in diffuse halos.

(L) At later stages, PEN3-GFP aggregates around the upper part of the haustoria (ha).

PEN3-GFP appears green; chloroplast autofluorescence and propidium iodide–stained fungal structures appear red. Bars ¼ 5 mm.
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this induction was dependent on the FLS2 receptor-like kinase

(see Supplemental Table 2 online) (Gomez-Gomez and Boller,

2000).

Localization of PEN3 to the plasma membrane and its accu-

mulation at penetration sites support the idea that PEN3 exports

defense compounds in a focal manner at attempted invasion

sites (Figure 6). PEN1 (¼SYP121 syntaxin), the barley PEN1

homolog ROR2, and the barley MLO protein also localize in a

similar pattern to the plasma membrane after powdery mildew

infection (Assaad et al., 2004; Bhat et al., 2005). In addition,

PEN2-GFP localizes to peroxisomes that accumulate near sites

of invasion (Lipka et al., 2005). This marshalling of defense

components at sites of attempted pathogen invasion illustrates

the importance of subcellular dynamics in plant responses to

pathogens.

pen3 and pen2 mutants have similar phenotypes that are not

observed in pen1 mutants. For example, only pen2 and pen3

plants were more susceptible to the inappropriate pathogen P.

infestans (Figures 1G and 1I) and the necrotroph P. cucumerina

(Figure 4) (Lipka et al., 2005). However, pen3 mutants differed

from pen2 mutants by their resistance to the Arabidopsis pow-

dery mildew (Figure 3A). Mutations in PEN2 partially suppressed

cell death and chlorosis in E. cichoracearum–infected pen3

mutants, suggesting that PEN2 and PEN3 functions might be

interdependent. We propose a biochemical model for the role of

PEN3 in penetration resistance (Figure 7A) in which PEN2 con-

verts a nontoxic substrate to a toxic product, which is then

exported either directly or after further modification to the

apoplast by PEN3, poisoning the fungal penetration peg as it

attempts to cross the cell wall. This model predicts that the

substrate(s) normally exported by PEN3 accumulates to higher

levels intracellularly in E. cichoracearum–infected pen3 plants

than in pen3 plants inoculated with B. g. hordei, because E.

cichoracearum continues to grow and repeatedly penetrate the

epidermis, providing a greater stimulus for the production of

PEN3 substrate(s) (Figure 7B). Based on the double mutant

analysis (Figure 3) and microarray data (Table 1), it seems likely

that the PEN3 substrate(s) spuriously activates the SA pathway.

Because pen3 but not pen2 mutants develop chlorotic and

necrotic patches with E. cichoracearum infections, we further

propose that another enzyme(s), acting in parallel with PEN2,

generates a related toxin(s) that is also exported by PEN3. To

date, one phytoalexin, camalexin, has been identified in Arabi-

dopsis (Tsuji et al., 1992). However, it is unlikely that this

compound is solely responsible for the phenotypes conferred

by pen3, because phytoalexin-deficient3 (pad3) and pad4 mu-

tants lack the phenotype conferred by pen (data not shown). A

postpenetration role for PEN3 can be explained by suggesting

that PEN3 exports toxin(s) to the extrahaustorial matrix, poison-

ing the haustorium, thereby limiting the initiation and growth of

secondary hyphae. This suggestion is supported by the locali-

zation of PEN3 protein to haustorial complexes (Figure 6). High-

light stress presumably leads to the accumulation of toxic

materials that would normally be exported by PEN3. The data

supporting this model are incomplete as yet, and it is also

possible that the loss of PEN2 attenuates the activation of the SA

pathway in pen3 mutants or that PEN3 exports a fungal toxin or a

fungal suppressor of defenses.

Plants are resistant to most pathogens in their environment

and succumb to only a small number of highly adapted pathogen

species. Collectively, the isolation of the pen1, pen2, and pen3

mutants highlights the importance of defenses operating at the

cell periphery. Only a subset of pathogens are able to overcome

Figure 7. Model for a Role for PEN3 in Penetration Resistance.

(A) We hypothesize that the PEN3 ABC transporter exports toxic secondary

metabolites or other toxic materials (X and Y) to the apoplast at sites of

attempted invasion. We speculate that the barley and pea powdery mildews

are sensitive to these toxins, whereas the Arabidopsis powdery mildew is

either less sensitive to this toxin or fails to fully activate this defense mech-

anism. Because some ABC transporters can transport a variety of related

compounds, we assume that PEN3 exports a family of chemically related

compounds, which may have varying toxicity. The glycosyl hydrolase PEN2

may activate one of these toxins (Y) by hydrolysis of a nontoxic precursor

metabolite (Y-G). We assume that other enzymes activate related toxins (X).

(B) In the pen3 mutant, the sustained intracellular accumulation of PEN2-

activated and related toxin(s) in interactions with the Arabidopsis

powdery mildew leads to the activation of the SA pathway and the

development of chlorosis and necrosis.

C, conidium; CW, cell wall; PM, plasma membrane.
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these defenses and attempt to colonize plants when additional

defenses, operating intracellularly, come into play. For some inap-

propriate pathogens, only a limited number of barriers limit growth

and asexual reproduction, suggesting that nonhost resistance

may not be as complex as originally thought and that these de-

fenses from nonhost plants can be introduced into host plants to

provide stable, broad host range resistance to difficult pathogens.

METHODS

Growth Conditions and Inoculations

Arabidopsis thaliana and squash (Cucurbita maxima, Hybrid Kuta; Park

Seed, Greenwood, SC) were grown in growth chambers at 228C with a

14-h photoperiod of;125 mE�m�2�s�1 in the 400- to 700-nm range. Host

powdery mildew (Erysiphe cichoracearum UCSC1) was cultured on

squash for 10 to 12 d and then applied to Arabidopsis using settling

towers (Vogel and Somerville, 2000). Barley powdery mildew (Blumeria

graminis f. sp hordei CR3) was grown on barley (Hordeum vulgare) line

Algerian-S (CI-16138) and inoculated onto Arabidopsis using the

methods described by Zimmerli et al. (2004). Phytophthora infestans

isolate 1306 (A1 mating type; provided by H. Judelson, University of

California, Riverside) was maintained and prepared for inoculations as

described by Zimmerli et al. (2004). Plants to be infected with Erysiphe pisi

were grown in growth chambers at 20 to 238C with a 12-h photoperiod

and a light intensity of ;150 mE�m�2�s�1 on a turf substrate mix (Stender

Substrate; Wesel-Schermbeck) containing 0.001% Confidor WG70 (Bayer).

Three-week-old plants were inoculated with E. pisi (Birmingham Isolate)

using a settling tower (Lipka et al., 2005). For the growth ofPlectosphaerella

cucumerina and Botrytis cinerea, seeds were surface-sterilized, sown on

square, 12.5312.5-cm Petri dishes containing Murashige and Skoog basal

salt mixture medium with 0.8% phytagel (Sigma-Aldrich), transferred to a

phytochamber, and grown as described previously (Berrocal-Lobo et al.,

2002; Berrocal-Lobo and Molina, 2004; Llorente et al., 2005). For high-light

treatments, plants were germinated and grown at 228C under a continuous

light regime of ;900 mE�m�2�s�1 in the 400- to 700-nm range.

M2 seeds were derived from an ethyl methanesulfonate–mutagenized

population of Col-0 and screened for loss of penetration resistance to

B. g. hordei by identifying individuals supporting an increased fre-

quency of haustorium formation. The B. g. hordei haustoria became

encased in callose and were visualized by staining for callose as de-

scribed below

Cytology and Quantification of Fungal Growth

For penetration assays, 3-week-old Arabidopsis plants were inoculated

with B. g. hordei and leaf samples were taken at 2 DAI. For P. infestans

assays, 2-week-old Arabidopsis plants were sprayed with P. infestans

zoospore suspensions and leaves were sampled at 2 DAI (Zimmerli et al.,

2000). The deposition of callose was visualized by staining with aniline

blue (Vogel and Somerville, 2000). For E. cichoracearum infections,

3-week-old Arabidopsis plants were inoculated as described above,

and phenotypes were monitored visually at 4, 5, 6, 7, and 10 DAI.

To quantify fungal growth, eight Arabidopsis leaves per genotype were

stained with aniline blue as described by Adam and Somerville (1996),

with 250 mg of trypan blue added per milliliter. Haustoria, which become

encased in callose in incompatible interactions, were visualized with

aniline blue staining. Secondary hyphal elongation was quantified in

nonoverlapping fields of view at 3200 magnification, avoiding the edge

and midvein regions of the leaf. Numbers were expressed as percentages

of total germinated conidia and were assessed for differences between

mutant and the wild type with Student’s t test. Fungal growth, the

occurrence of lesions, and the accumulation of autofluorescent com-

pounds were assessed as described by Vogel and Somerville (2000). To

quantify hyphal length per colony, B. g. hordei–inoculated leaves were

harvested at 10 DAI, cleared, and stained with trypan blue (Vogel and

Somerville, 2000). At least 10 individual colonies were photographed

under bright-field illumination at 3200 magnification with a Leica D500

digital camera attached to a Leica Leitz DMRB compound microscope.

Hyphal lengths were measured using ImageJ software (version 1.30)

(Abramoff et al., 2004; http://rsb.info.nih.gov/ij/).

Leaves infected with E. pisi were fixed and cleared in ethanol:acetic

acid (3:1). Epiphytic fungal growth was visualized by staining of fungal

structures with an ethanolic solution containing 0.6% Coomassie Brilliant

Blue R 250 (Lipka et al., 2005). Cryogenic scanning electron microscopy

of E. pisi–infected plants was performed as described by Sturaro et al.

(2005).

Assays of P. cucumerina disease development were done by spraying

10-d-old plants with a spore suspension (at either 1 3 106 or 2 3 106

spores/mL, 1.5 mL/plate). Mock inoculations were done by spraying the

plants with sterile water. After inoculation, plants were kept under the

growth conditions described above; 10 d later, the percentage reduction

of plant fresh weight caused by the fungal infection was calculated as

described (Berrocal-Lobo and Molina, 2004). Inoculations of wild-type

plants and pen3-1 mutants with B. cinerea were performed as described

previously (Llorente et al., 2005), and the percentage of decayed plants

was determined at different days after inoculation. The highly susceptible

agb1-1mutant was included in these experiments as a control for disease

development (Llorente et al., 2005). At least 30 plants per genotype were

inoculated with each pathogen, and the experiment was repeated four

times. Differences between genotypes were identified using Student’s t test.

Mapping and Cloning

Rough mapping markers, PCR conditions, and DNA preparation were as

described previously (Lukowitz et al., 2000). Briefly, F2 populations of a

mutant crossed to Arabidopsis Ler were sown in 96-well flats and then

moved to a greenhouse. Plants were inoculated with B. g. hordei, as

described above, at ;3 weeks after germination when they had at least

four true leaves. At 2 DAI, the third or fourth true leaf from each plant was

harvested. Leaves were stained individually, mounted, and examined

at 350 magnification as described below. Tissue was harvested from

plants with mutant phenotypes for DNA preparation and bulk segregant

PCR (Lukowitz et al., 2000). Key individuals were retested for their pen3

phenotype in the F3 generation. New markers within the mapping interval

were generated using the CEREON database of Col-0 and Ler polymor-

phisms (Jander et al., 2002) and the Whitehead Institute online primer

design software, Primer3 (Rozen and Skaletsky, 2000; http://frodo.wi.

mit.edu/cgi-bin/primer3/primer3_www.cgi). All available T-DNA insertion

lines for genes in a small interval on chromosome 1 were identified from

the Salk Institute Genomic Analysis Laboratory’s T-DNA project (http://

signal.salk.edu/cgi-bin/tdnaexpress) (Ecker, 2002). Two SALK lines,

SALK_110926 (pen3-3) and SALK_000578 (pen3-4), with insertions in

the At1g59870 gene segregated pen3 phenotypes. The At1g59870 gene

was sequenced from the pen3-1, pen3-2, and mil9 mutant lines on an ABI

310 Sequenator (Applied Biosystems).

Alignments of PDR family members were made using DNAStar

MEGALIGN software with the ClustalW method and default parameters.

Microarray data mining was done using the web tool GENEVESTIGATOR

(Zimmermann et al., 2004).

Double Mutant Construction

The mutant alleles used for theconstruction of double mutants withpen3-1

were coi1-1 (Col-6 background [Feys et al., 1994]), npr1-1 (Cao et al.,
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1994), sid2-1 (Nawrath and Métraux, 1999), pad4-1 (Glazebrook and

Ausubel, 1994), eds1-1 (Ws-0 background [Parker et al., 1996]), Etr1-1

(Bleecker et al., 1988), jar1-1 (Staswick et al., 1992), edr1 (Frye and Innes,

1998), sgt1b-1 (Ler background [Peart et al., 2002]), rar1-10 (Ler back-

ground [Muskett et al., 2002]), NahG (Lawton et al., 1995), pen1-1 (Collins

et al., 2003), and pen2-3 (Lipka et al., 2005). All of the mutant lines, unless

noted otherwise, were in the Col-0 background. We generated the double

mutants by standard genetic crosses, following the mutations with cleaved-

amplified polymorphic sequence (CAPS) markers. When the mutation did

not lead to a change in a restriction site, we generated derived CAPS

markers using the dCAPS web tool (Neff et al., 1998). The Etr1-1 (Hua and

Meyerowitz, 1998), NahG (Morris et al., 2000), rar1-10 (Muskett et al.,

2002), sgt1b (Austin et al., 2002), coi1-1 (Xie et al., 1998), pad4-1

(Nishimura et al., 2003), and npr1-1 (Nishimura et al., 2003) primers

have been described previously. See Supplemental Table 5 online for a

listing of primers used in genotyping mutations.

Expression Profiling

Samples of Col-0 and pen3-1 rosettes were collected from uninfected

plants, plants infected with E. cichoracearum, or plants inoculated with B.

g. hordei at 1 DAI. Each sample represented a pool of the rosettes from 16

plants grown in one pot under the growth conditions outlined above and

inoculated as described above. Four pots (each pot a biological replicate)

were grown for each treatment 3 genotype combination for a total of 24

pots. Total RNA was extracted from the plants using the Trizol method

(Chomczynski and Sacchi, 1987) (Gibco BRL) and purified (Qiagen;

RNeasy) essentially as described (Ramonell et al., 2002). Biotinylated

complementary RNA (20 mg) was prepared as described (Hernan et al.,

2003). The resulting complementary RNA was used to hybridize ATH1

Arabidopsis GeneChips (Affymetrix) using the manufacturer’s protocols.

The array images were analyzed with Affymetrix Microarray Suite 5.0 with

the target intensity set to 500. The expression levels of the genes were

analyzed with GeneSpring 4.2 software (Silicon Genetics), and the chip-

to-chip signal variation was minimized by normalizing signal intensities to

the averaged intensity values of uninoculated Col-0 using the expression

levels of the top 50th percentile of probe sets. Differentially expressed

genes were identified using two-way analysis of variance and a Benjamini

and Hochberg multiple testing correction (GeneSpring 4.2). Genes were

considered differentially expressed at P # 0.001.

PEN3-GFP Localization

To create a PEN3 fusion to GFP, a 39 fragment encoding the C terminus

(nucleotides 4380 to 5681 of the unspliced transcript) of PEN3 was

amplified by PCR using primers containing a C-terminal adaptor to keep

the protein sequence in-frame with GFP in the vector pEGAD (Cutler et al.,

2000). The primer sequences were 59-CGGGGTACCGGACACTGGAA-

GAACCGTGGTC-39 and 59-ACGCGTCGACCGTCCCAACATGGAAACT-

CTTGTATC-39. The 35S promoter was removed from pEGAD using SacI,

before ligating the PCR-amplified and KpnI-BamHI–digested C-terminal

PEN3 fragment in-frame with eGFP. BAC F23H11 was ordered from the

ABRC and digested with KpnI, yielding a 10-kb genomic fragment con-

taining the PEN3 gene as well as 2132 nucleotides upstream of the start

codon and 2542 nucleotides downstream of the stop codon. This

fragment was gel-purified and redigested using DraIII. The resulting

digest was cloned into the pEGAD vector containing thePEN3 sequences

encoding the C terminus fused with eGFP and digested with KpnI and

DraIII, to give the full genomic piece fused in-frame to GFP. The vector

was transformed into Agrobacterium tumefaciens (strain GV3101), and

flowering pen3-1 plants were dipped into A. tumefaciens–containing in-

filtration medium as described (Cutler et al., 2000). T1 seeds were

surface-disinfected and plated on Murashige and Skoog agar plates

containing 50 mg kanamycin/mL (Murashige and Skoog, 1962). Two-

week-old healthy seedlings were screened for GFP fluorescence with a

Leica dissecting microscope equipped with an epifluorescence filter set.

GFP-expressing seedlings were transferred to soil and inoculated with E.

cichoracearum or B. g. hordei 2 weeks later. Single inoculated leaves

from T1 plants were mounted on microscope cover slips in a 0.01 mg/mL

propidium iodide solution in water (Ramonell et al., 2005). Imaging was

done using a Nikon inverted fluorescence microscope equipped with a

Bio-Rad MRC 1024 confocal head. Images were processed using the

software ImageJ.

Accession Numbers

Microarray data sets were deposited in the Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/; Barrett et al., 2005) under accession

number GSE3220. The Arabidopsis Genome Initiative locus identifier for

PEN3/PDR8 is At1g59870.
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The following materials are available in the online version of this article.

Supplemental Table 1. Expression of the 12 Members of the
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Different Biotic and Abiotic Stresses.
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L.C., Dicke, M., and Pieterse, C.M.J. (2005). Signal signature and

transcriptome changes of Arabidopsis during pathogen and insect

attack. Mol. Plant Microbe Interact. 18, 923–937.

Ecker, J.R. (2002). A sequence-indexed library of insertion mutations in

the Arabidopsis genome. Plant Physiol. 129, 405–406.

Ellingboe, A.H. (1972). Genetics and physiology of primary infection by

Erysiphe graminis. Phytopathology 62, 401–406.

Fernandez, M.R., and Heath, M.C. (1991). Interactions of the nonhost

French bean plant Phaseolus vulgaris with parasitic and saprophytic

fungi. 4. Effect of preinoculation with the bean rust fungus on growth

of parasitic fungi nonpathogenic on beans. Can. J. Bot. 69, 1642–

1646.

Feys, B.J., Benedetti, C., Penfold, C., and Turner, J.G. (1994).

Arabidopsis mutants selected for resistance to the phytotoxin coro-

natine are male sterile, insensitive to methyl jasmonate, and resistant

to a bacterial pathogen. Plant Cell 6, 751–759.

Feys, B.J., Moisan, L.J., Newman, M.A., and Parker, J.E. (2001).

Direct interaction between the Arabidopsis disease resistance signal-

ing proteins EDS1 and PAD4. EMBO J. 20, 5400–5411.

Frye, C.A., and Innes, R.W. (1998). An Arabidopsis mutant with en-

hanced resistance to powdery mildew. Plant Cell 10, 947–956.

Glazebrook, J., and Ausubel, F.M. (1994). Isolation of phytoalexin-

deficient mutants of Arabidopsis thaliana and characterization of their

interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91,

8955–8959.

Glombitza, S., et al. (2004). Crosstalk and differential response to

abiotic and biotic stressors reflected at the transcriptional level

of effector genes from secondary metabolism. Plant Mol. Biol. 54,

817–835.

Gomez-Gomez, L., and Boller, T. (2000). FLS2: An LRR receptor-like

kinase involved in the perception of the bacterial elicitor flagellin in

Arabidopsis. Mol. Cell 5, 1003–1011.

Goodman, C.D., Casati, P., and Walbot, V. (2004). A multidrug

resistance-associated protein involved in anthocyanin transport in

Zea mays. Plant Cell 16, 1812–1826.

Greenberg, J.T., and Ausubel, F.M. (1993). Arabidopsis mutants

compromised for the control of cellular damage during pathogenesis

and aging. Plant J. 4, 327–341.

Greenberg, J.T., and Yao, N. (2004). The role and regulation of

programmed cell death in plant-pathogen interactions. Cell. Micro-

biol. 6, 201–211.

Heath, M.C. (2000). Nonhost resistance and nonspecific plant defenses.

Curr. Opin. Plant Biol. 3, 315–319.

Heck, S., Grau, T., Buchala, A., Métraux, J.P., and Nawrath, C.
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Zimmerli, L., Jakab, C., Métraux, J.P., and Mauch-Mani, B. (2000).

Potentiation of pathogen-specific defense mechanisms in Arabidop-

sis by beta-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97, 12920–

12925.

Zimmerli, L., Stein, M., Lipka, V., Schulze-Lefert, P., and Somerville,

S. (2004). Host and non-host pathogens elicit different jasmonate/

ethylene responses in Arabidopsis. Plant J. 40, 633–646.

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem,

W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and

analysis toolbox. Plant Physiol. 136, 2621–2632.

NOTE ADDED IN PROOF

Kobae et al. (2006) report that pdr8/pen3 mutants are compromised in

nonhost resistance to Phytophthora infestans but show increased

resistance to Pseudomonas syringae pv tomato DC3000.

Kobae, Y., Sekino, T., Yoshioka, H., Nakagawa, T., Martinoia, E., and

Maeshima, M. (January 13, 2006). Loss of AtPDR8, a plasma

membrane ABC transporter of Arabidopsis thaliana, causes hyper-

sensitive cell death upon pathogen infection. Plant Cell Physiol. http://

dx.doi.org/10.1093/pcp/pcj001.

746 The Plant Cell


