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Abstract

The Arabidopsis (Arabidopsis thaliana) genome contains 15 genes encoding protein homologs of the barley
mildew resistance locus o (MLO) protein biochemically shown to have a seven-transmembrane domain
topology and localize to the plasma membrane. Towards elucidating the functions of MLOs, the largest
family of seven-transmembrane domain proteins specific to plants, we comprehensively determined AtMLO
gene expression patterns by a combination of experimental and in silico studies. Experimentation comprised
analyses of transgenic Arabidopsis lines bearing promoter::b-glucuronidase (GUS) transcriptional fusions
as well as semi-quantitative determination of transcripts by reverse transcription coupled to polymerase
chain reaction (RT-PCR). These results were combined with information extracted from public gene
profiling databases, and compared to the expression patterns of genes encoding the heterotrimeric
G-protein subunits. We found that each AtMLO gene has a unique expression pattern and is regulated
differently by a variety of biotic and/or abiotic stimuli, suggesting that AtMLO proteins function in diverse
developmental and response processes. The expression of several phylogenetically closely-related AtMLO
genes showed similar or overlapping tissue specificity and analogous responsiveness to external stimuli,
suggesting functional redundancy, co-function, or antagonistic function(s).

Abbreviations: AGB1, the Arabidopsis Gb subunit; AGG1, the Arabidopsis Gc subunit1; AGG2, the
Arabidopsis Gc subunit2; FRET, Förster/Fluorescence Resonance Energy Transfer; GCR1, G-Coupled
Receptor1; GPA1, the Arabidopsis Ga subunit; GPCRs, G-protein coupled receptors; GUS, b-glucuron-
idase; MLO, mildew resistance locus o; RGS1, Regulator of G-protein Signaling; 7TM, seven-
transmembrane

Introduction

Multi-cellular organisms evolved mechanisms to
sense both intra- and extra-cellular signals to

achieve coordinated development and to respond
properly to environmental cues. The seven-trans-
membrane (7TM) domainG-protein coupled recep-
tors (GPCRs), which link diverse extracellular
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stimuli to intracellular signaling networks via het-
erotrimetricG-proteins, represent the largest family
dedicated to recognizing extracellular messengers
(Bockaert and Pin, 1999). There are approximately
1000 members in vertebrates, and over 5% of the
genome of Caenorhabditis elegans encodes GPCRs
(Bockaert and Pin, 1999).

However, the genome of Arabidopsis
(Arabidopsis thaliana) may encode far fewer pre-
sumptive 7TM domain proteins (Devoto et al.,
1999). Among the predicted 7TM domain pro-
teins, only two proteins, a putative plant GPCR
protein, G-Coupled Receptor1 (GCR1), and an
unusual Regulator of G-protein Signaling protein
(AtRGS1), have been reported to be involved in
G-protein signaling (Josefsson and Rask, 1997;
Chen et al., 2003; Pandey and Assmann, 2004), yet
their role as GPCR still awaits testing. Further-
more, the predicted heptahelical structure of
GCR1 and AtRGS1 has not been confirmed
experimentally.

The largest 7TM protein family in Arabidopsis
is comprised of 15 members having significant
sequence homology to a barley protein encoded by
the mildew resistance locus o (MLO) gene.
Accordingly, respective genes were designated
AtMLOs (Devoto et al., 1999, 2003). Topology
and subcellular localization studies showed barley
MLO is plasma membrane delimited via its 7TM
domains with the N-terminus positioned extracel-
lularly and the C-terminus intracellularly like
metazoan GPCRs (Devoto et al., 1999). Recent
evidence obtained using FRET (Förster/Fluores-
cence Resonance Energy Transfer) analysis further
revealed preliminary evidence for in planta MLO-
dimerization/oligomerization (Elliott et al., 2005).

The biological functions of MLO proteins are
largely unknown. MLO proteins are unique to
plant taxa, dating back to early land-plant evolu-
tion (Devoto et al., 2003). In barley, plants carry-
ing homozygous recessive mlo alleles are
resistant to the biotrophic powdery mildew fun-
gus, Blumeria graminis f. sp. hordei. This pheno-
type indicates a role of MLO in pathogen-related
functions, possibly by modulating plant defense
(Büschges et al., 1997). Consistent with an involve-
ment in plant–microbe interactions, MLO expres-
sion is induced upon biotic and abiotic stress
stimuli (Piffanelli et al., 2002). However, mediat-
ing disease susceptibility is unlikely the primary
function of MLO. Rather, a yet unknown

MLO-mediated host process may be usurped
by the fungal pathogen for successful colonization.
This is reminiscent of human diseases like
AIDS, malaria and pneumonia (Panstruga and
Schulze-Lefert, 2003), which are caused by patho-
gens requiring the presence of specific 7TM
domain proteins in host cells for successful infec-
tions (Pease and Murphy, 1998). The function of
barley MLO in mediating disease susceptibility
appears to be independent of heterotrimeric G-
proteins (Kim et al., 2002). However, a functional
contribution of heterotrimeric G-proteins remains
a possibility for unknown primary tasks of barley
MLO and other MLO proteins (Panstruga and
Schulze-Lefert, 2003).

Towards understanding the biological func-
tions of AtMLO proteins, we determined expres-
sion patterns of AtMLO genes by performing
promoter::GUS studies and reverse transcription
coupled to polymerase chain reaction (RT-PCR)
of the entire gene family. We also analyzed gene
expression information from public gene profiling
databases and examined 5¢ upstream sequences of
AtMLO genes for the presence of known regula-
tory elements. Our results indicate that each
AtMLO gene has a unique expression pattern
and is regulated differently by a variety of stimuli,
suggesting that AtMLOs function in diverse devel-
opmental and response processes.

Materials and methods

Generation of promoter::GUS constructs
and transformation of Arabidopsis

Based on the information provided by the TAIR
web site (http://www.arabidopsis.org/, last modi-
fied on August 8th 2005), DNA fragments covering
5¢ upstream (in the context of this study opera-
tionally defined as promoter) regions of AtMLOs
and genes encoding G-protein subunits AGB1,
AGG1 and AGG2 were each amplified from
genomic DNA of wild type Arabidopsis
(Arabidopsis thaliana; Col-0 ecotype) by using the
primers listed in Table 1. Primers were generally
designed to cover the 5¢ upstream region of each
gene starting immediately upstream of the start
codon up to the end of the next gene located 5¢ of
the gene under consideration. The constructs were
made in the following way: for AtMLO2,
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AtMLO3, AtMLO4, AtMLO5, AtMLO6,
AtMLO9, AtMLO10 and AtMLO13, PCR prod-
ucts (using pfu or pwo polymerase) were cloned into
the SmaI site of pBluescript. Subsequently, they
were excised as EcoRI/NcoI (for AtMLO2,
AtMLO3, AtMLO4, AtMLO5, AtMLO6, AtMLO9
and AtMLO13), EcoRI/ClaI (for AtMLO10), or
SacI/NcoI (for AtMLO12) fragments and co-ligated
with either a NcoI/HindIII GUS fragment (excised
from pSLJ4D4 (Jones et al., 1992); for AtMLO2,
AtMLO3, AtMLO4, AtMLO5, AtMLO6, AtMLO9,
AtMLO12 and AtMLO13) or a ClaI/HindIII GUS
fragment (excised from pSLJ4K1 (Jones et al., 1992);
for AtMLO10), into the binary vector pPZP211
(GenBank accessionnumberU10490).ForAtMLO1,
AtMLO7, AtMLO8, AtMLO11, AtMLO14 and
AtMLO15, PCR products (Phusion, Finnzymes,
Espoo, Finland) were cloned into the pENTR/D-
TOPO vector (Invitrogen, Carlsbad, CA), then
moved into the Gateway destination binary vector,
pGWB3 (Research Institute of Molecular Genetics,
Matsue, Japan) by an LR recombination reaction.
All these constructs were transformed into wild type
Arabidopsis plants of Col-0 ecotype via floral dip as
described by Clough and Bent (1998). The transgenic
plants were selected for kanamycin-resistance, and
the presence of the corresponding promoter::GUS
gene was confirmed by PCR. For AGB1, AGG1 and
AGG2, PCR products were cloned into the pENTR/
D-TOPO vector (Invitrogen, Carlsbad, CA), then
moved into the Gateway destination binary vector
pBGWFS7 (Karimi et al., 2002). The constructs
were transformed into A. thaliana (Col-0 ecotype) by
Agrobacterium-mediated transformation (Bechtold
and Pelletier, 1998).

Plant materials

Seeds of AtMLO promoter::GUS lines were steril-
ized in ethanol as described by Turk et al. (2003),
plated on ½ MS media supplemented with 1%
sucrose, and stratified at 4 �C for 2 days. The
seedlingswere then grownat 24 �Ceither in dark for
3 days, or under constant light for 10 days before
subjected to GUS staining. Seeds were also planted
on soil, stratified at 4 �C for 2 days, and grown
under 24 �C 8/16 h light/dark cycles for 15 days.
Some of the 15-day-old plants were gently removed
from soil, rinsed in water, and subjected to GUS
staining. Fifteen-day-old plants were thenmoved to

a green house with 16/8 h light/dark cycles. Upon
request, all novel materials described in this publi-
cation will be made available in a timely manner for
non-commercial research purposes, subject to the
requisite permission from any third-party owners of
all or parts of the material. Obtaining any permis-
sion will be the responsibility of the requestor.

GUS staining assays

GUS histochemical staining of transgenic Arabid-
opsis plants containing AtMLO promoter::GUS
fusion constructs was performed as described by
Malamy and Benfey (1997). Briefly, seedlings or
excised tissues were vacuum infiltrated for 30 s
with freshly-prepared staining solution [100 mM
Tris–HCl (pH7.5), 50 mM NaCl, 2 mM potassium
ferricyanide, 20%(v/v) methanol, 0.001%(v/v) Tri-
ton X-100 and 1 mM 5-bromo-4-chloro-3-indolyl
b-D-glucuronide (X-Gluc; Rose Scientific Ltd.,
Edmonton, Alberta, Canada)]. After incubation
at 37 �C in dark overnight, seedlings or tissues
were cleared in 70% ethanol, examined with a
dissecting or compound microscope, and photo-
graphed with a digital camera. Images shown
represent the typical results of at least three
independent lines for each construct.

Phylogenetic analysis of AtMLO proteins

The Phylip 3.63 software package (http://evolu-
tion.gs.washington.edu/phylip.html) was used for
phylogenetic analysis. AtMLO protein sequences
were downloaded from http://www.ncbi.nlm.nih.
gov/. The highly polymorphic N- and C-termini of
AtMLO protein sequences aligned by CLU-
STALW were removed before calculating phylo-
genetic relationships. Thereafter, the Seqboot,
Protdist, Neighbor and Consense algorithms were
sequentially applied to establish the phylogenetic
consensus tree, using 100 replicates each for
bootstrap support. This majority rule consensus
tree based on neighbor-joining was fed as a user
tree in ProtML (maximum likelihood inference of
protein phylogeny) to re-estimate branch lengths.
The final tree was visualized using TreeView 1.6.6.

RT-PCR

RNA was isolated using the TRIzol Reagent
(Invitrogen, Carlsbad, CA) from tissues of wild
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type Col-0 Arabidopsis plants, including stems,
leaves and inflorescence of mature plants, as well
as roots and shoots of 10-day-old seedlings grown
on ½ MS media supplemented with 1% sucrose
under constant light. Reverse transcription reac-
tion was carried out by using the ThermoScriptTM

RT-PCR System (Invitrogen, Carlsbad, CA).
Complementary DNA derived from about 2 lg
of total RNA was used for PCR reactions.
AtMLO cDNAs were amplified for 40 cycles,
and AtACT2 cDNA were amplified for 30 cycles.
Primers used are listed in Supplemental Table 1.

Analysis of regulated gene expression
using public gene profiling data

Gene expression data were downloaded as an
Excel file from Genevestigator (version September
2005) using the Digital Northern server. Selected
profiles with replications were used such that the
average of expression levels was used for compar-
ison. As recommended by the server, expression
data with a P-value >0.06 were marked as absent
(signals not significantly higher than background),
and were not used to compare with other absent
data. Only responses with expression levels altered
by more than two-fold are shown in Table 3.

Web-based tool for Arabidopsis MLOs
and G-proteins

An online gene expression database search tool
was created as a Microsoft Access database-driven
web utility based on ASP.NET and written in
VB.NET and HTML. The tool was designed to
allow researchers to collect data in a centrally-
stored database while providing searchable data in
a manner customized by the user. The user may
search the database by gene or by tissue of interest.
The page then requests relevant data from the
database and displays it accordingly. This data-
base will be updated to reflect any gene investi-
gated by the community. The tissue search begins
with a dynamic Macromedia Flash movie of
Arabidopsis plants at several different develop-
mental stages. Once a tissue has been selected, the
link passes a specific value to an overall results
page, which subsequently displays any relevant
genes expressed in the tissue of interest. For each
gene, expression images and text detailing specific
locations within each tissue are displayed. To

initiate a search by gene, the user selects a gene
from a drop-down list populated from the
database. The resulting page displays results pro-
filing that gene. Finally, both the tissue and gene
results pages are cross-referenced. This utility is
available at http://www.bio.unc.edu/faculty/jones/
lab/MLO/search.aspx.

Results

Tissue-specific expression of AtMLO genes

To determine the expression patterns of AtMLO
genes, we isolated respective regulatory regions of
AtMLO genes upstream to the predicted start
codon, transcriptionally fused these promoters to
the reporter gene b-glucuronidase (GUS), and
transformed these chimeric genes into Arabidopsis.
At least three independent promoter::GUS lines
were characterized for each construct. Tissue-spe-
cific AtMLO expression at different developmental
stages was assessed from 3-day-old etiolated seed-
lings (grown on ½MS 1% sucrose plates), 10-day-
old light-grown seedlings (grown on ½ MS 1%
sucrose plates), 15-day-old plant (grown in soil),
and leaves and inflorescence from soil grownmature
plants. Staining patterns of AtMLO pro-
moter::GUS lines in selected organs are shown in
Figure 1. Detailed staining patterns of pro-
moter::GUS lines are shown in Supplemental Fig-
ures 1–15 and summarized in Table 2. The data are
also provided in a user-interactive database (http://
www.bio.unc.edu/faculty/jones/lab/MLO/search.
aspx).

No two AtMLO genes had identical expression
profiles, suggesting distinct functions of AtMLO
proteins. On the other hand, many AtMLO
genes have overlapping expression patterns. Spe-
cifically, AtMLO1, AtMLO2, AtMLO3, AtMLO4,
AtMLO6, AtMLO9, AtMLO10, AtMLO11,
AtMLO12 and AtMLO13 genes showed expres-
sion in vascular tissues of leaf and/or cotyledon.
AtMLO1, AtMLO2, AtMLO3, AtMLO4,
AtMLO9, AtMLO10, AtMLO11, AtMLO12 and
AtMLO13 genes also exhibited expression in root
vascular tissues. Promoter::GUS lines of AtMLO1,
AtMLO3, AtMLO5, AtMLO7, AtMLO9 and
AtMLO15 showed positive GUS staining in pollen
grains. Additionally, many AtMLO genes, includ-
ing AtMLO2, AtMLO3, AtMLO4, AtMLO6,
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AtMLO8, AtMLO9, AtMLO11, AtMLO12 and
AtMLO13, exhibited varying degrees of expression
at the abscission zone of the floral organs (Table 2,
Supplemental Figures 1–15). Overlapping expres-
sion of AtMLO genes suggests potential functional
redundancy among the AtMLO proteins, putative
co-function or antagonistic function of AtMLOs,
e.g. by forming heterodimers or oligomers. The
unique expression of AtMLO10 in valve margins
of elongating siliques and AtMLO13 in funuculus
suggest a possible involvement of AtMLO10 and
AtMLO13 in the processes of dehiscence and seed
detachment, respectively (Figure 1, Supplemental
Figures 10M and 13M).

The expression of many AtMLO genes
displayed developmental regulation. AtMLO3

expressed in trichomes of young leaves but exhib-
ited preferential expression in vascular tissues of
older leaves. AtMLO10 expression in inflorescence
was limited to valve margins of elongating siliques
but not in young carpels or in mature siliques.
The expression patterns of AtMLO2, AtMLO3,
AtMLO4, AtMLO6, AtMLO8, AtMLO9,
AtMLO11, AtMLO12 and AtMLO13 at the
abscission zone of the floral organs were observed
only in flowers during or after the shedding
process, but not in flowers of early stages (Sup-
plemental Figures 2–4, 6, 8, 9, 11–13).

We also followed AtMLO gene expression in
several organs by performing semi-quantitative
RT-PCR using primer pairs specific for each
AtMLO gene (Supplemental Table 1, Figure 2)

Figure 1. Phylogenetic analysis of Arabidopsis MLO protein family members and tissue-specific expression of AtMLO genes. The

unrooted phylogenetic tree represents a consensus tree with bootstrap values above branches indicating the number of replicates

(out of 100) that support the respective branch. The scale bar (right bottom corner) indicates the number of amino acid substitu-

tions per site. GUS staining pattern of AtMLO promoter::GUS lines in selected tissues are shown adjacent to the corresponding

AtMLO proteins to highlight similar and distinct expression of AtMLO genes in clades. Comprehensive GUS staining patterns for

AtMLO promoter::GUS lines are provided in Supplemental Figures 1–15.
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and extracted replicated data from public data-
bases (https://www.genevestigator.ethz.ch, Supple-
mental Table 2 and Figure 3). In many cases,
organ- or tissue-specific expression of AtMLO
genes obtained from RT-PCR and microarray
experiments was consistent with patterns observed
from the promoter::GUS lines. For instance,
strong expression of AtMLO5 and AtMLO9 in
inflorescence was found by all three approaches.
However, discrepancies among results obtained
using different approaches were also found. For
example, microarray analysis suggested high level
of AtMLO14 expression in pollen, however, both
GUS staining and RT-PCR suggested highest
AtMLO14 expression in roots, but no expression
in inflorescence tissues. AtMLO15 promoter::GUS
lines showed staining in root and inflorescence
tissues (Figure 1, Supplemental Figure 15), how-
ever, RT-PCR and microarray experiments only
detected AtMLO15 expression in roots (Figures 2
and 3). Additionally, RT-PCR and micro-
array experiments suggested that AtMLO7 and
AtMLO8 are expressed in a broader range of
tissues than suggested by GUS staining experi-
ments. In the case of AtMLO8, since microarray

experiments suggest that it is induced by wounding
(described later), the ubiquitous AtMLO8 expres-
sion detected in RT-PCR and microarray experi-
ments may be due to induction during tissue
collection. In fact, we occasionally observed asym-
metric staining in tissues of AtMLO8::GUS lines
(Supplemental Figure 8A–D), suggesting wound-
induced expression. These discrepancies highlight
the need for multiple approaches when assessing
gene expression patterns.

Overlapping tissue-specific expression
of closely related AtMLO genes

To establish the relationship of AtMLOs, protein
sequences lacking the hypervariable amino and
carboxy terminal domains were subjected to
phylogenetic analysis resulting in an unrooted
phylogenetic tree (Figure 1 and Devoto et al.,
2003). Adopting the nomenclature put forward by
Devoto et al. (2003), the 15 AtMLO proteins fall
into putative clades I through IV. Note that in an
unrooted tree the possibility that the root
position is within an apparent clade cannot be
excluded.

g ( )

Table 2. Staining profile of AtMLO promoter::GUS transgenic plants.

Organs and tissues AtMLO promoter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Root � � � � � � � � � � � �
Tip + + + + +

Vascular + + + + + + + + +

Epidermis + + + + + +

Leaf and cotyledon � � � � � � � � � � �
Veins + + + + + + + + + +

Hydathode + + + + +

Trichome + + + + +

Petiole + + + + + + + + + +

Stem � � � � � � � �
Vascular + + + +

Inflorescence � � � � � � � � � � � � � �
Sepal + + + + + +

Petal + + +

Filament + + + + + + +

Anther + + + + + +

Pollen + + + + + +

Carpel + + + + + + + + + + +

The abscission zone + + + + + + + + +

Silique valve margin +

Funiculus +

The presence of GUS staining in root, leaf and stem tissues of 10-day-old seedlings, and in inflorescence tissues of mature plants was
summarized in this table using � indicating a positive staining in organs and using + indicating a positive staining in tissues.
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All genes in clade I expressed in roots, prefer-
entially in root tips. AtMLO4 and AtMLO11
exhibited similar expression in leaf and inflores-
cence tissues, although AtMLO4 was distinguished
from AtMLO11 by expression in cotyledons
(Figure 1, Supplemental Figures 4, 11, and 14).
Taken together, genes in this clade have overlap-
ping tissue-specific expression, and the overlap

between expression patterns of AtMLO4 and
AtMLO11 is the most extensive.

Genes in clade II exhibited expression in both
vegetative and floral organs (Figure 1, Supple-
mental Figures 1, 13, and 15). However,
AtMLO13 and AtMLO15 showed distinct tissue-
specificity. In roots, AtMLO13 expressed in vas-
cular tissues, whereas AtMLO15 expressed in root
tips at the early elongation zone. In flowers,
AtMLO13 expressed in the vasculature of floral
organs, whereas AtMLO15 preferentially
expressed in pollen grains and papilla cells (Fig-
ure 1, Supplemental Figures 13 and 15). Interest-
ingly, tissue-specificity of AtMLO1 was similar to
AtMLO13 in vegetative organs, but similar to
AtMLO15 in floral organs (Supplemental Figures
1, 13, and 15), marking overlapped expression
between AtMLO1 and AtMLO13, and between
AtMLO1 and AtMLO15.

In clade III, AtMLO5 and AtMLO9 proteins
are the most closely related, and we found that the
corresponding genes also shared the most similar
expression patterns suggesting a recent gene dupli-
cation event. Both genes expressed in leaf hydath-
odes and had strong expression in anthers, pollen
grains, and styles (Supplemental Figures 5 and 9).
In contrast, other genes in clade III exhibited very
diverse expression patterns. AtMLO7 expressed in
pollen grains, AtMLO8 expressed in pedicle–stem
junction sites and the abscission zones of the floral
organs, whereas AtMLO10 expressed in vascular
tissues of vegetative organs and in the valve
margins of elongating fruits (Supplemental Fig-
ures 7, 8, and 10).

Clade IV was distinct from the other three
clades in that all members exhibited relatively
strong expression in cotyledons and leaves, in
addition to expression in root and floral organs
(Figure 1, Supplemental Figures 2, 3, 6 and 12,
Supplemental Table 2). Meanwhile, each member
had unique features in their tissue-specificity. For
example, unlike other members, AtMLO2 was not
expressed in anthers or pollen grains, whereas
AtMLO3 can be distinguished from others in that
its root expression starts from the differentiation
zone (Supplemental Figures 2 and 3).

Similarity in expression patterns of AtMlo5
and AtMlo9, and of AtMlo2 and AtMlo3 were
confirmed by analyzing replicated microarray
data (Figure 3, Zimmermann et al., 2004). The
observation that these closely-related AtMLO

Figure 2. RT-PCR analysis of the expression of AtMLO

genes in different tissues. RNA was isolated from stems,

leaves and inflorescence of mature plants, and from roots and

shoots of 10-day-old seedlings grown on ½ MS media supple-

mented with 1% sucrose under constant light. After the re-

verse transcription reaction, AtMLO cDNAs were amplified

for 40 cycles, and AtACT2 cDNA (encoding Actin2 protein,

serving as a control for ubiquitous constitutive expression)

were amplified for 30 cycles. Similar results were obtained in

two other independent experiments.
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genes have similar or overlapping expression
patterns thus provides further evidence suggesting
functional relatedness of respective AtMLO
proteins.

Regulated expression of AtMLO genes

As summarized in Table 3, AtMLO gene expres-
sion data in response to various cues was
extracted from public databases (Supplemental
Table 2) and the average of expression levels
of replicated microarray data was used for
comparison.

The steady-state level of AtMLO1, AtMLO2,
AtMLO4, AtMLO6, AtMLO7, AtMLO8 and
AtMLO12 transcripts increased in 7-day-old seed-
lings treated with cycloheximide, suggesting that
the transcription of these genes is controlled by
short-lived negative regulators. Additionally,
treatment of 7-day-old seedlings with the ethylene
perception inhibitor AgNO3 dramatically induced
the expression of AtMLO2, AtMLO3, AtMLO6
and AtMLO12, but suppressed the expression of
AtMLO15. Since none of the above mentioned

AtMLO genes exhibited altered expression in the
presence of the ethylene precursor ACC (Supple-
mental Table 2), the altered expression of these
AtMLO genes by AgNO3 is likely due to heavy
metal toxicity.

As previously shown for barleyMLO (Piffanelli
et al., 2002), the expression of many AtMLO genes
was affected by biotic and/or abiotic stresses.
AtMLO2, AtMLO3, AtMLO6 and AtMLO12,
which comprise clade IV and have abundant
expression in leaf tissues, appear to be the most
responsive AtMLO genes under biotic stresses. All
four AtMLOs were induced by the biotrophic
fungal pathogen Erysiphe cichoracearum. AtMLO3
and AtMLO12 were induced by the related fungal
pathogen Golovinomyces (formerly designated as
Erysiphe orontii). AtMLO6 and AtMLO12 were
induced by the hemibiotrophic oomycete pathogen
Phytophtora infestans and the necrotrophic fungal
pathogen Botrytis cinerea. Additionally, the
expression of AtMLO2, AtMLO3, AtMLO6 and
AtMLO12 genes was altered by the bacterial
pathogen Pseudomonas syringae depending on the
specific strain used. These findings suggest that

Figure 3. Expression of AtMLOs and genes encoding G-protein subunits in plant organs. Gene expression profiles based on micro-

array data were clustered according to similarity in expression patterns (Zimmermann et al., 2004). The figure was modified from

an output result of Meta-Analyzer of Genevestigator (last modified in September 2005), which illustrates different expression levels

of each gene in different organs, and groups of genes with similar expression patterns by Hierarchical Clustering. Hierarchical

Clustering results were generated by default settings that calculate Pairwise Euclidean distances and uses the Average Linkage

method. Results are given as heat maps in blue/white coding that reflects absolute signal values, where darker represent stronger

expression. For the blue–white scale, all gene-level profiles were normalized for coloring such that for each gene the highest signal

intensity obtains value 100% (dark blue, marked with *, for which the actual expression value was given in the figure) and absence

of signal obtains value 0% (white).
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these genes are actively and precisely regulated
during infections, indicating that they likely play
important roles for disease/resistance.

Expression of AtMLO genes from multiple
clades was affected by abiotic stresses. In leaves,
the level ofAtMLO2 transcripts decreased, whereas
those of AtMLO8 and AtMLO12 transcripts
increased after cold treatment. AtMLO3, AtMLO6
and AtMLO12 transcript levels increased, whereas
that of AtMLO11 decreased after osmotic stress.
Salt stress induces AtMLO11, and wounding
induces AtMLO6, AtMLO8, AtMLO11 and
AtMLO12. In roots, cold stress induced AtMLO8
and AtMLO12 expression at 12 h, but suppressed
AtMLO7 expression at 24 h after treatment.
Osmotic stress suppressed AtMLO4, AtMLO10,

AtMLO12 and AtMLO15 transcripts. Salt stress
inducedAtMLO4,AtMLO6,AtMLO8,AtMLO11,
AtMLO12 and AtMLO13, but suppressed
AtMLO10 and AtMLO15.

Additionally, the expression of AtMLO2
appears to be diurnally regulated (Supplemental
Figure 16), whereas that of AtMLO4 is repressed
by light treatments (Supplemental Figure 17).
Taken together, the expression of many AtMLO
genes is regulated differently by a variety of biotic
and abiotic stimuli, suggesting that AtMLO
proteins function in diverse response processes.
Additionally, clade IV genes exhibited analogous
responsiveness to biotic and/or abiotic stimuli,
providing further evidence for functional
relatedness.

Table 3. Altered expression of AtMLO genes and genes encoding G-protein subunits in response to stimuli.

Treatments AtMLO genes GPA1 AGB1 AGG1

1 2 3 4 6 7 8 10 11 12 13 15

Chemicals

[113]a Cycloheximide (3h)b 2.6
c

5.0 6.4 11.1 2.0 5.8 25.5 )2.1 5.2 2.8 2.2

[113] AgNO3 (3h) 2.0 3.1 3.8 2.1 )11.0
Biotic stresses

Fungal pathogens

[86] Erysiphe cichoracearum (8–12h) 2.6 6.1 4.5 2.4 2.1

[146] Erysiphe orontii (120h) 2.5 8.5

[108] Phytophtora infestans (6h) 4.3 2.2 2.3

[147] Botrytis cinerea (48h) 4.1 2.5

The bacterial pathogen Pseudomonas syringae

[106] Vir (24h) )2.1 2.8 3.8 4.9

[106] Avr (24h) 2.0 )2.2 4.4 4.0 2.7

[106] HrcC (24h) 2.2 2.5 3.1 13.1

[106] Non-host (24h) 2.6 3.9 10.8

Abiotic stresses

In leaves

[121] Cold (12h) )2.9 2.2 2.9 )2.8
[122] Osmotic stress (24h) 3.2 2.2 )2.1 2.3 2.4

[123] Salt (6h) 2.0

[127] Wound (1h) 2.5 2.5
d

3.1 5.1

In roots

[121] Cold (12h) )2.5e 2.3 2.0

[122] Osmotic stress (12h) )2.5 )2.5 )2.1 )3.7
[123] Salt (6h) 2.8 3.9 2.9 -8.4 2.3 16.8 2.1 -4.2 2.1

This table is generated based on information extracted from public gene profiling databases obtained from the GENEVESTIGATOR
web site. Only profiles with replications are analyzed and only significant responses with expression levels altered by more than two-
fold are shown. All data were generated using the 22K Affymetrix ATH1 Arabidopsis Genome array. The expression of AtMLO5,
AtMLO9, AtMLO14 and AGG2 was not altered for more than two-fold in any of these experiments, and therefore is not shown in this
table.
a Experiment ID, detailed information about treatment in each experiment can be obtained from the GENEVESTIGATOR web site.
b Sampling hours after treatment.
c Positive numbers in bold show fold of increase in expression levels, negative numbers show fold of decrease in expression levels.
d Sampled at 30 min after treatment.
e Sampled at 24 h after treatment.
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To gain insight on the molecular basis of
regulated AtMLO gene expression, we performed
searches for cis-elements in predicted or curated
AtMLO promoter regions, using the Arabidopsis
Gene Regulatory Information Server (AGRIS:
http://arabidopsis.med.ohio-state.edu, version 4,
Table 4), which contains cis-elements characterized
from Arabidopsis (Davuluri et al., 2003), and using
the Database of Plant Cis-acting Regulatory DNA
Elements (PLACE, http://www.dna. affrc.go.jp/
PLACE, version 20.0, Supplemental Table 3),
which contains cis-elements characterized from a
variety of different plant species (Higo et al., 1999).
Binding sites of bZIP, MYB and MYC transcrip-
tion factors were found among promoter regions of
AtMLO genes, in agreement with the microarray
results indicating that the expression of many
AtMLO genes was regulated by biotic and/or
abiotic stresses. Additionally, microarray data
indicated that the expression of AtMLO4 was
significantly repressed by light (Table 3), consistent
with the presence of a G-Box (known to be over-
represented in light-regulated genes; Hudson and
Quail, 2003), and a SORLREP4 (Sequences Over-
Represented in Light-REpressed Promoters; Hud-
son and Quail, 2003) cis-element in the curated
AtMLO4 promoter region (Table 4). However,
inconsistencies between identified cis-elements
and the microarray data were also found. For
example, promoter regions of many AtMLO genes
had binding site(s) of auxin response factors, but
neither microarray or RT-PCR data displayed
significant and reproducible auxin regulation on
AtMLO expression (Supplemental Table 2 and
data not shown). Additionally, promoter regions of
AtMLO1, AtMLO10 and AtMLO15 have W-box
motif at higher frequencies than expected, but none
of these genes exhibited altered expression during
pathogen infections (Tables 3 and 4). Apparently,
although this promoter analysis may be helpful in
identifying type of transcription factors involved in
regulation, it is not reliable for predicting mode of
regulation.

Expression of genes encoding subunits
of heterotrimeric G-proteins

The 7TM domain topology and plasma membrane
localization of MLO proteins make them candi-
date plant GPCRs. Spatiotemporal overlap in
expression between genes encoding MLO proteins

and G-protein subunits would be a prerequisite for
a potential function of MLOs as GPCRs. The low
complexity of the G-protein subunit family en-
coded by the Arabidopsis genome (comprising a
single canonical Ga (GPA1) and Gb (AGB1)
subunits and only two Gc (AGG1 and AGG2)
subunits), renders spatially and temporally highly
resolved comparisons with AtMLO expression
patterns feasible. Immunolocalization of GPA1
was found in meristems, vascular tissues of leaves
and roots, as well as inflorescence tissues (Weiss
et al., 1993; Ma, 1994), whereas northern blot
analyses of AGB1, AGG1 and AGG2 transcripts in
organs suggested that these genes and GPA1 have
similar or overlapping expression patterns (Mason
and Botella, 2000, 2001).

We determined AGB1, AGG1 and AGG2
expression by performing promoter::GUS analysis.
AGB1 exhibited ubiquitous expression in vegeta-
tive organs, and expression in stamens, stigma and
the abscission zone of the floral organs (Supple-
mental Figure 18). AGG1 is expressed in apical
meristem, leaves, mature roots, the abscission zone
of the floral organs and stamens (Supplemental
Figure 19). GUS activity was detected in vegeta-
tive organs of AGG2 promoter::GUS lines, includ-
ing meristemeric tissues, leaves (preferentially in
hydathods and vascular tissues) and the root stele
(Supplemental Figure 20).

Similar ubiquitous expression of genes encod-
ing G-protein subunits was also confirmed by
analyzing public gene profiling databases
(Figure 3). The extensive overlap among expres-
sion patterns of these G-protein subunits is con-
sistent with the hypothesis that these proteins form
heterotrimers for intracellular signaling.

The expression of genes encoding G-protein
subunits is relatively stable under external changes,
compared with AtMLO genes in clade IV
(Table 3). The relative ubiquitous expression
pattern of these subunits allows overlap with
multiple AtMLOs, and makes co-functioning of
G-proteins with AtMLOs spatially and temporally
possible. However, whether MLO proteins func-
tion as GPCRs requires extensive testing.

Discussion

About 30% of Arabidopsis genes encode plant-
specific proteins and proteins with unknown func-
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tions (The Arabidopsis Genome Initiative, 2000).
Since function for these protein families cannot be
gleaned from the studies of non-plant orthologs, in-
depth functional analyses of these proteins presents
a challenge requiring multiple experimental
approaches. Although convergent evolution might
have resulted in gene families encoding distinct
proteins but fulfilling similar tasks in diverse
kingdoms, plant-specific protein families can be
assumed to function in many cases in developmen-
tal or adaptation processes that are specific to plant
species. The systems biology approach requires
determination of tissue-specificity and stimulus-
dependent regulation of these genes which conse-
quently drive the design of experiments to ulti-
mately interpret the function of the encoded
proteins.

We used the methods of promoter::GUS analy-
sis, RT-PCR and in silico gene profiling to deter-
mine AtMLO expression. In general, results
obtained through these three approaches agreed
with each other, but discrepancies also became
apparent. Each technique has its advantages and
limitations. Analysis of promoter::GUS transgenic
lines provided precise tissue- and cell-specificity of
AtMLO gene expression. However, the procedure
excludes a possible involvement of introns, untrans-
lated regions and methylation of the regulatory
regions of these genes in regulating expression, and
does not reflect post-transcriptional regulation of
mRNA levels. RT-PCR and gene expression pro-
filing using microarray report the actual presence
and accumulation of AtMLO transcripts, but are
semi-quantitative, having low spatial resolution,
and hard to avoid wounding. Since AtMLOs may
be regulated differently by a variety of biotic and/or
abiotic stimuli, different growth/experimental con-
ditions in different labsmay also cause differences in
the expression of these genes.

Diversity in the expression of AtMLOs sug-
gests involvement in various aspects of plant
development, supporting the hypothesis that
mediating disease in leaf tissues is not the primary
function of AtMLO proteins. It also suggests
special function(s) of each individual AtMLO,
although based on the presence of common
sequence motifs (e.g. the C-terminal calmodulin
binding domain found in all MLOs; Kim et al.,
2002) a common mechanistic principle of all
AtMLOs at the molecular level appears likely.
The expression of several closely-related AtMLO
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genes showed similar or overlapping tissue and
developmental specificity suggesting function
relatedness, i.e. (partial) functional redundancy,
co-function, or antagonistic function(s), among
genes within clades.

Preliminary evidence from reverse genetic stud-
ies supports both functional redundancy and co-
function of AtMLO proteins. Analysis of Atmlo5
Atmlo9 double mutant plants suggested that these
two genes, both of which are expressed at high
levels in pollen, may function redundantly in the
process of pollen germination (Panstruga, 2005). It
was also found that disruption of AtMLO2
conferred enhanced resistance against several
powdery mildew species that colonize Arabidopsis
(Panstruga, 2005), whereas disruptions in
AtMLO6 and/or AtMLO12 did not confer detect-
able differences (R. Panstruga, unpublished data).
However, Atmlo2 Atmlo6 or Atmlo2 Atmlo12
double mutants exhibited higher degrees of resis-
tance to the pathogens, and Atmlo2 Atmlo6
Atmlo12 triple mutant plants are the most resistant
(R. Panstruga, unpublished data). These results
indicate that not only AtMLO2 but also AtMLO6
and AtMLO12 are involved in mediating the
vulnerability of Arabidopsis plants to fungal
pathogens. Recently, it was observed that Atmlo4
and Atmlo11 mutants exhibited similar defects in
root development as did Atmlo4 Atmlo11 double
mutant plants (Z. Chen, M-J. Wu, H. A. Hart-
mann, P. Schulze-Lefert, R. Panstruga and A. M.
Jones, unpublished data), suggesting a co-function
of these two genes.

Barley MLO was shown recently to genetically
and biochemically interact with the plasma mem-
brane-localized syntaxin ROR2, Required for
MLO Resistance 2 (Collins et al., 2003; Bhat
et al., 2005; Panstruga, 2005). Several AtMLO
proteins were also found to directly interact with
the Arabidopsis syntaxin PEN1 (PENETRA-
TION1) protein that resembles barley ROR2
(Schulze-Lefert, 2004). Since syntaxin belongs to
the superfamily of SNARE (Soluble-N-ethyl-
maleimide-sensitive fusion protein Attachment
protein Receptor) proteins that mediate membrane
fusion of vesicles, it was proposed that MLO may
modulate SNARE protein-dependent and vesicle
transport-associated processes (Schulze-Lefert,
2004; Panstruga, 2005). This would indirectly
affect the apoplast environment including cell wall
properties. Our study examining staining patterns

of AtMLO promoter::GUS lines reveals AtMLO
expression in places where cell wall modification is
likely to be occurring. These places include the
valve margins of elongating fruits, the connective
tissues between seed and funiculus, vascular tissues,
pollen grains, the abscission zone of the floral
organs and sites of excision. Therefore, results from
expression analysis of AtMLO genes support the
proposed MLO function in modulating vesicle
trafficking in the context of plant development.
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