
Plant immunity: the EDS1 regulatory node
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ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its

interacting partner, PHYTOALEXIN DEFICIENT 4 (PAD4),

constitute a regulatory hub that is essential for basal resistance

to invasive biotrophic and hemi-biotrophic pathogens. EDS1

and PAD4 are also recruited by Toll-Interleukin-1 receptor

(TIR)-type nucleotide binding-leucine rich repeat (NB-LRR)

proteins to signal isolate-specific pathogen recognition. Recent

work points to a fundamental role of EDS1 and PAD4 in

transducing redox signals in response to certain biotic and

abiotic stresses. These intracellular proteins are important

activators of salicylic acid (SA) signaling and also mediate

antagonism between the jasmonic acid (JA) and ethylene

(ET) defense response pathways. EDS1 forms several

molecularly and spatially distinct complexes with PAD4 and a

newly discovered in vivo signaling partner, SENESCENCE

ASSOCIATED GENE 101 (SAG101). Together, EDS1, PAD4

and SAG101 provide a major barrier to infection by both

host-adapted and non-host pathogens.
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Introduction
Individual plant cells perceive an enormous range of

external cues. Plant survival depends on integrating this

information and responding appropriately in terms of

metabolism, growth and defense. In the natural environ-

ment (and indeed the cleanest growth chamber!) plants are

rarely able to grow without attempted pathogen coloniza-

tion and have evolved an elaborate, multi-layered system

of innate immunity. Unraveling these layers and compre-

hending how the most aggressive pathogens overcome or

subvert defenses to cause disease is of major interest. Some

of the most effective barriers to disease are expressed at

the plant cell wall and plasma membrane, preventing
www.sciencedirect.com
pathogen penetration and accounting for the majority of

aborted infections in non-host (species-level) resistance.

Necrotrophs commonly take advantage of wound sites or

dead cells to invade. By contrast, biotrophic and hemi-

biotrophic pathogens have evolved specialized structures

and effector molecules that allow invasive growth on

particular host genotypes and, in the case of obligate

biotrophs, limit the disruption of host cell integrity.

The contrasting modes of infection of necrotrophs at one

extreme and obligate biotrophs at the other require

ingenuity in plant defense signaling. What emerges from

genetic analyses, mainly of Arabidopsis, is a complex

circuitry that balances the activation of various basal

defenses. Pathways involving the hormones jasmonic acid

(JA), JA-related oxygenated lipids and ethylene (ET) are

principally effective against necrotrophic pathogens and

chewing insects, whereas those involving salicylic acid

(SA) are effective against biotrophs [1]. The expression of

basal resistance to invasive pathogens is a crucial protec-

tive layer. Without it, plants become super-susceptible to

even mild infections and are less likely to survive in a

competitive environment. A large catalogue of Arabidopsis
mutants that are compromised in basal defenses to viru-

lent pathogens points to the involvement of many genes

in maintaining this resistance layer and to the existence of

numerous potential targets that the pathogen might dis-

able to promote disease [2]. A further layer of resistance to

invading pathogens is mediated by Resistance (R) genes

that encode proteins that recognize the presence of

specific pathogen effector molecules. Recognition trig-

gers dramatic cellular reprogramming that stops pathogen

growth, and often involves a localized burst of reactive

oxygen intermediates (ROI) and strictly delimited pro-

grammed plant cell death. The local response also serves

to prime uninfected tissues against subsequent attack in a

process called systemic acquired resistance [3�]. Several

key plant defense regulators have been cloned and char-

acterized. In this review, we discuss ENHANCED DIS-

EASE SUSCEPTIBILITY 1 (EDS1), a positive regulator

of basal resistance to invasive biotrophs and hemi-bio-

trophs that is also indispensable for Toll-Interleukin-1

receptor (TIR)-type nucleotide binding-leucine rich

repeat (NB-LRR) protein-triggered resistance. We high-

light several recent studies that suggest that EDS1 and its

partners are positioned as a pivotal node in signal relay

against pathogens and in certain abiotic stress responses.

Positioning EDS1 and its partner PAD4 in
the defense signaling network
EDS1 was originally identified in a screen for mutants that

are defective in RPP1- and RPP5-specified resistance to
Current Opinion in Plant Biology 2005, 8:383–389
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isolates of the obligate biotrophic oomycete pathogen

Peronospora parasitica [4]. Further inspection of eds1
mutants revealed defects in basal resistance to virulent

isolates of P. parasitica and Erysiphe (an obligate bio-

trophic fungus) and to strains of the bacterial pathogen

Pseudomonas syringae (notably P. syringae tomato [Pst]

DC3000 and P. syringae maculicola [Psm] ES4326], which

cause bacterial leaf spot) [4–6]. PAD4, which encodes a

protein that interacts with EDS1 in vivo [7], was first

discovered among several mutants in a cleverly conceived

screen for enhanced disease susceptibility to low doses of

virulent Psm [8]. Additional pad4 mutant alleles emerged

from the RPP resistance screens [7].

EDS1 and PAD4 were cloned in 1999 and both found to

have pockets of homology to eukaryotic lipases [9,10].

Pathology assays revealed that they were required geneti-

cally by the same spectrum of Arabidopsis R genes that

belong to the intracellular TIR-NB-LRR class, consistent

with the notion of EDS1–PAD4 cooperation in defense

signaling [5,7]. NB-LRR genes that possesses an amino-

terminal coiled-coil (CC) domain rather than a TIR

domain triggered resistance independently of EDS1
and PAD4, suggesting that these defense regulators might

constitute a point of signal discrimination between the

two classes of intracellular immune receptor [5]. Absolute

discrimination is an over simplification, although the

recruitment of EDS1 in TIR-NB-LRR-conditioned resis-

tance is conserved in other plant species [11,12,13�].
Close inspection of eds1 and pad4 null mutant phenotypes

in Arabidopsis showed that EDS1 exerts an early activity in

TIR-NB-LRR resistance, acting upstream of the oxida-

tive burst and programmed cell death. EDS1 and PAD4,

together, are required for SA accumulation and for

defense potentiation involving the processing of ROI-

derived signals around infection foci [7,14]. SA itself

contributes to the expression of both EDS1 and PAD4
as part of a positive feedback loop that appears to be

important in defense amplification [9,10,15,16,17�,18�].
The essentially equivalent activities of EDS1 and PAD4
in basal resistance and defense signal potentiation were

separable from EDS1-dependent TIR-NB-LRR gene-trig-

gered ROI generation and localized programmed cell

death, implying that EDS1 has an additional activity in

the R-protein-triggered cascade. From an evolutionary

perspective, the involvement of EDS1 and PAD4 in basal

resistance is likely to reflect their ancestral functions

because rice and the other monocotyledonous species

tested to date lack TIR-NB-LRR R genes but express

orthologs of EDS1 and PAD4 ([19]; http://www.tigr.org/

tdb/e2k1/osa1/ and http://barley.ipk-gatersleben.de/ebdb.

php3). Can we position EDS1 and PAD4 accurately in

TIR-NB-LRR mediated defense? EDS1 and PAD4

activities that are coincident or immediately downstream

of R-protein activation are supported by evidence that

these components are required in constitutive resistance

triggered by several auto-activated variants of TIR-type
Current Opinion in Plant Biology 2005, 8:383–389
NB-LLR proteins [16,20,21��]. If deregulated R proteins

feed signals into a potentiating loop, however, the start

and finish of the cycle become difficult to de-merge.

Several Arabidopsis genes (identified in mutational

screens) that negatively regulate the EDS1 pathway

provide additional clues to the position of EDS1 and

PAD4 in the defense signaling network [14,22,23,24�]. An

important question is how directly these genes impact on

EDS1 and PAD4. LESIONS SIMULTATING DISEASE 1
(LSD1) which encodes a zinc-finger protein, behaves as an

ROI modulator and holds an EDS1/PAD4-dependent

cell-death pathway in check [24�]. Also, MAP kinase 4
(MPK4) negatively regulates SA accumulation and related

systemic defenses through EDS1 and PAD4 but pro-

motes induction of the JA pathway [22,24�]. Thus,

MPK4 appears to constitute a node in the inhibitory

cross-talk between the SA and JA signaling networks.

Follow-up studies by Mundy and colleagues reveal that

MPK4 stimulates JA and ET signaling in resistance to the

necrotrophic pathogen Alternaria brassicicola (P Broder-

sen, J Mundy, personal communication). Significantly,

the JA- or ET-activating functions of MPK4 are repressed

by EDS1 and, to a lesser extent, by PAD4. The results

show that EDS1 and PAD4 are involved in controlling

signal antagonism between SA and JA/ET defenses, as

was hinted at in earlier studies [25,26]. An entirely dif-

ferent gene, ACCELERATED-CELL-DEATH11 (ACD11)

encodes a protein that has in vitro sphingosine transfer

activity and represses a programmed cell-death pathway

that again relies on EDS1 and PAD4 [23]. These findings

point to the possible impact of sphingolipids on EDS1

signaling, although it is not known whether ACD11’s

sphingolipid-binding activity is involved in repressing

the EDS1/PAD4-dependent cell-death pathway.

EDS1 and redox stress signal relay
Accumulation of evidence of more fundamental activities

of EDS1 and PAD4 in transducing redox signals has

gathered some momentum. Rustérucci et al. [14] revealed

the existence of an ROI- and SA-stimulated propagative

loop that requires EDS1 and PAD4 in lsd1-conditioned

runaway cell death. Further work by Karpinski and col-

leagues [24�] shows that lsd1 mutants fail to acclimate to

excess excitation energy (EEE) generated by photosynth-

esis in high light, causing ROI overload and ultimately

cell death due to photooxidative stress. Normally EEE is

dissipated by a combination of photorespiratory and anti-

oxidant systems. lsd1 mutants exhibit several defects,

including reduced stomatal conductance and reduced

peroxisomal catalase activity that both lead to increased

ROI. Application of SA itself reduced stomatal conduc-

tance and, as a known inhibitor of antioxidant enzymes

[3�], would further exacerbate redox imbalance. Impor-

tantly, EDS1 and PAD4 were necessary components in all

of the lsd1 photooxidative-stress phenotypes, including

stomatal closure [24�] A unifying feature of EDS1 and
www.sciencedirect.com
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PAD4 activities in pathogen resistance and certain abiotic

stress responses might therefore be in processing, directly

or indirectly, ROI-derived molecules (Figure 1).

Both redox and sphingolipid metabolites have been

shown to be important for the function of stomatal guard

cells [27]. The suppressive effects of high humidity

(described as a ‘humidity-sensitive factor’) on EDS1–

PAD4-dependent pathogen resistance and cell death

conditioned by the constitutively active TIR-NB-LRR

protein ssi4 [28] or by the CC membrane-associated

powdery mildew resistance components RPW8.1 and

RPW8.2 [6,17�] might be rationalized in the context of

EDS1-mediated ROI signal relay. Similarly, constitutive

EDS1–PAD4-dependent pathogen resistance and growth

defects in the bonzai1 (bon; also called copine1 [cpn1])
Figure 1
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mutant are suppressed by high humidity [29]. BON1
encodes a Ca2+-dependent phospholipid-binding protein

that negatively regulates SUPPRESSOR OF NPR1-1,
CONSTITUTIVE 1 (SNC1), a member of the RPP4
TIR-NB-LRR locus [21��]. It may also be significant that

the increased drought tolerance resulting from an activa-

tion-tagged allele of a CC-NB-LRR-type gene, ADR1,

depends on EDS1 [30]. The mechanistic details remain

to be worked through, but the importance of redox

metabolism in the responses described above prompts

further definition of intracellular and apoplastic redox

systems and characterization of ROI-generated signals

and consequent protein modifications. It is now known

that translocation from the cytosol to the nucleus of NON

EXPRESSOR OF PATHOGENESIS-RELATED

GENES1 (NPR1), an SA response regulator, and its
HR
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interaction with certain TGA transcription factors in the

nucleus to drive defense gene expression, is under tight

redox control [3�]. Other Arabidopsis genetic components

that link ROI molecules to downstream stress responses

have recently been uncovered [31,32].

Additional players in EDS1 defense relay
Arabidopsis EDS1 and PAD4 interact in soluble cell

extracts of healthy (pathogen unchallenged) leaves, indi-

cating the presence of a pre-existing EDS1–PAD4 com-

plex, although the co-immunoprecipitable amounts of

EDS1 and PAD4 increased upon pathogen challenge

[7]. The molecular interactions and biochemical activities

of EDS1 and PAD4 need to be defined more precisely.

Using an affinity-purification approach coupled to Quad-

ropole-Time-of-flight (Q-TOF) mass spectrometry, an

additional EDS1 interactor, SAG101, has been identified

in healthy leaf extracts from a tagged EDS1 transgenic

line (B Feys, M Wiermer and J Parker, unpublished).

This is interesting, first because SAG101 had not

emerged as an EDS1 interactor in yeast two-hybrid

screens. Second, Arabidopsis (and other plant) SAG101

proteins share a conserved (EP) domain in their carboxy-

terminal halves with EDS1 and PAD4. SAG101 also has

some lipase homology but unlike EDS1 and PAD4 does

not possess amino acids that constitute a putative serine-

hydrolase catalytic triad (B Feys, M Wiermer and J

Parker, unpublished). A form of SAG101 was identified

previously as a positive regulator of senescence and was

reported to have acyl hydrolase activity in vitro [33].

Analysis of T-DNA-insertion mutants of SAG101 alone

or of SAG101 in combination with pad4 revealed that

SAG101 possesses a defense regulatory function that is

partially redundant with PAD4 in both TIR-NB-LRR-

type R-gene-mediated resistance and basal resistance (B

Feys, M Wiermer and J Parker, unpublished; see also

Figure 1). The PAD4 and SAG101 proteins failed to

accumulate in an eds1 background, suggesting that

EDS1 might act as a kind of scaffold for PAD4 or

SAG101 activities. Several molecularly distinct EDS1

complexes could be distinguished in the cytosol and

nucleus, providing a possible framework for the traffick-

ing of signals between cellular compartments. Notably, a

predicted nucleoporin 96 that localizes to the nuclear

envelope was recently identified as an additional compo-

nent of R-gene-mediated and basal resistance [34�].

Pathology phenotyping of pad4/sag101 double mutants

revealed defects in TIR-NB-LRR R-gene-mediated

resistance to avirulent pathogens and in basal resistance

to virulent pathogens that were equivalent to or even

more extreme than the phenotypes of eds1 mutants (B

Feys, M Wiermer and J Parker, unpublished). In another

study, the Schulze-Lefert group [35] attempted to geneti-

cally ‘peel’ the layers of non-host resistance to isolates of

powdery mildew that normally infect barley (Blumeria
graminis f. sp. hordeii) or pea (Erysiphe pisi). These isolates
Current Opinion in Plant Biology 2005, 8:383–389
largely fail to penetrate Arabidopsis epidermal cells unless

surface resistance is disabled (J Dittgen, V Lipka and P

Schultze-Lefert, personal communication). In wildtype

Arabidopsis, occasional spore germlings breach the surface

layer but these rapidly induce epidermal cell death and

grow no further [35]. The pad4/sag101 double mutant

(significantly more so than eds1) was found to permit

invasive growth of the non-host powdery mildew isolates

that was sufficient to enable pathogen sporulation (J

Dittgen, V Lipka and P Schultze-Lefert, personal com-

munication). Therefore, the combined activities of PAD4

and SAG101 constitute a major basal resistance layer to

both host and non-host pathogens. These new findings

add to those of previous studies that establish both

common underlying processes and distinctions between

host and non-host resistance responses involving the

EDS1 pathway [4,36�,37�].

The lipid link
Various studies have shown that EDS1 and PAD4 do

more than simply regulate SA in R-protein-triggered and

basal resistance [7,24�,38,39], but the nature of the signals

that they transduce and their precise biochemical activ-

ities remain unclear. Although EDS1 and PAD4 (and less

convincingly, SAG101) have homology to acyl hydrolases,

no enzymatic activity has been measured to date for

any of these proteins in our assays (S Rietz, J Parker,

unpublished). Still, the idea that they could process an

oxygenated lipid that is produced enzymatically or non-

enzymatically upon pathogen infection is rather persua-

sive [40].

An increasing body of evidence points to the action of

lipid metabolites, besides jasmonates and related oxyge-

nated lipids, as important regulators of local and systemic

defenses and of cross-talk between the SA and JA/ET

pathways [40,41]. Several specific findings are worth high-

lighting. First, SUPPRESSOR OF FATTY ACID DE-

SATURASE 1 (SFD1), a dihydroxyacetone phosphate

reductase that is involved in glycerolipid metabolism

[42�], and DEFECTIVE IN INDUCED RESIS-

TANCE1 (DIR1), a putative lipid transfer protein [43],

contribute to the establishment of systemic resistance.

EDS1 and PAD4 are also necessary for the establishment

of SAR (L Jorda, A Maldonado, J Parker, C Lamb,

unpublished). This defect, coupled with a failure of

eds1 and pad4 mutants in both signal emission and distal

signal perception (L Jorda, A Maldonado, J Parker, C

Lamb, unpublished), is consistent with known roles of

EDS1 and PAD4 as defense potentiators [14]. It remains

to be established whether DIR1 is a systemic component

of an EDS1–PAD4-driven amplification system, although

preliminary data suggest that DIR1 localizes to the vas-

culature (phloem and xylem parenchyma) and might

therefore be involved in the transport of a lipid signal

to systemic tissues (R Cameron, pers. comm.). Second, a

protein that has high SA-binding affinity, SALICYLIC
www.sciencedirect.com
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ACID-BINDING PROTEIN 2 (SABP2), has been pur-

ified from tobacco and found, by virus-induced gene

silencing, to be necessary for the full expression of basal

and systemic resistance to tobacco mosaic virus infection

[44�]. Crystal structural and biochemical analyses reveal

that SABP2 has acyl hydrolase activity, with methyl

salicylate as a substrate and SA as product inhibitor

[45��]. Together, these findings suggest that lipase and/

or lipid-binding activities impact at multiple levels of

plant immunity and are worth further biochemical char-

acterization and profiling as candidate lipid signals.

Conclusions
The emerging importance of EDS1 as a central regulatory

protein in biotic and oxidative stress signaling (Figure 1)

prompts us to explore the structures, interaction dynamics

and biochemical activities of EDS1 and its partners in

more depth. Although the lipase homologies might be a

scientific ‘falsche Fährte’ (‘red herring’) in terms of

catalytic activity, conservation of these domains in all

of the plant EDS1 and PAD4 orthologs examined sug-

gests they are needed, perhaps as structural rather than as

enzymatic motifs. We cannot entirely exclude the possi-

bility that EDS1 and its affiliates passage rather than

hydrolyze oxygenated lipids inside the cell.
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