
 

MOLECULAR PLANT PATHOLOGY

 

 (2005)  

 

6

 

(3 ) , 315–320 DOI : 10 .1111/ J .1364-3703.2005.00277.X

© 2005 BLACKWELL  PUBL ISH ING LTD

 

315

 

Blackwell Publishing, Ltd.

 

Molecular characterization of 

 

mlo

 

 mutants in North American 
two- and six-rowed malting barley cultivars

 

RALPH  PANSTRUGA

 

1

 

* , JOSÉ  LU IS  MOL INA-CANO

 

2

 

,  ANJA  RE INSTÄDLER

 

1

 

 AND JUD ITH  MÜLLER

 

1

 

†

 

1

 

Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany 

 

2

 

Centre UdL-IRTA, Avenue Rovira Roure 191, E-25198 Lleida, Spain

 

SUMMARY

 

Barley lines PRU1, URS1 and URS2 represent three candidate

 

mlo

 

 mutants induced in either the two-rowed cultivar Prudentia
or the six-rowed cultivar Ursula. Both Prudentia and Ursula are
North American malting barley varieties with specific malting
properties. Here, we analysed the three candidate mutants at the
molecular level. We identified lesions in the 

 

Mlo

 

 gene of all three
lines, causing either a premature stop codon (PRU1), a shift in the
reading frame (URS1) or a single amino acid replacement (URS2).
In a transient gene expression assay, the URS2 

 

mlo

 

 allele fails to
complement a barley null mutant genotype, indicating that URS2
is a genuine 

 

mlo

 

 mutant (here designated as 

 

mlo

 

-33). The MLO-
33 mutant variant accumulates to similar levels as the wild-type
MLO protein in Arabidopsis protoplasts, suggesting that MLO-33
is stable 

 

in planta

 

. We show that the 

 

mlo

 

-33 allele can be readily
detected in barley genomic DNA by a cleaved amplified polymor-
phic sequence marker, rendering this allele particularly suited for

 

marker-assisted breeding.

 

INTRODUCTION

 

Worldwide, barley represents an important crop primarily used
in stock farming (feeding barley) or for brewing beer and whisky
(brewing barley). In Europe, the prevalent malting varieties are
two-rowed cultivars, whereas in North America brewers prefer
six-rowed barley. In recent years, American-style beers, brewed
under licence in Europe, have greatly increased in popularity.
In contrast to Europe, powdery mildew is not a serious pathogen
in Midwest USA, the main malting barley-growing region of the
United States. Therefore, breeding of six-rowed barley has not
focused on powdery mildew resistance in the past. An effort was
recently started to identify broad-spectrum powdery mildew-

resistant 

 

mlo

 

 mutants (Jørgensen, 1992; Lyngkjaer 

 

et al

 

., 2000)
in typical North American malting varieties. These could subse-
quently serve as a genetic resource for agriculture or breeding
programmes to obtain powdery mildew-resistant varieties
optimized for European production (Molina-Cano 

 

et al

 

., 2003). Three
potential 

 

mlo

 

 mutants in two North American malting barley
cultivars, the two-rowed Prudentia and the six-rowed Ursula, were
described. These mutants were designated PRU1 (derived from
the parental cultivar Prudentia) and URS1 and URS2 (derived from
the parental cultivar Ursula), respectively (Molina-Cano 

 

et al

 

.,
2003). Although genetic analysis unambiguously identified PRU1
and URS1 as 

 

mlo

 

 mutants (designated as 

 

mlo

 

-32 and 

 

mlo

 

-31),
the results for URS2 were less clear. Test crosses of URS2 with
Alexis (

 

mlo

 

 genotype) or Rupal (

 

Mlo

 

 genotype) and subsequent
powdery mildew inoculation experiments in the resulting F

 

1

 

 and
F

 

2

 

 generations provided contradictory results. In addition, targeted
inoculation experiments with various powdery mildew isolates
indicated partial resistance for URS2, whereas under field condi-
tions URS2 was as resistant as the fully immune URS1 mutant
(Molina-Cano 

 

et al

 

., 2003).
Barley 

 

Mlo

 

 encodes a plasma membrane-localized protein
with seven transmembrane domains (Devoto 

 

et al

 

., 1999) that is
considered to modulate SNARE protein-dependent and vesicle
transport-associated processes at the cell periphery (reviewed in
Panstruga, 2005; Schulze-Lefert, 2004). We previously described
the molecular analysis of a range of induced barley 

 

mlo

 

 mutants
(Büschges 

 

et al

 

., 1997; Piffanelli 

 

et al

 

., 2002) as well as one mutant
allele (

 

mlo

 

-11) that arose spontaneously (Jørgensen, 1992;
Piffanelli 

 

et al

 

., 2004). Whereas the majority of chemical or
radiation-induced mutants comprise single amino acid substitu-
tions or small deletions in the heptahelical protein, the natural

 

mlo

 

-11 allele is characterized by presence of a complex repeat
array that inserted upstream of an intact 

 

Mlo

 

 wild-type copy.
The concatemeric repeat units, consisting of 

 

Mlo

 

 5

 

′

 

 regulatory
sequences and part of the 

 

Mlo

 

 coding sequence, presumably
interfere with transcription of the downstream 

 

Mlo

 

 wild-type copy
(Piffanelli 

 

et al

 

., 2004). Surprisingly, the majority of MLO mutant
protein variants carrying single amino acid substitutions exhibit
reduced 

 

in planta

 

 stability. These protein variants are substrates
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of a conserved post-translational and post-insertional quality
control mechanism reminiscent of endoplasmic reticulum-associated
protein degradation (ERAD) in yeast and animals (Müller 

 

et al

 

.,
2005).

 

RESULTS AND DISCUSSION

 

We re-examined powdery mildew infection phenotypes of culti-
vars Prudentia and Ursula as well as the derived sodium azide-
induced 

 

mlo

 

 mutant candidates PRU1 (

 

mlo

 

-32), URS1 (

 

mlo

 

-31)
and URS2, respectively, under controlled growth chamber condi-
tions (Fig. 1). Specimens were inoculated with a high density of
conidiospores of 

 

Blumeria graminis

 

 f. sp. 

 

hordei

 

 (

 

Bgh

 

) isolate K1
that is virulent on the respective parental lines, Prudentia and
Ursula. The susceptible cultivar Ingrid and the near isogenic
line BC Ingrid 

 

mlo

 

-5 carrying an 

 

mlo

 

 null mutant allele (Büschges

 

et al

 

., 1997) were included as controls. We found that the PRU1
candidate 

 

mlo

 

 mutant was macroscopically equally resistant
against isolate K1 as the BC Ingrid 

 

mlo

 

-5 null mutant line (Fig. 1).
In contrast, candidate 

 

mlo

 

 mutants URS1 and URS2 both showed
some fungal sporulation under equal experimental conditions
(Fig. 1). As the extent of residual sporulation was similar for both
candidate mutants and URS1 was subsequently found to represent
an 

 

mlo

 

 null mutant (see below), we conclude that the apparently

reduced resistance might be the consequence of the genetic
background of the lines possibly containing a natural variant
of a modifier gene of 

 

mlo

 

 resistance such as 

 

Ror1

 

 or 

 

Ror2

 

(Freialdenhoven 

 

et al

 

., 1996). Alternatively, the slightly suscepti-
ble phenotype could be caused by the combination of the fungal
isolate and the growth conditions employed in this experiment.
All three 

 

mlo

 

 candidate mutants exhibited premature leaf senes-
cence and necrotic leaf spotting (Molina-Cano 

 

et al

 

., 2003; and
data not shown), a typical pleiotropic effect of barley 

 

mlo

 

 loss-of-
function mutants (Piffanelli 

 

et al

 

., 2002; Schwarzbach, 1976).
To determine potential molecular defects at 

 

Mlo

 

, we amplified
by RT-PCR the 

 

Mlo

 

 coding sequence from cultivars Prudentia and
Ursula as well as from the sodium azide-induced 

 

mlo

 

 mutant
candidates PRU1, URS1 and URS2. Subsequently, we determined
the nucleotide sequence of the RT-PCR products by direct DNA
sequencing of the amplicons. This revealed few cultivar-specific
alterations (data not shown) as well as mutant-specific changes
of the 

 

Mlo

 

 coding sequence as compared with the previously
published 

 

Mlo

 

 reference sequence of barley variety Ingrid
(GenBank accession number Z83834; Büschges 

 

et al.

 

, 1997). In PRU1
(

 

mlo

 

-32), guanine 103 is replaced by a thymine, resulting (in com-
bination with a cultivar-specific A105G alteration) in the creation
of a premature stop codon (TAG; Table 1). This stop codon is
predicted to terminate translation of the PRU1 

 

Mlo

 

 cDNA
after 34 (instead of 533) amino acids. In URS1 (

 

mlo

 

-31), one of four
consecutive guanine nucleotides in position 826–829 (in the
genomic DNA sequence at nucleotides 1764–1767) is missing,
resulting in a frame shift within the 

 

Mlo

 

 cDNA after glycine 276
and an early stop codon 13 triplets downstream (Table 1). Finally,
in URS2, the guanine at position 916 (in the genomic DNA
sequence at position 1966) is replaced by an adenine, resulting
in a change of the respective codon triplet from GCC (encoding
alanine) to ACC (encoding threonine; Table 1).

Sodium azide has been described as a powerful mutagen
primarily causing base substitution mutants (Kleinhofs 

 

et al

 

., 1974;
Sideris and Argyrakis, 1974). In a sodium azide-based mutational
analysis of the barley 

 

Ant18

 

 gene, primarily transitions (86%) and
to a lesser extent also transversions (14%) were found (Olsen

 

et al

 

., 1993). Among the 21 analysed 

 

Ant18

 

 mutants, no deletion
was detected. In this study, however, we identified one G

 

→

 

T
transversion, one G

 

→

 

A transition, and a 1-nt deletion.
We previously established transient gene expression in leaf

epidermal cells mediated by particle bombardment of detached

Fig. 1 Powdery mildew infection phenotypes of candidate mlo mutants PRU1, 
URS1 and URS2. Seven-day-old first leaves of barley seedlings were inoculated 
with conidiospores of Bgh isolate K1. The photograph was taken 6 days post 
inoculation.

Table 1 Novel mlo mutant alleles. 

Allele Mother variety Mutagen Mutational event at Mlo* Effect on amino acid level

mlo-31 Ursula (six-rowed) Sodium azide ∆G826 Frame shift after Gly276

mlo-32 Prudentia (two-rowed) Sodium azide G103→T Stop after Met34

mlo-33 Ursula (six-rowed) Sodium azide G916→A Ala306→Thr

*Numbers of nucleotides are given relative to the translational start site in the Mlo cDNA (GenBank accession number Z83834).
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barley leaves as a rapid functional assay for 

 

Mlo

 

 function
(Panstruga, 2004; Shirasu 

 

et al

 

., 1999). As mutants PRU1 and URS1
revealed obvious lesions in the 

 

Mlo

 

 coding sequence resulting in
dramatic changes such as an early stop codon (PRU1) or a frame
shift (URS1), we did not further consider these mutants for
functional analysis by transient gene expression. By contrast, the
URS2 mutant candidate encodes a single amino acid replacement
(A306T) in the 

 

Mlo

 

 coding region, rendering this exchange the
potential cause of powdery mildew resistance in URS2 plants.
However, because this particular mutant had revealed contradic-
tory results in previous complementation studies (Molina 

 

et al

 

.,
2003), it was equally conceivable that the detected lesion was
a second-site event of the mutagenesis procedure without direct
impact on 

 

Mlo

 

 function. To address this topic by experimentation,
we engineered the URS2 A306T mutation in the 

 

Mlo

 

 coding
sequence of expression plasmid pUbi-Mlo-nos and tested the
mutant derivative by transient gene expression and subsequent
powdery mildew challenge in the barley 

 

mlo

 

-5 null mutant back-
ground (see Experimental procedures). We found that the A306T
derivative exhibited 

 

∼

 

12% penetration efficiency of wild-type

 

Mlo

 

 (absolute penetration efficiencies were 8 

 

±

 

 5% and 65 

 

±

 

 1%,
respectively; Fig. 2A), suggesting severely impaired 

 

Mlo

 

 function-
ality. The residual activity of the A306T variant is probably the
result of non-physiological 

 

Mlo

 

 expression levels upon transient
gene expression, a phenomenon also observed with a range of
further 

 

mlo

 

 mutant variants (R. Panstruga, unpublished data).
Alternatively, the remaining activity could be the consequence of
residual functionality of this single amino acid substitution variant.
In conclusion, the transient gene expression assay corroborates
that the A306T amino acid substitution is the cause of the lack
of 

 

Mlo

 

 function in URS2. We therefore designate the URS2 

 

mlo

 

mutant allele as 

 

mlo

 

-33 (Table 1).
We previously reported that the majority of 

 

Mlo

 

 mutant
variants characterized by single amino acid substitutions are subject
to ERAD-like quality control. Aberrant MLO variants recognized
by this quality control mechanism exhibit reduced 

 

in planta

 

 half-
lives and are eliminated via a proteasome-dependent degrada-
tion route. As a consequence of this tight quality control process,
such mutants are characterized by reduced steady-state MLO
accumulation levels (Müller 

 

et al

 

., 2005). To test whether the 

 

mlo

 

mutant encoded by barley line URS2 also represents an ERAD
substrate, we used the previously established dual luciferase
assay to assess 

 

in planta

 

 accumulation of the A306T MLO variant
(Müller 

 

et al

 

., 2005). Wild-type MLO and the highly unstable
MLO-1 mutant variant served as positive and negative control,
respectively. We found that the A306T protein variant accumu-
lated to steady-state levels comparable with wild-type MLO
(

 

∼

 

95% relative to MLO; Fig. 2B), suggesting that the barley

 

mlo

 

-33 mutant encodes a stable protein variant. Stable but non-
functional MLO variants are assumed to be defective in protein–
protein interactions of MLO with essential interaction partners.

Thus, the current collection of stable, non-functional mlo mutant
variants (MLO-10, MLO-27, MLO-29 and MLO-33; Müller et al.,
2005; and this study) will be instrumental in determining the in
vivo relevance of MLO candidate interactors.

It is intriguing that three of the four reported stable MLO mutant
variants carry amino acid replacements in the third cytoplasmic
loop of the heptahelical protein (MLO-27, MLO-29 and MLO-33;
Müller et al., 2005; and this study), whereas the four described
single amino acid replacements in the second cytoplasmic loop
all result in protein variants with reduced stability (Müller
et al., 2005). Future experimentation will be necessary to unravel
whether the clustering of stable MLO mutant variants represented
by amino acid replacements in cytoplasmic loop 3 represents a

Fig. 2 Mlo A306T encodes an MLO variant with impaired functionality that is 
stable in planta. (a) Detached barley leaves (mlo-5 genotype) were either 
transformed with a β-glucuronidase (GUS) reporter construct alone or co-
transformed with the reporter plasmid plus either a construct encoding wild-
type MLO or the MLO A306T variant. After inoculation with powdery mildew 
conidiospores and staining for GUS activity, transformed cells were analysed for 
fungal penetration success as described in the Experimental procedures. The 
bars represent the mean ± standard deviation of three independent 
experiments. (b) Arabidopsis protoplasts were transformed with dual luciferase 
reporter constructs carrying either the Mlo wild-type gene, the mlo-1 mutant 
variant encoding the highly unstable MLO W162R version, or the Mlo A306T 
variant. Luciferase assays were performed as described in the Experimental 
procedures and relative in planta protein accumulation (wild-type MLO set as 
100%) was calculated from these values. The bars represent the mean ± 
standard deviation of four independent experiments.
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random accumulation or whether this might reflect a locally
reduced stringency of the quality control mechanism that
monitors MLO integrity. The latter would be compatible with the
concept of the ‘distributed degron’, a term that describes the
phenomenon that dispersed structural features of a protein
are decisive for its potential recognition as an ERAD substrate
(Gardner and Hampton, 1999).

We inspected the nucleotide sequences of Mlo wild-type
plants and mutants mlo-31, mlo-32 and mlo-33 at the sites of the
respective lesions for altered restriction enzyme recognition sites.
We found that the nucleotide exchange in mlo-33 eliminates
a HaeIII restriction site present in the wild-type sequence but
we could not discover any restriction enzyme recognition sites
specific for the positions of the lesions in mlo-31 and mlo-32. We
exploited the differential presence of the HaeIII restriction site in
mlo-33 for development of a diagnostic cleaved amplified poly-
morphic sequence (CAPS) marker (Konieczny and Ausubel, 1993).

We designed primers Mlo31 and Mlo34 (see Experimental proce-
dures) suitable for amplifying a region covering the mutant site
from genomic DNA of the parental variety Ursula as well as of
genomic DNA of the mutants URS1 (mlo-31) and URS2 (mlo-33).
PCR amplicons were subjected to digestion with HaeIII and frag-
ments resolved by agarose gel electrophoresis. Whereas cleaved
PCR products derived from template DNA of Ursula and URS1
resulted only in fragments < 400 bp, the cleaved amplicon from
URS2 resulted in a restriction fragment > 400 bp (Fig. 3). The
latter is the predicted consequence of absence of the HaeIII
restriction site in the mlo-33 allele. This CAPS marker can be used
as a tool for the rapid and convenient detection of the mlo-33
mutant allele in marker-assisted breeding programmes (Thomas,
2003). Collectively, the set of mlo mutants in North American two-
and six-rowed barley cultivars represents a valuable extension
of the currently available collection of characterized European mlo
mutants for both basic science and agriculture.

EXPERIMENTAL PROCEDURES

Plant and fungal material

Barley mutants PRU1, URS1 and URS2 as well as parental lines
Prudentia and Ursula were previously described (Molina-Cano
et al., 2003). Barley lines Ingrid (Mlo wild-type) and back-cross
Ingrid mlo-5 (an mlo null mutant, Büschges et al., 1997) were used
as control lines. Powdery mildew inoculations were performed
with Blumeria graminis f. sp. hordei isolate K1 (Zhou et al., 2001).

DNA sequencing of mlo mutants

Total RNA was isolated from wild-type plants Prudentia and
Ursula as well as from mutants PRU1, URS1 and URS2, respec-
tively, using the Trizol reagent (Invitrogen, Paisley, UK) according
to the manufacturer’s instructions. First-strand cDNA synthesis was
performed using Superscript II reverse transcriptase (Invitrogen).
Double-stranded full-size Mlo cDNA was amplified by PCR using
oligonucleotides ADUP7 and ADDOWN6 (Devoto et al., 1999).
Internal Mlo-specific oligonucleotides were used for DNA sequenc-
ing of the PCR amplicons. Upon detection of specific polymorphisms
between wild-type and mutant plants, reverse transcription (RT)-
PCR and DNA sequencing were repeated in an independent
biological experiment.

Transient gene expression analysis

Ballistic transformation of detached barley leaves was carried out
as previously described (Elliott et al., 2005; Schweizer et al., 1999).
Bombarded specimens were inoculated with high densities of
powdery mildew (Bgh isolate K1) conidiospores and GUS staining
performed 48 h post inoculation (Schweizer et al., 1999). Epiphytic

Fig. 3 A CAPS marker for detection of the mlo-33 mutant allele. A region of 
the Mlo gene covering the lesion site in URS2 (mlo-33) was amplified by PCR 
using either genomic DNA of Ursula wild-type plants or URS1 (mlo-31) or URS2 
(mlo-33) mutant plants as template (for details, see Experimental procedures). 
The ∼870-bp amplicons were either subjected immediately to agarose gel 
electrophoresis (‘uncut’; the black triangle indicates the specific amplification 
product while the ∼350-bp amplicons represent unspecific PCR by-products) or 
digested with restriction enzyme Hae III before separation by gel 
electrophoresis. The white triangle on the right indicates the 416-bp product 
characteristic of mlo-33. Marker 1, 1-kb DNA ladder (Invitrogen); Marker 2, 
Hyper ladder IV (Bioline, London, UK). Numbers on the right indicate band sizes 
(in bp) of the Hyper ladder IV marker lane.
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fungal structures were stained by Coomassie Brillant Blue. Leaf
epidermal cells attacked by the appressorial germ tube of powdery
mildew sporelings were microscopically evaluated for presence
or absence of haustoria. Penetration success was calculated as
the number of transformed cells that exhibit one or multiple
haustoria in relation to the total number of transformed cells
attacked by powdery mildew sporelings.

Dual luciferase assays

Plasmid K93, a derivative of binary vector pAMPAT-MCS
(GenBank accession number AY436765) carries two expression
cassettes: one consisting of a doubled cauliflower mosaic virus
35S promoter, an in-frame fusion of Mlo and Renilla luciferase
cDNAs and 35S terminator, the second comprising 35S promoter,
firefly luciferase and 35S terminator. Derivatives of this plasmid
expressing Mlo variants (MLO-1, MLO-33) as translational fusions
with Renilla luciferase were generated by placement of suitable
restriction fragments. Protoplast preparations of Arabidopsis
thaliana cell lines, protoplast transfections and dual luciferase
reporter assays (Promega, Madison, WI) were carried out as
described previously (Müller et al., 2005). Renilla luciferase activity
was set in relation to firefly luciferase activity and the ratio
obtained with wild-type Mlo defined as 100%.

Development of a CAPS marker for mlo-33

DNA sequences flanking the lesion sites in mlo-31, mlo-32
and mlo-33 were inspected electronically for altered presence/
absence of restriction sites compared with the respective wild-
type sequences. A HaeIII restriction site (at nucleotide 917 in Mlo
cDNA, 1967 in Mlo genomic DNA) present in wild-type Mlo and
absent in mlo-33 was exploited for CAPS marker analysis (Konieczny
and Ausubel, 1993). Fragments (∼870 bp) covering the differen-
tially present restriction site were amplified by PCR (50 cycles,
55 °C annealing temperature; 1.5-min extension) from genomic
template DNA of either cultivar Ursula or mutants URS1 (mlo-31)
and URS2 (mlo-33) using oligonucleotides Mlo31 (5′-CACCACCT-
TCATGATGCTCAG-3′; reverse primer) and Mlo34 (5′-CGAT-
GGAGGACGACTTCAAGG-3′; forward primer). Aliquots (10 µL) of
the amplification products were subjected to HaeIII digest (total
volume 15 µL) without prior purification. Products of the restric-
tion reaction and equal amounts of untreated PCR products were
resolved by gel electrophoresis on 3% agarose gels. Expected
fragment sizes were 377, 216, 176 and 61 bp (Ursula and URS1)
as well as 416, 216, 176 and 61 bp (URS2), respectively.
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