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Summary

Genetic studies have identified a number of components of signal transduction pathways leading to plant
disease resistance and the accompanying hypersensitive response (HR) following detection of pathogens by
plant resistance (R) genes. In Arabidopsis, the majority of R proteins so far characterized belong to a plant
superfamily that have a central nucleotide-binding site and C-terminal leucine-rich-repeats (NB-LRRs). Another
much less prevalent class comprises RPW8.1 and RPW8.2, two related proteins that possess a putative
N-terminal transmembrane domain and a coiled-coil motif, and confer broad-spectrum resistance to powdery
mildew. Here we investigated whether RPW8.1 and RPW8.2 engage known pathway(s) for defence signalling.
We show that RPWW8.1 and RPW8.2 recruit, in addition to salicylic acid and EDS1, the other NB-LRR gene-
signalling components PAD4, EDS5, NPR1 and SGT1b for activation of powdery mildew resistance and HR. In
contrast, NDR1, RAR1 and PBS3 that are required for function of certain NB-LRR R genes, and COI1 and EIN2
that operate, respectively, in the jasmonic acid and ethylene signalling pathways, do not contribute to RPIV/8.1
and RPW8.2-mediated resistance. We further demonstrate that EDR1, a gene encoding a conserved MAPKK
kinase, exerts negative regulation on HR cell death and powdery mildew resistance by limiting the
transcriptional amplification of RPW8.7 and RPW8.2. Our results suggest that RPWS8.1 and RPW8.2 stimulate

a conserved basal defence pathway that is negatively regulated by EDR1.

Keywords: RPWS8, basal resistance, powdery mildew, resistance gene, salicylic acid, edr1.

Introduction

Plant disease resistance (R) gene-triggered defences are
often associated with the hypersensitive response (HR), a
form of programmed cell death (PCD) analogous to animal
apoptosis (Lam et al., 2001; Morel and Dangl, 1997). HR is
manifested at infection sites as rapid, localized death of plant
cells that limits spread of the invading pathogen. In mam-
malian systems, apoptosis is tightly controlled by both pro-
and anti-apoptotic elements (Adams and Cory, 2001; Reed
et al., 1998). The life-death boundary of HR is also presum-
ably defined by close interplay between positive and neg-
ative regulators in plant cells. A current challenge is to
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understand the mechanisms that link R gene-mediated
pathogen recognition to the expression of resistance and the
accompanying HR.

Extensive screens for mutants, mostly in Arabidopsis,
have led to the identification of many genes required for
defences against pathogens (reviewed by Glazebrook, 2001;
Hammond-Kosack and Parker, 2003). Mutations in NDR1,
EDS1, PAD4, NPR1, EDS5, RAR1 or SGT1b suppress resist-
ance and HR development controlled by multiple NB-LRR
type R genes. EDS1, PAD4, NPR1 and EDS5 appear to
be components of salicylic acid (SA)-dependent defence
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pathway(s) that are also required for expression of basal
defences against several virulent pathogen strains. Whereas
EDS1, PAD4 and EDS5 participate in signal potentiation
through an SA-associated amplification circuit (Falk et al.,
1999; Jirage et al., 1999; Nawrath et al., 2002), NPR1 func-
tions as a transcriptional regulator downstream of SA (Cao
et al., 1997). RAR1 and SGT1b appear to act at the level of the
R protein itself and an increasing body of evidence points to
roles of these proteins as molecular co-chaperones that may
assist maturation and/or activation of R protein complexes
(Gray et al., 2003; Shirasu and Schulze-Lefert, 2003). Genes
in the jasmonic acid (JA) and ethylene (ET) signalling
pathways have also been implicated in plant defences. For
example, mutations in COI1 required for JA signalling (Xie
et al., 1998) and EIN2 required for ET-pathway (Alonso et al.,
1999) compromise resistance to necrotrophic pathogens
(Thomma et al., 1998, 1999). Both synergistic and antagon-
istic interactions exist between SA-dependent processes
and those engaging JA and ET, suggesting complex signal
interplay in defence activation (Ellis and Turner, 2002; Feys
and Parker, 2000; Glazebrook et al, 2003; Turner et al.,
2002).

Arabidopsis mutants with constitutive expression of SA-
dependent defence responses, spontaneous HR-like lesions
(SHL) and enhanced disease resistance have also been
isolated and some of the corresponding genes cloned as
potential negative regulators in pathways leading to defence
or PCD (reviewed by Hammond-Kosack and Parker, 2003;
Lorrain et al., 2003). However, few of these genes have been
positioned genetically in R gene signalling pathway(s)
(Brodersen et al., 2002; Frye et al., 2001; Rusterucci et al.,
2001) and little can be inferred about their precise biological
functions from their protein sequences. EDR1, encoding a
MAPKK kinase is an exception (Frye et al., 2001). A loss-
of-function mutation of EDR7 results in SA- and EDST-
dependent enhanced disease resistance to powdery mildew
in the absence of constitutive defence-related (PR) gene
expression or formation of spontaneous lesions (Frye and
Innes, 1998; Frye et al., 2001).

The Arabidopsis genes RPWS8.7 and RPW8.2 (hereafter
referred to as RPWS, unless otherwise indicated) confer
broad-spectrum resistance to powdery mildew pathogens.
The two predicted RPW8 proteins bear no significant
homology to other proteins (Xiao et al., 2001), including
the R-proteins, and thus form a unique R protein category
(Dangl and Jones, 2001). Yet, RPW8-mediated resistance is
associated with a classic HR that is SA- and EDS 1-dependent
and associated with H,0, accumulation, and defence gene
expression, similar to defence cascades regulated by NB-
LRR-type R genes that possess an N-terminal Toll-Interleukin
1 receptor (TIR) homology domain (Aarts et al., 1998; Feys
et al., 2001; Xiao et al., 2001). Arabidopsis RPW8 confers
powdery mildew resistance in transgenic tobacco plants
(Xiao et al., 2003a), suggesting that although RPW8encodes

an atypical R protein, it may regulate a conserved signalling
pathway(s) leading to HR and resistance. SA and EDS1 have
been implicated in non-host resistance (Mellersh and Heath,
2003; Parker et al., 1996; Yun et al., 2003) and are compo-
nents of basal resistance against virulent pathogens (Parker
et al., 1996; Reuber et al., 1998). Moreover, a number of
mutations have been identified that cause lesions and
heightened pathogen resistance in an SA- and EDS1-
dependent manner (Brodersen et al., 2002; Clarke et al.,
2001; Pilloff et al., 2002; Rate et al., 1999). It is therefore
unclear whether RPW8 engages processes that are specific
to TIR-NB-LRR proteins or, more broadly, mechanisms of
EDS1 and SA-dependent basal resistance.

Spontaneous and spreading HR-like lesions (SHL) develop
in transgenic lines containing multiple copies of the RPW8
genes under control of their native promoters (Xiao et al.,
2003b). SHL is associated with greatly enhanced transcrip-
tional amplification of RPW8 via an SA- and EDS7-depend-
ent positive feedback circuit (Xiao et al., 2003b). However, in
Arabidopsis accession Ms-0, and in transgenic plants con-
taining a single copy of RPWS8, HR develops as a restricted
lesion at fungal penetration sites, and there is limited
transcription of the RPW8 genes (Xiao et al., 2001). These
observations suggest that regulation of the transcriptional
amplification of RPW8 is involved in RPW8-mediated HR.

The RPW8 genes challenge our understanding of R-gene
function. Like other R-genes they are polymorphic, and
regulate a SA-dependent HR. Unlike other R-genes however,
they confer resistance to a range of powdery mildew
pathogens, apparently not through a gene-for-gene interac-
tion. Neither are the RPW8 proteins likely receptors of
pathogen ligands. Moreover, the RPW8 genes have evolved
recently in Arabidopsis (Xiao et al., 2004). This raises the
significant question of whether the RPWS8 proteins regulate
HR through a novel SA-dependent pathway, or recruit
components of more ancient disease resistance pathways.
To address these questions, we constructed Arabidopsis
lines combining the RPW8 gene with a series of character-
ized mutations affecting SA-dependent or JA/ET-dependent
defence responses. We show that, in addition to SA and
EDS1, four genes (PAD4, EDS5, NPR1 and SGT1b) that are
also recruited by NB-LRR genes, are required for RPWS-
mediated resistance. In contrast, NDR1, RAR1, PBS3, COI1or
EIN2 do not contribute substantially to RPWS8 function.
These data are supported by results of a screen for muta-
tions compromising RPWS8-conditioned powdery mildew
resistance which yielded new defective alleles of PAD4 and
NPR1. Detailed analysis of plants expressing high levels of
RPWS8 transcripts in various mutant backgrounds revealed
that SHL is triggered by both EDS7 and SA-dependent and
independent processes. We also show that EDR1 negatively
regulates transcriptional amplification of RPWS8, thus linking
the MAPKKK to a conserved signalling pathway(s) shared by
RPWS8 and several NB-LRR R genes.
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Results

Effects of defence pathway mutants on basal powdery
mildew resistance

A panel of defence mutants isolated in Arabidopsis acces-
sions Columbia (Col-0) or Landsberg-erecta (Ler) were tested
for altered resistance to four virulent powdery mildew
pathogens: Erysiphe cruciferarum UEA1, E. cichoracearum
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UCSC1, E. orontiiMGH, and Oidium lycopersici Oxford (Xiao
et al., 2001). Col-0 and Ler do not have functional RPW8.1
and RPW8.2 genes and are susceptible to the four powdery
mildew isolates (Xiao et al., 2001). Disease development on
mutant leaves was compared to that on Col-0 and Ler wild-
type plants with the aid of a dissecting microscope. We used
five scales (0, 1, 2, 3 and 4) of increasing pathogen colon-
ization to record the disease phenotypes (see Experimental
procedures); these disease reaction (DR) scores are shown in

Table 1 Powdery mildew disease phenot-
yes of defence pathway mutants in the
absence or presence of functional RPW&

Erysiphe isolate

Genotypes UEA1 UCSC1 MGH Oxford Reference

Col-0 3 3 3 3

Ler 2-3 2-3 2-3 2-3

ColNahG 4 4 4 4 Lawton et al. (1995)
Ler eds1-2 4 4 4 4 Falk et al. (1999)
Colpad4-1° 4 4 4 4 Jirage et al. (1999)
Lerpad4-2 3-4 4 4 4 Jirage et al. (1999)
Col eds5-1° 3-4 4 3-4 4 Nawrath et al. (2002)
Colnpri1-1° 3 3-4 3-4 3-4 Cao et al. (1997)
Lersgt1b-1 2-3 2-3 3 2-3 Austin et al. (2002)
Colndr1-1° 3 3 3 3 Century et al. (1997)
Colpbs3 3 3 3 3 Warren et al. (1999)
Ler rar1-10 2-3 2-3 2-3 2-3 Muskett et al. (2002)
Colcoit-1 3 3-4 3-4 3-4 Xie et al. (1998)
Colein2-1 3 3-4 3-4 3-4 Alonso et al. (1999)
eds1-2-ndri1-1 4 4 4 4 McDowell et al. (2000)
ColRPWS (S5) 0-1 0-1 0-1 0-1 Xiao et al. (2003b)
Col RPW8-Het® 1 1-2 1-2 1-2

LerRPW/&" 0 0 0-1 0-1

Coledr1 1 1-2 1-2 1-2 Frye et al. (2001)
ColRPWS8-NahG® 2-3 3 3 2-3

RPW8-eds 1-2° 3 3 3 3

ColRPWS8-pad4-1° 3 3 3 3

ColRPWS8-eds5-1° 2-3 2-3 3 2-3

ColRPWS8-npri-1° 1-2 2 2 1-2

RPW8-sgt1b-1° nt 2-3 2-3 nt

ColRPWS8-ndr1-1° 0-1 0-1 0-1 0-1

ColRPWS-pbs3 0-1 0-1 0-1 0-1

RPW8-rar1-10° nt 1 0-1 nt

ColRPW8-coi1-1° 0-1 1 0-1 0-1

ColRPWS8-ein2-1f nt 0-1 0-1 nt

ColRPWS8-edr1® 0 0 0 0

@Approximately 6-week-old seedlings were inoculated with each of the Erysiphe isolates and the
disease phenotypes were examined at 10 and 12 dpi. The criteria for the DR scoring (0 indicates
no infection and 4 indicates the highest degree of susceptibility) were based on the percentage of
the fungal coverage on the leaf surface at 10-12 dpi (see Experimental procedures). nt, not tested.
At least three independent pathogen tests were carried for each line.

PMutant lines tested with E. orontii MGH by Reuber et al. (1998).

°F, plants derived from a cross between S5 and Col-0. They are heterozygous for the RPW8
transgene.

9The Ler RPW8line was generated by crossing S5 to Ler and backcrossing the F; to Ler twice. One
line homozygous for RPW8 was then selected from the selfed progeny of a BC2 individual.
°The single copy of RPW8transgene from Col-0 line S5 was combined with the mutant alleles by
crossing S5 with the corresponding mutant lines and F3 families homozygous for RPW8and each
of the mutant alleles were used for the test.

fGenotypes inferred from genetic analysis (see Experimental procedures).

9Transgenes from two different Col-0 transgenic lines (T-B75 and T-B6L) were individually
introduced in rar1-10.
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Table 1. We found that the disease phenotypes of Col-0 (DR
score 3) and Ler (DR score 2-3) to the four powdery mildew
isolates were similar, with Col-0 being slightly more sus-
ceptible. Representative infected leaves from each genotype
are shown in the upper panel of Figure 1(a). Col-NahG plants
consistently supported the highest degree of fungal growth
(DR score 4): inoculated leaves were covered by fungal
mycelia and conidia. Plants carrying mutant alleles of eds71-
2, pad4-1, eds5-1 or eds1-2/ndr1 double, and to a lesser
degree, npri-1, displayed enhanced susceptibility (DR score
4, or 3-4) to these isolates compared to Ler or Col-0. Plants
carrying the coi1-1 allele were also more susceptible than
Col-0. Ndr1-1, pbs3, rar1-10 and sgt1b-1 plants did not
exhibit enhanced susceptibility to the fungal isolates com-
pared to wild-type responses (Table 1; Figure 1a). These
results show that EDS1, PAD4, EDS5 and NPR1 play positive
roles in basal resistance of Arabidopsis to multiple powdery
mildew pathogens. Significantly, COI1 also contributes to
basal resistance, presumably via the JA-ET pathway. The
remaining genes NDR1, PBS3, RAR1 and SGT1b appear to
be dispensable for expression of basal resistance to these
powdery mildew isolates.

RPWS8-mediated resistance requires PAD4, EDS5, SGT1b
and NPR1

We examined the requirements of defence signalling com-
ponents in RPW8-conditioned HR cell death and resistance.
For this we introduced pad4-1, eds5-1, npri-1, sgtib-1,
rar1-10, pbs3, coi1-1 and ein2-1 and NahG into an RPW8
background (Xiao et al., 2001).

The results shown in Table 1 and the lower panel of
Figure 1(a) indicate that plants containing RPW8 and either
eds1-2 or the NahG gene were as susceptible as Col-0 to
powdery mildew. Plants containing RPW8 and pad4-1 or
eds5-1 also failed to develop HR and were as susceptible as
Col-0, indicating that PAD4 and EDS5 are also required for
RPWS function. Plants containing RPWS8 and npri-1 were
only moderately susceptible to the pathogens. Therefore,
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RPW8 may activate both NPR1-dependent and NPR7-inde-
pendent defences. It appeared that RPW8 partially increased
the resistance of each of these mutants (Table 1). This was
examined independently by counting the number of conid-
iophores formed per fungal colony at 5 days after inocula-
tion with E. cichoracearum UCSC1. The data shown in
Figure 1(b) indicate that NahG, pad4-1, eds5-1 and npri1-1
were significantly (P < 0.0001) more susceptible than Col-0
wild type, whereas the corresponding lines containing
RPW8 were as susceptible (P> 0.01) as Col-0. Thus, the
mutations compromise the expression of basal resistance
and RPWS resistance in an incremental fashion. We had
noted previously that plants hemizygous for a single copy of
the RPW8 transgene were less resistant to powdery mildew
than plants homozygous for that transgene, indicating that
RPWS is semi-dominant. Hemizygous plants supported
intermediate levels of fungal growth (DR score 1-2; Table 1;
Figure 1c). In the course of identifying F3 families homozy-
gous for RPW8 and for the different mutant alleles, we
further noted that plants hemizygous for RPW8 in homozy-
gous NahG, eds1-2, pad4-1 or eds5-1 backgrounds were
more susceptible than plants homozygous for RPW8 in the
same background. These observations reinforced the notion
that RPW8 acts in a gene dosage-dependent manner to
stimulate basal defences.

Plants containing RPW8 and sgt1b-1 in a Col-0 and Ler
mixed background also failed to develop HR but were not
more susceptible than Ler, indicating that sgt1b-7 only
partially compromises RPWS8 resistance. In contrast, plants
containing RPW8 in combination with Ler rar7-10, or Col-0
pbs3, coil-1 or ein2-1 produced a normal HR and were
resistant to all isolates tested (Table 1; Figure 1a), indicating
that RAR1, PBS3, COI1 and EIN2 are not required for RPWS8
function.

Localized production of H,O, in whole epidermal cells is
an early sign of RPW8-conditioned defence response to
attempted pathogen penetration (Xiao et al, 2001). We
examined whether the disabled RPWS resistance in NahG,
eds1-2, pad4-1, eds5-1, npr1-1 or sgt1b-1 backgrounds was

Figure 1. Signalling requirements of RPW8-mediated resistance.

(a) Leaf disease phenotypes and induction of H,0, (underneath the leaf pictures). Twelve 6-week-old plants of each genotype grown in 10 x 17 cm trays (six plants
for each genotype under test, two for Col-0 and two for S5 as susceptible and resistance control) were inoculated with each of the four powdery mildew isolates in
four separate experiments. Disease phenotypes were examined at 10 and 12 dpi. This experiment was repeated three times and one representative leaf from plants
inoculated with Erysiphe cichoracearum UCSC1 was shown for each genotype. Pictures were taken at 10 dpi. DAB-trypan blue staining (Thordal-Christensen et al.,
1997; Xiao et al., 2003b) was used to reveal H,0, (reddish-brown stain) accumulation in the epidermal cells penetrated by the fungus (blue) at approximately 2 dpi.
No whole-cell H,0; staining was found in any of the genotypes lacking RPW8and pictures were not shown. ‘-’ lack of RPWS; '+, presence of RPW8. Mutants in Ler
background are marked with ‘*'. Bar indicates 50 um. Arrowheads indicate pictures published in Xiao et al. (2001) and used here as references.

(b) Quantitative assay of the disease susceptibility. Five 6-week-old plants of each tested line were inoculated with E. cichoracearum UCSC1 and two mature
inoculated leaves from each plant were collected at 5 dpi and examined for the number of conidiophores produced in a single fungal colony. Around 50 well-
separated colonies (approximately five colonies per leaves) were counted for each lines and the average number of conidiophores per colony and the SD were
presented.

(c) Disease phenotype of mutant lines P8-7 and P4-7 in comparison with S5, F; of S5 x Col-0 (RPW8-het) and Col-0 wild type. Six-week-old plants were inoculated
with E. cichoracearum UCSC1 and pictures were taken at 10 dpi. Note that P4-7 was less susceptible than P8-1, and RPW8-het is intermediate.

(d) Spontaneous HR-like lesions in T, plants of Col NahG and five mutant lines carrying RPW8. Arrows indicate leaves displaying SHL. Note the transgenic lines with
SHL had a reduced stature compared with Col-0 wild type and their pictures were taken at shorter distances.
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associated with an altered pattern of H,0, production at
2 days after inoculation with E. cichoracearum UCSC1.
H,0, was detected with 3,3-diaminobenzidine (DAB), and
the fungus was stained with trypan blue (TB) (Thordal-
Christensen et al., 1997; Xiao et al., 2003b). Plants lacking
RPWS8 did not show whole-cell H,0, accumulation at
infection sites (data not shown). Plants containing RPW8
in wild type Col-0 or Ler or in the ndr1-1, rar1-10, pbs3, coi-
1 and ein2-1 backgrounds displayed frequent (>30-50%)
whole-cell H,0, staining at sites of fungal penetration.
In contrast, whole-cell H,0, accumulation was not detec-
ted in plants containing RPW8 in NahG, eds1-2, pad4-1
or eds5-1 backgrounds, and was only rarely seen in an
sgt1b-1background (bottom panel of Figure 1a). Consistent
with partial dependence of RPW8 on NPR1, RPW8-npri-1
plants displayed lower levels (<10%) of whole-cell H,0,
staining at infection sites. These results suggest a tight
correlation between the extent of RPW8-mediated resist-
ance in the various backgrounds and the localized genera-
tion of H,0,.

Identification of additional mutant alleles of PAD4 and NPR1
compromising RPW8 function

To identify components required for RPWS8-mediated
resistance we screened for mutants that suppressed this
resistance. Seeds of the Col-0 line S5, which contains a
single copy of the RPW8 transgene and is resistant to
powdery mildews, were treated with ethyl methanesulfo-
nate (EMS). Approximately 35 000 M2 generation seedlings
were screened for reduced resistance to E. cichoracearum
UCSC1. Over 40 susceptible mutants were isolated and
these fell into five complementation groups. Two mutants,
P8-1 and P4-7, which belonged to a different complemen-
tation group, were genetically mapped. Mutants in the other
three complementation groups will be described separately.
The P8-1 mutation was mapped to the lower arm of chro-
mosome 3 in the region of EDST and PAD4 (see Experi-
mental procedures). The P4-7 mutation was mapped to
chromosome 1in the region of NPR1. Allelism tests between
P8-1 and eds1-2 or pad4-1, and between P4-7 and npr1-1
indicated that P8-1 is a defective allele of PAD4 and P4-7 a
defective allele of NPR1. DNA sequencing revealed that P8-1
has a Cggq to A point mutation and P6-7 (another mutant
in the same complementation group as P8-1), a Gsg; to A
mutation, both resulting in a premature stop codon in
PAD4. P4-7 contains a Cqgp7 to T point mutation that also
results in a premature stop codon in NPR1. Disease tests
showed that P8-7 and P6-1 (pad4) were marginally more
susceptible than Col-0 to E. cichoracearum UCSC1, whereas
P4-7 (npr1) was slightly less susceptible than Col-0 to the
pathogen (Figure 1b). These data were consistent with our
phenotypic analysis of Col RPW8-pad4-1 and Col RPWS8-
npr1-1lines (Table 1; Figure 1a).

Transcription of RPW8.1, RPW8.2 and PR1 is attenuated by
NahG, pad4-1, eds5-1 and npri1-1

Previous studies showed that inoculation of plants contain-
ing the RPW8 transgene with powdery mildew induced
transcription of the RPW8 genes at 8 dpi (Xiao et al., 2001).
The transcriptional amplification of RPW8 was also associ-
ated with activation of HR and SHL, and was positively
regulated via an SA-dependent feedback loop (Xiao et al.,
2003b). Here, we tested whether the suppression of RPW8-
mediated resistance in different mutant backgrounds also
suppressed transcription of the RPW8 genes. The time
course of RPW8 transcription was determined in the trans-
genic line S5 (Col-0 containing a single copy of RPWS; Xiao
et al., 2003b) inoculated with E. cichoracearum UCSC1.
Samples were taken at 0, 1, 2, 4 and 7 dpi and mRNA of
RPWS8.1, RPWS8.2 and of the SA-responsive defence marker,
PR1, were quantified by real-time quantitative reverse tran-
scriptase-PCR (RT-PCR). Levels of RPW8.1 and RPW8.2
mRNA decreased slightly at 1 dpi, at the stage when fungal
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Figure 2. Induction of RPW8.1, RPWS.2 and PR1 by powdery mildew.

(a) Total RNA was prepared from 6-week-old plants of Col-0 transgenic line S5
carrying a single copy of RPW8 inoculated with Erysiphe cichoracearum
UCSC1at0, 1,2, 4and 7 dpi. Real-time quantitative PCR was performed from
the cDNA prepared from the total RNA samples according to Xiao et al.
(2003b). Grey-shaded bars indicate the approximate time when HR cell death
was visible to the naked eye. Data represent results from one of two
duplicated experiments.

(b) Six lines containing RPW8 in Col-0 wild type (S5), NahG, pad4-1, eds5-1,
npr1-1 and ndr1-1 backgrounds were inoculated with E. cichoracearum
UCSC1 and total RNA was extracted from inoculated leaves at 0 and 7 dpi.
Relative mRNA levels of RPW8.1, RPW8.2 and PR1 of the six genotypes were
measured (Xiao et al., 2003b) and calculated by setting those of S5 to 100 at
the same time point. The data from 7 dpi are presented. This experiment was
repeated once with similar results.

© Blackwell Publishing Ltd, The Plant Journal, (2005), 42, 95-110



conidia produce germ tubes, develop appressoria and pen-
etrate host epidermal cells (Adam and Somerville, 1996).
Thereafter, RPW8.7and RPW8.2 mRNAs increased from 2 to
7 dpi, reaching approximately eight times the levels meas-
ured at 0 dpi (Figure 2a). H,0, production and HR at sites of
fungal penetration, respectively, was first detected at 2 and
3 dpi (Figures 1a and 2a). PR1 expression in the inoculated
leaves increased dramatically between 4 and 7 dpi, reaching
377 and 2290 times of the levels at 0 dpi (Figure 2a).

RPW8and PRTmRNA was measured in leaves of the Col-0
transgenic line S5 and in S5 plants containing RPWS8 in
NahG, pad4-1, eds5-1, npr1-1 and ndri-1 (all in the Col-0
background) at 0 and 7 days after inoculation with
E. cichoracearum UCSC1. Ler contains and expresses reces-
sive alleles rpw8 that do not confer obvious mildew resist-
ance (Xiao et al., 2004). Because these Ler rpw8alleles could
also be amplified during quantitative RT-PCR by the primers
designed for RPW8 (data not shown) and could thus affect
the detection of the RPW8 alleles, we did not therefore
attempt to measure RPW8 mRNA abundance in RPW8/eds 1-
2 and RPWS8/sgt1b-1 lines. Levels of RPW8.1, RPWS.2 and
PR1mRNAs in the NahG, pad4-1, eds5-1, npr1-1and ndr1-1
mutant backgrounds were calculated relative to those in Sb.
At 0 dpi, mRNAs of all three genes were expressed at a low
level and did not differ significantly among the six tested
genotypes (data not shown). At 7 dpi, RPW8.1, RPW8.2 and
PR1mRNAs were depleted in the NahG, pad4-1, eds5-1and
npr1-1 backgrounds compared with S5 (Figure 2b). Defects
in PAD4 and EDS5 caused the strongest suppression of
RPWS expression. The npr1 mutant had a lesser effect on
RPW8 mRNA levels but strongly reduced PR7T mRNAs. In
contrast, ndr1-1caused a slight stimulation of expression of
all three genes compared to the control line, S5. We
conclude that depletion of SA or impairment of PAD4,
EDS5 or NPR1 attenuates the transcription of RPW8and PR1,
and this correlates with the suppression of RPW8-condi-
tioned HR and resistance.

Overexpression of RPW8 activates spontaneous HR-like
lesions via SA-dependent and independent pathways

A Col-0 transgenic line (S24) containing at least four copies
of the RPW8 genes driven by their native promoters dis-
played SHL, and this symptom was suppressed by the NahG
transgene or the eds7-2 mutation for 30 days after germi-
nation. This suggested that SHL was SA- and EDST-
dependent (Xiao et al., 2003b). We have since observed that
S24 plantsin an NahG or eds7-2background do develop SHL
at 5-6 weeks old, if they are grown under short days (8 h
light/16 h dark). Moreover, SHL appeared in 3-4-week-old
S24 plants grown under long-day conditions (16 h light/8 h
dark) (data not shown). These data suggest that light sti-
mulates SHL in S24, and that this is partially independent of
SA and EDS1.
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edr1 triggers spontaneous HR-like lesions in a background
containing a single copy of RPW8.1 and RPW8.2

We proposed a feedback amplification of RPW8 transcrip-
tion for activation of both HR and SHL (Xiao et al., 2003a).
Plants of natural accessions and transgenic lines containing
asingle copy of RPW8normally lack SHL and develop strictly
delimited HR lesions at powdery mildew infection sites. This
suggests that suppression of the RPW8 feedback amplifica-
tion may normally prevent SHL and exaggeration of HR.

The Arabidopsis edr? mutant in Col-0 exhibits SA- and
EDS1-dependent enhanced powdery mildew resistance
(Frye and Innes, 1998). EDR1 is therefore a candidate for a
suppressor of powdery mildew-induced cell death. We have
examined whether EDR1 suppresses RPW8-mediated HR.
The edr1 mutation was crossed into the single-copy RPW8
background (Col-0 transgenic line S5). Neither S5 nor edr1
plants developed visible SHL, and both had normal stature
at 6 weeks under short-day growth conditions (Figure 3a). In
contrast, when plants homozygous for RPW8 and edr1 (S5-
edr1) were germinated on soil, all developed SHL on
cotyledons and true leaves, and these symptoms were only
marginally less severe than those observed in line S24
(Figure 3a). In S5-edr1 plants, SHL developed on newly
emerged leaves and the lesions continued to spread and the
leaves were killed. Interestingly, S5-edr1 plants survived to
form inflorescences that were completely free of lesions,
and plants set seed, despite being 5-10% of the fresh weight
of either S5 or edr7 (measured with 6-week-old plants).

Col-0 lacks RPWS.1and RPW8.2 (Xiao et al., 2001). To test
whether edr1 triggers SHL in a background containing
recessive rpw8 alleles, we examined 50 F, plants derived
from a cross between edr7 and Ler which contains rpw8.1-
Ler and rpw8.2-Ler alleles that do not confer resistance to
powdery mildew. None of these progeny displayed SHL. An
F, individual homozygous for edr! and rpw8-Ler was
identified (see Experimental procedures) and backcrossed
to edr1. None of the 60 progeny examined developed SHL
over 35 days growth under short days. These results indi-
cate that the functional RPW8 genes are required for the
edri-triggered SHL.

SHL is suppressed in S24 by certain environmental
conditions (Xiao et al., 2003b). To examine if SHL in S5-
edr1 plants is suppressed by environmental conditions, we
grew Sb-edr1 plants on MS-agar medium or perlite irrigated
with 1/2 strength of MS salt solution under light, tempera-
ture and humidity conditions that suppress SHL in S24
(Xiao et al., 2003b). Conditions that suppressed SHL in
S24 [growth on MS medium, low light (approximately
14 pmol m™2 sec™"), high temperature (30°C), and high
humidity (RH >96%)] also suppressed SHL in S5-edr1 plants
(Figure 3a).

SA enhances SHL in S24 plants. When 3-week-old S5-edr1
seedlings were transplanted to MS-agar containing 100 pum
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SA they became extremely chlorotic, as were similarly
treated S24 seedlings, whereas S5 and edr? plants were
indistinguishable from Col-0 plants (data not shown).
Lactophenol-TB staining revealed clusters of dead cells
around veins in leaves of S5-edr7 plants, with an intensity
and pattern similar to that observed in S24 (Figure 3b),
indicating that S5-edr1 plants are hypersensitive to SA, to a
similar extent as S24 plants. We noted that both S5 and edr1?
but not Col-0 plants had sporadic necrosis revealed by TB

@ Soil

staining, implying that S5 and edr7 plants are slightly more
sensitized to SA than are Col-0 wild type.

S5-edr1 plants display an exaggerated HR in response to
powdery mildew

To assess whether edr1 potentiates the RPW8-mediated HR
to powdery mildew, plants were transferred from SHL-sup-
pressive conditions (MS-agar) to SHL-permissive conditions
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(soil), and were inoculated with E. cichoracearum UCSC1.
Plant responses at infection sites were examined 2 dpi as
whole-cell H,0, production, and at 3 dpi as cell death. There
was no significant difference between the Col-0 and edr?
plant response to powdery mildew infection in the first
3 days after inoculation (Figure 3c). However, edr1 plants
were moderately resistant to the four powdery mildew iso-
lates (Table 1), consistent with the observations made by
Frye and Innes (1998), and H,0, was detected after 2-3 days.
The number of epidermal cells producing detectable H,0, or
undergoing cell death at >70% of infection sites in S5-edr1
was at least five times greater than in S5 plants, and
approached the exaggerated cell death response seen in
S24 (Figure 3c). Fungal growth was arrested at earlier stages
in Sb-edr1and S24 compared to S5 (data not shown). These
observations indicate that loss-of-function of EDRT muta-
tions in S5 plants cause a more rapid and pronounced HR to
powdery mildew. We conclude that EDR1 negatively regu-
lates an RPW8-dependent cell death pathway leading to HR
and resistance.

edr1 enhances transcriptional amplification of RPW8
independent of pathogen signals

We considered that EDRT may exert negative control of
RPW8-mediated HR at a particular step within the RPWS&-
transcriptional amplification loop or a stage of cell death
execution downstream of the loop. To test whether edr?
leads to increased transcriptional amplification of RPWS8, we
introduced an RPW8.1::GUS construct (Xiao et al., 2003b)
into S5-edr1by Agrobacterium-mediated transformation. All
twenty 5-week-old soil-grown T, transgenic plants exam-
ined exhibited SHL with the same phenotypic characteristics
and timing as in S5-edr1 plants. Histochemical GUS staining
of leaves of five T; lines revealed that GUS activity was
localized mainly at margins of large lesions or to small spots
that may represent incipient lesions but was also observed
in small patches where there was no apparent cell death
(Figure 3d). GUS activity was not detected in leaves of
3-week-old T, plants grown in MS-agar plates containing
appropriate antibiotics for selection of RPW8.1::GUS, but
was clearly detectable as small blue spots and patches in
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those plants at 1-2 days after transfer from MS-agar into soil
before cell death was detectable by TB staining (data not
shown). These observations reveal that loss of EDR1T func-
tion leads to locally enhanced transcriptional activation of
RPWS8 that precedes the formation of SHL in S5-edr1 plants.
To measure the extent of the transcriptional amplification
of RPW8 during SHL development, we monitored both SHL
and RPW8.1, RPW8.2 and PR1 mRNA levels in S5, edr1, S5-
edr1and S24 plants prior to (0), and 3 and 5 days following
transfer from SHL-suppressive (MS-agar) to SHL-permissive
(soil) conditions. S5 and edr1 plants exhibited no SHL during
the whole period of experiment, whereas S5-edr7 and S24
plants started to express visible SHL in mature leaves at
4 days and exhibited massive SHL at 5-6 days after transfer.
Mature leaves of S24 plants normally died after 7 days while
those of S5-edr1 died after 10-11 days (data not shown). As
a control we monitored the development of SHL and mRNA
levels in plants transferred from MS-agar to MS-agar, to
assess the effects of transplantation. In real-time quantita-
tive RT-PCR experiments, mRNA levels of RPW8.1, RPW8.2
and PR1 were calculated in all genotypes by setting as 1.0
the mRNA levels of the three genes in S5 plants on MS-agar
prior to transplanting. The data are shown in Figure 4(a).
Priortotransplanting, there was no significant differencein
the basal mMRNA levels of RPWS. 1, RPWS8.2 and PR1between
S5 and S5-edr1 plants, indicating the edr1 mutation did not
affect RPW8transcription under SHL-suppressive conditions.
Messenger RNA levels of RPWS8.7and RPWS8.2in S24 plants
were, respectively, 18 and 50 times higher than those of S5,
butthere were no differencesin PRTmRNA levels. This result,
together with the fact that S24 plants grown on MS-agar
rarely develop SHL, suggests that threshold levels of RPWS.1
and RPW8.2 mRNAs must be reached in whole-leaf tissue
before PR1 expression is induced and SHL initiated. In a
control experiment, 5 days after transfer from MS-agar to
MS-agar, only S24 plants showed limited SHL following
transfer, and the other lines were SHL-free (data not shown).
We detected a 5- to 10-fold increase of RPW8.7 and RPW8.2
mRNAs in both S5 and S5-edr7, and 160-fold increase of
RPWS8. 1 and 260-fold increase of RPW8.2in S24 (Figure 4a).
Despite the enhanced expression of RPW8 in these plants,
levels of PRT mRNA remained low. These results show that

Figure 3. EDR1 negatively regulates RPW8-mediated signalling.

(a) Plants were grown in soil or MS-agar medium under short day for 3 weeks and then shifted to long day for 2 weeks. S5 is a Col-0 transgenic line carrying a single
copy of RPWS8, while S24 is a line carrying at least four copies of RPW8 (Xiao et al., 2003b). Note the size of the S5-edr1was approximately one-fifth of EDR1, and the
size of S24 was approximately one-tenth of S5.

(b) Three-week-old seedlings grown on MS-agar plates were transplanted to MS-agar containing 100 um SA. Leaf cell death was revealed by trypan blue (TB)
staining at 3 days after transplanting.

(c) Four-week-old plants were inoculated with Erysiphe cichoracearum UCSC1 immediately after transplanted from MS-agar medium into autoclaved soil and kept
under long-day conditions. Ten inoculated leaves from each genotype were DAB stained to reveal H,0, accumulation, and 10 leaves were TB stained to reveal
induced cell death. Reddish-brown stain indicates H,0, production; blue stain indicates fungal structure and/or dead plant cells. Arrows indicate fungal conidia or
hyphae. Bar represents 50 pm.

(d) S5-edr1 plants were transformed with RPW8.1:GUS construct and T, transformants were selected on MS-agar medium containing 50 mg =" kanamycin and
transplanted to soil to permit the development of SHL. About two to four leaves from each of twenty 5-week-old T, plants were subject to GUS assay. The typical
GUS expression pattern in these leaves is presented. Note the red-brown spots were necrotic lesions.
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disturbance associated with transfer from MS-agar to MS-
agar could induce amplification of RPW8 transcription, but
this did not lead to activation of a defence pathway.
Following transfer from MS-agar to soil, expression of
RPW8.1, RPW8.2 and PR1 was elevated in S5, S5-edr7 and

LA
ECTEIIITIS

S24 plants at 3 and 5 days after transplanting. However, the
degree of amplification of these three genes was different in
the three genotypes. For example, 5 days after transfer from
MS-agar to soil, S5 plants had, respectively, 27-, 7- and 3-fold
increases, in RPW8.1, RPW8.2 and PRTmRNAs, respectively,
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compared with corresponding mRNAs in S5 plants in MS-
agar prior to transplanting. In S5-edr? plants 5 days after
transplanting to soil there was a 255-, 76- and 432-fold
increase in RPW8. 1, RPW8.2and PRTmRNAs respectively. In
S24 plants 5 days after transplanting to soil there was a
1960-, 4771- and 1445-fold increase in RPW8.1, RPW8.2 and
PR1 mRNAs respectively. Thus, loss of EDRT function
resulted in a strong transcriptional amplification of RPW8.1
and RPWS8.2in Sb on transfer to SHL-inducing conditions. As
S24 contained wild-type EDRT it appears that negative
control of RPW8 transcriptional amplification by EDR1 can
be overridden in S24 plants., which in turn led to PR7
induction.

To validate our real-time RT-PCR data, we analysed the
same RNA samples by Northern blotting. Results from this
analysis supported the quantitative RT-PCR data (Figure 4b).

SHL in S5-edr1 is not abolished by eds1-2

Edr1-mediated enhanced powdery mildew resistance in
Col-0 is SA- and EDS17-dependent, and thus EDR1T was
placed genetically upstream of EDS1 (Frye et al., 2001).
We investigated if RPW8-edr1-mediated SHL is also EDST-
dependent. To test this, we constructed an edrl-eds1-2
double mutant carrying the single copy of RPW8 from S5.
Soil-grown edr7-eds1-2 double mutants developed SHL on
both cotyledons and true leaves, although to a lesser
degree than Sb-edr? plants, and were also resistant to
powdery mildew (data not shown). Thus, SHL in S5-edr1
plants is not entirely EDS1-dependent. This is therefore
similar to SHL in S24 plants, which also was not entirely
EDS1-dependent.

Discussion

Genetic data presented in this analysis show that the six
known signalling components, SA, EDS1, PAD4, EDS5,
SGT1b and NPR1, which are required for function of NB-LRR
R genes, are also required for full function of RPW8. Signi-
ficantly, we reveal that EDR1, a MAPKKK gene, acts as a
negative regulator of RPW8-derived signals leading to HR
and resistance.

RPWS8 shares signalling components with TIR-NB-LRR genes
and stimulates basal resistance

RPWS8 is a distinct type of R gene that activates resistance
against powdery mildew pathogens in a non-race-specific
manner (Xiao et al., 2001). Our genetic data show that RPW8
recruits components of a conserved signalling pathway that
are also used by TIR-NB-LRR race-specific R genes such as
RPP4 and RPP5 (van der Biezen et al., 2002; Feys and Parker,
2000) for activation of HR cell death and resistance. A sub-
stantial body of evidence points to activities of EDS1, PAD4
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and EDS5 within an SA-associated defence amplification
loop that is important both for TIR-NB-LRR-triggered resist-
ance against avirulent pathogens as well as for expression of
basal resistance against virulent pathogens (Glazebrook
et al., 1996; Nawrath and Metraux, 1999; Parker et al., 1996;
Reuber et al., 1998; this study). Thus, EDS1, PAD4 and EDS5
control SA accumulation in response to pathogen attack but
are themselves upregulated by pathogens or exogenous SA
application (Falk et al., 1999; Jirage et al., 1999; Nawrath
etal., 2002) and, in the case of EDS1 and PAD4, are
responsive to SA-derived signals in signal potentiation be-
yond pathogen infection sites (Rusterucci et al., 2001). Sig-
nificantly, RPW8is also induced by powdery mildew and its
transcription is amplified via an SA-dependent feedback
circuit (Xiao et al., 2003b). Therefore, we propose that RPW8
engages a feedback amplification circuit consisting of EDST,
PAD4, EDS5 and SA (Figure 5). These observations collec-
tively suggest that EDS1, PAD4, EDS5 and SA-mediated
signal amplification contribute to plant basal resistance.
They also raise the possibility that RPW8 engages the basal
resistance machinery to potentiate defences against bio-
trophic pathogens such as powdery mildew. This model
could explain why RPW8 confers broad-spectrum resistance
against powdery mildew: expression of RPW8 could be di-
rectly or indirectly induced by fungal penetrations from dif-
ferent pathotypes of Erysiphe and amplified by the feedback
circuit, eventually resulting in activation of defence re-
sponses in a non-race-specific manner. Based on this
hypothesis, it is anticipated that RPW8 may condition
resistance against other types of biotrophic pathogen if
appropriately induced at pathogen invasion sites. Although
our previous results showed no effect of RPW8on DR of Col-
0 to a virulent isolate of Peronospora parasitica (Noco2), the
experiments were carried out under high humidity (>95%)
(Xiao et al., 2001) in which RPW8 expression is attenuated
(Xiao et al., 2003b). This hypothesis therefore remains to be
critically tested under conditions in which RPW8 expression
is not suppressed.

Our data on partial suppression of RPWS resistance
function by npr1-1 (Figure 1a) and slight attenuation of
transcriptional amplification of RPW8 (Figure 1b) suggest
that RPW8-generated signals are transmitted via NPR1T-
dependent and NPR7-independent processes. An NPR1-
independent signalling pathway was implicated in the
activation of defence responses by gain-of-function muta-
tions in two TIR-NB-LRR genes, SSI/4 (Shirano et al., 2002)
and SNCT1 (Zhang et al., 2003) and in overexpression of
another TIR-NB-LRR gene, ADR1 (Grant et al, 2003). In
addition, the RPW8 alleles in ssi4 mutant (in accession
Néssen that contains RPWS) are strongly induced by the ssi4
mutation (Zhou et al., 2004), suggesting a further mechan-
istic link between RPWS8-TIR-NB-LRR-triggered defences.
Consistent with the above link, a null mutation of NDR1
did not affect RPW8 resistance (Xiao et al., 2001), nor did it
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Figure 5. A model for RPW8&-signalling.

RPWS8 may be a polymorphic component of a conserved defence pathway(s).
Upon challenge by powdery mildew, RPWS transcription is mainly amplified
via the EDS1-PAD4-EDS5-SA feedback circuit, leading to activation of
hypersensitive response (HR) and resistance through NPR1-dependent and
independent pathways. EDR1 acts as a negative regulator of this pathway to
gauge the amplification of RPW8 for an appropriate expression of HR and
resistance. However, once the amplification of RPW8 reaches a threshold
level, the negative control of EDR1may be overridden or ineffective, resulting
in the activation of spontaneous HR-like lesions (SHL), HR and resistance via
both the default SA pathway and other independent pathway(s). EDRT may
actin a step at the RPW8-SA amplification circuit (position 1 or 2) or upstream
(position 3) of RPW8. Additional negative regulator(s) (x) such as LSD7may be
required for preventing the HR or SHL activated by RPW8 from runaway cell
death.

compromise the SHL mediated by RPWS8-overexpression.
NDR1 was previously identified as a necessary component
of resistance triggered by a number of CC-NB-LRR type R
genes but is dispensable for resistance conferred by TIR-NB-
LRR genes (Aarts et al., 1998).

An important finding in the current study was that RPW8
resistance, but not basal resistance, depends on SGT1b. This
is consistent with the previous finding that cell death
induced by transient overexpression of RPW8 in tobacco
leaves is blocked by silencing tobacco SGT7 (Peart et al.,
2002). The position of SGT1b within the RPWS signalling
pathway is not known. However, the fact that SGT1b is
dispensable for basal resistance to powdery mildew sug-
gests that RPW8 is unlikely to be a core component of the
basal defence machinery. A more likely scenario is that
RPWS stimulates or lowers the threshold for activation of
basal defences. This idea is supported by our finding that
RPW8can increase defences in an incremental fashion, even
if components of basal resistance are disabled (Figure 1b).
SGT1isconserved in plants, yeastand mammals and has the
structural and molecular characteristics of a co-chaperone

(Hubert et al., 2003; Muskett and Parker, 2003; Takahashi
et al., 2003). In yeast, SGT1 is an essential gene required for
the function of a number of signalling complexes including
SCF (Skp1-Cullin-F box) E3 ligases that mediate ubiquitina-
tion of proteins that are normally then targeted for degra-
dation by the proteasome (Muskett and Parker, 2003). In
Arabidopsis, SGT1b participates in SCF-"®' and SCF-¢©"
controlled responses, respectively, to auxin and JA (Gray
et al., 2003). It remains unclear whether SGT1b activity in
RPWS8 signalling lies at the assembly of an RPW8 complex.
Other sites of action could be SCF E3 ligases involved in
coupling, for example, RPW8 to basal resistance or in the
assembly of other, as yet unknown, signalling complexes.

A null mutation in RAR1, another component of resistance
conditioned by a number of R genes in Arabidopsis, barley
and Nicotiana benthamiana (Liu et al., 2002; Muskett et al.,
2002; Shirasu et al., 1999; Tornero et al, 2002) did not
compromise RPW8-induced HR and resistance. In summary,
our data show that RPW8 regulates broad-spectrum mildew
resistance through a highly conserved signal transduction
pathway that is also used by TIR-NB-LRR genes. An import-
ant implication from this study is that different types of plant
disease resistance seem to have been superimposed on a
common, conserved basal resistance mechanism. A future
challenge is to understand how RPWS8-derived signals are
integrated with this conserved pathway.

Negative regulation of RPW8 by EDR1

HR involves rapid death of a few cells at pathogen infection
sites. How the cell suicide programme is initiated and
delimited remains unclear. Our earlier data (Xiao et al.,
2003b) and results presented here show that RPW8involves
a transcriptional amplification mechanism possibly via the
SA-dependent feedback circuit, and it is probably the local
amplification of RPW8that leads to the activation of HR and
resistance upon powdery mildew attack. We argued that
transcription of RPW8 must be negatively regulated in order
to restrict the extent of pathogen-induced cell death. Given
that edr? confers SA- and EDS17-dependent enhanced
resistance to powdery mildew (therefore placing EDR1T up-
stream of EDS1 and SA), we tested whether EDRT acts as a
negative regulator of RPW8-mediated HR and resistance.
This was indeed found to be the case. An important impli-
cation from this analysis is that a MAP kinase cascade is
associated directly or indirectly with RPW8 signalling.
However, we are unable to determine genetically whether
EDR1 acts downstream (position 1 and 2 in Figure 5) or up-
stream (position 3) of RPWS8, as RPW8 works through an
amplification circuit, as described. We reasoned that EDR1
may function to gauge signals from RPWS8 to the EDST-
dependent pathway, permitting cell death activation only at
pathogen penetration sites where local amplification of
RPWS reaches a threshold and overrides the negative effect
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from EDR1. How EDR1 exerts negative control over RPWS8
transcriptional amplification is not known. Notably, both
EDR1 (Frye et al., 2001) and RPWS8 are induced to higher
levels at 3 dpi by the same powdery mildew isolate
E. cichoracearum UCSC1. We detected a temporary reduc-
tion of RPW8 mRNA levels at 1 dpi when the fungus nor-
mally starts to penetrate the host epidermal cells by its
appressorium, before an eventual upregulation appeared.
This phenomenon may be attributed to an early negative
control of RPW8transcription. It is tempting to speculate that
EDR1may exert negative regulation of RPW8transcription at
this stage. A more detail and earlier time-course analysis of
the RPW8and EDR1(edr1) transcripts in S5 and S5-edr1 after
powdery mildew challenge can help to clarify this interplay.

The observation that SHL in soil-grown, S5-edr1 plants is
manifested as gradually progressing lesions indicates that
there may exist additional negative control that prevents
RPW8-mediated SHL from becoming runaway cell death.
For example, LSD1, a negative regulator of cell death
(Dietrich et al., 1997), has been shown to function in an
EDS1-PAD4-dependent manner (Rusterucci et al., 2001) and
thus may provide such additional negative control (x in
Figure 5) of RPW8-mediated HR and SHL.

Our current model does not explain why edr7 conditions
enhanced powdery mildew resistance in Col-0 (Frye et al.,
2001) in which RPW8.7 and RPW8.2 are absent (Xiao et al.,
2001), nor does it explain why EDS1, PAD4 and EDS5
participate in an SA-dependent positive feedback circuit in
the absence of the functional RPW8 genes (in Ler or Col-0
background) (Falk et al., 1999; Jirage et al., 1999; Nawrath
et al., 2002). We have supporting evidence to suggest that
RPWS8 engages basal resistance but may not be an intrinsic
component of it. It is therefore possible that RPW8 has some
intrinsic defence activity in the absence of one basal
resistance layer. Alternatively, in the absence of RPWS, the
homologues of RPW8, HR1, HR2 and HR3that are present in
all tested Arabidopsis accessions (Xiao et al., 2001, 2004)
may play a positive role in the induction of basal resistance
via the conserved SA-dependent pathway. Characterization
of the role of RPW8homologues in plant defences will clarify
this possibility.

Experimental procedures

Plant materials, genotyping and cultivation

The following Arabidopsis lines were used in this analysis: edr1
(Frye and Innes, 1998), NahG (Lawton et al., 1995), eds1-2 (Parker
et al., 1996), ndr1-1(Century et al., 1997), pad4-1and pad4-2 (Jirage
et al., 1999), eds5-1 (Rogers and Ausubel, 1997), npr1-1(Cao et al.,
1997), rar1-10 (Muskett et al., 2002), sgt1b-1(Austin et al., 2002),
pbs3 (Warren et al., 1999), coil-1 (Xie et al., 1998), ein2-1 (Guzman
and Ecker, 1990), and eds7-2/ndr1-1double mutant (McDowell et al.,
2000). eds1-2, pad4-2, rar1-10 and sgt1b-1 are in Ler background,
eds1-2/ndr1 probably has a Col-0 and Ler mixed background, and
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the remaining lines are in Col-0 background. None of these lines
contains the functional RPW8.17 and RPW8.2 genes.

Col-0 transgenic line S5 carrying a single copy of RPW8.1 and
RPW8.2 in an approximately 14 kb genomic fragment from Ms-0
(Xiao et al., 2003b) was used for the genetic crossings with the above
lines, exceptin the case of rar1-10, as the transgene was inserted to a
region of chromosome 5 very close to RAR1. We used two other
RPWS8 transgenic lines (Col-0), T-B6-L and T-B75 for the genetic
analysis of rar1-10. In all genetic analyses, the RPW8transgene was
initially selected by spraying, shortly after germination, herbicide
‘Challenge’ containing 150 g I”' glufosinate-ammonium (AgrEvo
UK Limited, Saffron Walden, UK) at a concentration of 0.02% (v/v) (as
the RPW8 construct contains the BAR gene which confers herbicide
resistance) and eventually confirmed by PCR amplification using
gene-specific primers (Xiao et al., 2001). The mutant alleles were
identified by CAPS markers developed by relevant groups, which
distinguish the wild-type alleles from the mutant alleles, except in
the cases of NahG, edr1, eds5-1and pbs3and ein2-1. The presence of
NahG gene was selected by PCR with NahG-specific primers. The
presence of the edr1 or eds5-1 allele was first inferred from
phenotypes of candidate F; families homozygous for the RPW8
transgene, and then confirmed by sequencing across the point
mutation in EDRT (Frye et al., 2001) and in EDS5 (Nawrath et al.,
2002). The presence of the pbs3 and ein2-1 allele was inferred from
genetic analyses described below. Over 100 F, individuals carrying
the RPW8 transgene (selected by Basta herbicide resistance) were
resistant or moderately resistant to powdery mildew, among which
a quarter should be pbs3 or ein2-1, as both PBS3 and EINZ2 are
located on top of chromosome 5 (Alonso et al., 1999; Warren et al.,
1999), >50 cM away from the RPW8transgene located near RART.

Unless otherwise indicated, seeds were sown in autoclaved soil
and kept under short day (8 h light, 16 h dark) for 2 weeks before
transplanted to fresh soil and shifted to long day (16 h light, 8 h
dark) for various treatments.

Pathogen isolates, plant inoculation and disease
phenotyping

Four powdery mildew isolates belonging to distinct Erysiphe
species were used. They are E. cruciferarum UEA1 (Xiao et al.,
1997), E. cichoracearum UCSC1 (Adam and Somerville, 1996),
E. orontii MGH (Reuber et al., 1998), and Odium lycopersici Oxford
(Xiao et al., 2001). Method of inoculation was the same as previ-
ously reported (Adam et al., 1999; Xiao et al., 1997). The criteria for
scoring the DR phenotypes of the inoculated leaves at 10-12 dpi
with E. cichoracearum UCSC1 and E. orontii MGH were as follows:
0, no or very limited sporulation with HR. The fungal mycelia or
conidia were barely visible to the naked eye; 1, low level of sporu-
lation with weaker or delayed HR. Some white powdery mildew
could be seen on the tip or edge of the inoculated leaves; 2, mod-
erate sporulation without HR; 10-30% of the leaf surface was cov-
ered by powdery mildew; 3, heavy sporulation without HR; 30-60%
of the leaf surface was covered by powdery mildew; 4, very heavy
sporulation without HR. >60% of the leaf surface was covered by
powdery mildew. The disease phenotypes caused by E. crucifera-
rum UEA1 and O. lycopersici Oxford were generally weaker than
those caused by the other two isolates. The DR scores for these two
isolates were adjusted to the same 0-4 scale by setting the DR score
of Col-0 to 3. Quantitative assay of the susceptibility of some mutant
lines were carried out by a procedure briefed below. Five 6-week-old
plants for each genotype were sparsely and evenly inoculated with
dislodged E. cichoracearum UCSC1 conidia collected from infected
squash (Cucurbita maxima) leaves with a fine brush. Two fully
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expanded mature inoculated leaves from each plant were collected
and cleared in a solution containing ethanol, phenol, acetic acid and
glycerol (8:1:1:1, vol:vol) and were subsequently stained with TB
(250 ug mI™") in a solution of lactic acid, glycerol and water (1:1:1,
vol:vol) for visualization of fungal structure under a Nikon Optiphot-
2 light microscope (Nikon UK Ltd, Kingston Upon Thames, UK).
About 50 well-isolated fungal colonies from each genotype were
randomly chosen for counting the number of conidiophores pro-
duced. The average number of conidiophores per colony was used
to indicate the degree of susceptibility.

Isolation of P4-7 (npr1) and P8-1(pad4) mutants

Seeds of Col-0 line S5 carrying a single copy of RPW8.17and RPW8.2
were mutagenized with 0.5% EMS. About 25 000 M1 plants were
grown to maturity and seeds from approximately 500 M1 plants
were pooled. Approximately 35 000 M2 seedlings were inoculated
with E. cichoracearum UCSC1 and their disease phenotypes were
examined at 10-12 dpi. Susceptible mutants were first grouped by
complementation tests between themselves. Mutants P8-1and P4-7
were crossed with Ler (as the female parent), and approximately 50
F; families from each cross homogeneously resistant to Basta
(therefore homozygous for RPW8) and homogeneously resistant or
susceptible to E. cichoracearum UCSC1 were generated for initial
mapping. P8-1 and P4-7 mutants were then subject to comple-
mentation tests with eds7-2 and pad4-1, and with npri-1 respect-
ively. The mutations were identified by direct sequencing of the two
putative genes.

DNA construct and generation of transgenic plants

A 6.2 kb genomic fragment from Ms-0 carrying RPW8.1and RPW8.2
with their native promoters was cloned in SLJ75515 (construct EE6.2
in Xiao et al., 2001). Col NahG, eds1-2, pad4-1, eds5-1, npri-1, rar1-
10 and eds7-2/ndr1-1 mutant plants were transformed with this
construct by agroinfiltration, and T, transgenic plants were selected
by spraying herbicide ‘Challenge’ at a concentration of 0.02% (v/v)
for three times at a 2-day interval shortly after seed germination. T,
plants were monitored for the formation of SHL by the naked eye for
a period of 3-6 weeks after seed germination. For RPW8.1::GUS
analysis in Sb-edr1 plants, the RPW8.1::GUS construct (Xiao et al.,
2003b) was introduced into S5-edr1 by Agrobacterium-mediated
transformation. T, plants were selected on MS-agar medium con-
taining 50 mg I~! kanamycin (Melford Laboratories Ltd, Chelsworth,
UK). Three week-old T, seedlings were then transplanted into soil to
allow the development of SHL. GUS staining was carried out with
leaves from 5 week-old T, plants as previously reported (Xie et al.,
1998).

Other analyses

Methods for quantitative measurement of the mRNA levels of
RPW8.1, RPWS8.2, and PR1, for RNA gel blot analysis of RPW8 and
PR1 and for the detection of H,0, by DAB-TB staining, and for cell
death by lactophenol-TB staining were the same as reported in Xiao
et al. (2003b).
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