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WRKY transcription factors: from DNA binding towards
biological function
Bekir Ülker and Imre E Somssich1
WRKY proteins comprise a large family of transcription factors.

Despite their dramatic diversification in plants, WRKY genes

seem to have originated in early eukaryotes. The cognate

DNA-binding site of WRKY factors is well defined, but

determining the roles of individual family members in regulating

specific transcriptional programs during development or in

response to environmental signals remains daunting. This

review summarises the recent advances made in starting to

unravel the various functions controlled by WRKY proteins.
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Introduction
Ten years ago, Ishiguro and Nakamura [1] identified a

novel DNA-binding protein from sweet potato, desig-

nated SWEET POTATO FACTOR1 (SPF1). Similar

proteins were subsequently found in several plant

species (reviewed in [2]). Common to these proteins is

a DNA-binding region of approximately 60 amino acids

in length (the WRKY domain), which comprises the

absolutely conserved sequence motif WRKY adjacent

to a novel zinc-finger motif. This conservation led

us to rename this transcription factor family ‘WRKY’

[2,3]. The WRKY family has 74 members in Arabido-
psis (http://www.mpiz-koeln.mpg.de/~somssich/wrky_
irect.com
webpage/wrky_family/wrky_family_index.html) and more

than 90 members in rice. WRKY factors show high bind-

ing affinity to a DNA sequence designated the W box,

(C/T)TGAC(T/C) [2], although altered binding prefer-

ences have also been observed ([4]; I Ciolkowski, IE

Somssich, unpublished). W-box-dependent binding

activity requires both the invariable WRKY amino-acid

signature and the cysteine and histidine residues of the

WRKY domain, which tetrahedrally coordinate a zinc

atom [5].

Very little is known about the physiological processes and

developmental programs that require the functions of

WRKY proteins. Being transcriptional regulators, WRKY

factors should act by directing the temporal and spatial

expression of specific genes, thereby ensuring proper

cellular responses to internal and external stimuli. Since

the WRKY transcription factors were last reviewed [2],

a substantial number of WRKY-related publications

have appeared. Furthermore, the availability of micro-

array data (http://ssbdjc2.nottingham.ac.uk/narrays/

experimentbrowse.pl; http://www.Arabidopsis.org/tools/

bulk/microarray/analysis/index.jsp) describing gene ex-

pression on a global basis is providing valuable information

concerning the altered expression patterns of WRKY genes

under defined experimental conditions [6,7].

Origin of the WRKY genes
Until recently, WRKY proteins appeared to exist exclu-

sively in plants. All of the higher plants analysed to date

contain numerous members of the three major WRKY

groups, groups that differ in the number of WRKY

domains and in the pattern of the zinc-finger motif [2].

In lower plants, WRKY expressed sequence tags (ESTs)

have been identified from ferns (Ceratopteris richardii) and

mosses (Physcomitrella patens). We have isolated additional

WRKY representatives from P. patens, revealing that this

moss contains at least 12 distinct WRKY genes (D Wanke,

P Giavalisco, IE Somssich, unpublished). Interestingly,

although group-III members comprise about 20% of the

family in higher plants, none have been found in P. patens.
In Arabidopsis, nearly all group-III members respond to

diverse biotic stresses [8�,9�], suggesting that this group

has evolved late in land plants, perhaps as a consequence

of increasing environmental pressures. The green alga

Chlamydomonas reinhardtii contains only one WRKY
gene (a group-I gene that encodes two WRKY domains

[Figure 1]), which, based on the existence of ESTs,

appears to be expressed. GenBank database searches

now reveal the existence of WRKY group-I-like
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Group I WRKY genes in eukaryotes. (a) Schematic representation of a WRKY group I protein and the deduced amino-acid sequences of

the amino- and carboxy-terminal WRKY domains from Arabidopsis thaliana (At), Physcomitrella patens (Pp), Chlamydomonas reinhardtii (Cr),

Giardia lamblia (Gl) and Dictyostelium discoideum (Dd). Absolutely conserved amino-acid residues are highlighted by black boxes; asterisks

mark the invariant cysteines and histidines that are required to form the zinc-finger motif. Arrows indicate the positions of introns within the

WRKY domain of the respective genes. (b) The distribution of genes is plotted on a highly schematic phylogeny of relevant eukaryotic groups

as described by Simpson and Roger [51]. The distribution of WRKY genes in eukaryotic groups is indicated in bold and boxed text.
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sequences in two non-photosynthetic eukaryotes, one

in the slime mold Dictyostelium discoideum (accession

AAO52331) and one in the unicellular protist Giardia
lamblia (accession EAA40901; Figure 1). These findings

imply that group-I WRKY genes may represent the ances-

tral form and, importantly, that WRKY genes originated

some 1.5–2 billion years ago in eukaryotes, that is, before

the divergence of the plant phyla. Why they have

expanded so enormously in plants but appear to have

been lost in yeast and animal lineages is unclear.

Biological functions of WRKY factors
Expression modes of WRKY genes

The transcription of WRKY genes is strongly and rapidly

upregulated in response to wounding, pathogen infection

or abiotic stresses in numerous plant species [2]. Infection

of tobacco with Tobacco Mosaic Virus (TMV) or bacteria,

or treatment with fungal elicitors, salicylic acid (SA) or

H2O2, strongly induce several WRKY genes [10–13].

Pathogen-mimicking treatments also lead to the selective

upregulation of similar genes in rice [14,15], potato

[16,17], sugarcane [18], and camomile [19]. In Arabidopsis,
49 out of 72 tested WRKY genes respond to bacterial

infection or SA treatment [8�], and it is very likely that an

even higher percentage is activated throughout the over-

all plant defence response [9�]. This percentage of gene-

family members responding to biotic stress is high com-

pared to those of other multigene families that encode

plant transcription factors, suggesting that biotic stresses

may have played a key role in the expansion of the WRKY
family. Abiotic stresses such as wounding, drought, cold

adaptation and heat-induced chilling tolerance also in-

duce the expression of WRKY genes in plants [20–23].

The expression of several Arabidopsis WRKY genes is

strongly upregulated during plant senescence [6,22,24,

25]. In fact, WRKY transcripts constitute the second

largest group of Arabidopsis transcription factors in the

transcriptome of senescing leaves [26�].

Role of WRKY genes in defence signaling

Although the transcriptional regulation of defence gene

expression is pivotal for induced disease resistance [27],

direct evidence for the involvement of WRKY proteins in

this process remains limited. Circumstantial evidence

from microarray studies revealed an over-representation

of W-box elements (i.e. WRKY-binding sites) within the

promoters of a cluster of genes that are co-expressed

during systemic acquired resistance [28,29]. Recently,

however, the role of specific WRKY factors that are

associated with defence-induced mitogen-activated pro-

tein kinase (MAPK) signaling cascades has become appar-

ent [30,31]. Two Arabidopsis WRKY factors (AtWRKY22

and AtWRKY29) have been identified as important down-

stream components of a MAPK pathway that confers

resistance to both bacterial and fungal pathogens [31].

Expression of AtWRKY29 in transiently transformed

Arabidopsis leaves led to reduced disease symptoms,
www.sciencedirect.com
supporting the importance of AtWRKY29 in this signaling

event. In tobacco, TMV resistance is mediated by the

resistance gene N [32]. When a candidate gene approach

was used, downregulation of Nicotiana tabacum MAPK
KINASE1 (NtMEK1) and NtNTF6 (encoding a MAPK

kinase and a MAPK, respectively) and three tobacco

WRKY genes all compromised N-mediated resistance,

suggesting a vital role of WRKY factors in coordinating

defence gene responses in this pathway [33�]. Induction

of WRKY and defence genes, together with increased

W-box binding activity, was also observed during the

activation of a tobacco MAPK cascade that involves the

NtMEK2 kinase kinase and SA-induced protein kinase

(SIPK) [34�]. Further support for the involvement of

specific WRKY factors in pathogen-activated MAPK sig-

naling was obtained in parsley [35�] and barley (K-H Kogel,

pers. comm.). In tomato, evidence for direct phosphoryla-

tion of LpWRKY1 by two fungal-elicitor-induced protein

kinases was also observed (T Roitsch, pers. comm.).

Recently, Arabidopsis WRKY70 was identified as a com-

mon regulatory component of SA- and jasmonic acid

(JA)-dependent defence signaling, mediating cross-talk

between these antagonistic pathways [36�]. In addition,

AtWRKY70 overexpression increased resistance to viru-

lent pathogens and led to the constitutive expression of

SA-induced genes. Similarly, expression of a key regu-

lator of SA-dependent defence responses, NONEXPRES-
SOR OF PR1 (NPR1), is controlled by WRKY factors [37].

Arabidopsis plants that expressed AtWRKY18 showed ele-

vated levels of resistance towards a bacterial pathogen,

albeit in a development-dependent manner [38].

Genetic evidence linking a WRKY gene with resistance

came from studies of the interaction of Arabidopsis with

Ralstonia solanacearum, the causal agent of bacterial

wilt. Cloning of the resistance gene RESISTANCE TO
RALSTONIA SOLANACEARUM1 (RRS1) revealed it to

encode a protein that combines structural motifs similar

to those of other resistance proteins (TIR-NBS-LRR

[27]) with a WRKY domain [39]. RRS1/AtWRKY52 phy-

sically interacts with the corresponding bacterial aviru-

lence gene product, PopP2, and both colocalise to the

plant cell nucleus [40��]. Whether this atypical WRKY

factor acts as a transcriptional regulator remains to be

determined.

Role of WRKY genes in development

TRANSPARENT TESTA GLABRA2 (TTG2)/AtWRKY44,

the first WRKY gene whose function was unequivocally

determined, plays a key role in trichome development

[41��]. ttg2 mutants have unbranched trichomes that are

reduced in number, in addition to reductions in mucilage

production and tannin synthesis in the seed coat. WRKY

factors most probably co-regulate other developmental

programs such as senescence as well, but hard core

evidence to support this is scarce. In roots, numerous
Current Opinion in Plant Biology 2004, 7:491–498
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Arabidopsis WRKY genes are expressed in a specifically

localised domain, hinting that they have a specialised role

in cell maturation [42�]. A role in hormone signaling was

observed for the rice WRKY factor OsWRKY71, which

acts as a transcriptional repressor of gibberellin-respon-

sive genes [43]. In pepper, CaWRKY1 expression is

strongly upregulated in red fruit and may play an impor-

tant role in fruit maturation (CH Harn, pers. comm.). The

high abundance of WRKY ESTs present in plant cDNA

libraries generated from floral and embryonic material

could indicate that WRKY transcription factors have vital

functions in these tissues. Finally, a 64-kDa antifreeze

protein (STHP-64) from bittersweet nightshade was

identified as a WRKY transcription factor on the basis

of its cross-reactivity with a polyclonal antibody [20].

Defining WRKY functions in vivo

To date, traditional genetic approaches have not uncov-

ered functions for individual WRKY genes apart from

RRS1/AtWRKY52. When DNA-insertion lines are avail-

able, they provide an alternative to traditional approaches

that greatly facilitates the identification of numerous

Arabidopsis loss-of-function mutants (http://www.

Arabidopsis.org/links/insertion.jsp). For transcription factor

families, however, such mutants seldom exhibit altered

phenotypes, most probably because of partly overlapping

functional redundancy among individual members [44].

We have identified more than 40 WRKY knockout lines but

rarely observe phenotypic alterations under standard

growth conditions (B Ülker, N Kamphaus, A Zhou, IE

Somssich, unpublished). Nevertheless, these mutants are a

valuable source for the generation of multiple WRKY
knockout lines and for extensive phenotypic profiling

under defined stress and altered environmental conditions.

Ectopic overexpression can also provide information to

help define gene function [44]. How useful this approach

will be for WRKY factors remains unclear. For instance,

overexpression of AtWRKY6, AtWRKY18, AtWRKY53 or

AtWRKY70 always resulted in small stunted transgenic

plants. Nearly all such lines showed altered leaf morphol-

ogies and changes in flowering time ([25,36�,38]; U Zent-

graf, pers. comm.). On the other hand, clear differences

could be observed that were related, in particular, to the

expression of defense-associated marker genes and to the

response of some of these plants to certain pathogens.

Furthermore, varying sets of downstream candidate target

genes were identified in the lines overexpressing the

different WRKY transgenes, suggesting a certain degree

of specificity for the individual factors. Still, the pleio-
(Figure 2 Legend) Hypothetical model for WRKY/W-box-mediated transcrip

promoter elements of direct target genes are already bound by a set of WR

gene expression. Upon receptor-mediated recognition of a pathogen, a MA

[MKK]—MAPK [MPK]) is rapidly activated and ultimately results in the trans

this kinase directly modifies certain WRKY factors at the promoter of immedi

the expression of these genes. Consequently, WRKY1 protein levels in the

activation of secondary target genes such as PcPR10.

www.sciencedirect.com
tropic alterations seen in these plants will limit the

possibilities for interpreting in-vivo function(s) from

phenotypes.

Defining in-vivo target genes of WRKY factors
Identifying downstream target genes of WRKY factors

will be crucial in understanding their biological functions.

Currently, our knowledge rests mainly on the strong

ectopic expression of WRKY genes in transgenic plants,

protoplasts or leaves. Transient overexpression of

PcWRKY1 in parsley protoplasts led to the activation of

a reporter gene driven by the promoters of three potential

target genes, namely Petroselinum crispum PATHOGEN-
ESIS-RELATED 1-1 (PcPR1-1), PcWRKY1 and PcWRKY3
[45]. Similarly, transient expression of AtWRKY29 and

AtWRKY22 in Arabidopsis mesophyll-derived protoplasts

resulted in the activation of their own promoters as well as

that of the Arabidopsis receptor-like kinase gene FRK1/
SIRK, and in downregulation of GLUTATHIONE S-
TRANSFERASE6 (GST6) and RD29A [31]. cDNA-AFLP

analysis revealed putative target genes for AtWRKY6 that

are involved in leaf senescence, including FRK1/SIRK,

in transgenic plants that overexpressed AtWRKY6 [25].

Moreover, using microarrays, potential AtWRKY70 tar-

gets were detected on the genome scale [36�]. A set of 42

genes showed marked differences in expression in trans-

genic lines ectopically expressing AtWRKY70 in the sense

or antisense orientation compared to control plants.

Clearly, the major caveat of such experiments is that the

concentration of the respective transcription factor may

significantly exceed that found under physiological con-

ditions, thereby enabling interactions with otherwise low-

affinity binding sites. The chromatin immunoprecipita-

tion (ChIP) technique offers an attractive alternative for

monitoring DNA–protein and protein–protein interac-

tions in vivo under natural conditions and in a dynamic

manner [46]. Applying this method to parsley cells, we

confirmed that PcWRKY1 and PcPR1-1 are indeed in-vivo
targets of PcWRKY1 (F Turck, A Zhou, IE Somssich, un-

published). Surprisingly, however, these studies revealed

that whereas recruitment of PcWRKY1 to W-box-

promoter elements is transient and fungal-elicitor depen-

dent, the same elements are constantly occupied by other

WRKY factors even in the non-induced state. This obser-

vation hints towards a mechanism in which the initial

immediate-early activation of such target genes occurs

through a stimulus-triggered modification of the pre-

bound WRKY factors, rather than by the recruitment of

WRKY factors to the transcription complex at these
tional gene regulation. In non-induced parsley cells, W-box

KY factors that are inactive or participate in actively repressing basal

PK cascade (MAPK kinase kinase [MAPKKK]—MAPK kinase

location of the protein kinase (MPK) to the nucleus [47]. The activity of

ate-early-type genes such as PcWRKY1, thereby derepressing/activating

cell increase, resulting in the autoregulation of PcWRKY1 and in the

Current Opinion in Plant Biology 2004, 7:491–498
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promoters (Figure 2). The subsequent recruitment of

new WRKY factors might fortify the expression of these

genes or, alternatively, might downregulate their expres-

sion. As mentioned above, WRKY functions have been

linked to pathogen-induced MAPK cascades, and parsley

MAPKs are translocated to the nucleus upon elicitation

[47]. Thus, it is conceivable that protein kinases modify

WRKY factors that are already bound at promoter sites in

analogy to recent findings for the Hog1 MAPK in yeast

[48]. How general such a mechanism might be in planta
remains to be substantiated.

Conclusions
Unravelling WRKY functions remains an ambitious

long-term endeavour. We believe that the diversification

of this gene family was mainly in response to environ-

mental factors, particularly to pressures imposed by

diverse phytopathogens. Of imminent importance is to

uncover WRKY-interacting proteins that assist in regulat-

ing the transcription of genes and, furthermore, to iden-

tify the key components of upstream signal transduction

pathways with which they physically communicate.

Specific MAPKs and possibly also calcium-dependent

protein kinases (CDPKs) [49] can be expected to be

partners that modify distinct WRKY factors in such path-

ways. Global expression arrays, together with the use of

wrky mutant lines, will certainly aid in uncovering poten-

tial target genes. Taking this approach one step further,

microarrays that contain all intergenic DNA regions,

whose generation is now feasible for Arabidopsis and rice,

could be combined with ChIP assays to probe for specific

WRKY DNA-binding sites at a genome-wide level.

Integrating such data with similarly obtained information

on other transcription factors will allow us to identify

combinatorial gene expression programs, and to establish

transcriptional regulatory networks in plants like those

developed for yeast [50]. Finally, although the primary

sequences of hundreds of WRKY proteins from numerous

plant species are known, full appreciation of how these

factors assemble at DNA-binding sites to modulate tran-

scription will require structural information at atomic

resolution. Considering the size of this gene family, there

is little doubt that WRKY factors will keep us both

fascinated and busy in the coming years.
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