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In many plants, major developmental transitions such as

the initiation of flowering are synchronized to the chan-

ging seasons. Day length provides one of the environmen-

tal cues used to achieve this. We describe the molecular

mechanisms that measure day length and control flower-

ing in Arabidopsis. Also, we compare these mechanisms

with those that control flowering time in rice. This com-

parison suggests that components of the Arabidopsis reg-

ulatory network are conserved in other species, but that

their regulation can be altered to generate different phe-

notypic responses.
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Introduction

The life cycle of many plants is synchronized to the changing

seasons. This pattern of behaviour ensures that developmen-

tal transitions, such as the onset of flowering, occur under the

most appropriate environmental conditions and in many

locations is an essential aspect of the sessile growth habit

of plants. Fluctuations in day length (or photoperiod) and

temperature provide the information used to synchronize

these developmental decisions to the seasons. The mechan-

ism underlying photoperiodic responses has been of interest

since they were first described in detail in the 1920s (Garner

and Allard, 1920). A conceptual breakthrough was the reali-

zation that a circadian clock, an endogenous timing mechan-

ism with a cycle time or period length of approximately 24 h,

is the time-keeping mechanism required to measure day

length (Bünning, 1936; Thomas and Vince-Prue, 1997).

This was later refined as a coincidence model in which

exposure of a plant to light at a particular phase of a circadian

rhythm would trigger or repress a developmental transition

(Pittendrigh and Minis, 1964). Such a system would consist

of two parts: a circadian rhythm in a component that reg-

ulates the developmental response and whose activity is

controlled by exposure of the plant to light, and a light

signalling pathway that activates or represses the activity of

this component. Genetic analysis of the control of flowering

has identified genes that confer a photoperiodic response on

Arabidopsis and suggested a molecular basis for the coin-

cidence between circadian rhythms and light (Hayama and

Coupland, 2003; Yanovsky and Kay, 2003). In this review, we

describe the mechanisms that underlie the response to day

length in Arabidopsis, and how these are modified in other

plant species.

A regulatory pathway that induces
flowering of Arabidopsis in response
to photoperiod

Arabidopsis shows a strong photoperiod response in the

onset of flowering, and most strains (or accessions) flower

in spring or early summer as the days become longer. In

laboratory conditions, flowering occurs much earlier under

long days of 16 h light than under short days of 10 h light.

Mutations that disrupt these responses were isolated by

identifying mutants with a reduced response to day length

(Redei, 1962; Koornneef et al, 1991). These mutants fell into

two classes, those that flower later than wild-type plants

under long days but are unaffected under short days or,

alternatively, early-flowering mutants under short days.

Some of the mutations that cause early flowering under

short days also cause a general disruption of circadian

rhythms. In Arabidopsis, behaviours such as leaf movements

or the elongation of cells in the hypocotyl (Dowson-Day and

Millar, 1999) as well as the expression of around 6% of genes

(Harmer et al, 2000; Schaffer et al, 2001) are under circadian

clock control. The mutations that reduce day-length re-

sponses by causing early flowering under short days also

cause a general disruption of these circadian rhythms. These

include mutations in the EARLY FLOWERING3 (ELF3),

TIMING OF CHLOROPHYLL A/B BINDING PROTEIN1

(TOC1), LATE ELONGATED HYPOCOTYL (LHY) and

CIRCADIAN CLOCK ASSOCIATED1 (CCA1) genes (Table I).

The expression of these genes is also regulated by the

circadian clock, so that their mRNAs only accumulate in

the morning (LHY and CCA1) or the evening (TOC1 and

ELF3).

LHY, CCA1 and TOC1 may be part of the central mechan-

ism that generates circadian rhythms in plants. CCA1 and

LHY are similar in sequence and expression pattern (Schaffer

et al, 1998; Wang and Tobin, 1998), and are genetically

partially redundant (Alabadi et al, 2002; Mizoguchi et al,

2002). In the lhy cca1 double mutant or the toc1 single

mutant, circadian rhythms cycle faster and the plants flower
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earlier under short days than wild-type plants (Somers et al,

1998; Mizoguchi et al, 2002). LHY and CCA1 were proposed

to act along with TOC1 in a transcriptional feedback loop in

which TOC1, which is expressed only in the evening, pro-

motes the expression of LHY/CCA1 at dawn, and in turn

LHY/CCA1 repress the expression of TOC1 (Alabadi et al,

2001). In contrast, ELF3 does not appear to encode a central

component of the circadian clock but modulates light signal-

ling to the oscillator, so that exposure of elf3 mutants to

continuous light or long photoperiods stops circadian

rhythms (McWatters et al, 2000; Hicks et al, 2001; Liu et al,

2001b).

Mutations that reduce day-length responses by delaying

flowering under long days define a set of circadian-clock-

regulated genes. These include the CONSTANS (CO),

GIGANTEA (GI) and FLOWERING LOCUS T (FT) genes,

which were initially placed in the same genetic pathway

based on their mutant phenotypes and the genetic interac-

tions between the mutations (Koornneef et al, 1991). All of

these genes have now been cloned (Table I), and are circa-

dian clock regulated. Transgenic overexpression of each of

the genes in this group causes early flowering (Kardailsky

et al, 1999; Kobayashi et al, 1999; Borner et al, 2000; Lee et al,

2000; Onouchi et al, 2000; Samach et al, 2000).

Analysis of the effects of mutant alleles or transgenes on

the expression of genes within the pathway allowed their

order of action to be determined (Figure 1). Mutations in

LHY/CCA1 and TOC1 affect the temporal pattern of expres-

sion of later-acting genes such as GI, CO and FT (Suarez-

Lopez et al, 2001; Blazquez et al, 2002; Mizoguchi et al, 2002;

Yanovsky and Kay, 2002). The expression of GI is regulated by

LHY/CCA1, so that in the lhy cca1 double mutant the timing

of expression of GI occurs 4 h earlier under long-day condi-

tions (Mizoguchi et al, 2002). The major effect of gi muta-

tions on flowering appears to be through the regulation of CO

mRNA levels, because in gi mutants these are reduced and

the overexpression of CO in a gi mutant overcomes the late-

flowering phenotype (Suarez-Lopez et al, 2001). However, gi

mutations cause additional defects inducing circadian

rhythms to cycle faster under constant conditions, and im-

pairing red-light signalling from phytochrome B (Park et al,

1999; Huq et al, 2000), and the relationship of these effects to

the flowering phenotype is unclear. CO activates the expres-

sion of the downstream genes FT and SOC1 (SUPPRESSOR OF

OVEREXPRESSION OF CO 1) (Kardailsky et al, 1999;

Kobayashi et al, 1999; Borner et al, 2000; Lee et al, 2000;

Onouchi et al, 2000; Samach et al, 2000). The hierarchy of

gene action in the pathway suggested that the early-flowering

phenotypes caused by loss-of-function mutations of elf3, lhy,

cca1 and toc1 may be largely due to alterations in the timing

Table I Proteins involved in the response to day length in Arabidopsis

Proteins Putative biochemical function References

EARLY FLOWERING3 (ELF3) Nuclear protein proposed to act as a tran-
scriptional activator

McWatters et al (2000), Hicks et al (2001)
and Liu et al (2001b)

TIMING OF CHLOROPHYLL A/B BINDING
PROTEIN1 (TOC1)

N-terminus is similar to the receiver domain
of bacterial response regulators; C-terminus
is the plant-specific CCT domain

Strayer et al (2000)

LATE ELONGATED HYPOCOTYL (LHY) Myb domain DNA binding Schaffer et al (1998) and Wang and Tobin
(1998)

CIRCADIAN CLOCK ASSOCIATED1 (CCA1) Myb domain DNA binding Schaffer et al (1998) and Wang and Tobin
(1998)

CONSTANS (CO) Nuclear protein containing two B-box zinc
fingers; C-terminus CCT domain

Putterill et al (1995) and Robson et al (2001)

GIGANTEA (GI) Nuclear protein of unknown function Fowler et al (1999) and Park et al (1999)
FLOWERING LOCUS T (FT) Homology to RAF kinase inhibitor Kardailsky et al (1999) and Kobayashi et al

(1999)
SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS (SOC1)

MADS box transcription factor Borner et al (2000), Lee et al (2000) and
Samach et al (2000)

CRYPTOCHROME 2 (CRY2) Blue light photoreceptor involved in the post-
transcriptional regulation of CO

El-Assal et al (2001), Yanovsky and Kay
(2003) and Valverde et al (2004)

PHYTOCHROME A (PHYA) Red/far-red light photoreceptor involved in
the post-transcriptional regulation of CO

Yanovsky and Kay (2002), Johnson et al
(1994) and Valverde et al (2004)

PHYTOCHROME B (PHYB) Red light photoreceptor regulating the degra-
dation of CO protein at dawn

Guo et al (1998), Yanovsky and Kay (2002),
Cerdan and Chory (2003) and Valverde et al
(2004)

FLAVIN-BINDING, KELCH REPEAT, F-BOX
(FKF1)

Photoreceptor required to increase CO tran-
scription at dusk

Imaizumi et al (2003)

SOC1   FT

PHYA

CRY2

LHY
TOC1CCA1

ELF3

GI

Circadian clock

CO

Flowering

FLC Vernalization

FKF1

Figure 1 Molecular hierarchy that controls flowering of
Arabidopsis in response to photoperiod. Arrows between genes
represent promotive effects, whereas perpendicular lines represent
repressive effects.
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of expression of these circadian-clock-regulated genes that

control flowering time, particularly CO (discussed later)

(Strayer et al, 2000; Suarez-Lopez et al, 2001; Yanovsky and

Kay, 2002).

FT and SOC1 are among the most potent activators of

flowering, so that they cause extreme early flowering when

overexpressed (Kardailsky et al, 1999; Kobayashi et al, 1999;

Borner et al, 2000; Lee et al, 2000; Samach et al, 2000).

Furthermore, in addition to the response to photoperiod,

these genes are also regulated by other environmental con-

ditions that influence flowering time, such as exposure of

plants to low temperatures for extended durations that mimic

winter conditions (vernalization). Therefore, FTand SOC1 are

at the point of convergence of several flowering-time path-

ways and are often therefore described as floral integrators

(Mouradov et al, 2002; Simpson and Dean, 2002).

A coincidence model for CONSTANS
activation by photoreceptors

CO plays a central role in the photoperiod response pathway

by mediating between the circadian clock and the floral

regulators FT and SOC1 (Suarez-Lopez et al, 2001).

Furthermore, CO mRNA shows a striking temporal pattern

of expression that was proposed to provide a basis for the

regulation of the pathway by day length. Under long days the

mRNA peaks in the evening and stays high until the following

dawn, whereas under short days the mRNA peaks during the

night (Figure 2) (Suarez-Lopez et al, 2001). This suggested

that post-transcriptional regulation of CO by light specifically

under long days might be responsible for the activation of CO,

and thereby the response to long days. That the exact timing

of CO expression is important in distinguishing between long

and short days was also suggested by experiments in which

the temporal pattern of CO expression was altered using

mutants or by altering the length of the daily cycle from

24 h (Roden et al, 2002; Yanovsky and Kay, 2002). The toc1-1

mutant causes circadian rhythms to cycle faster under con-

stant light, and under short days causes CO mRNA abun-

dance to peak earlier. This earlier peak in CO mRNA under

short days occurs during the photoperiod rather than during

the night. Surprisingly, this effect of toc1-1 appears to be

specific to CO expression, and does not affect expression of

the upstream genes GI and LHY (Yanovsky and Kay, 2002).

Nevertheless, expression of CO mRNA during the photoper-

iod correlates with increased FT expression and early flower-

ing under short days, and these effects require CO function

since they are largely abolished in a co mutant.

A second approach to altering the phase of CO expression

involved changing the duration of the 24 h daily cycle. The

timing of expression of CO relative to the light–dark transi-

tions could be altered by maintaining the ratio of light to dark

within the daily cycle, but extending or shortening the cycle

from 24 h to 21 or 30 h (Roden et al, 2002; Yanovsky and Kay,

2002). This demonstrated a strong correlation between the

expression of CO in the light, increased expression of the

downstream gene FTand early flowering. Although the toc1-1

mutation and the alteration in cycle duration are likely to

affect the timing of expression of many clock-controlled

genes, the striking correlation between CO expression during

the photoperiod, upregulation of FT and early flowering

strongly suggested that post-transcriptional regulation of CO

by exposure to light is at least one mechanism by which

flowering of Arabidopsis is activated in response to long days.

Two molecular mechanisms underlying this activation of

CO by light were recently described. The stability of the CO

protein was shown to be regulated by light, so that in plants

exposed to blue or far-red light the protein accumulates in the

nucleus, but in darkness or red light the protein is absent

(Valverde et al, 2004). This correlates with blue and far-red

light being the most effective in promoting flowering. Also

genetic experiments demonstrate that the blue light photo-

receptors cryptochrome 1 and cryptochrome 2 as well as the

far-red photoreceptor phytochrome A both promote flowering

and stabilize the CO protein, whereas phytochrome B,

which is activated by red light, delays flowering and pro-

motes the degradation of CO protein (Johnson et al, 1994;

Guo et al, 1998; El-Assal et al, 2001; Yanovsky and Kay, 2002;

Cerdan and Chory, 2003; Valverde et al, 2004). This post-

transcriptional regulation of CO stability by light provides a

basis for the original proposal that the coincidence between

CO mRNA and exposure to light is required to promote

flowering.

An independent mechanism based on transcriptional reg-

ulation was also recently shown to regulate CO in response to

light (Imaizumi et al, 2003). Under long days, the broad peak

in CO mRNA is biphasic with one peak occurring in the light

prior to dusk and a second during the night. This first peak in

FT mRNA

CO mRNA
CO protein

FT mRNA

CO mRNA

CO protein

Figure 2 Expression patterns of the mRNAs of circadian-clock-
controlled genes CO and FT under long and short days. Under
short days (8 h light:16 h dark), CO mRNA expression peaks during
the night (upper panel), CO protein does not accumulate and the
downstream gene FT is not expressed. Under long-day conditions
(16 h light:8 h dark), the peak of CO mRNA expression partly
coincides with light (lower panel), the protein accumulates in the
nucleus and the expression of FT mRNA is activated. FT promotes
early flowering.
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mRNA abundance, which facilitates the coincidence between

CO expression and light, requires exposure to light. The

photoreceptor FKF1 (Table I) is required for the expression

of this peak, and mutations in FKF1 both delay flowering and

reduce CO expression at dusk (Imaizumi et al, 2003).

The responsiveness of CO activity to day length therefore

depends on regulation at several levels. Circadian clock

control of CO transcription underlies the system and restricts

CO expression to the later part of the day/night cycle. The

presence of light during the evening both enhances CO

transcription and stabilizes the protein in the nucleus ensur-

ing activation of the floral regulator FT. This requirement for

light ensures that CO activation and flowering only occur

under long days.

Interactions between the vernalization and
photoperiod responses

Natural accessions of Arabidopsis differ in their responses to

seasonal cues of day length and temperature. Summer annual

accessions germinate in spring or early summer and rapidly

flower in response to the long-day photoperiod. In contrast,

winter annuals typically germinate in summer, grow vegeta-

tively through the winter until the following spring and then

flower in response to exposure to long photoperiods the

following summer. Thus winter annuals do not respond to

inductive photoperiods in the first summer, but require

exposure to cold winter temperatures before they can re-

spond to long days the following summer. Winter and

summer annuals typically differ at one of two loci,

FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), and domi-

nant alleles at these loci in the winter annual are required to

confer a vernalization requirement (Simpson and Dean,

2002).

FLC encodes a MADS box transcription factor that is

expressed at high levels in winter annuals before vernaliza-

tion, and at lower levels when plants are exposed to cold

temperatures for several weeks (Michaels and Amasino,

1999; Sheldon et al, 1999). In addition, overexpression of

FLC in summer annual varieties causes a dramatic late-

flowering phenotype. Therefore, FLC encodes a repressor of

flowering, and high FLC levels correlate with the vernaliza-

tion requirement of winter annual varieties (Michaels and

Amasino, 1999; Sheldon et al, 1999). FRI encodes a protein

with unknown biochemical function (Johanson et al, 2000)

and is required to increase FLC mRNA abundance (Michaels

and Amasino, 1999; Sheldon et al, 1999). This effect is

dependent on functional FLC alleles as loss-of-function flc

mutations suppress the effect of FRI on flowering time.

The photoperiod and vernalization pathways respond to

different environmental signals, but these pathways converge

to regulate the expression of the same downstream genes, FT

and SOC1 (Borner et al, 2000; Lee et al, 2000; Samach et al,

2000; Michaels and Amasino, 2001). Transcription of FT and

SOC1 is activated by CO and repressed by FLC, which

represses SOC1 transcription by directly binding to its pro-

moter (Hepworth et al, 2002). Therefore, in winter annual

accessions, response to long days is prevented during the first

summer, at least in part because high FLC levels block the

capacity of CO to activate downstream genes.

Many other plant species show similar genetic variation

between summer and winter annual forms (Laurie, 1997),

and must also block the day-length response until they have

been exposed to winter conditions. CO function is conserved

(Yano et al, 2000; Griffiths et al, 2003) in distantly related

species, raising the possibility that antagonism between CO

and FLC orthologues may be the general basis of the winter

annual form. No FLC orthologues, however, have been iden-

tified outside the Cruciferae, suggesting that the role of FLC in

the vernalization response may not be widely conserved.

VRN1 is required in winter wheat varieties to confer a

vernalization response. A candidate for the VRN1 gene was

recently cloned and encodes a MADS box protein most

similar to APETALA1 (AP1) from Arabidopsis (Yan et al,

2003). vrn1 mutants contain a deletion in the promoter

region, suggesting that a negative regulator can no longer

repress VRN1 expression prior to vernalization and this lack

of repression promotes flowering. This is consistent with the

observation of low VRN1 mRNA levels before vernalization in

winter wheat varieties and increases in its mRNA levels after

vernalization (Yan et al, 2003). Therefore, no repressor

analogous to FLC has been described in monocotyledonous

plants, and how the photoperiod response is prevented prior

to vernalization remains unclear.

Diversity in photoperiodic responses

Control of flowering by photoperiod is widespread in the

plant kingdom, but the type of response can vary widely

between species (Thomas and Vince-Prue, 1997). For exam-

ple, short-day plants flower early under short days and late

under long days, and therefore show the reverse response to

Arabidopsis. The distinction between long- and short-day

response types has evolved independently in different fa-

milies of flowering plants. The grasses include the long-day

response plants wheat and barley as well as the short-day

response plants maize and rice, while in Nicotiana, a single

genus of dicotyledonous plants, long- and short-day response

types occur. Therefore, whether the molecular pathway de-

scribed in Arabidopsis is conserved in species showing

responses to short days is of importance, since this would

enable analysis of how the pathway is modified to generate a

short-day response and whether these modifications are the

same in different branches of the Angiosperm phylogeny.

Genetic analysis of photoperiod response in rice has

provided evidence that even in short-day plants distantly

related to Arabidopsis, the same components regulate photo-

period response. By identifying natural allelic variation af-

fecting photoperiodic control of flowering, the rice

orthologues of CO (Hd1 in rice) and FT (Hd3a in rice) were

shown to be required for flowering in response to short days

(Yano et al, 2000; Kojima et al, 2002). Hd3a is expressed at

higher levels under short days, which induce flowering, and

therefore is similar to the transcriptional upregulation of FT

detected under long days in Arabidopsis. Thus, transcrip-

tional upregulation of FT/Hd3a specifically under day lengths

that induce flowering is conserved in both species (Izawa

et al, 2002; Hayama et al, 2003). Furthermore, Hd1 and the

rice orthologue of GI (OsGI) regulate the expression of Hd3a

mRNA in rice. However, the relationship between Hd1 and

Hd3a appears to be reversed, with elevated Hd1 causing a

reduction in Hd3a expression. This relationship between Hd1

and Hd3a suggests that the role of Hd1 is to repress Hd3a

under long days and that this repression is relieved in short
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days leading to an upregulation of Hd3a and early flowering

(Hayama et al, 2003). Therefore, although both Arabidopsis

and rice CO/Hd1 regulate FT/Hd3a expression, their relation-

ships are reversed with CO activating FT whereas Hd1 re-

presses Hd3a.

Whether a similar mechanism operates in other short-day

plants remains to be tested, but at least the components have

been shown to occur in other species. CO-like genes have

been cloned from the short-day plant Pharbitis nil (Liu et al,

2001a; Kim et al, 2003), which is closely related to the

Nicotiana species, and show a similar pattern of diurnal

regulation to CO from Arabidopsis. Also, Maryland

Mammoth tobacco, which shows an absolute requirement

for exposure to short days to flower, will flower under long

days if it carries a transgene driving constitutive expression of

the Sinapis alba orthologue of SOC1. This suggests that

related MADS box proteins act downstream of the photoper-

iod response in Arabidopsis and short-day tobacco varieties

(Borner et al, 2000).

In addition to flowering, other developmental transitions

including tuberization in potato and the onset of dormancy in

the buds of perennial plants such as deciduous trees are

controlled by day length (Thomas and Vince-Prue, 1997).

Some of the proteins identified as regulating photoperiodic

control of flowering in Arabidopsis may also regulate these

other responses. Tuberization of potato is induced by short

days, and transgenic plants overexpressing the Arabidopsis

CO gene showed delayed tuberization, suggesting that potato

orthologues of CO may negatively regulate tuberization

(Martinez-Garcia et al, 2002).

At present our understanding of these processes is largely

at the genetic level, there is a need to extend this to include

the biochemical basis of the response in Arabidopsis, and

how the biochemical function of the constituent proteins is

altered to generate other photoperiodic response types. This

will provide an understanding of how the activity of this

pathway has been modified during evolution and provide

insights into how the flowering time of crop or horticultural

plants could be modified to generate novel flowering pheno-

types.
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