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Abstract

Plants are constantly exposed to environmental

changes and have to integrate a variety of biotic and

abiotic stress stimuli. Calcium-dependent protein

kinases (CDPKs) are implicated as important sensors

of Ca2+ ¯ux in plants in response to these stresses.

CDPKs are encoded by multigene families, and

expression levels of these genes are spatially and

temporally controlled throughout development. In

addition, a subset of CDPK genes responds to exter-

nal stimuli. Biochemical evidence supports the idea

that CDPKs are involved in signal transduction dur-

ing stress conditions. Furthermore, loss-of-function

and gain-of-function studies revealed that signalling

pathways leading to cold, salt, drought or pathogen

resistance are mediated by speci®c CDPK isoforms

Key words: Abiotic and biotic stress, calcium-dependent

protein kinases, cross-talk, signalling.

Introduction

Plants are remarkably responsive to a variety of environ-
mental stimuli, including pathogen attack, wounding, cold,
and drought stress and ¯uctuations in incident light.
Following the perception of a stress stimulus, various
signal transduction pathways are switched on resulting in
physiological changes in the plant cell. During the last
years, it became increasingly apparent that these signalling
pathways are not linear, but are actually part of more
complex signalling networks. The challenge of future
research will be to understand the individual signalling
cascades and their interactions.

Most biotic and abiotic stresses elicit an increase in
cytosolic free calcium concentrations (reviewed in Pandey
et al., 2000; Sanders et al., 2002; Trewavas and MalhoÂ,
1998). Speci®c responses to different stimuli could be
achieved through variations in the amplitude, duration,
location, and frequency of these Ca2+-spikes (McAinsh and
Hetherington, 1998). As Ca2+ is ubiquitous in stress
signalling, it may be an important node at which cross-
talk between pathways can occur.

Four major families of calcium-binding proteins have
been identi®ed in plants: calmodulins, calmodulin-like
proteins, calcineurin B-like proteins, and calcium-depend-
ent protein kinases (CDPKs) (Luan et al., 2002; Sanders
et al., 2002; Snedden and Fromm, 1998, 2001).

This review will focus on CDPKs, one of the largest
subfamilies of plant protein kinases. CDPKs possess a
characteristic structure in which an N-terminal serine/
threonine protein kinase domain is fused to a carboxy-
terminal calmodulin-like domain containing EF-hand
calcium-binding sites (Cheng et al., 2002; Harmon et al.,
2001). Therefore, CDPKs do not depend on the interaction
with exogenous calmodulin but can be activated directly
by Ca2+ binding. A junction domain between the kinase
and calmodulin-like domain functions as a pseudo-sub-
strate autoinhibitor that inhibits phosphorylation in the
absence of Ca2+ and keeps the CDPK in a state of low
activity (Harmon et al., 1994). The N-terminus is highly
variable, and some CDPKs contain N-terminal myristoyla-
tion or palmitoylation sites that act as membrane anchors
(Ellard-Ivey et al., 1999; Martin and Busconi, 2000;
Rutschmann et al., 2002). CDPKs comprise a gene family
that can be grouped into several subfamilies by phyloge-
netic criteria. This suggests potential functional diversi®-
cation such that single isoforms may confer different
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speci®cities. This update will summarize signalling
pathways known to involve CDPKs and will give hints
about how speci®city and cross-talk within the CDPK-
signalling and between signalling pathways could be
achieved.

Regulation of CDPK gene expression

The completed Arabidopsis genome sequence has revealed
34 genes encoding CDPKs. Sequencing projects in other
plants including soybean, tomato, rice, and maize also
indicate the presence of multigene families (Harmon et al.,
2001), but the reason for such a large number of CDPK
genes is not yet known. In this section, the current
knowledge of CDPK expression patterns and the stimuli
that affect gene expression is discussed (Table 1).

Generally, most CDPK genes are expressed in most of
the plant tissues examined. However, some CDPKs display
an isoform-speci®c expression pattern that was not only
organ- or tissue-speci®c but also dependent on growth
conditions (reviewed in Hrabak, 2000). For instance, levels
for several CDPK mRNAs are down-regulated by light,
including CpCPK1 (Curcubita pepo, Ellard-Ivey et al.,
1999), OsCPK2 (Oryza sativa, Breviario et al., 1995),
ZmCPK7 and ZmCPK9 (Zea mays, Saijo et al., 1997).
These results suggest a possible role for some CDPKs in
germination or in response to ¯uctuations in light intensity.

Changes in both calcium levels and protein phosphoryl-
ation, likely to be linked in part by CDPKs, are also
required for cold-induced freezing tolerance in plants
(Monroy et al., 1993). Exposure to cold temperatures has
been correlated with an increase in expression of CDPK
genes in various plant species. Interestingly, two CDPKs in
alfalfa, MsCK1 and MsCK2 were differentially expressed:
MsCK1 showed an induction during cold stress whereas,
under these conditions, MsCK2 gene expression was
down-regulated (Monroy and Dhindsa, 1995). In maize,
ZmCPK1 was transcriptionally induced by cold (Berberich
and Kusano, 1997) and the rice CDPK gene OsCPK7 also
showed transcriptional activation during high salinity
stress (Saijo et al., 2000).

Salt stress was shown to increase CDPK transcripts
levels in Arabidopsis. Either dehydration or exposure to
high concentrations of NaCl induced both AtCPK10 and
AtCPK11 (Urao et al., 1994). In mung bean (Vicia faba),
strong induction of VrCPK1 mRNA was observed in
shoots within 2 h after treatment with NaCl (Botella et al.,
1996). A similar response to drought or salt stress was
observed for McCDPK1 in common ice plant
(Mesembryanthemum crystallinum, Patharkar and
Cushman, 2000). Interestingly, these CDPK genes as
well as the ones described above and below as induced by
similar stresses do not necessarily group in the same CDPK
subfamilies.

Since phytohormones are implicated in drought and salt-
stress signalling, CDPK gene expression was also inves-
tigated after treatment with various plant hormones,
including gibberellin (GA), auxin (IAA), abscisic acid
(ABA), cytokinin or jasmonic acid (JA). Treatment of
potato plants with JA resulted in reduced mRNA-levels for
StCPK2 (Solanum tuberosum, Ulloa et al., 2002), whereas
cytokinin-treatment was reported to induce gene expres-
sion of CsCDPK3 (Cucumis sativus, Ullanat and
Jayabaskaran, 2002) and NtCDPK1 (Nicotiana tabacum,
Yoon et al., 1999). Tobacco NtCDPK1 was also found to
be responsive to GA and ABA (Yoon et al., 1999), whereas
mung bean VrCPK1 was only induced after treatment with
IAA (Botella et al., 1996).

Two other important sources for stress in plants are
wounding and pathogen attack. Again, CDPKs seem to be
involved in both signalling pathways. The ®rst CDPK
shown to be induced during wounding or treatment with
fungal elicitors was NtCDPK1 from tobacco. This CDPK
gene is also responsive to chitosan and methyl jasmonate, a
hormone implicated in disease resistance and also in the
wound response (Yoon et al., 1999). NtCDPK2 and
NtCDPK3, two other CDPK genes from tobacco, showed
mRNA up-regulation after race-speci®c elicitation as well
as osmotic stress (Romeis et al., 2001). Recently, the
tomato LeCDPK1 gene was reported to be transciptionally
induced after wounding or treatment with fungal elicitors
(Chico et al., 2002). Another example for the involvement
of a CDPK in the defence signalling pathway is
ZmCDPK10, a maize CDPK which is induced both during
a fungal infection and after treatment with fungal elicitors
(Murillo et al., 2001).

The constantly growing list of stimuli which regulate
CDPK gene expression also includes the induction by
mechanical strain for VrCPK1 (Botella et al., 1996),
anoxic stress for OsCPK2 (Breviario et al., 1995), heat
stress for MsCPK3 (Davletova et al., 2001) and calcium
chloride treatment for NtCDPK1 and VrCPK1 (Yoon et al.,
1999; Botella et al., 1996).

Regulation of CDPK enzyme activity

Whereas the regulation of CDPK gene expression levels
during various stress conditions has been described in a
variety of plant species, biochemical characterization of
the encoded proteins is generally lacking. Often, calcium-
dependent protein kinase activities were investigated
directly in crude protein extracts, but the corresponding
genes were not isolated (Table 1). Various studies
described changes in CDPK activities during osmotic
stress (Takahashi et al., 1997), cold stress (Martin and
Busconi, 2001), elicitation (Allwood et al., 2002),
embryogenesis (SwCDPK, Anil et al., 2000) or treatment
with sucrose (Iwata et al., 1998) and phytohormones (Abo-
El-Saad and Wu, 1995). Biochemical analysis has also
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revealed that speci®c phospholipids can enhance in vitro
substrate phosphorylation by CDPKs from oat (Schaller
et al., 1992), Arabidopsis (AtCPK1, Binder et al., 1994;
Harper et al., 1993), carrot (Daucus carota, DcCPK1,
Farmer and Choi, 1999), and maize (Zea mays,
ZmCPKp54, Szczegielniak et al., 2000) (Table 1). Some
of these phospholipids are known to act as second
messengers in plant signal transduction (Munnik et al.,
1998) and may elicit their effects, in part, through CDPKs.
Interestingly, the phospholipids regulating kinase activity

vary for each of the CDPKs studied, which may provide an
added layer of CDPK speci®city.

One of the best biologically characterized CDPKs is
NtCDPK2 from tobacco. This enzyme was initially
identi®ed in the Cf-9/Avr9 patho-system as a 68/70 kDa
calcium-dependent kinase activity that is biochemically
activated in response to race-speci®c elicitation (Romeis
et al., 2000). In transient expression assays epitope-tagged
NtCDPK2 showed a stress-induced transition from a
resting state to an activated state, which could be

Table 1. Signalling pathways involving CDPKs

Gene/Protein Species Transcriptional activation Biochemical activation Literature

±a French bean Fungal elicitor Allwood et al., 2002
±a Funaria hygrometrica Nitrogen, phosphorus and

suphur stress
Mitra and Johri, 2000

±a Maize Pollen development Estruch et al., 1994
±a Oat Phospholipids Schaller et al., 1992
±a Rice GA Abo-El-Saad and Wu, 1995
±a Rice Phospholipids Karibe et al., 1995
±a Rice Cold stress Martin and Busconi, 2001
±a Tobacco Sucrose Iwata et al., 1998
AtCPK1 Arabidopsis Phospholipids Binder et al., 1994:

Harper et al., 1993
AtCPK10 Arabidopsis Drought and salt stress Urao et al., 1994
AtCPK11 Arabidopsis Drought and salt stress Urao et al., 1994
CpCPK1 Zucchini White light, hypocotyl

developmentb
Ellard-Ivey et al., 1999

CsCDPK3 Cucumber White light, cytokinin
(differential induction
dependent on plant organ)

Ullanat and Jayabaskaran, 2002

DcCPK1 Carrot Phospholipids Farmer and Choi, 1999
LeCDPK1 Tomato Fungal elicitor, H2O2,

wounding
Chico et al., 2002

McCDPK1 Mesembryanthemum
crystallinum

Drought and salt stress Patharkar and Cushman, 2000

MsCK1 Alfalfa Cold stress Monroy and Dhindsa, 1995
MsCK2 Alfalfa Cold stressb Monroy and Dhindsa, 1995
MsCPK3 Alfalfa 2,4-D, heat stress Davletova et al., 2001
NtCDPK1 Tobacco Ca2+, GA, ABA, cytokinin,

methyl jasmonate,
wounding, fungal elicitors,
chitosan, salt stress

Yoon et al., 1999

NtCDPK2 Tobacco Fungal elicitor, osmotic stress Fungal elicitor,
osmotic stress

Romeis et al., 2001

NtCDPK3 Tobacco Fungal elicitor, osmotic stress Romeis et al., 2001
OsCPK1 Rice Seed development Kawasaki et al., 1993
OsCPK2 Rice White lightb, anoxic stressb,

seed development
Breviario et al., 1995;
Frattini et al., 1999

OsCPK7 Rice Cold and salt stress Saijo et al., 2000
R-SPSK Rice Pi Pagnussat et al., 2002
SPK Rice Seed development Kawasaki et al., 1993
StCPK1 Potato Tuberization Raices et al., 2001
StCPK2 Potato Jasmonic acidb Ulloa et al., 2002
SwCPK Sandalwood Embryogenesis, seed

development,
germination

Anil et al., 2000

VrCPK1 Mung bean Ca2+, IAA, cycloheximide,
mechanical and salt stress

Botella et al., 1996

ZmCPK1 Maize cold stress Berberich and Kusano, 1997
ZmCPK7 Maize White lightb Saijo et al., 1997
ZmCPK9 Maize White lightb Saijo et al., 1997
ZmCPK10 Maize Fungal infection and fungal elicitor Murillo et al., 2001
ZmCPKp54 Maize Phospholipids Szczegielniak et al., 2000

a CDPK activity investigated in protein crude extract, no gene name available.
b Supression of gene transcription.
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visualized by an electrophoretic mobility shift as had also
been described for the 68/70 kDa CDPK. This mobility
shift was due to phosphorylation of NtCDPK2. Immuno-
complex kinase assays suggested that the shift is correlated
with an increased enzymatic activity. Notably, the
response of NtCDPK2 to elicitation was more pronounced
and sustained compared with an osmotic stress response
(Romeis et al., 2001). Thus, the enzyme appears to be
involved in both signalling pathways and its speci®city is
provided by alterations in extent and duration of activation
depending on the incoming stimulus.

Speci®city of CDPK signalling

Although CDPKs have been implicated to act as key
regulators of many signalling pathways, very little is
known about which particular CDPK acts as the calcium
sensor in each case. Modern techniques such as reverse
genetics or ectopic protein expression facilitate the inves-
tigation of speci®c CDPK isoforms in certain signalling
pathways (Table 2). In this section it will be described how
these techniques were used to elucidate the speci®city of
certain CDPK signalling pathways.

The mRNA levels for the rice gene OsCDPK7 increase
in response to cold and salt stress, suggesting a function for
this CDPK in the corresponding signalling pathways.
Remarkably, transgenic rice plants with altered OsCDPK7
protein levels showed an altered tolerance to cold, drought
and salt stress (Saijo et al., 2000). The extent of tolerance
of these plants correlated with the level of OsCDPK7
expression: overexpression increased whereas suppression
of OsCDPK7 expression lowered the stress tolerance.

These results con®rmed that OsCDPK7 has an important
role in the tolerance to both cold and salt stress in rice.
From previous gene expression data it was assumed that
another rice CDPK, OsCDPK2, may have a function in
seed development or in response to light changes
(Breviario et al., 1995; Frattini et al., 1999). Over-
expression of the full length OsCDPK2 in transgenic rice
lines con®rmed its function in seed development: the seed
development in these plants was arrested at a very early
stage leading to an overall inhibition of seed formation
(Morello et al., 2000). Asano et al. (2002) described the
involvement of a second rice CDPK, SPK, in seed
development which is consistent with its speci®c expres-
sion in developing seeds (Kawasaki et al., 1993). As the
SPK gene expression pattern was very similar to that of
enzymes involved in storage starch biosynthesis (of which
some are known to be regulated by phosphorylation, Huber
et al., 1996), it was suggested that SPK may be involved in
the regulation of starch biosynthesis. Supporting this
assumption, antisense SPK rice transformants lacked the
ability to accumulate storage products such as starch,
resulting in watery seeds with a delayed development
(Asano et al., 2002).

The expression of a C-terminally truncated, constitu-
tively active CDPK allele in a maize protoplast system
allowed Sheen (1996) to establish a role for the
Arabidopsis AtCPK10 and AtCPK30 in activating cold,
drought and salt stress response pathways. Notably, in the
these studies AtCDPK10 and AtCDPK30 were speci®cally
mediating cold and salt stress signalling, whereas the
ectopic expression of other CDPK family members had no
effect on the signalling pathway investigated (Sheen,

Table 2. Functional studies for selected CDPK isoforms

Name Effect of ectopic rexpression/constitutive activation Effect of silencing Literature

AtCPK1 Increased NADPH oxidase activitya Xing et al., 2001
AtCPK10 Constitutive activation of ABA-responsive genesb Sheen, 1996
AtCPK30 Constitutive activation of ABA-responsive genesb Sheen, 1996
Maize pollen CDPK Disruption of pollen

germinationc
Estruch et al., 1994

NtCDPK1 Defects in cell division and
differentiation, constitutive
defence responsed

Lee et al., 2003

NtCDPK2 Induced defence responsesb Reduced defence responsesd Romeis et al., 2001;
unpublished

OsCDPK2 Disruption of seed developmenta Morello et al., 2000
OsCDPK7 Increased cold/salt/drought tolerancea Decreased cold/salt/drought

tolerancee
Saijo et al., 2000

SPK Delay in seed development,
defect in starch accumulation,
reduction of sucrose degradationf

Asano et al., 2002

a Expression of full length protein.
b Expression of truncated protein.
c Antisense oligonucleotides.
d Virus-induced gene silencing.
e Sense co-supression.
f Antisense transgenic lines.
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1996). The AtCPK10 gene expression had previously been
shown to be induced by the same stress stimuli (Urao et al.,
1994), con®rming that this particular Arabidopsis CDPK is
responsive to changes in the osmotic potential of the
environment. In tobacco, both NtCDPK2 and NtCDPK3
were transcriptionally up-regulated in response to elicita-
tion and osmotic stress. The hypersensitive response (HR)
is a defence response typical in gene-for-gene interactions.
Virus-induced gene silencing of the NtCDPK2/3 gene
family resulted in a reduced HR after race-speci®c
elicitation (Romeis et al., 2001). These results suggested
that NtCDPK2 and/or closely related subfamily members
were indeed required in a defence-related signalling
cascade. Furthermore, by ectopically expressing truncated
NtCDPK2 or NtCDPK3 variants the speci®city of
NtCDPK2 signalling was investigated. Nicotiana
benthamiana leaves expressing a truncated NtCDPK2
variant, which only consisted of the variable and kinase
domain, responded to a weak abiotic stress stimulus with
an HR-like necrosis. In addition, enhanced production of
reactive oxygen species (ROS) and an induction of plant
defence-related genes were observed. By contrast, an
homologous isoform, NtCDPK3, was unable to induce
such defence responses including the HR-like cell death
(AA Ludwig, JDG Jones, T Romeis, unpublished results).
This clearly indicates that NtCDPK2 kinase, but not the
closely related NtCDPK3 protein, is speci®cally involved
in the plant defence response.

Interestingly, the Arabidopsis AtCPK1, which belongs
to the same CDPK subfamily as NtCDPK2, has also been
implicated in the plant defence response. Overexpression
of AtCPK1 in a heterologous tomato protoplast system
resulted in an enhanced NADPH oxidase activity and
increased production of ROS (Xing et al., 2001). The
release of ROS is one of the earliest responses during a
plant defence to pathogen attack and calcium is well
known to play an important role in both the production of
ROS and the establishment of the hypersensitive response
(Blumwald et al., 1998; Piedras et al., 1998). In this
scenario, a CDPK functions as a calcium sensor, and the
plasma membrane bound NADPH oxidase would be one of
its phosphorylation targets (Blumwald et al., 1998; Romeis
et al., 2000; Xing et al., 1997).

CDPK-mediated cross-talk between signalling
pathways

Cross-talk can be de®ned as the interaction of two or more
different signalling pathways. Various stress stimuli could,
for instance, converge at one signalling component,
resulting in the same downstream response.
Alternatively, different parallel signalling pathways
could interact and affect each other's outcome, either in
an additive or a negative regulatory way. Usually, when
stress signalling pathways are examined, they are

considered in isolation from other stresses to simplify
interpretation. Techniques such as silencing or over-
expression of certain signalling components may con®rm
their role in particular pathways, but often, as long as
alterations in protein abundance do not result in obvious
phenotypic effects, their function in other signalling
pathways may still remain unnoticed. As for CDPKs, little
is known about if and how they participate in cross-talk
between different signalling pathways.

A good example where cross-talk between the signalling
pathways seems likely is the response to wound stress
(abiotic) and pathogen attack (biotic). Wounding of plant
tissue may not only trigger speci®c responses for tissue
healing but, in addition, activate defence responses to
prevent further damage caused by pathogen infection.
Evidence for the cross-talk between wound- and defence
stress responses is accumulating: both trigger the produc-
tion of reactive oxygen species, activate jasmonate and
ethylene phytohormone signalling pathways, and induce
the activation of genes coding for basic pathogenesis-
related proteins (Kunkel and Brooks, 2002; LeoÂn et al.,
2001; Wasternack and Parthier, 1997). It has been reported
that plant±pathogen interactions and wounding may be
interlinked at the level of MAPKs (Romeis et al., 1999).
Recent data suggest that CDPKs are also multifunctional,
being involved in different signalling pathways and
potentially acting as switches between these pathways.

NtCDPK2 is activated both by hypo-osmotic stress
(in®ltration of water) and during the plant defence
response (Romeis et al., 2001). Dependent on the incom-
ing stress stimuli, NtCDPK2 enzyme activation varied in
strength and duration (Romeis et al., 2001). It seems that a
short and weak NtCDPK2 activation after an osmotic
stress stimulus solely results in the induction of the wound
signalling pathway, whereas a much stronger and sustained
elicitation may lead to a plant defence response. A
functional cross-talk between abiotic and biotic signalling
pathways became evident upon overactivation of
NtCDPK2: N. benthamiana leaves expressing a truncated
NtCDPK2 allele showed, upon treatment with a mild
abiotic stress stimulus (like wounding with a forceps or
in®ltration of water), a biotic (pathogen-related) stress
response including an HR-like necrosis (AA Ludwig, JDG
Jones, T Romeis, unpublished results). It will be of
particular interest to learn how this cross-talk correlates
with changes in levels of speci®c phytohormones, in
particular JA and ethylene, since both are involved in a
plant's wound and pathogen defence response.

Two other CDPKs, NtCDPK1 from tobacco and
OsCDPK7 from rice, also have been implicated in two
different signalling pathways and it is likely that they
function as cross-talk mediators between the pathways.
NtCDPK1 is induced after wounding and treatment with
phytohormones, high salt or fungal elicitors (Yoon et al.,
1999). N. benthamiana plants with reduced levels of
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NtCDPK1 show severe abnormalities in cell morphology,
spontaneous necrotic lesions and increased expression of
marker genes for the plant defence response (Lee et al.,
2003). Cellular defects caused by abnormal cell division
and differentiation might induce programmed cell death in
the affected tissue. It can be suggested that plant cell
development and defence response are interconnected at
the level of NtCDPK1. Lee et al. (2003) propose that
NtCDPK1 may receive hormone signals to regulate cell
division and differentiation. Through interaction with and
phosphorylation of the 26S proteasome regulatory subunit
NtRpn3 this CDPK may regulate proteasome activity,
thereby adjusting the degradation of regulatory
components depending on developmental and environ-
mental stimuli (Lee et al., 2003).

Ectopic expression of OsCDPK7 conferred both cold
and salt/drought tolerance in rice plants (Saijo et al., 2000).
Interestingly, OsCDPK7 overexpression enhanced only
the transcription of salt- and drought-responsive, but not
cold-responsive target genes. Thus, it was suggested that
cold and salt/drought tolerance is promoted through
distinct pathways and that both signalling cascades cross-
talk at the level of OsCDPK7.

So far, there is no experimental proof for an interaction
between CDPKs with other signalling pathways. Several
studies demonstrate that plant mitogen activated protein
kinases (MAPKs) integrate signals arising from diverse
stress stimuli (reviewed in Jonak et al., 2002; Zhang and
Klessig, 2001). In tobacco, for example, the two MAPKs,
salicylic acid-induced protein kinase (SIPK) and wound-
induced protein kinase (WIPK), were activated during a
plant defence response and also by wounding (Romeis
et al., 1999; Seo et al., 1995; Zhang and Klessig, 1998;
Zhang and Liu, 2001). It remains to be determined whether
important interactions occur between members of the
MAPK or CDPK families, and whether cross-talk also
occurs between MAPK- and CDPK-dependent pathways.

Conclusions

Signalling pathways have to be regarded as complex
networks. Multiple points of convergence and divergence
that enable signal integration at different levels, and
provide the molecular basis for appropriate downstream
responses characterize these signal transduction networks.

CDPK-mediated signalling is envisaged to operate at
three levels. Firstly, different stress stimuli can induce
speci®c calcium signatures in certain parts of the cell.
Secondly, these variations in calcium concentrations will
activate speci®c CDPK isoforms, which can themselves be
differentially expressed within the plant or upon external
stimuli. Dependent on the calcium signature, the extent
and duration of CDPK enzyme activation will vary, having
a direct effect on the phosphorylation status of its

downstream targets. Thirdly, CDPKs most likely partici-
pate in cross-talk between signalling pathways.

The major challenge of the future will be to elucidate
which CDPK isoform functions in and interacts with which
pathway. It was expected that with the completion of the
Arabidopsis genome project and the availability of
knockout libraries, the analysis of CDPK genes implied
in certain signalling pathways would be accelerated.
However, so far no clear physiological function could be
allocated to CDPK isoforms based on the phenotypic
analysis of single knockout lines. Due to possible redun-
dancy in CDPK functions (Sheen, 1996), the simultaneous
inactivation of highly homologous CDPKs, either by
crossing respective single knockout lines or based on an
RNAi cosuppression approach, may therefore be neces-
sary. Combined with new technologies like microarrays,
researchers will be able to examine the effect of altered
CDPK protein levels on the total mRNA expression
pro®le. This will lead to a better understanding of the
interaction between signalling pathways in plants.
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