
Finding Patterns in Strings using Suffixarrays

Herman Stehouwer
Tilburg University

Tilburg Centre for Cognition and Communication

Tilburg, The Netherlands

Email: J.H.Stehouwer@uvt.nl

Menno van Zaanen
Tilburg University

Tilburg Centre for Cognition and Communication

Tilburg, The Netherlands

Email: M.M.vanZaanen@uvt.nl

Abstract—Finding regularities in large data sets requires im-
plementations of systems that are efficient in both time and space
requirements. Here, we describe a newly developed system that
exploits the internal structure of the enhanced suffixarray to find
significant patterns in a large collection of sequences. The system
searches exhaustively for all significantly compressing patterns
where patterns may consist of symbols and skips or wildcards.
We demonstrate a possible application of the system by detecting
interesting patterns in a Dutch and an English corpus.

I. INTRODUCTION

S
YSTEMS that analyze large collections of sequential data,

such as when searching for regularities in collections

of texts, place strict requirements on the efficiency. Trivial

implementations of such systems often yield correct results,

but either take too long or use too much internal memory.

These trivial implementations lead to limitations on the size

of the data set that can be handled practically.

In this paper we propose a novel implementation of a system

that can be used to search for regularities in sequential data.

We show the practical applicability by searching for patterns in

large text collections in two different languages. At the time of

publication the source code of the implementation is publicly

available on the web at http://ilk.uvt.nl/~stehouwer/.

To search the data sets efficiently, we initially used a

data structure called a suffixtree. Suffixtrees are well-known

data structures with many applications within the fields of

bioinformatics, natural language processing, and many others.

Ukkonen introduced an efficient online construction algorithm

for suffixtrees in [9].

More recently, a similar data structure called suffixarray is

often used instead of suffixtrees to search sequential data. A

suffixarray is an ordered list of all suffixes in a sequence. This

data structure was introduced in [6].

The reason for choosing suffixarrays instead of suffixtrees

is the relatively large memory requirements of the suffixtrees.

Gusfield discusses suffixtrees, their construction, and complex-

ity requirements in great detail in his book [4]. The worst-case

complexity of memory utilization of a suffixtree is Θ(m|Σ|)
with m the length of the sequence and Σ the alphabet. This

results in a suffixtree that can be searched in linear time (linear

in the size of the search sequence). In contrast, suffixarrays are

linear in their space utilization, regardless of the alphabet |Σ|.
In practical terms, a suffixtree build on the first 500.000

sentences from the British National Corpus took up 2.2GB.

The suffixarray on the other hand only used 0.25 GB of main

memory to be able to access the same data. From the last

10.000 sentences of the same corpus we generated a set of

70.000 queries. The suffixtree answered these queries in about

3 minutes, where the suffixarray system took around an hour.

Whereas usable suffixtree implementations can be found

online1, implementations of suffixarrays that we found avail-

able all have drawbacks. Often, the implementation limits the

maximum size of the alphabet, which makes them unsuitable

for our use.

In [1] several improvements to the original suffixarray data

structure are combined to form what the authors call the

enhanced suffixarray. One enhancement added to the enhanced

suffixarray is the implementation of an encoding of an implicit

tree structure. It is this implicit suffixtree structure that we will

use in the application we describe here that allows us to find

interesting patterns.

In this paper we will start by outlining the suffixarray data

structure as well as its enhanced version. We concentrate on

the implicit suffixtree structure that is made available through

the enhancements. We will then show an application that finds

patterns with skips (also called wildcards) in natural language

data using suffixarrays by using the implicit suffixtree struc-

ture. Based on this application we show some experimental

results on Dutch and English and in our conclusion we will

suggest other possible applications of this kind of pattern

finding.

II. SUFFIXARRAYS

In this section we will describe the techniques behind

suffixarrays and their enhanced version.

A. Regular Suffixarrays

As introduced in [6] suffixarrays are relatively simple data

structures that contain a lexicographically ordered list of all

suffixes of the input sequence. The array does not contain

explicit copies of the suffixes, but stores information on the

suffixes implicitly in the form of an index on the original

input. This means that much less memory is needed to store

the suffixes compared to suffixtrees.

To build a suffixarray, we initialize an array of indexes

describing all suffixes of the input sequence. This array is then

1See for instance http://ilk.uvt.nl/~menno/research/software/suffixtree.

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 505–511

ISBN 978-83-60810-27-9

ISSN 1896-7094

978-83-60810-27-9/09/$25.00 c© 2010 IEEE 505



sorted. When using a regular, efficient, sort algorithm, sorting

takes n log n time. However, the ordering of the prefixes

(of the suffixes stored in the array) can depend on multiple

consecutive positions in the original input. This means that

we have to perform sequence comparison which may need

symbol comparisons of at most n positions. This results in a

naive construction time of n2 log n for a sequence of length

n.

During the last several years, many sorting algorithms have

been developed that can construct a suffixarray more efficiently

in time requirements. The fastest algorithms run in Θ(n) time.

These build a suffixtree first (which can be done in linear time)

and then obtaining the sorted suffixes by a simple traversal of

the suffixtree. Unfortunately, these algorithms need working

space of at least 15× n [7].

In [7] a reasonably fast algorithm is proposed that needs

working space of only 5×n. This algorithm works by partially

sorting the array into buckets which have the same x position

prefix and afterwards sorting each of these buckets with a blind

trie. This strategy is called deep-shallow sort.

An interesting aspect of suffixarrays is that suffixes that

share a common prefix are grouped together in the array. This

means that it can be used to locate the position and number

of all infixes of an input sequence. This is done by finding all

suffixes that start with the given infix. Since they are grouped

together, they can be found efficiently.

B. Enhanced Suffixarrays

Several extensions to the regular suffixarrays have been

proposed. The ones we will use (and have implemented) are

described in [1]. The extensions combined with a regular suf-

fixarray makes up an enhanced suffixarray. This data structure

provides, among others, a different way of viewing the data,

which is very similar to a suffixtree.

The enhancements store some information explicitly, which

means that they require some additional storage in the shape of

arrays. The first of those is the longest-common-prefix (or lcp)

array. This array, parallel to the regular suffixarray, denotes

the size of the prefix shared with the previous element. For

instance, if the first element is aard and the second aardvark

then the second element would have an lcp value of 4 as it

shares a prefix of length four with the previous element in the

suffixarray. This lcp array can be efficiently constructed in a

single pass over the regular suffixarray.

The lcp values can be used to define the intervals, so called

lcp intervals. An lcp interval can be seen as defining the

interval corresponding to range of suffixes (in the suffixarray)

with a specific prefix. An interval [i . . . j], 0 ≤ i < j ≤ n

with n the length of the sequence, is an lcp interval of the lcp

value l if the following conditions hold (lcptab denotes the lcp

array):

1) lcptab[i] < l,

2) lcptab[k] ≥ l for all k with i+ 1 ≤ k ≤ j,

3) lcptab[k] = k for at least one k with i+ 1 ≤ k ≤ j,

4) lcptab[j + 1] < l.

TABLE I
AN ENHANCED SUFFIXARRAY ON THE SEQUENCE S = acaaacatat

INCLUDING ITS LCPTAB AND CHILDTAB. THE FIELDS 1, 2 AND 3 OF THE

CHILDTAB STAND FOR THE UP, DOWN AND NEXTINDEX FIELDS

RESPECTIVELY. THIS EXAMPLE IS TAKEN FROM [1].

childtab
i suftab[i] lcptab[i] 1. 2. 3. S[suffix]

0 2 0 2 6 aaacatat$

1 3 2 aacatat$

2 0 1 1 3 4 acaaacatat$

3 4 3 acatat$

4 6 1 3 5 atat$

5 8 2 at$

6 1 0 2 7 8 caaacatat$

7 5 2 catat$

8 7 0 7 9 10 tat$

9 9 1 t$

10 10 0 9 $

[0-1]-aa [2-3]-ac [4-5]-at

[1-5]-a [8-9]-t[6-7]-c

[0-10]

Fig. 1. An enhanced suffixarray on the sequence S = acaaacatat produces
the lcp interval tree shown. This example is taken from [1].

The lcp intervals can have smaller lcp intervals embedded

within them recursively. These recursive intervals can be seen

as a tree structure and is called an lcp interval tree. This lcp

interval tree is implicit. Furthermore, it has the same structure

as the suffixtree if it were built based on the sequence in the

suffixarray.

We would like to be able to access the implicit suffixtree

structure in an efficient way. In order to do this we store

the jumps through the suffixarray that we need for top-down

traversal of the implicit suffixtree in an extra support array.

This extra support array is called the child table in [1].

With this extra information we can determine the longest-

common-prefix and its child intervals for each interval with

a simple array lookup. For this to work we need to start

with a valid interval. Luckily the interval [0 . . . n] is always

valid.

The construction of the child table can be done, just like the

lcp value array, in a single pass over the suffixarray. However,

building the child table depends on the presence of the lcp

table, so after constructing and sorting the regular suffixarray

we have to perform two more passes over the suffixarray to

fill the support structures that allow access to the implicit

suffixtree structure.

506 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010



An example of a regular suffixarray enhanced with the lcp

values and the childtab can be found in Table I. We also show

the corresponding lcp interval tree in Figure 1.

III. RELATED PROGRAMS

In order to understand the context of the suffixarray-based

patternfind program we will briefly describe related systems

that are available.
The Ngram Statistics Package [2] can perform statistical

tests on n-grams sampled from a window of size k. Effectively,

this means that the package can look for sparse n-grams. It

supports many statistical tests such as the Dice Coefficient,

Fishers test, and Mutual Information. The Ngram Statistics

Package is available on Pedersen’s website at http://www.d.

umn.edu/~tpederse/nsp.html.
Daciuk has developed several Finite-State based libraries

and tools, including one for compressing FSA-based language

models [3]. Such compression is related to the approach

we take to find patterns with our patternfind software. This

software is available at http://www.eti.pg.gda.pl/katedry/kiw/

pracownicy/Jan.Daciuk/personal/fsa.html.
There are also software packages available for extracting

significant n-grams and for performing statistical subsequence

reduction as described in [8]. One implementation is that

of Zhang, which is available at http://homepages.inf.ed.ac.uk/

lzhang10/ngram.html.
PAFI is a piece of software for finding frequents patterns

in large and diverse databases. In [5] some of the (graph-

based) techniques that underly the system are described. The

program is available from http://glaros.dtc.umn.edu/gkhome/

pafi/overview together with related software.

IV. IMPLEMENTATION

Our implementation of the suffixarray is done in template-

based C++. This leads to an extremely flexible implementation

while making only limited demands on the container type. The

template types used in the suffixarray must support only the

following basic functionality:

1) The subtype has to support the following operators:

a) The comparison operator <,

b) The comparison operator >,

c) The comparison operator ! =,

d) The comparison operator ==,

e) The assignment operator =,

f) The increment operator: ++,

g) The output operator: <<.

2) The type contents must be accessible via several ways:

a) Via the [x] construct,

b) Via the iterators x.begin() and x.end(),

c) Via the const_iterators x.begin() and x.end().

Furthermore, when building a suffixarray, the input se-

quence must end with a unique element that is largest when

compared to any other element in the sequence according to

the comparison operators. This additional requirement allows

us to eliminate several bounds checks in the heart of the sorting

code.

In our implementation of the suffixarray algorithm, space

utilization for a data collection of length n is

n× sizeof(index) + 4× n ∗ sizeof(symbol) + exceptions

This includes the additional arrays that are used to implement

the enhancements as described in Section II-B.

In practice, building the suffixarray using our implemen-

tation is very time efficient (approximately 2–3 minutes for

1 million natural language sentences). However, for input

sequences that have a high longest-common-prefix (lcp), our

implementation will not be particularly efficient, due to the

nature of the sorting stage. We use a deep-shallow sorting

strategy with a blind trie, which was introduced by Manzini

and Ferragina in [7]. Natural language data, however, which is

our area of interest, is sorted very efficiently as it is by nature

low in lcp.

We have implemented the enhancements that are needed for

the implicit suffixtree structure as described in [1]. The hints

and algorithms described in the article form the basis of the

practical implementation.

V. PROGRAMS

The package contains three user programs. The usage of

these programs will be described in more detail in the next

three sections.

A. Patternfind

The pattern finding program looks for frequently occurring

skip-grams as patterns. A skip-gram is similar to a regular n-

gram with the possibility of containing non-consecutive skip

positions. A skip represents a wildcard, which may match any

number of arbitrary symbols. In article we will refer to such

skip positions in patterns as *SKIP* . In Figure 2 a simple

skip-gram is shown visually in a simple tree-structure.

1) Implementation: The pattern finding is done as an

exhaustive, breadth-first search over the implicit suffixtree

with pruning. During the search, the internal representation

keeps track of the pattern represented so far, for instance A

*SKIP*A, together with a set of [lcp-interval, depth] pairs.

An [lcp-interval, depth] pair represents a path through the

implicit suffixtree. The lcp interval has an associated lcp value,

which may be larger than the number of steps that have been

taken to reach the lcp interval in the specific path. For instance,

if the sequence S = abcabc is turned into a suffixarray, the

lcp interval [0, 1] has an lcp value of three as the first three

characters of the two suffixes starting with a will be abc.

Because we would like to be able to represent the step a we

also associate a depth with the lcp interval to indicate the exact

position in the implicit suffixtree. This example is illustrated

in Table II.

The suffixarray is searched using the patterns, where for

each pattern, all single steps are taken. A single step can be

an explicit symbol as defined by the pattern or a skip position

if the previously taken step was not a skip. Only continuations

of the (sub-)pattern that are directly reachable from the set of

[lcp-interval, depth] pairs are considered.

HERMAN STEHOUWER, MENNO VAN ZAANEN: FINDING PATTERNS IN STRINGS USING SUFFIXARRAYS 507



TABLE II
ILLUSTRATING THE SUFFIXARRAY, INCLUDING THE LCP TABLE, OF THE

SIMPLE SEQUENCE abcabc.

i suftab[i] lcptab[i] suffix

0 3 0 abcabc$

1 0 3 abc$

2 4 0 bcabc$

3 1 2 bc$

4 5 0 c$

5 2 1 cabc$

6 6 0 $

Obviously applying this approach directly results in an

exponential explosion in the number of different patterns that

are found in a dataset. To keep this amount manageable a

threshold can be set. Based on this threshold, only interesting

patterns are retained.

For each pattern discovered, a prune value is computed. This

value depends on the compressibility score, which consists of

the number of items in the pattern minus one, not counting

the skip positions, multiplied by the number of times it occurs

in the sequence. In this case, the compression rate of a uni-

gram pattern is zero. To remove this limitation, we use the

frequency in the sequence for patterns of length one as the

compressibility score.

Based on the computed prune value, we decide whether the

pattern should be pruned or not. If the score of the new pattern

exceeds the prune value it is added to the pattern list for the

next round.

After taking a few of such steps a pattern emerges. In Fig-

ure 2 we show a very simple implicit suffixtree and highlight

the effect of the pattern A *SKIP* A on that example. All

dark-grey nodes in the example represent [lcp-interval, depth]

in the suffixarray that would occur in the cloud of the pattern

in this example.

After having considered all valid steps during the pattern

search phase, the remaining patterns (which have a score above

the pruning threshold) are written to output. Only the patterns

above a certain threshold are given to the user. The threshold

can be set separately from the prune value.

The program itself is implemented in template-based C++

and in its distributed form can be applied to a sequence of

text-based word tokens which are read from a file. Internally,

these are mapped to a list of numbers. The suffixarray is built

on the sequence of numbers. This list of numbers can be

transformed back into a sequence of words using the one-to-

one mapping, which is what happens during the output of the

patterns. This transparent, internal mapping is done, because

the comparison operators on integers are significantly faster

than those on sequence objects. Additionally, a list of integers

occupies less memory2.

2Personally, we run a custom version of the code that takes as input a pre-
mapped corpus that we have to manually map back and forth. By doing this
we do not have to load the mapping in memory as well. For usability reasons
we automated this process in the released tool.

A

A

A

A

B

C

A

D

Fig. 2. An example of the pattern A *SKIP* A found in a simple tree.
Notice how the *SKIP* can have different lengths. All dark-grey nodes
represent members of the [lcp-interval, depth] set associated with the pattern
A *SKIP* A.

TABLE III
THE OUTPUT OF THE PATTERNFIND PROGRAM WHEN RUN WITH THE

-HELP OPTION.

patternfind -h

Usage: ./patternfind[OPTION]...

This program reads in a corpus and stores it in a suffixarray.

It then searches for all significant patterns in the corpus.

-h, --help Show this help and exit

-f, --file FILE Filename of the corpus to be read

-p, --prune PRUNE-VALUE The value at which to start pruning the found

patterns.

Determined by the number of occurrences and the size of the pattern.

-o, --output PRINT-VALUE The value at which to start printing the found

patterns, works the same as the prune value.

If it is smaller or equal to the prune value it has no extra effect.

-s --smallestskip SKIP Minimum number of positions to skip for a SKIP

part of a pattern.

-l --largestskip SKIP Maximum number of positions to skip for a SKIP

part of a pattern.

2) Usage: The program that searches for compressing skip-

grams contained in the suffixarray is called patternfind. As

described above, this program identifies patterns that occur

frequently and hence lead to a compression higher than a

threshold. When patternfind is run with the -help option

it gives the output as shown in Table III.

TABLE IV
THE OUTPUT OF THE PATTERNPOSITIONS PROGRAM WHEN RUN WITH THE

-HELP OPTION.

patternpositions -h

Usage: ./patternpositions[OPTION]...

This program reads in a corpus and stores it in a suffixarray.

It then reads in a file of patterns and for each of those patterns

returns all occurring positions in the corpus.

-h, --help Show this help and exit

-f, --file FILE Filename of the corpus to be read

-s --smallestskip SKIP Minimum number of positions to skip for a SKIP

part of a pattern. Should be the same value as used in patternfind.

-l --largestskip SKIP Maximum number of positions to skip for a SKIP

part of a pattern. Should be the same value as used in patternfind.

-p, --patterns FILE The file containing the patterns to output the

positions of.

As output by patternfind. I.e. patternfind options > patternfile;

patternpositions options -patterns patternfile

508 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010



The most important parameters specify an input sequence

(in a file) and a prune value. The other values are optional and

only modify the default behavior of the program. For example,

we can look at the patterns found in the included README

file by executing the following command. We will set the prune

value to 10 and limit the skip to skips of the size 1–3.

./patternfind -f ../README -p 10 -s 1 -l 3

All status messages are written to standard error and all

patterns are written to standard output. A pattern is presented

together with a number representing its compressibility score

on which pruning was done. *SKIP* denotes a skip position.

At that point the pattern skips a flexible space of, in this case

[1–3] positions.

B. Patternpositions

The patternpositions program searches a sequence for oc-

currences of patterns such as those output by the patternfind

program. To specify the exact behavior of the skips, it takes

the same options as the patternfind program. It takes one extra

argument, namely the patterns file from which all the patterns

will be read. The output of its help function can be seen in

Table IV.

For each pattern in the pattern file, patternposition will print

all the positions of occurrences of that pattern in the corpus.

We can for instance run the program on the patterns we found

in the README file with patternfind in the following way:

./patternpositions -f ../README -s 1 -l 3\

-p ../README.patterns

Just like with the patternfind program we print all results to

the standard output and all the status messages to the standard

error.

C. Suffixarray

The final program included in the distribution is called suf-

fixarray. This program has only one option, the file containing

the sequence which should be used to build a suffixarray.

This file should be a plain text file containing a white space

separated sequence of tokens, such as words.

Running the program will result in a suffixarray being build

from the specified sequence after which the program waits for

input. At this point the program will answer simple n-gram

queries by reporting the number of times the typed n-gram

occurs in the sequence contained in the suffixarray. In these

n-grams it is allowed to use simple single-positions wildcards,

represented by the token *.

VI. EXPERIMENTAL RESULTS

To show practical use, we performed preliminary pattern

finding experiments on two natural language corpora: an

English-language corpus, the British National Corpus (BNC)

and a Dutch-language corpus, our own collection of texts

of local newspapers known internally as the ILK-BDEDGE

corpus.

The British National Corpus is a corpus of around 100

million words of both spoken and written English. We use

TABLE V
THE 40 HIGHEST RANKING PATTERNS FOUND IN ONE MILLION

SENTENCES OF THE BRITISH NATIONAL CORPUS. THE SCORE OF THE

PATTERN IS SHOWN AS WELL.

460718 the *SKIP* of

308872 of the

252720 the *SKIP* .

240072 the *SKIP* ,

235770 , *SKIP* ,

208494 , *SKIP* the

201894 . The

195756 the *SKIP* of the

195478 in the

191296 the *SKIP* the

176920 , and

173836 . "

162396 of *SKIP* ,

158076 . *SKIP* the

156170 of *SKIP* .

154302 . *SKIP* ,

146010 a *SKIP* of

138120 the *SKIP* and

127728 to *SKIP* the

122818 , the

111534 to the

108086 to *SKIP* .

107156 and *SKIP* .

104474 , *SKIP* and

98664 in *SKIP* ,

97588 in *SKIP* .

96626 of *SKIP* and

96318 and *SKIP* ,

96063 the *SKIP* of *SKIP* .

94191 the *SKIP* of *SKIP* ,

93480 " *SKIP* "

90878 . *SKIP* is

88758 a *SKIP* ,

88290 and *SKIP* the

88234 a *SKIP* .

85738 , *SKIP* a

83964 . *SKIP* was

81498 the *SKIP* to

81458 to *SKIP* ,

80346 , *SKIP* of

TABLE VI
10 PATTERNS FOUND IN ONE MILLION SENTENCES OF THE BRITISH

NATIONAL CORPUS. THESE PATTERNS ARE IN THE MIDDLE OF THE

SCORE-RANKING. THE SCORE OF THE PATTERN IS SHOWN AS WELL.

1872 with the *SKIP* a

1872 was *SKIP* in a

1872 to be *SKIP* , and

1872 the *SKIP* between *SKIP* and *SKIP* .

1872 that it *SKIP* not

1872 over the *SKIP* the

1872 of all the

1872 of *SKIP* in the *SKIP* the

1872 in the *SKIP* of *SKIP* "

1872 in *SKIP* will

TABLE VII
10 PATTERNS FOUND IN ONE MILLION SENTENCES OF THE BRITISH

NATIONAL CORPUS. THESE PATTERNS ARE THE LAST OF THE

SCORE-RANKING. THE SCORE OF THE PATTERN IS SHOWN AS WELL.

1002 . *SKIP* the second

1002 . *SKIP* the *SKIP* would

1002 . *SKIP* most of

1002 . *SKIP* help

1002 . " *SKIP* , *SKIP* he *SKIP* . "

1002 , *SKIP* to *SKIP* them

1002 , *SKIP* the *SKIP* this

1002 , *SKIP* fact that

1002 , " *SKIP* Mr

1001 . " *SKIP* , " he said ,

HERMAN STEHOUWER, MENNO VAN ZAANEN: FINDING PATTERNS IN STRINGS USING SUFFIXARRAYS 509



TABLE VIII
THE 40 HIGHEST RANKING PATTERNS FOUND IN ONE MILLION

SENTENCES OF THE CORPUS OF REGIONAL DUTCH NEWSPAPERS. THE

SCORE OF THE PATTERN IS SHOWN AS WELL.

286710 . "

263612 van de

238974 de *SKIP* .

237896 de *SKIP* van

207394 . De

171850 de *SKIP* de

166406 . *SKIP* de

147504 in de

132682 van *SKIP* .

128690 te *SKIP* .

120294 de *SKIP* van de

119124 , *SKIP* de

113170 . *SKIP* is

112282 het *SKIP* van

108446 de *SKIP* ,

103996 in *SKIP* .

102382 het *SKIP* .

95998 een *SKIP* .

94398 . Het

92986 de *SKIP* in

92720 van het

80518 . *SKIP* van

79314 . *SKIP* het

77822 en *SKIP* .

77746 ( *SKIP* )

77211 van de *SKIP* .

76828 het *SKIP* de

74458 " ,

74276 ’ *SKIP* ’

72732 op de

72714 van *SKIP* ,

72386 een *SKIP* van

72266 de *SKIP* het

72176 in het

71564 , *SKIP* ,

68942 de *SKIP* en

67518 , *SKIP* en

67102 voor de

66948 aan de

63842 , *SKIP* .

TABLE IX
10 PATTERNS FOUND IN ONE MILLION SENTENCES OF THE CORPUS OF

REGIONAL DUTCH NEWSPAPERS. THESE PATTERNS ARE IN THE MIDDLE

OF THE SCORE-RANKING. THE SCORE OF THE PATTERN IS SHOWN AS

WELL.

1515 op het *SKIP* een

1515 nog *SKIP* van de

1515 naar *SKIP* . Het

1515 is het een

1515 is *SKIP* de *SKIP* van de *SKIP* .

1515 het *SKIP* in *SKIP* een

1515 een *SKIP* . *SKIP* :

1515 door de gemeente

1515 de *SKIP* . *SKIP* uit

1515 bestuur van de

TABLE X
10 PATTERNS FOUND IN ONE MILLION SENTENCES OF THE CORPUS OF

REGIONAL DUTCH NEWSPAPERS. THESE PATTERNS ARE THE LAST OF THE

SCORE-RANKING. THE SCORE OF THE PATTERN IS SHOWN AS WELL.

1002 . *SKIP* dat *SKIP* er

1002 . *SKIP* daarom

1002 . *SKIP* acht

1002 . *SKIP* Volgens *SKIP* is

1002 . *SKIP* J. van

1002 , *SKIP* of *SKIP* ,

1002 ’ , ’ *SKIP* ’ *SKIP* ’ *SKIP* ’

1002 ’ *SKIP* of *SKIP* ’

1002 " Wij zijn

1001 , 2 . *SKIP* , 3 . *SKIP* ,

a 1 million sentence chunk for our pattern finding experiment.

This chunk consist of around 21 million words.

The ILK-BDEDGE is a corpus consisting of material from

the Brabants Dagblad, Eindhovens Dagblad and De Gelderlan-

der. These are all regional, Dutch, newspapers. Again, we took

a chunk of 1 million sentences from the corpus to perform

experiments on. This chunk consists of around 16 million

words. The average sentence length is somewhat smaller than

that of the BNC.

On each of the 1 million sentences we ran the pattern finder

program with a prune value of 1000. The 40 highest ranked

patterns found on the BNC are shown in Table V. Likewise

for the corpus of Dutch local newspapers, we show the 40

highest ranked patterns in Table VIII. For English we find

23,705 patterns and for Dutch 18,004 patterns in total that

make the threshold.

The program took slightly less than 32 hours to run on

the ILK-BDEDGE corpus part we used. During that time its

memory usage peaked at approximately 700MB.

We see in these tables that function words such as deter-

miners, that delimit the overall structure of the sentences, are

found the most. Unsurprisingly, all these words together with

punctuation marks are amongst the most frequent tokens in

both languages. For instance in English we find as the most

compressing pattern the *SKIP* of and in the Dutch list the

corresponding pattern de *SKIP* van also scores very high.

When we look at the patterns found in the middle of the

pack we see less generic and possibly more useful patterns,

such as with the *SKIP* a. These patterns from the middle

can be found in Table VI for English and Table IX for Dutch.

The lowest-scoring patterns are shown in Table VII for

English and Table X for Dutch. These patterns start with

punctuation and after that specialize in a specific way. Patterns

with very low, compared to the size of the corpus, scores

are not generally very informative. These patterns could be

removed automatically by increasing the threshold.

VII. CONCLUSION

In this paper, we have described a package that contains an

efficient, flexible and practical implementation of the suffixar-

ray data-structure. Three programs are provided, allowing for

efficient search in a large sequence of symbols and for finding

interesting, compressing patterns.

The program that searches for compressing patterns has

been applied to a collection of natural language texts. The

patterns found describe the global structure of the sentences

in which they occur. These patterns can be used by linguists to

help them find naturally occurring constructions in language.

With respect to future work, this system could be applied

in different areas. For instance, another application of the

patternfind program can be found in the area of morphology.

Instead of providing a collection of sentences, as shown here,

a collection of words is provided to the system and patterns

that occur regularly within words can be identified. This may

lead to automatically found descriptions of the morphology of

words.

510 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010



Another possible application would be to apply the found

patterns of several languages to a parallel corpus. The patterns

can be used to identify often occurring patterns in the different

languages, which can then be used to align translations of

texts. Also, in the same line, the aligned patterns can be used

to enrich a phrase-based machine-translation system.

Additionally, we would like to write several extensions to

the programs, the simplest of them being a small program that

identifies contexts for a given pattern in a specific position.

This information is directly accessible in the suffixarray data

structure, but cannot easily be identified with the current

programs. Another, more complex addition we would like to

write, is a program that given a pattern finds the most pertinent

content that matches the skips in that pattern.

Finally, we would like to provide a version that is

annotation-aware, allowing it to find patterns not only with

skips that match any symbol, but taking specific annotation

layer items into account. This could lead to patterns such as

the N of the N, where the N specifies a noun as described

by an annotation layer. This final improvement should also be

extended to the program that tries to find the pertinent content

that fills up skips in particular patterns.

REFERENCES

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86,
2004.

[2] S. Banerjee and T. Pedersen. The design, implementation, and use of
the Ngram Statistic Package. In Proceedings of the Fourth International

Conference on Intelligent Text Processing and Computational Linguistics,
pages 370–381, Mexico City, February 2003.

[3] J. Daciuk and G. van Noord. Finite automata for compact representation
of language models in nlp. In CIAA ’01: Revised Papers from the

6th International Conference on Implementation and Application of

Automata, pages 65–73, London, UK, 2002. Springer-Verlag.
[4] D. Gusfield. Algorithms on Strings, Trees and Sequences. University of

Cambridge, Cambridge, 1997.
[5] Michihiro Kuramochi and George Karypis. An efficient algorithm for

discovering frequent subgraphs. Technical report, IEEE Transactions on
Knowledge and Data Engineering, 2002.

[6] U. Manber and G. Myers. Suffix arrays: a new method for on-line
string searches. In SODA ’90: Proceedings of the first annual ACM-

SIAM symposium on Discrete algorithms, pages 319–327, Philadelphia,
PA, USA, 1990. Society for Industrial and Applied Mathematics.

[7] G. Manzini and P. Ferragina. Engineering a lightweight suffix array
construction algorithm. Algorithmica, 40:33–50, 2004.

[8] M. Nagao and S. Mori. A new method of n-gram statistics for large
number of n and automatic extraction of words and phrases from large
text data of japanese. In In COLING-94, pages 611–615, 1994.

[9] E. Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, september 1995.

HERMAN STEHOUWER, MENNO VAN ZAANEN: FINDING PATTERNS IN STRINGS USING SUFFIXARRAYS 511


