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1. What is a spring embedder ?

(a) definition
(b) models
(c) properties

2. How to obtain solutions for two common social
science data types

(a) valued data
(b) two-mode data
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What is a spring embed der ?

A system where the nodes of a graph are
replaced by steel rings and the edges with
springs that exert mechanical forces.

✔ type of forces� mechanical forces based on the Euclidean distance
only� electrical fields to impose placement constraints� magnetic fields can be used to affect the overall
appearance

✘ constraints

� iteration schemes

– sequential
– batch wise

� search strategies

– deterministic
– stochastic

� criteria for a good solution

– low potential energy state of the total system
– statistical fit ?
– readability ?
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Constraints

� uniform edge length (binary graph)

� minimal edge crossings

� nodes should not be to close

� angle of incident edges (angular resolution)

� nodes should not be to close to edges

� width of the layout should be optimal

� symmetry ?
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Criteria to evaluate a solution

� low potential energy in the total system (all attached
forces balance)

� fit to data

– binary: all edges have the same length
– valued: high correlation with raw data� metric: Pearson´s r� ordinal: Kendall tau

� Readability: a high resolution of the image to
communicate additional content
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Attraction and Repulsion for binar y
Graphs I

� The literature that has emerged around
the basic scheme of a spring embedder
has adopted a large body of field and
force concepts and included additional order
constraints to maximize the relational resolution
of the drawings.

1. spring forces between adjacent nodes

2. electrical fields around single sources

3. gravitational fields

4. magnetic forces between magnetic poles

– Typeset by Foil���
	 – 4



Attraction and Repulsion for binar y
Graphs II

In their recent book on graph drawing (Battista
et al (1999)), p. 306) summarize different
approaches to the force directed drawing of
straight line graphs, with a generalized formula
which describes all forces which are simultaneously
attached to a single vertex � .

 �������
���������
���

 �!�#" ���������$�&%('!% ) �!�

� where
 �!� is a spring force between adjacent

Nodes � and
�

� and ) �!� is an electrical force proportional to
the Euclidean distance of � and

�
and the zero

length of a spring. The electrical force follows
an inverse square law.
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Attraction and Repulsion for binar y
Graphs III� a desired length * �+� for the distance between

two vertices � and
�

,

� their current Euclidean distance , �.- ��/ - � � ,
� spring embedders differ in the way how they

weight the current displacement
� , �0- ��/ - � �21 * �!� �

from a desired length * �!�
� and the way in which the squared distance

enforces an additional spacing between all
units.

The resulting x component of the Force
 �����

can
be written as

 ���3���
���������$�4�

5 �
67��!� � , �0- �3/ - � �81 * �!� �:9 �
1 9 �

, �.- ��/ - � �

" ���������
�4%('!%
5 �<;=��+�� , �.- � / - � �>� ;

9 � 1 9 �
, �.- � / - � �
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A Simple Algorithm for a Spring
Embed der

produce start-configuration
define krit
while fit > krit do

for all lines do
compute Node displacement for attractive
forces

end for
for all nodes do

displace
end for
for all nodepairs do

compute current Euclidean distance
apply repulsive forces

end for
rescale to view image
compute goodness of fit

end while
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Proper ties I: Spring embed ders with
no repulsive forces: Barycenter

Drawing

� Tutte (1960, 1963) has proven that any three-
connected graph ( a graph where the nodes
have at least three links) can be drawn ( without
repulsive forces) by partitioning the nodes into
two sets, where one set (with at least three
nodes ) is fixed and the nodes of the second
set are allowed to move.

- � � ?
,A@ )CB @D@ � ���!�E�
�4�

- �
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Proper ties I :no repulsive forces
� the solution is dependent of the start configuration

 2/03/97:16:53:36−>  KDXYIG.EPS Das Koelner Auffuehrungsnetz (fixierte Version)
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Figure 1: A barycentric drawing of co-performances of
compositions from composers of new music in Cologne.
Intimate knowledge allowed the researcher to choose two
local (red) and a prominent external composer (yellow) to
be fixed.
The graph is connected, but not three-connected. Nodes
that are attached with single links are not placed very well.
( Data courtesy of Dominik Sack)
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Proper ties II :Spring embed ders with
attractive and repulsive forces

� the solution is independent of the start
configuration

Figure 2: Animation of the embedding of a graph
describing a torus with a Fruchterman & Reingold
type spring embedder.
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Three Groups of Algorithms

Spring Embedders differ in the way how forces
are conceptualized and by the information that is
used.

� forces that are a function of the current
placement in the image only (Euclidean
distance)

� forces that affect the overall appearance of a
solution by additional field concepts

� forces that are a function of additional
(structural) information derived from the data
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Forces based on the Euclidean
distance onl y I

Eades (1984)
minimization: springs

node attraction
 +IKJML � 5 ION�PRQ , �!�

node repulsion
 DSTJML � 5 SEU , ;�!�

Fruchterman &Reingold (1994)
minimization: annealing

node attraction
 I JML � , ;�+� U 5

node repulsion
 STJML � 1 5 ; U , �!�

The models of Eades and Fruchterman &
Reingold differ in their functions. The distance
between of two nodes can be determined with
the help of the resulting force

 SMV>W �  I " S
.. The attractive and repulsive functions for

the Fruchterman and Reingold model are much
steeper.
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Push Proper ties

Figure 3: placement by increase of the repulsive
force for attractive forces of different size.
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Forces based on image distances
onl y II

Davidson & Harrel (1996)
minimization: annealing
equal

distribution XCY[Z � \]=^`_
distance

to borders
6SMa " 6b a " 6c a " 6d a

edge length e] a
node-edge
distance f e b � gh aikj
Coleman & Parker (1996)
minimization: annealing
node/node rep

6]
edge length min , ;
centripetal rep

6]
node/edge rep

6]
edge midpoints

6]
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Placement with structural inf ormation

✘ Two approaches that try to enhance the
placements by adding additional structural
information into the ordering process are
especially noteworthy. These approaches point
into the direction how information deficits of the
classical model can be cured for more complex
graphs.

Centrality measures ( Freeman (1979)) seem
to be very well suited to summarize
the structure of a graph and to
provide the necessary information
that prevents artifacts as they can
occur with the basic model for less
regular and complex graphs.
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Centrality Constraints

Frick & et al (1994)
barycenter l � 6m nYpo 6 -(��� Y �

degree
centrality q � ? " ,A@ )CB @D@

�r���s��� l 1 -t�r���>�
Frick, Ludwig and Mehldau (1994) have presented
an algorithm which explicitly takes the degree
centrality of a node into account when constructing
forces. The authors used an additional attractive
force to the barycenter of the total configuration,
which is weighted with the degree of a node.

Brandes &Wagner (1997)
minimization: annealing

closeness u�v � , � 9 � /Mw � ;
centrality

1 uyx �4z � " ? 1 { |!} �+�&% ��z � �s�
Brandes & Wagner (1997) propose an attractive
force to the center of a drawing that takes
the closeness centrality of pairs of nodes into
account. Closeness centrality characterizes a
node by the sum of the minimal path lengths to
all other nodes.
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Drawings using Distances I
Kamada and Tawai proposed to minimize the
energy of a Hookean spring to order the total
system: if the resting length of each of the springs
is known, the energy is given by the squared
difference of the Euclidian and target distances.

 ��������� � ~ ����� � , ��������� 1 � �.�����E� � ;

The authors chose the spring constant to be
dependent on the distance so that springs with
smaller displacements are stronger.

~ ����� � 5 U , ; ���������

Kamada &Kawai
minimization: steepest descent

Newton Raphson
desired
width * �!� �

) @���,A@!���ku
� � ���

weight
5 �!� � 5 U * ;�!�

force
 � 5 �+� � , �+� 1 * �+� � ;

Energy
� , �!� 1 * �+� � ;
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Drawings using Distances II

Cohen (1997):
The stress functions � e / 5 � � / ? /�� are
proportional to something of the form

� e �
Y���Z

� ,�Y[Z 1 � Y[Z � ;� eY�Z
let vertex i have coordinates ( 9 Y �`� Y � so that

,�Y[Z � � 9 Y 1 9 Z � ; � � Y 1 � Z � ;

given the current vertex positions, an iteration
consists of adding to each

� 9 Y / � Y � the increment��� ' ^ � � � ^ � where

� ' ^ � 1�� Y
� � e�
e ^

� 1�� Y Z���Z��o�Y
� � 9 Y 1 9 Z ��� ? 1 � Y[Z U ,�Y�Z �� eY[Z
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Drawings using Distances III

The direct approach allows us also to introduce
an additional mechanism into the computations
which results in a similar flexibility that makes the
simple spring embedders so useful to produce
renderings with a high resolution: an additional
spacing in the image can be enforced if we add
a constant distance

5
to each of the desired

distances as they are found in the data.

* �!� � 5 " � �!�

The gradient of the raw stress has a very intuitive
meaning: it simply scales the spring with the ratio
of the desired and the Euclidean distance, which
becomes one if both are of the same length.
Once a minimum has been found by the algorithm,
we can increase

5
, to enforce a minimal distance,

while preserving the ranks of the distances.as in
the simple spring embedders
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Two-Mode Graphs: An Extension of
Barycenter Drawing

Two-mode data are quite common in the analysis
of social networks, when only the relations
between two sets of nodes are observed. A
classical study is that of Davis & Gardener (1932)
who describe 18 women in the American South
and their participation in 14 events.
We present a solution for this problem by using a
modified barycenter approach: in each step of the
iteration we fix one of the two sets of nodes and
allow the other set to move into the direction of
their barycenters.

two-mode embedder

attraction
 I � 5 I ] JsL] V h SMV�V J

repulsion
 S � 5 S 6] aJML
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Two-Mode Graphs: Algorithm

1. for all links of Set A (rows)

(a) compute attraction to the nodes of B to their
barycenters

(b) displace Nodes A
(c) compute repulsion and displace nodes of A

and B

2. for all links of Set B (cols)

(a) compute attraction for nodes of B to their
barycenters

(b) displace nodes B
(c) compute repulsion and displace nodes of A

and B

3. repeat
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Two-Mode Graphs:Example

Figure 4: Animation of the iterations of a two-mode
barycenter method with an additional repulsive force
component.
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Figure 5: Two solutions for the Davis & Gardener
dataset illustrating the ordering capabilities of a two-mode
barycenter approach blended with a repulsive force
component

(a) Davis Gardener after 200 iterations
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(b) as above after 200 additional iterations increasing
the repulsive constant
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A Metric Example: Ordering the
Capitals of the World

To evaluate the potential of the two approaches to
metric data, we use the distances of geographic
locations which were read from a sphere. The
grand circle distances between 194 capitals (their
airline distances) are used to supply the algorithm
with empirical target distances.
This is a problem for which there is no exact
solution. as it involves to map a surface
of a sphere onto a two-dimensional plane.
Geographers have however established a number
of projection conventions by which this problem is
usually handled.
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A Metric Example: Ordering the
Capitals of the World

A world map reconstructed from the airline distances
between 194 capitals, computed with a simple metric spring
embedder. The Pearson correlation of the data with the
image distances is r = .9641.
The solution allows to identify the continents (North
America: red; South America: magenta, Africa (green),
Europe (blue) and Oceania (cyan)) ��

The location of the Antilles (ANT) is miscoded in the original data
with a latitude and longitude of 0. Ok ?
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Resume

✔ Force directed placement provides a tool box
of ordering principles, which can be employed
to show network properties of interest.

✔ The algorithmic concept of a Spring Embedder
is a powerful framework that can be extended
to handle BIPARTITE and VALUED graphs. Our
simple approach to a metric problem can yield
a fit that is comparable to multidimensional
statistical procedures but allows at the same
time to generate solutions which preserve the
rank order of the distances.

✔ The latter can be used to enhance the overall
resolution and readability of images of network
drawings. This is often necessary when
one wants to render additional substantive
information on to network drawings.
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