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Phänomenologie einer geeichten Lµ − Lτ -Symmetrie
Die anomaliefreie (zufällige) Lµ−Lτ -Symmetrie des Standardmodells lässt sich
zu einer lokalen Eichsymmetrie erheben, was zu einem zusätzlichen neutra-
len Vektorboson Z ′ mit generationsabhängiger Kopplung an Leptonen führt.
Teilchen der ersten Generation werden nur durch Mischung des Z ′ mit dem Z-
Boson beeinflusst, sei es durch eine nichtdiagonale Z–Z ′ Massenmatrix oder ki-
netische Mischung mit dem Generator der Hyperladung. Wir benutzen aktuelle
Messdaten, von elektroschwachen Präzisionsmessungen bis hin zur Kosmologie,
um den erlaubten Parameterbereich für ein nahezu masseloses Vektorboson
(Fünfte Kraft) einzuschränken, und gehen insbesondere auf die Auswirkun-
gen auf Neutrinophysik ein, z.B. zusätzliche CP-Verletzung. Die Verbesserung
der Grenzen durch zukünftige Long-Baseline-Experimente wird diskutiert und
verglichen. Des Weiteren wird der Fall eines schweren Z ′ in der Nähe der elek-
troschwachen Skala diskutiert. Wir erörtern den Zusammenhang zwischen den
Mischungswinkeln der Neutrinooszillationen und der spontanen Brechung der
Lµ − Lτ -Symmetrie und zeigen, dass mindestens zwei neue komplexe Skalar-
felder nötig sind um in unterster Ordnung der Störungstheorie eine mit den
Messdaten kompatible Massenmatrix zu erhalten. Die Auswirkungen der sim-
pelsten Higgs-Sektoren werden im Detail diskutiert.

Phenomenology of a Gauged Lµ − Lτ Symmetry
Promoting the anomaly-free (accidental) Lµ − Lτ symmetry of the Standard
Model to a local gauge symmetry introduces an additional neutral vector boson
with generation-dependent couplings. First-generation particles are affected
only through mass mixing with the Z boson and kinetic mixing with the hy-
percharge generator. We discuss current constraints on the model parameters
for the ultralight case (fifth force) from electroweak precision data to cosmol-
ogy, and in particular the effects on neutrino phenomenology, like additional
CP violation. The sensitivity of future long-baseline experiments to the pa-
rameters is discussed and compared. We also mention the bounds on a higher
breaking scale corresponding to a gauge boson with mass in the electroweak
range. The connection between the spontaneous breaking of Lµ − Lτ and the
neutrino mixing matrix is examined; we argue that at least two additional
complex scalar fields are necessary for a valid mass matrix at tree-level. The
implications of the simplest scalar sectors are investigated in detail.
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Chapter 1

Introduction

1.1 The Standard Model and Beyond

In the course of the last century, the theoretical description of observed phenomena has
developed a marvellous accuracy. From atomic spectra to high-energy colliders, science
managed to push the shortest observable distance to astounding limits, most recently
in the Large Hadron Collider (LHC), probing energies up to 14 TeV (corresponding to
distances down to 10−5 fm). The theoretical description of such high energy processes is
combined into the Standard Model (SM) of particle physics, one of the most successful
physical theories to date.

The SM is based on the gauge group SU(3)C × SU(2)L × U(1)Y with three sets of
“families” (differing only in their mass), consisting of an electrically charged lepton,
an uncharged lepton and two charged quarks in the representations of Tab. 1.1. The
electric charge Q of a particle is connected to its weak isospin T3 and hypercharge Y
via Q ≡ T3 + Y/2. The left-handed lepton doublets (ν`, `)TL will often be denoted as L`
and are not to be confused with the corresponding lepton quantum number. It should
be obvious from context if we are talking about a field or a quantum number.

To explain the lepton and gauge-boson masses in a renormalisable way, the Higgs
mechanism is invoked, adding one scalar SU(2)L doublet field with a non-zero expecta-
tion value, thereby breaking the gauge group down to SU(3)C×U(1)EM. This generates
masses for the W± and Z bosons and the charged fermions and furthermore introduces
one physical, electrically neutral, scalar field to the particle spectrum of the theory,
the Higgs particle. Since this particle is yet to be discovered at the collider experi-
ments Tevatron and LHC, there is much discussion about its properties (e.g. is it an
elementary particle or a composite object?).

This one elusive particle aside, the SM has proven to be amazingly successful in
describing high-energy physics; collider experiments like LEP measured the masses and
couplings of the gauge bosons to high accuracy and atomic physics is sensitive to loop-
order effects. In recent years astrophysics and cosmology became an important testing
ground for the SM as well, posing at least three challenges:

• to explain the acceleration of the Universe (dark energy),

• to explain the rotational speed of galaxies as well as gravitational lensing of galaxy
clusters (dark matter),

• to explain the solar and atmospheric neutrino flux (neutrino oscillations).
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Le =

(
ν

e

)
L

∼ (1, 2,−1) eR ∼ (1, 1,+2) HSM ∼ (1, 2,+1)

QuL =

(
u

d

)
L

∼ (3, 2,+1
3) uR ∼ (3, 1,−4

3) dR ∼ (3, 1,+2
3)

Table 1.1: SU(3)C × SU(2)L × U(1)Y ≡ GSM representations of left-handed fermions and the
Standard Model Higgs (only first generation shown).

There are, of course, additional fields of Beyond the Standard Model (BSM) physics,
e.g. description of inflation, explaining the matter-antimatter asymmetry of the early
Universe, solving the hierarchy problem, and in general combining particle physics
with the theory of gravity. However, since this thesis does not cover any of the above
topics, except for neutrino oscillations, we will not go into any detail, but only review
neutrino physics. We will then go on to introduce extra neutral gauge bosons in different
scenarios, as they are the main focus of this work. In the second to last section of this
introduction, we give a short review of anomalies in Quantum Field Theory (QFT),
since they constitute an important part of model building in BSM physics. The last
section constitutes the motivation for this thesis, as well as a brief review of previous
work on the model.

Seeing as we cover a lot of different topics and experiments in this thesis, it will
prove convenient to postpone some of the introductions until the relevant chapters and
sections, so as to allow for a more linear flow of reading.

1.2 Neutrino Oscillations

As mentioned above, the neutrino enters into the SM only via its left-handed coupling
to the weak gauge bosons. Since it lacks a right-handed partner to form a gauge in-
variant coupling to the Higgs (YνL̄HνR), it stays massless after Electroweak Symmetry
Breaking (EWSB). This is in accord with direct mass measurements of beta-decay ex-
periments, which however only probe masses & 1 eV. As neutrino detection experiments
(both solar and atmospheric) have measured an oscillating flavour flux of neutrinos, it
is pretty clear by now that neutrinos do have a mass,1 and that the mass eigenstates are
heavily mixed superpositions of the flavour eigenstates, contrary to the quark sector,
where the mixing matrix is close to the identity matrix.

While it is in principle easy to introduce right-handed fermions as partners for
the neutrinos (they have to be in the trivial representation of the gauge group and
therefore do not couple directly to gauge bosons), the corresponding Yukawa couplings
Yν ∼ mν/vSM are many orders of magnitude smaller than the couplings of the other
fermions. This gave rise to a lot of theories trying to explain this smallness in a natu-
ral way, the most prominent one being the seesaw mechanism (treated in Sec. 5.1). A
similarly large number of models try to explain the observed mixing pattern by impos-

1Alternative explanations of the measured fluxes with massless neutrinos (e.g. non-standard neutrino
interactions) have been ruled out, see Sec. 1.3.



1.2. Neutrino Oscillations 3

ing additional (usually global) symmetries, both continuous and discrete. The mixing
angles and squared mass differences are already quite well-measured by solar (Sudbury
Neutrino Observatory) and atmospheric experiments (Super Kamiokande), and will be
further improved in current and upcoming long-baseline experiments (MINOS, T2K,
NOνA).

Unfortunately, neutrino oscillations do not provide any insight on the nature of the
neutrinos, Dirac or Majorana, which is instead probed via neutrinoless double beta
decay observations (or the lack thereof), for example in the recently started GERDA
experiment.

We will now shortly review the phenomenon of neutrino oscillations in the simplified
case of two flavours, νe and νµ:

Since the creation and detection of neutrinos always occurs via weak processes, let
us assume a muon neutrino νµ is created at time t = 0 and an electron neutrino νe
detected at t = T . In the two-flavour case, the mass basis {|ν1〉 , |ν2〉} and the flavour
basis are simply connected by a rotation matrix, so we can write

|νe〉 = |ν1〉 cos θ + |ν2〉 sin θ , |νµ〉 = − |ν1〉 sin θ + |ν2〉 cos θ . (1.1)

The time evolution of the mass/energy eigenstates |νj〉 is described by the operation

|νj , t〉 = exp[−iHt] |νj , 0〉 = exp[−iEjt] |νj , 0〉 ≈ exp[−i(E +m2
j/2E)t] |νj , 0〉 , (1.2)

where we approximated Ei =
√
|p|2 +m2

i ≈ E +m2
i /2E since the neutrinos are highly

relativistic. Differentiation leads to the “Schrödinger-like” equation2 for the propagation
of the mass eigenstates

i
d
dt
|νj , p, t〉 ≈

(
|p|+ m2

j

2|p|

)
|νj , p, t〉 , (1.3)

where the first term on the right-hand side is irrelevant for neutrino oscillations since
it does not depend on j. The oscillation probability is therefore

Pµ→e(T ) = | 〈νe|ν(T )〉 |2

=
∣∣∣−〈νe|ν1〉 sin θ e−im2

1T/2E + 〈νe|ν2〉 cos θ e−im
2
2T/2E

∣∣∣2
= sin2 2θ sin2

(
∆m2

21L

4E

)
,

(1.4)

where we used the travelling distance L ≈ T and ∆m2
21 ≡ m2

2−m2
1. Measuring the en-

ergy and flux of a specific flavour at different distances gives the amplitude sin2 2θ and
the phase ∆m2

21 of the neutrino oscillation. The three-flavour case is slightly more com-
plicated; instead of one mixing angle, we now have three angles plus one phase (more
if neutrinos are Majorana particles, but this is irrelevant for neutrino oscillations). One

2Expanding in m � |p|, as opposed to |p| � m like in the Schrödinger equation for non-relativistic
quantum mechanics.
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θ12 arcsin
√

0.318± 0.02 (3%)
θ13 0± 0.2
θ23 arcsin

√
0.500± 0.07 (9%)

δCP ∈ [0, 2π]
∆m2

21 [10−5 eV2] 7.59± 0.23 (3%)
|∆m2

31| [10−3 eV2] 2.40± 0.12 (5%)

Table 1.2: Neutrino oscillation parameters, their standard deviation and the relative uncertainty,
taken from Ref. [1].

possible parameterisation for the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix
(PMNS matrix) is given by the three consecutive rotations U = U(θ23)U(θ13, δCP)U(θ12):

U =

 c12c13 s12c13 s13e
−iδCP

−c23s12 − s23s13c12e
iδCP c23c12 − s23s13s12e

iδCP s23c13

s23s12 − c23s13c12e
iδCP −s23c12 − c23s13s12e

iδCP c23c13

 , (1.5)

with the notation cij ≡ cos θij , sij ≡ sin θij ; current values are summarised in Tab. 1.2.
It is important to note that only the two mass parameters ∆m2

21 and |∆m2
31| are known,

shedding no light on the absolute mass scale or the hierarchy (sign of ∆m2
31).

An important starting point for model building in recent years is the so-called “Tri-
Bimaximal Mixing” (TBM) [2], defined via θ13 = 0, sin2 θ23 = 1/2 and sin2 θ12 = 1/3
or3

UTBM =


√

2/3 1/
√

3 0
−1/
√

6 1/
√

3 −1/
√

2
−1/
√

6 1/
√

3 1/
√

2

 , (1.6)

which is compatible with data and can be obtained by imposing discrete flavour-sym-
metries on the neutrinos (e.g. the wildly popular group A4) [3]. A slight generalisation
that only predicts θ13 = 0 and θ23 = π/4 but leaves the solar mixing angle θ12 free is
the µ-τ -symmetric model, based on a neutrino mass matrix of the form

Mµ↔τ
ν =

x y y

· z w

· · z

 , (1.7)

obeying the symmetry µ↔ τ (or ν2 ↔ ν3). For real parameters this form predicts the
third mixing angle to be

sin2 2θ12 =
8y2

(x− w − z)2 + 8y2
, (1.8)

as long as the denominator does not vanish. Tri-bimaximal mixing is obtained for the
choice x+ y = w + z.

3To obtain this common form of the TBM matrix from Eq. (1.5), one needs to choose the negative sign
θ23 = −π/4. The difference to θ23 = +π/4 is of course unphysical, it is just a matter of convention.
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An important generalisation of the oscillation formula (1.3) describes the evolution
of neutrinos in matter (Mikheyev-Smirnov-Wolfenstein (MSW) effect [4]). Since the
interaction channels of νe are different than those of νµ,τ (νe has an additional charged-
current interaction because matter contains electrons but not muons or tauons), the
effective potential for the neutrinos becomes non-universal, which affects neutrino os-
cillations. In flavour basis, the propagation equation takes the form

i
d
dt
ν =

1
2E

UM2
νU
† +

A(x) 0 0
0 0 0
0 0 0


ν , (1.9)

where U is the PMNS matrix (1.5) and the neutrino mass matrix Mν is diagonal.
A(x) parameterises the charged-current interactions and is explicitly given by A(x) =
2
√

2GFne(x)E, with the electron density ne of the matter. Solving this evolution equa-
tion is obviously pretty complicated, so we will once again only look at the two-flavour
scenario, where the result is a position dependent mixing angle

tan 2θ → tan 2θm(x) ≡ tan 2θ
1−A(x)/∆m2

21 cos 2θ
, (1.10)

so even a small mixing angle θ can induce large oscillations when the neutrino goes
through a resonance ne ≈ cos 2θ∆m2

21/2
√

2GFE. This effect is crucial for understanding
the solar neutrino flux, since solar neutrinos travel an extensive length through the Sun
(which has a highly decreasing electron density towards the outer regions), so the
resonant behaviour can generate an appreciable number of νe → νµ conversions.

1.3 Non-Standard Neutrino Interactions

An alternative approach to neutrino oscillations, with massless neutrinos, is the intro-
duction of additional interactions of neutrinos with other SM particles. Even though
current data highly favour the standard oscillation picture discussed in Sec. 1.2, this
does not mean Non-Standard neutrino Interactions (NSI) are excluded, as they can be
introduced in addition to mass mixing. Since it is not strictly necessary to specify the
actual new neutrino interactions, NSI are a convenient way to generically probe physics
beyond the Standard Model in the neutrino sector. In a model-independent approach
one considers the effect of (non-renormalisable) d = 6 operators like

Leff
NSI = −2

√
2GF ε

fP
αβ

[
f̄γµPf

]
[ν̄αγµPLνβ] , (1.11)

where P denotes a chiral projection operator (PL = 1
2(1−γ5) or PR = 1

2(1+γ5)) and f =
e, u, d labels the particles of normal matter. Similar operators can be constructed for
“charged-current NSI”, which do not influence the neutrino oscillations but rather the
production and detection processes. Even though they are generally more constrained
than the neutral-current NSI, they should not be neglected, as pointed out in Ref. [5].
However, since the model of this thesis does not induce these kinds of operators, we
will not delve into the specifics but rather discuss the neutral-current NSI given in
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Eq. (1.11). This corresponds to the so-called “matter NSI”, since it changes the usual
MSW potential for neutrino interaction (in flavour basis) to:

i
d
dt
ν =

1
2E

UM2
νU
† +A

1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ


ν . (1.12)

Here we have the usual A = 2
√

2GFneE and the effective NSI parameters εαβ are
connected to Eq. (1.11) via εαβ ≡

∑
f,P

nf
ne
εfPαβ , introducing a dependence on the density

nf of fermion f .
Important examples are the effective NSI parameter for neutrinos going through

Earth-like matter ε⊕αβ (roughly same number of electrons, protons and neutrons) and
solar matter ε�αβ (mostly electrons and protons):

ε⊕αβ ≈
∑
P

[
εePαβ + 3εuPαβ + 3εdPαβ

]
, ε�αβ ≈

∑
P

[
εePαβ + 2εuPαβ + εdPαβ

]
, (1.13)

since these are the relevant quantities for neutrino-oscillation data. Current limits at
90% Confidence Level (C.L.) are given in Ref. [6], we only quote

|ε⊕αβ| <

4.2 0.33 3.0
· 0.068 0.33
· · 21

 , |ε�αβ| <

2.5 0.21 1.7
· 0.046 0.21
· · 9.0

 . (1.14)

Some subtleties concerning the extraction of these bounds from fits will be discussed
when we actually use the limits in Sec. 4.2.1.

We close by mentioning that, of course, Eq. (1.12) does not inhibit an exact solution,
but since current data fits constrain most ε to be less than 0.1−0.01, it proves convenient
to expand the solution in ε (or solve (1.12) numerically). This can be enlightening to
some degree, even though the analytic approximate expressions are very involved; we
will discuss that route in Sec. 3.3.2.

1.4 Extra Neutral Gauge Bosons

Our goal in this section is a review of the different BSM motivations for additional
neutral spin-1 particles. Only some of them are relevant to the thesis at hand, but all
are interesting in their own right.

1.4.1 Grand Unified Theories

Motivated by the success of the unification of weak and electromagnetic interactions
by the gauge group SU(2)L × U(1)Y , broken to U(1)EM at the scale vSM ∼ 250 GeV,
the natural extension would be an overlying gauge group G, that is broken down to
the SM gauge group GSM at some scale ΛGUT � vSM; typical examples for G are
the simple Lie groups SU(N) and SO(N), direct products of them, or, motivated by
string theory, exceptional groups like E6. Such an overlying simple group also implies



1.4. Extra Neutral Gauge Bosons 7

a unification of the gauge couplings, i.e. the running couplings of the SM should all
meet at the scale ΛGUT. This is not observed experimentally if we use the SM particle
spectrum in the renormalisation group equations to calculate the coupling constants
at collider energies. Supersymmetric extensions of the SM however are pretty close to
achieving this unification, typically around ΛGUT ∼ 1013...17GeV. Further nice features
provided by some Grand Unified Theories (GUTs) are a spontaneous rather than an
explicit breaking of parity (left-right symmetric models) and/or the accommodation of
one particle generation into one irreducible representation (for example one family plus
a right-handed neutrino fit into the spinor representation 16 of SO(10), as we will show
below), motivating the number of particles per family.

Every GUT adds at least extra gauge bosons and scalar particles to the theory, in
some cases additional fermions are also necessary to cancel anomalies (see Sec. 1.5);
the concrete particle spectrum, of course, depends on the specific breaking pattern.
Non-observation of the new gauge bosons sets strong lower bounds on their masses,
but indirect effects are even more constraining; a common prediction of GUTs is for
example the decay of the proton, yet to be observed, which excludes a lot of models
(e.g. the Georgi-Glashow model, based on the group SU(5)). Since the breaking of
a larger gauge group than SU(5) (meaning higher rank than 4) to the SM leads to
additional U(1)′ factors, i.e. neutral gauge bosons, it is common to search for Z-like
particles at colliders (specific GUTs differ in the coupling of the Z ′ to fermions). As
of now, non-observation of the corresponding resonances at colliders as well as indirect
effects due to Z–Z ′ mixing4 constrain the mass and the mixing angle severely [7, 8].
It is important to note that the coupling constant g′ is fixed by unification and kept
constant in the analysis; leaving only the mass of the Z ′ and the Z–Z ′-mixing angle as
free parameters (once the breaking pattern of a GUT is chosen).

We will now give a rough sketch of a GUT, trying to motivate how the extra U(1)′

turns up in the process. The prototypical example of a group that breaks down to
GSM×U(1)′ is the simple Lie group SO(10),5 since it has rank 5, i.e. one more diagonal
generator than GSM; it has dimension 10(10 − 1)/2 = 45 and thus introduces 45 −
8 (gluons)− 3 (W±, Z)− 1 (photon) = 33 new gauge bosons. There are several different
ways to break the symmetry to an intermediate symmetry group [9, 10, 11], most
prominently SO(10) → SU(5) × U(1)′ and SO(10) → SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L (left-right symmetric model). The former is problematic since it often suffers
a similarly fast proton decay as the Georgi-Glashow model; we will discuss it anyway.

Before we describe the breaking pattern, we discuss the fermion representation; to
that effect we list some important SO(10) and SU(5) representations and how they
transform under a specific subgroup in Tab. 1.3. Fermions come in 3 generations of the
SO(10) spinor representation 16, which can be decomposed in SU(5) representations as
10 + 5 + 1, the singlet 1 accommodating the right-handed neutrino. The SU(5) 10 and
5 transform under GSM as (3, 2, 1/3) + (3, 1,−4/3) + (1, 1, 2) and (3, 1, 2/3) + (1, 2,−1)
respectively, which correctly describes one generation of Standard Model particles (see

4Mixing is induced by off-diagonal mass terms like δM2ZµZ′µ or kinetic mixing ZµνZ′µν (see Sec. 2.2).
5Sometimes called Spin(10) theory since the Lie algebra involved is actually that of Spin(10), the
double cover of SO(10), a detail which is not important for us.
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SO(10) representation SU(5)× U(1)′ decomposition
45 (24, 0) + (10,−4) + (10, 4) + (1, 0)
16 (10, 1) + (5,−3) + (1, 5)
10 (5,−2) + (5, 2)

SU(5) representation SU(3)× SU(2)× U(1) decomposition
24 (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2,−5

6) + (3, 2, 5
6)

10 (3, 2, 1
3) + (3, 1,−4

3) + (1, 1, 2)
5 (3, 1, 2/3) + (1, 2,−1)

Table 1.3: Representations of SO(10) [10] and SU(5) and their transformation properties under
the respective subgroups SU(5)× U(1) and SU(3)× SU(2)× U(1).

Tab. 1.1). Namely, the 10 contains {(u, d)L, uR, eR} and the 5 contains {dR, (ν, e)L}.
The transformation of leptons and quarks into each other via SO(10) gauge bosons
causes proton decay for example, the non-observation of which sets a lower bound to
the corresponding gauge boson masses, typically MX > 1010...16GeV.

The simplest way to break the SO(10) uses a Higgs field φ in the adjoint representa-
tion 45, i.e. an antisymmetric 10× 10 matrix. As can be seen in Tab. 1.3, this adjoint
includes an SU(5) × U(1)′ singlet (1, 0), which means if this field acquires a Vacuum
Expectation Value (VEV) of order ΛGUT, the vacuum will no longer be SO(10) in-
variant, but only SU(5) × U(1)′ invariant. This describes a possible first step in the
GUT breaking. To break down the SU(5) to the Standard Model, one can use the
SU(5) adjoint 24 (like in the Georgi-Glashow model) since this contains a GSM singlet
(1, 1, 0), so a VEV would break the SU(5) to GSM. How do we get the SU(5) adjoint
24? Conveniently, it is already part of the φ field, since the 45 contains a part (24, 0),
which can acquire a VEV. Since none of the VEVs up to this point carried a U(1)′

charge, we are left with the symmetry group GSM × U(1)′.

To complete the breakdown, we need to introduce more scalar fields, for example a
field Φ in the spinor representation 16, which contains an SU(5) singlet part (1, 5) that
is however charged under U(1)′ and can therefore be used to break this last additional
symmetry and give the corresponding neutral vector boson Z ′ a mass (the U(1)′ is
denoted in the literature as U(1)χ and the neutral gauge boson correspondingly as Zχ).
Due to this breaking over intermediate scales, this mass MZχ need not be at the GUT
scale ΛGUT, but can in principle be around the electroweak scale and thus observable
at current experiments. Accordingly, the most important bounds stem from LEP and
Tevatron, excluding the mass range below roughly one TeV (concrete values for the
different Z ′ models can be found in Refs. [7, 8, 12]).

The final symmetry breaking to SU(3)C × U(1)EM can be accomplished with a 16,
since it includes an SU(2)L doublet, just like the standard Higgs mechanism in the
electroweak theory of Glashow, Weinberg and Salam.

It should be clear that GUTs based on groups with even higher rank can induce
additional U(1)′ factors; for example, the exceptional group E6 can be broken into
SO(10)× U(1)′′, with possible breakdown to GSM × U(1)′ × U(1)′′.
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1.4.2 Hidden Photons/Paraphotons

While GUT models provide a motivation for TeV-scale Z ′ bosons, there has also been
extensive research on lighter or even massless gauge bosons, based simply on the gauge
group GSM × U(1)′. Sometimes, models of this type (with an ultralight gauge boson
or scalar) are dubbed “Fifth Force” (besides the known four: gravitation, electromag-
netism, weak and strong force) and for small mediator masses M one typically encoun-
ters spherically symmetric potentials of the Yukawa form

V (r) ∼ g′2

4π
e−Mr

r
, (1.15)

and ascribes them a range r = 1/M , motivated by dimensional considerations (deriva-
tion of the Yukawa form in Sec. 3.2). Experiments constrain the coupling to first-
generation particles g′ and the range M ; on astronomical scales, tests of the equivalence
principle (to be discussed in Sec. 3.4) yield constraints up to g′2/4π < 10−49.

Even for shorter ranges, one typically needs rather small coupling constants (at least
to first-generation particles), otherwise they would have been observed in high-precision
atomic physics or at colliders. To explain such small coupling somewhat naturally, many
models proposed an interaction with SM particles only through kinetic mixing [13], i.e.
operators like

L ⊃ sinχ
2

FµνEMF
′
µν , (1.16)

which induce a coupling ∼ sinχ of otherwise sterile particles to photons, as long as they
are charged under the new gauge group U(1)′ (“millicharged particles”). Of course, this
also generates Z ′ interactions with particles uncharged under U(1)′ (e.g. SM particles).
The smallness of the Z ′ coupling (to be consistent with data) is then explained by a
small mixing angle χ rather than a small coupling constant g′. The d = 4 operator (1.16)
is allowed because for abelian symmetries, the field-strength tensor Fµν ≡ ∂µAν−∂νAµ
is already a gauge invariant quantity, making also the product (1.16) a gauge singlet,
as long as both factors stem from a U(1). Kinetic mixing is therefore only possible
between γ and Z ′ (or the hypercharge generator instead of γ, if we work in the high-
energy regime), but not between for example gluons and Z ′. We will discuss kinetic
mixing (and the mass mixing, mentioned in Sec. 1.4.1) extensively in Sec. 2.2.

Such “hidden” U(1) gauge factors arise for example in the low-energy limit of some
string-theory models [14, 15, 16] and have been used for quite some time in dark-matter
model building [17, 18]. The basic idea is to charge the dark matter only under U(1)′,
while all SM particles remain uncharged, allowing only for weak interactions between
these sectors via kinetic mixing (i.e. the Z ′ as a mediator to the dark sector) or, in
some models, via Higgs exchange (if an additional, U(1)′-charged scalar is introduced,
for example to break the U(1)′ at some possibly low scale).

Other models do not include matter charged under the new U(1)′, but break it (often
in the most economic way, i.e. via a Stückelberg mechanism (App. C)) and subsequently
induce photon-paraphoton oscillations (in complete analogy to neutrino oscillations).
These models can be tested with precision measurements of electromagnetism [19] or
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with so-called “light shining through a wall” experiments [20, 21], constraining the
kinetic mixing angle and the mass of the paraphoton. The usual framework consists of
the electromagnetic gauge group U(1)EM and one additional U(1)′:

L ⊃ −1
4
Fµν1 F1µν − 1

4
Fµν2 F2µν +

1
2
m2Aµ2A2µ + jµEM (eA1µ + e2A2µ) (1.17)

or some variation of this. The coupling of the paraphoton A2 to the electromagnetic
current can also be generated by kinetic mixing (e2 ∼ eχ). The crucial point is the
creation of the two mass eigenstates A1 and A2 by a charged source, which leads
to photon-paraphoton oscillations in direct analogy to neutrino oscillations. Since the
linear combination eA2 − e2A1 does not couple to jEM, photons can oscillate into the
sterile component, pass through an opaque barrier and oscillate back, hence the name
“light shining through a wall”.

1.4.3 Leptophotons

All models up to this point were assumed to be lepton universal. While universality
is a very accurate symmetry in the SM (for example the leptonic Z decay branching
ratios are universal to 0.1% [22]), there have been numerous models without this fea-
ture. Family non-universal long-range forces (mediated by “leptophotons”) have also
been considered, mainly ones that couple to first-generation particles, since they would
be the easiest to observe in current experiments. For this thesis, the most relevant
exception to this is a series of papers by Okun [19, 23] and others [24, 25, 26], who
discussed unbroken U(1)µ, U(1)τ and U(1)µ−τ gauge symmetries and their effect on
electrodynamics and the early Universe. Since we now know that lepton family number
is violated by neutrino oscillations, it is necessary to break the U(1)′ symmetry and
therefore give the gauge boson a mass. However, depending on the breaking mechanism,
this mass can be arbitrarily small, giving rise to a long-range interaction.

Even though long-range forces between e.g. electrons are highly constrained by exper-
iments testing the equivalence principle (stating, in our context, that the force between
two bodies (on large scales) depends only on their electric charge and mass, not on
other quantum numbers), they can still have an impact in neutrino physics. This is due
to the shear number of e.g. electrons in the Sun (N�e ∼ 1057), which can compensate
even the small coupling g′2/4π ∼ 10−50, and the fact that the leptonic potential in
neutrino oscillations is to be compared to ∆m2/Eν , which can be small in itself (e.g.
high energy atmospheric neutrinos). Neutrino physics therefore provides an interest-
ing testing ground for family-non-universal forces. While this is formally similar to the
NSI description of BSM interactions, it is to be distinguished simply because it is not
confined to matter, i.e. the long-range forces also change the vacuum oscillations of
neutrinos.

This connection between family-non-universal, leptophilic forces and neutrino os-
cillation has been derived by Joshipura et al. [27, 28] for the spontaneously broken
U(1)e−µ,τ , which is the main motivation for the topic of this thesis.

The neutrino sector is also interesting in such lepton-non-universal models since they
predict a specific structure of the neutrino mass matrix and hence the PMNS mixing
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matrix. For example a gauged Le−Lµ symmetry gives rise to the Majorana mass matrix

MMajorana =

0 a 0
a 0 0
0 0 b

 , (1.18)

which of course gets additional entries if we break the U(1)Le−Lµ symmetry (which we
have to do to be in accord with the measured mixing angles).

A phenomenologically very interesting mass structure comes from the Lµ −Lτ sym-
metry [29], because here the Majorana mass matrix (with a ≈ b, i.e. quasidegenerate
neutrinos)

MMajorana =

a 0 0
0 0 b

0 b 0

 , (1.19)

implies a maximal mixing angle θ23 = π/4 in the atmospheric sector, in agreement
with data (see Tab. 1.2). To also get a viable solar angle, one needs to introduce
perturbations to this mass matrix, i.e. break the Lµ − Lτ symmetry. The fact that
the associated massive gauge boson Z ′ does not couple to normal matter but only to
µ, νµ, τ, ντ seems to forbid an analogous discussion of a long-range force; we will show
however that the most general theory based on the gauge group GSM×U(1)Lµ−Lτ does
actually predict a force between matter and neutrinos that can be tested with neutrino
oscillation experiments.

We will consider both the case of an ultralight Z ′µ−τ (long-range force, Ch. 3) and
that of a boson with a mass around the electroweak scale (Ch. 4), making it accessible
to current colliders. Some specific models of the spontaneous breakdown of U(1)Lµ−Lτ
through additional scalars will also be discussed (Ch. 5).

1.5 Anomalies

The main interest in gauged Lα − Lβ symmetries (α, β ∈ e, µ, τ) originally stemmed
from the fact that they are anomaly-free without the need to introduce new particles to
the Standard Model. We will show this explicitly for the Lµ−Lτ symmetry in Sec. 2.1,
but the argument is exactly the same for Le − Lµ,τ .

This section serves as a very short introduction to anomalies, it is not meant to be
self-contained, but more extensive pedagogic treatments can be found in most textbooks
on Quantum Field Theory (QFT), e.g. Refs. [30, 31, 32].

Anomalies describe the breakdown of a classical symmetry through quantum effects.
We will only focus on anomalies associated with local symmetries, for these can render
a theory inconsistent, owing to the link between gauge invariance and renormalisability,
as worked out by Gross and Jackiw [33]. There are different ways to locate and calculate
anomalies; we will, for simplicity, take the perturbative route, calculating directly the
problematic Feynman diagrams.

As a toy model, let us consider a left-handed, massless Dirac field Ψ, charged under
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ερ(k)
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+

Figure 1.1: Three-point vertex diagrams, all momenta are outgoing.

a U(1) gauge group, so the Lagrange density takes the form:

L = −1
4
FµνFµν + iΨγµ (∂µ − igAµ)PLΨ . (1.20)

This Lagrangian is classically invariant under the global transformation Ψ → e−igθΨ
which implies the conserved current jµL(x) = Ψ(x)γµPLΨ(x) according to Noether’s
theorem, which in turn implies gauge invariance of the scattering amplitudes. In mo-
mentum space this can be understood in the following way: If we write the scattering
amplitude T for a process with an outgoing “photon” with momentum kµ and polar-
isation λ as T = εµλ(k)Mµ, then gauge invariance (and therefore renormalisability)
demands kµMµ = 0, because a gauge transformation shifts εµλ − ε′µλ ∼ kµ.

In the theory at hand, this critical relation is violated in the three-point vertex
function, i.e. in the triangle diagrams of Fig. 1.1, denoted as iV µνρ(p, q, k).

A long calculation [30] results in

pµV
µνρ = − ig

3

8π2
(1− c)ενραβqαkβ +O(g5) , (1.21)

qνV
µνρ = − ig

3

8π2
(1− c)ερµαβkαpβ +O(g5) , (1.22)

kρV
µνρ = − ig

3

8π2
(2c)εµναβpαqβ +O(g5) , (1.23)

where c is a numerical constant that is related to the regulator of the occurring loop-
integral. As can be seen, at least one of these expressions is non-zero, therefore the
theory is no longer gauge invariant (or, more importantly, renormalisable) at one-loop
level.

However, if we introduce N left-handed fields Ψi (charge Qi), we have to sum over
the different fermions in the loop, effectively changing

g3 →
N∑
i=1

(gQi)
3 . (1.24)

If this expression equals zero, gauge invariance will be restored.6

6A different approach to anomalies, via the functional measure of Feynman path integrals, shows that
this is true to all orders of perturbation theory, i.e. Eq. (1.24) is a necessary and sufficient condition
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This result generalises relatively easily to the case of a general (non-abelian) gauge
group with left-handed fermions in the (possibly reducible) representation R. Aside
from the polarisation and momentum, the “photons” in Fig. 1.1 now carry group in-
dices a, b, c (since they belong to the adjoint representation of the gauge group). De-
noting the generating group matrices for representation R as T aR, the gauge-invariance
condition (1.24) turns into

tr
[
{T aR, T bR}T cR

]
= 0 , (1.25)

where the curly brackets stand for the anticommutator {A,B} ≡ AB +BA.
The coupling to gravity introduces yet another condition [34]. The diagram with two

gravitons and one gauge boson will be proportional to tr[T aR], which therefore needs
to vanish as well. Since the generators of non-abelian groups are traceless, this only
constrains the abelian U(1) factors: the U(1) charges Yi of all fermions need to satisfy∑

i

Yi = 0 , (1.26)

otherwise either gauge invariance or general covariance of the theory breaks down.
The above statements remain true if we consider massive fermions, as long as the

mass terms are allowed by the gauge symmetry [31].

1.6 Motivation and Outline

This section shall provide a brief review of the previous research concerning the Lµ−Lτ
symmetry, followed by the motivation and outline for this thesis.

We already mentioned the work of Okun [19, 23] and others [24, 25, 26], who discussed
leptonic photons (i.e. unbroken symmetries) and their constraints from cosmology. They
also find that the symmetry Lα−Lβ can be consistently gauged (no anomalies within the
SM) and is therefore of interest, the Lµ−Lτ symmetry being the least constrained one.
While neutrino oscillations forbid exact Lα − Lβ symmetries, the derived constraints
can still be adapted for the fifth-force limit of the broken symmetry (see Sec. 3.4.2).

More recent discussions on gauged Lα−Lβ symmetries are based mainly on Le−Lµ,τ ,
since the corresponding gauge boson couples to electrons and is therefore easier to
constrain. We mention the work of Joshipura et al. on some phenomenological aspects
of a heavy Z ′Le−Lµ,τ [35] and more importantly on the effects of a corresponding long-
range force on neutrino oscillations [27, 28, 36], due to the potential generated by
electrons in the Sun. In this way, Joshipura et al. improve the bounds on the strength
of this new force compared to constraints from the equivalence principle.

Renewed interest in the overlooked Lµ−Lτ symmetry arose to explain the anomalous
magnetic moment of the muon, most prominently by Ma et al. [37, 38] and Baek
et al. [39, 40]. The deviation of the experimental and theoretical value for (g − 2)µ
can be explained by a U(1)Lµ−Lτ gauge boson because this contributes at one-loop
level and is otherwise hardly constrained. Ma et al. also construct a Higgs sector that

for gauge invariance; no new anomalies are introduced in higher loop order.
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imposes nearly bimaximal mixing of neutrinos, but is by now highly disfavoured since
it generates a large value of sin θ13 ≈ 0.22. In Ref. [38], the authors discuss mass-
mixing between Z and Z ′Lµ−Lτ , used to explain the difference of the measured Weinberg
angle sin2 θW at NuTeV [41] compared to other measurements (in other words, NuTeV
measured a different neutrino coupling than expected from the SM). Baek et al. examine
the signatures of Z ′Lµ−Lτ in muon collisions [39] and the possibility to use it as a
mediator to the dark matter sector, using its leptophilic nature to explain the PAMELA
anomaly [40] (excess of positrons in cosmic rays compared to antiprotons [42]). All of
these papers (and Ref. [43] as well) discuss signatures of the extra neutral gauge boson
at the LHC.

Further motivation comes from the neutrino sector; as mentioned in Sec. 1.2, the
structure of the PMNS mixing matrix seems to suggest an underlying symmetry prin-
ciple. As shown in Ref. [29], from the nine continuous global abelian symmetries based
on lepton number, the three combinations Lµ − Lτ , Le − Lµ − Lτ and Le generate a
bimaximal mixing matrix at zeroth order (while e.g. Le−Lµ,τ do not lead to successful
mixing matrices unless highly perturbed). Since Lµ − Lτ can be promoted to a local
symmetry7 and is furthermore barely constrained, it is the most interesting possibility
to consider. In this way, we make a connection between the gauge sector and the flavour
sector.

In this thesis, we will try to elucidate the connection between neutrinos and the gauge
sector of the theory. In order to do so, we will discuss the most general Lagrangian for
our Z ′, including all the mixing terms that have been ignored in most previous work
(Ch. 2), and emphasise the effects that arise in neutrino interactions, how they can be
observed in current and future neutrino experiments, and how they differ from the NSI
effects usually discussed. Since the ability to accommodate a light Z ′ is quite unique to
this model, our main focus will be on a discussion of an ultralight Z ′, affecting neutrino
oscillations solely through mixing and its flavour structure, a possibility that has not
been discussed before. Chapter 3 is devoted to a discussion of current constraints on
this fifth force, sensitivity of future long-baseline experiments to its effects, and how
it might just be able to explain a recently measured neutrino-antineutrino anomaly at
the MINOS experiment (Sec. 3.6).

Still in a low mass range compared to other Z ′ models, we then discuss the phe-
nomenology of a Z ′ mass below and around the electroweak scale (Ch. 4). We once
again discuss the impact of mixing effects on neutrino interactions and proceed to
identify the parameter values currently allowed, locating an actually favoured region
using a global fit to electroweak precision data. This improves previous analyses which
mainly focussed on the anomalous magnetic moment of the muon. Since collider phe-
nomenology is already well considered, we comment only briefly on it and try to improve
some of the analysis.

Since previous research only discusses the extended scalar sector of the theory in
passing, we devote Ch. 5 to a detailed discussion of specific models. We investigate
several symmetry breaking sectors and their imprint on the neutrino mass matrix. The

7A short calculation shows that it is not possible to cancel the anomalies in Le − Lµ − Lτ and Le just
by some right-handed neutrinos like in the (B − L) case.
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various scalar potentials are examined and we discuss the resulting mixing among the
scalars, their impact on the Higgs search at the LHC and the generation of lepton
flavour violating decays.

Since we cover a lot of different areas of physics, it proves convenient to sprinkle in
introductions and conclusions in each chapter, as to improve reading fluency. An overall
conclusion and outlook will be given in Ch. 6.

In the Appendix we summarise some of the conventions we use, concerning units
etc. (App. A), and give a brief introduction to the statistical tools we need throughout
this thesis (App. B). In App. C, we review the Stückelberg mechanism and a possible
application in our model. App. D is a collection of lengthy formulae from a pertur-
bative treatment of the three-flavour oscillation probabilities. In App. E, we explore
a different charge assignment to the right-handed neutrinos Ni compared to the main
text. Finally, we list the different types of two-Higgs-doublet models discussed in the
literature (App. F), and the electroweak precision observables we use in the χ2-fit for
the heavy Z ′ (App. G).
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Chapter 2

Theoretical Framework

In this chapter, we will define our model in the most general way practicable, starting
from the Lagrange density; we include all renormalisable mixing terms and derive the
proper mass eigenstates of the gauge bosons. Our first section deals with the anomaly
freedom of the gauge group, to verify the validity of the theory.

2.1 Anomaly Cancellation in GSM × U(1)Lµ−Lτ

In the following, we will show that the gauge group GSM of the Standard Model can be
extended to GSM×U(1)Lµ−Lτ , without the need to introduce further particles to cancel
anomalies. For the sake of shortness, we will use the notation U(1)Lµ−Lτ ≡ U(1)′ often
throughout the thesis.

We use the hypercharge convention Q = T3 + Y
2 , yielding the particle representa-

tions given in Tab. 1.1. In addition, we assign the U(1)Lµ−Lτ charge +1 to µL, νµ
and τR, and −1 to τL, ντ and µR, while all other particles remain uncharged (see
Tab. 2.1). This will be denoted by an additional bracket in the representation, for
example, µR ∼ (1, 1,+2)(−1) means that µR transforms as a singlet under SU(3)
(colour) and SU(2) (isospin), while the U(1)Y hypercharge transformation takes the
form µR → exp (i(+2)θ(x))µR. The (now gauged) U(1)′ transformation is represented
as µR → exp (i(−1)θ′(x))µR.

The anomaly-freedom of the Standard Model is shown in Ref. [31], we will therefore
only focus on the additional triangle diagrams with the U(1)′ gauge boson (shown in

Le ∼ (1, 2,−1)(0) Lµ ∼ (1, 2,−1)(+1) Lτ ∼ (1, 2,−1)(−1)

eR ∼ (1, 1,+2)(0) µR ∼ (1, 1,+2)(−1) τR ∼ (1, 1,+2)(+1)

Table 2.1: GSM × U(1)Lµ−Lτ representations of left-handed leptons.
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Figure 2.1: Additional triangle diagrams involving the U(1)Lµ−Lτ gauge boson Z ′.

Fig. 2.1). To deal with them, we need expressions like:

tr(Y ′Y 2) =
∑
`

Y ′(`)Y 2(`)

=
[
Y ′(µL)Y 2(µL) + Y ′(νµ)Y 2(νµ) + Y ′(µR)Y 2(µR)

]
+
[
Y ′(τL)Y 2(τL) + Y ′(ντ )Y 2(ντ ) + Y ′(τR)Y 2(τR)

]
=
[
(+1) · 2 · (−1)2 + (−1) · (+2)2

]
+
[
(−1) · 2 · (−1)2 + (+1) · (+2)2

]
= 0 .

(2.1)

Analogous calculations give the equations:

tr(Y ′Y 2) =
[
(+1) · 2 · (−1)2 + (−1) · (+2)2

]
+
[
(−1) · 2 · (−1)2 + (+1) · (+2)2

]
= 0 ,

tr(Y ′2Y ) =
[
(+1)2 · 2 · (−1) + (−1)2 · (+2)

]
+
[
(−1)2 · 2 · (−1) + (+1)2 · (+2)

]
= 0 ,

tr(Y ′3) =
[
(+1)3 · 2 + (−1)3

]
+
[
(−1)3 · 2 + (+1)3

]
= 0 ,

tr(Y ′Y ) = [(+1) · 2 · (−1) + (−1) · (+2)] + [(−1) · 2 · (−1) + (+1) · (+2)] = 0 ,

tr(Y ′) = [(+1) · 2 + (−1)] + [(−1) · 2 + (+1)] = 0 .
(2.2)
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The first row of triangles in Fig. 2.1 vanishes by the first three of the equations (2.2);
the anomalies involving one SU(2) gauge boson cancel because tr(σa) = 0. The one
with two SU(2) gauge bosons simplifies via tr(σaσb) ∼ tr(δab) to tr(Y ′), and therefore
vanishes. The anomalies involving SU(3) cancel trivially, because the quarks carry no
U(1)′ charge. Finally, the anomaly involving the gravitons is proportional to tr(Y ′) and
hence equals zero by the last equation of (2.2).

Since we introduced a generation-dependent symmetry, the anomalies do not cancel
among just one generation (except, of course, the first generation). To explain neutrino
oscillations, we may want to introduce additional fermions to the theory. By choosing
them to be singlets ∼ (1, 1, 0)(0), we do not introduce new anomalies. It is also possible
to charge them under U(1)′ (still singlets of the Standard Model), as long as their Y ′

charges fulfil ∑
i

Y ′i
3 = 0 =

∑
i

Y ′i , (2.3)

e.g. two right-handed neutrinos in (1, 1, 0)(−a) and (1, 1, 0)(+a), respectively. The only
nontrivial possibility for three right-handed neutrinos is NR,1 ∼ (1, 1, 0)(−a), NR,2 ∼
(1, 1, 0)(+a) and NR,3 ∼ (1, 1, 0)(0). This case, with a ≡ 1, has been discussed for the
global U(1)Lµ−Lτ in Ref. [29]. For four right-handed neutrinos the anomalies have to
cancel pairwise, i.e. Y ′1 = −Y ′2 and Y ′3 = −Y ′4 .

2.2 The Lagrangian for GSM × U(1)Lµ−Lτ

The general Lagrange density after breaking the SU(3)C × SU(2)L × U(1)Y × U(1)′

symmetry to SU(3)C × U(1)EM can be written as [44]

L = LSM + LZ′ + Lmix , (2.4)

where the relevant part of the Standard Model Lagrangian is

LSM = −1
4
B̂µνB̂

µν − 1
4
Ŵ a
µνŴ

aµν +
1
2
M̂2
ZẐµẐ

µ − ê

ĉW
jµBB̂µ −

ê

ŝW
jaµW Ŵ a

µ , (2.5)

and the hats merely denote that the fields are not mass eigenstates. The Z ′ part is in
our case given by

LZ′ = −1
4
Ẑ ′µνẐ

′µν +
1
2
M̂ ′2Z Ẑ

′
µẐ
′µ − ĝ′j′µZ ′µ , (2.6)

j′µ = µ̄γµµ+ ν̄µγ
µPLνµ − τ̄ γµτ − ν̄τγµPLντ , (2.7)

with the projection operator PL ≡ 1
2(1− γ5). The kinetic- and mass-mixing terms are

parameterised as

Lmix = −sinχ
2

Ẑ ′µνB̂µν + δM̂2Ẑ ′µẐ
µ , (2.8)
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+
Z ′ B Z ′ B

τµ

Figure 2.2: Loop-induced kinetic mixing via Z ′µ and Bµ.

with the kinetic-mixing angle χ (we choose kinetic mixing with the hypercharge, see
App. A).

Even if χ is zero at some energy, vacuum polarisation diagrams with muons and
tauons in the loop can generate such an interaction due to mass splittings (Fig. 2.2).
At very low energies we have roughly (for massless Z ′) [13]

χ ∼ 1
6π2

ê

ĉW
ĝ′ ln

(
mτ

mµ

)
≈ ĝ′ × 10−2 . (2.9)

A similar effect arises with the introduction of U(1)′-charged scalars (which we need to
break the symmetry anyhow), depending on their quantum numbers.

The off-diagonal mass element δM̂2 can be generated by the VEV of a scalar, charged
under both U(1)′ and SU(2)L×U(1)Y . We do not specify the Higgs sector of the model
yet, even though it can introduce further interesting couplings,1 like |H ′|2|HSM|2. The
difficulties in defining a proper Higgs sector for the ultralight Z ′ will be discussed in
Sec. 3.8; numerous examples for the heavy Z ′ will be given in Ch. 5. To stay as model
independent as possible, we will work for the most part with Eq. (2.8) as effective
parameters, ignoring their origin.

We will now derive the proper mass eigenstates, following Refs. [44, 45]. From
Eq. (2.4) we obtain the mass matrix

1
2

(
Â Ẑ Ẑ ′

)0 0 0
0 M̂2

Z δM̂2

0 δM̂2 M̂2
Z′


 ÂẐ
Ẑ ′

 ≡ 1
2

(
Â Ẑ Ẑ ′

)
M2

 ÂẐ
Ẑ ′

 . (2.10)

For convenience we will first apply the Weinberg rotation ÂẐ
Ẑ ′

 = U

 B̂

Ŵ 3

Ẑ ′

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 B̂

Ŵ 3

Ẑ ′

 , (2.11)

and then perform a non-unitary transformation to diagonalise the kinetic term: B̂

Ŵ 3

Ẑ ′

 = R

 B

W 3

Z ′

 =

1 0 − tanχ
0 1 0
0 0 1/ cosχ


 B

W 3

Z ′

 . (2.12)

1In some Higgs models, there will be additional terms in our leptonic U(1)′-current as well, which can
lead to flavour-changing interactions (see Sec. 5.1.3). Since such terms are strongly constrained, we
will omit them for now.
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The kinetic terms are now properly normalised:

− 1
4
B̂µνB̂

µν − 1
4
Ẑ ′µνẐ

′µν − sinχ
2

Ẑ ′µνB̂µν

= −1
4

(
B̂µν Ẑ ′µν

)( 1 sinχ
sinχ 1

)(
B̂µν
Ẑ ′µν

)

= −1
4

(
Bµν Z ′µν

)( 1 0
− tanχ 1/ cosχ

)(
1 sinχ

sinχ 1

)(
1 − tanχ
0 1/ cosχ

)(
Bµν
Z ′µν

)

= −1
4

(
Bµν Z ′µν

)(1 0
0 1

)(
Bµν
Z ′µν

)
,

(2.13)

and we can perform further unitary transformations without changing this kinetic struc-
ture. It is convenient to undo the Weinberg rotation via B

W 3

Z ′

 = U †

 ÃZ̃
Z̃ ′

 , (2.14)

so that the mass matrix in the (Ã, Z̃, Z̃ ′) basis takes the form

M2
Ã,Z̃,Z̃′

=
(
URU †

)†M2URU † =

0 0 0
0 a b

0 b c

 , (2.15)

where a, b and c are defined as:

a ≡ M̂2
Z , b ≡ ŝW tanχM̂2

Z +
δM̂2

cosχ
,

c ≡ 1
cos2 χ

(
M̂2
Z ŝ

2
W sin2 χ+ 2ŝW sinχδM̂2 + M̂2

Z′

)
.

(2.16)

The mass matrix M2
Ã,Z̃,Z̃′

can be diagonalised by an orthogonal matrix Uξ: ÃZ̃
Z̃ ′

 = Uξ

A

Z1

Z2

 =

1 0 0
0 cos ξ − sin ξ
0 sin ξ cos ξ


A

Z1

Z2

 . (2.17)

The fields A, Z1 and Z2 obtain the masses zero and

M2
1,2 =

a+ c

2
±
√
b2 +

(
a− c

2

)2

, (2.18)
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respectively, and the new mixing angle is given by

tan 2ξ =
2b
a− c . (2.19)

The mixing angle also satisfies the equations

tan2 ξ =
M2

1 − a
a−M2

2

, sin2 ξ =
M2

1 − a
M2

1 −M2
2

, (2.20)

the last one uses sin2 = tan2 /(1 + tan2). To summarise: The gauge eigenstates Â, Ẑ
and Ẑ ′ are related to the mass eigenstates via ÂẐ

Ẑ ′

 =

1 −ĉW sin ξ tanχ −ĉW cos ξ tanχ
0 cos ξ + ŝW sin ξ tanχ ŝW cos ξ tanχ− sin ξ
0 sin ξ

cosχ
cos ξ
cosχ


A

Z1

Z2

 , (2.21)

or, inverted: A

Z1

Z2

 =

1 0 ĉW sinχ
0 cos ξ −ŝW cos ξ sinχ+ sin ξ cosχ
0 − sin ξ cos ξ cosχ+ ŝW sin ξ sinχ


 ÂẐ
Ẑ ′

 . (2.22)

Decoupling corresponds to χ = 0 = ξ, so we expect these two mixing angles to be small
to be in accord with electroweak data.

2.2.1 Definition of the Weinberg Angle

To make a connection between theory and experiment, we should express the param-
eters of the Lagrangian by measurable quantities. Since the coupling of the photon to
jEM does not change, we identify ê = e =

√
4πα. Defining the SM weak mixing angle

by the NOV scheme (Novikov-Okun-Vysotsky [46, 22]), i.e. via

s2
W c

2
W ≡

πα(M1)√
2GFM2

1

, (2.23)

we obtain the corresponding expression for the case with mixing

ŝ2
W ĉ

2
W ≡

πα(M̂Z)√
2GF M̂2

Z

, (2.24)

since GF stems from muon decay measurements and therefore only contains the un-
changed W boson mass. Eq. (2.20) then gives

1
ŝW ĉW

=
1

sW cW

M̂Z

M1
=

1
sW cW

√
1 + sin2 ξ

(
M2

2

M2
1

− 1
)
, (2.25)
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which can be approximated to

ŝ2
W ≈ s2

W − s2
W

1− s2
W

1− 2s2
W

sin2 ξ

(
M2

2

M2
1

− 1
)
. (2.26)

The coupling strengths of W± and ZSM are therefore almost unaffected by the mixture
(since the effect goes with ξ2); the main effect is the additional coupling to j′ (which is
linear in the mixing angles), i.e. a different coupling to electron, muon and tauon (and
their neutrinos). Since the photon stays massless, we do not end up with a coupling
j′µA

µ, which would effectively charge neutrinos.
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Chapter 3

An Ultralight Z′ – The Fifth-Force Limit

Our main focus in this chapter is the limit of an ultralight Z ′, affiliated with a long-range
interaction. This family-non-universal force can affect neutrino oscillations through mix-
ing effects, even though it is highly constrained by astrophysical experiments. We will
derive the current constraints and discuss the possibilities for a detection at future neu-
trino oscillation experiments. Special emphasis will be put on the distinction between
this long-range potential and the conventional non-standard neutrino interactions.

3.1 Approximations

The expressions for the mass eigenstates and couplings (2.16) can be simplified when
dealing with an ultralight Z ′. Making b small results in

M2
1 = a+

b2

a− c +O(b4), M2
2 = c− b2

a− c +O(b4) , (3.1)

so setting a ≈ M2
Z0

and making c and b small, compared to M̂2
Z , will give a light Z ′

and a small mixing angle

ξ ≈ b

a− c ≈
1

cosχ

(
ŝW sinχ+

δM̂2

M̂2
Z

)
≈ ŝWχ+

δM̂2

M̂2
Z

. (3.2)

The last approximation follows from the observation that a small b results in tanχ� 1
and δM̂2 � M̂2

Z . Gauge and mass eigenstates are connected via Eq. (2.21):

Â ≈ A− cWχZ2 ,

Ẑ ′ ≈ Z2 + ξZ1 ,

Ẑ ≈ Z1 − (ξ − sWχ)Z2 .

(3.3)

In this approximation, the mass eigenstates have interaction terms

LA = −ejEMA ,

LZ1 = −
(

e

sW cW
(j3 − s2

W jEM) + g′ξj′
)
Z1 ,

LZ2 = −
(
g′j′ − (ξ − sWχ)

e

sW cW
(j3 − s2

W jEM)− ecWχjEM

)
Z2 .

(3.4)
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νµ, ντ νµ, ντ

Z ′

Z

e, p, n e, p, n

Figure 3.1: Long-range νµ,τ–(e, p, n) interaction through Z–Z ′ mixing.

We choose to eliminate δM̂2 in favour of ξ and χ by means of Eq. (3.2). In the case
δM̂2 = 0, we need further terms in the approximation of ξ. It turns out that only
terms containing M̂Z′/M̂Z contribute to the jNCZ2 coupling, the lowest one being
sWχM̂

2
Z′/M̂

2
Z . Since M̂2

Z′/M̂
2
Z is very small for the ultralight Z ′ discussed below, this

coupling will be too small to generate any observable effect (as will be seen later). We
will therefore only consider the case δM̂2 6= 0 in the following.

3.2 Potential from the Sun

If we take the mass of the Z ′ to be M2 < 1/A.U. ∼ 10−18 eV, we obtain a static potential
at Earth generated by the Sun. This has been studied by Joshipura et al. [27, 36] for the
gauge bosons of the U(1)Le−Lµ,τ symmetries. Since in our case the Z ′ does not couple
directly to protons, neutrons or electrons, the only effect comes from the mixing, i.e. the
j3 and jEM currents (see Fig. 3.1). The Sun is electrically neutral, so we have j0

EM = 0
and

j0
3 = −1

2
ēLγ

0eL +
1
2
p̄Lγ

0pL − 1
2
n̄Lγ

0nL = −1
4

(ne − np + nn) = −nn
4
, (3.5)

where we used PL = 1
2 − 1

2γ5, and the fact that the axial (γ5) terms will result in a
spin operator in the non-relativistic limit and we assume the Sun is not polarised (see
Ref. [47]). The equation of motion for Z0

2 follows from the Euler-Lagrange equation

∂ν
δ

δ(∂νZ2µ)

(
−1

4
Z2αβZ

αβ
2

)
− δ

δZ2µ

(
1
2
M2

2Z2αZ
α
2 + LZ2

)
= 0 , (3.6)

which can be equated with (3.4):

(∂2 +M2
2 ) Z0

2 = (ξ − sWχ)
e

sW cW

nn
4
. (3.7)

For a static potential outside of the Sun, the neutron density can be written as nn(x) =
Nnδ

(3)(x), with the total number of neutrons Nn:

(∆−M2
2 ) Z0

2 = −(ξ − sWχ)
e

sW cW

1
4
Nnδ

(3)(x) , (3.8)
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with the well-known solution

V (r) = Z0
2 = (ξ − sWχ)

e

sW cW

1
4
Nn × e−rM2

4πr
. (3.9)

For simplicity, we take the limit M2 → 0 and calculate the potential for νµ (Y ′ = +1)
and ντ (Y ′ = −1) on Earth:1

Vµ,τ = ± g′(ξ − sWχ)
e

4sW cW
Nn

4πRA.U.
+O(ξ2, χ2, ξχ) . (3.10)

The total number of neutrons in the Sun is approximately Nn ≈ Ne/4 ≈ 1.5×1056, and
the distance between Sun and Earth is RA.U. ≈ 7.6×1026 GeV−1, yielding the potential

Vµ,τ = ± 2.82× 10−14 eV
( α

10−50

)
, α ≡ g′(ξ − sWχ) . (3.11)

Since this potential should be of order of, or lower than, the typical matter potential
(A ∼ 10−13eV), we expect the typical order of magnitude α ∼ 10−50. As with most
additional long-range forces, we enter a game of very small numbers at every corner.

The Earth also generates a comparable potential; approximating a static potential
at the surface, we calculate the ratio

VEarth

VSun
=
Nn,Earth

Nn,Sun

RA.U.
Rsurface

≈ 1.8× 1051

1.5× 1056

1.5× 108

6380
≈ 0.28 , (3.12)

where the total number of neutrons has been calculated with the chemical decomposi-
tion of the Earth from Ref. [48], but can also be estimated by half the nucleon number
of the Earth ∼M⊕/mnuc.. The Moon can be ignored since

VMoon

VSun
=
Nn,Moon

Nn,Sun

RA.U.
REarth−Moon

≈ 2.3× 1049

1.5× 1056

1.5× 108

3.8× 105
≈ 6× 10−5 . (3.13)

Our full potential at the surface of the Earth is therefore:2

Vµ,τ = ± 3.60× 10−14 eV
( α

10−50

)
. (3.14)

We could also reintroduce the factor exp(−rM2), or take our force to be only of Earth-
radius range (M2 ∼ 1/R⊕). All of this merely changes the prefactor in V , i.e. the
scale of α. In the following, we will make our calculations with the potential (3.14);
in particular, we approximate a constant potential. Additional effects from the proper
position dependence are discussed in Sec. 3.7, but are only important for atmospheric
neutrino oscillations.

1In the following we assume that the mixing angles are somewhat smaller than g′, so we can drop the
O(ξ2, χ2, ξχ) terms against O(g′χ, g′ξ). In the actual neutrino oscillations the terms without g′ will
be flavour independent and therefore drop out.

2The potential in the Le − Lµ,τ models is generated by the electrons in the Sun, which leads to
Veµ,τ ≈ 1.3 × 10−11 eV(αeµ,τ/10−50), where αeµ,τ = g2

eµ,τ/4π. The constraints from solar-neutrino
and KamLAND data are αeµ < 3.4× 10−53 and αeτ < 2.5× 10−53 at 3σ [28].
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Range Vnew/V αnew/α

Earth radius 0.22 4.57
Earth-Sun distance 1 1
galactic distances 46.88 2.13× 10−2

187.50 5.33× 10−3

Table 3.1: Ranges for our fifth force and corresponding rescaling of α.

By taking M2 < 1/Rgal ∼ 10−27 eV, Rgal denoting the distance between the Sun and
the core of the Milky Way Galaxy (with 100− 400 billion stars), we obtain a potential

Vgal

VSun
=

(1− 4)× 1011

1.6× 109
≈ 60− 240 , (3.15)

which would dominate over our other potentials. In Tab. 3.1, we list the different
possibilities and how α needs to be rescaled. For example, an obtained bound α < 10−50

translates for a galactic long-range force to αgal . 10−52.

3.3 Effect on Neutrino Oscillations

Since the potential V (α) only affects νµ and ντ , the propagation equation for the flavour
eigenstates changes to

i
d
dt
ν =

1
2E

UM2
νU
†ν +

0 0 0
0 Vµ 0
0 0 Vτ

ν ≡ HFν , (3.16)

with the usual PMNS mixing matrix

U =

 c12c13 s12c13 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13

 , (3.17)

where cij = cos θij , sij = sin θij , and Vµ = −Vτ ≡ V . Since HF is constant, Eq. 3.16
has the simple solution ν(t) = exp(−iHFt)ν0. In case matter effects are important, we
obtain

i
d
dt
ν =

1
2E

UM2
νU
† +

A(x) 0 0
0 2EV 0
0 0 −2EV


ν , (3.18)

with A(x) = 2
√

2GFne(x)E. For antineutrinos, the signs of A and V change. Eq. (3.18)
illustrates that V has to be compared to ∼ ∆m2/E, which means the effect will be
most notable for high-energy neutrinos, as already mentioned in the introduction.
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3.3.1 Two-Flavour Solution

The analytic solution of Eq. (3.18) is rather messy, so we will first consider νµ–ντ
oscillations in the two-flavour framework (V mainly changes the νµ–ντ sector). Since
V should be small, as to not dominate the oscillation, we should write our evolution
equation (3.18) in the mass eigenstates νM , with a small perturbation in the parameter
V :

i
d
dt
νM =

1
2E

(
m2

2 0
0 m2

3

)
νM + V · U †

(
1 0
0 −1

)
UνM , (3.19)

where

U =

(
cos θ sin θ
− sin θ cos θ

)
, θ = θatm , (3.20)

and we define ∆m2 ≡ m2
3 −m2

2 as well as η ≡ 2EV
∆m2 . So our Hamiltonian is given by

HV =
1

2E

(
m2

2 + 2EV cos 2θ 2EV sin 2θ
2EV sin 2θ m2

3 − 2EV cos 2θ

)
=

1
2E

UV

(
m2

2,V 0
0 m2

3,V

)
U †V ,

(3.21)

with a new rotation matrix

UV =

(
cosφ sinφ
− sinφ cosφ

)
, tan 2φ =

2η sin 2θ
1− 2η cos 2θ

, (3.22)

mass eigenvalues

m2
2,3,V =

m2
2 +m2

3

2
∓ ∆m2

2

√
1− 4η cos 2θ + 4η2 , (3.23)

and mass eigenstates

νM,V = U †V νM = U †V U
† νflavour . (3.24)

In the presence of V , the mixing angle between flavour and mass eigenstates becomes
θV ≡ θ+ φ and ∆m2 changes to ∆m2

V ≡ m2
3,V −m2

2,V . As can be seen from Eq. (3.22)
and Eq. (3.23), this corresponds for small η to

θ → θV = θ + η sin 2θ +O(η2 cos 2θ) ,

∆m2 → ∆m2
V = ∆m2

(
1− 2η cos 2θ + 2η2 sin2 2θ

)
+O(η3 cos 2θ) ,

(3.25)

so we effectively generate energy-dependent θ and ∆m2. It is worth noting once more,
that V (and therefore η) changes sign for antineutrinos, resulting in a different oscil-
lation behaviour of neutrinos and antineutrinos in the presence of our potential. For
the maximal-mixing scenario θ ≈ π/4 (favoured by data, see Tab. 1.2), the shift in
the mass parameter is equal for neutrinos and antineutrinos, while for sin2 2θ 6= 1, we
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have in principle a different parameter ∆m2 for ν and ∆m2 for ν. This will be further
discussed in Ch. 3.6, which contains a fit of our model to the data of the long-baseline
experiment MINOS [49, 50], where exactly this effect (∆m2 6= ∆m2) is observed [51],
albeit with very low statistics.

We end up with an oscillation probability P (νµ → ντ ) ≡ Pµτ of the form

Pµτ = sin2 (2θV ) sin2

(
∆m2

V

4
L

E

)
= sin2

(
2θ + arctan

(
2η sin 2θ

1− 2η cos 2θ

))
× sin2

(
a
√

1− 4η cos 2θ + 4η2
)

≈ sin2(2θ) sin2(a)×
{

1 + 4(1− a cot a) cos 2θ η

− 4
[
1− a cot a+ cos2 2θ

(
5a cot a− 4− a2 cos 2a

sin2 a

)]
η2
}
,

(3.26)

with a ≡ ∆m2

4
L
E . This simplifies for sin2 2θ ≈ 1 to

Pµτ = sin2(2θ) sin2(a)× {1− 4 (1− a cot a) η2 +O(η4)
}
. (3.27)

For maximal mixing the first correction due to V is of order V 2 and therefore identical
for ν and ν. For non-maximal mixing we have P (νµ → ντ ) 6= P (νµ → ντ ), i.e. CP
violation (similar to the usual MSW effect, but here also in vacuum).

The maximum of Pµτ occurs at a = π/2, where a cot a → 0, so the value of the
maximum is lowered by a factor

(1− 4η2)
∣∣
a=π/2

=
(

1− 4L2V 2

π2

)
, (3.28)

while the position of the maximum itself depends only very weakly on V . We see that
the effect of V will be enhanced for longer baselines.

Pµτ is no longer symmetric around θ = π/4 for a non-zero η, but rather obeys the
extended symmetry

Pµτ (θ = π/4− σ, α) = Pµτ (θ = π/4 + σ,−α) . (3.29)

We mention the following degeneracies of the exact two-flavour oscillation probability:

Pµτ (θ,∆m2, α) = Pµτ (θ,−∆m2,−α)

= Pµτ (θ + π/2,∆m2,−α)

= Pµτ (θ + π/2,−∆m2, α) ,

(3.30)

and analogous equations for the antineutrino transition probability, defined via

Pµ̄τ̄ (θ,∆m2, α) ≡ Pµτ (θ,∆m2,−α) . (3.31)
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Figure 3.2: Survival probability P (νµ → νµ) as a function of the neutrino energy E for L =
3000 km and different values of α (left). For non-maximal mixing (here θ23 = π/4 − 0.05) the
probabilities for neutrino P (νµ → νµ) and antineutrino P (νµ → νµ) split up (middle), which
also happens for non-vanishing θ13 (here: θ13 = 0.15) (right).

3.3.2 Three-Flavour Effects

We will show the survival probability P (νµ → νµ), using the full solution of Eq. (3.18)
(with vanishing matter density and oscillation parameters from Tab. 1.2). Fig. 3.2
illustrates the effect of α on the oscillation, the changes are most significant around the
oscillation minimum and enhance the survival probability. As we have already seen in
the exact two-flavour solution, a non-maximal atmospheric mixing angle θ23 destroys
the symmetry Pµµ = Pµ̄µ̄, so neutrinos and antineutrinos oscillate differently. This is
pictured in Fig. 3.2 (middle), where we set θ23 = π/4−0.05; shifting θ23 in the opposite
direction just changes ν ↔ ν, due to Eq. (3.29), which is still a good symmetry for
sin θ13 � 1.

Interestingly (a true three-flavour effect), a similar splitting also occurs for non-
vanishing θ13 (Fig. 3.2 (right)), with the main difference that this also lowers the
maximum of Pµµ compared to Pµ̄µ̄. For small θ13, the degeneracies from Eq. (3.30)
are still good symmetries, which means without knowledge of the mass hierarchy (the
sign of ∆m2

31), we can say nothing about the sign of α. We will comment on a possible
resolution at future long-baseline neutrino experiments in Sec. 3.5.7.

For completeness, we show analytic expressions of Pαβ (including a constant matter
potential) from an expansion to second order in the small quantities3 V , ∆m2

21 and θ13

in App. D (approximations that were not made in Fig. 3.2). These expressions can be
used to verify that Peβ is only affected in order V 3 by the potential, while Pµµ and Pµτ
have linear contributions of the form (s2

23−c2
23)V , which reinstates the symmetry (3.29)

for the three-flavour framework. This once again shows how the P (ν) = P (ν) symmetry
is linked to maximal νµ–ντ mixing. The breaking of this symmetry due to θ13 6= 0 is
not described by the perturbative expressions of App. D, because the effect goes with
s2

13 V .
Let this suffice as a discussion of the modified neutrino oscillations under the influence

of the potential V .

3The actual expansion parameters are ∆m2
21/∆m

2
31, sin θ13 and 2EV/Amatter ≈ α/(3 × 10−50), all

assumed to be of the same order.
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3.4 Current Bounds on the Coupling Constant and Mixing

Angles

This section gives a review over the restrictions placed on the mixing angles ξ and χ and
the coupling constant g′, by various experiments from particle physics to cosmology.

3.4.1 Equivalence Principle

The model with an ultralight Z ′ violates the equivalence principle because it adds a
lepton-number-dependent long-range force to gravitation. The bounds on such forces
are very strict [52], but not directly applicable here, since they are based on lunar
ranging and torsion balance experiments, which are only sensitive to the electron and
baryon content of matter. That means the only effect comes once again from Z–Z ′

mixing. As shown above, the Z2 potential generated by a massive body depends on the
number of neutrons N :

V =
e(ξ − sWχ)

4sW cW
N
e−rM2

4πr
. (3.32)

The gravitational potential between two bodies with masses m1 and m2, and neutron
content N1 and N2, is therefore changed to

Vgrav = −GNm1m2

r

(
1−

(
e(ξ − sWχ)

4sW cW

)2 N1

m1

N2

m2

1
4πGN

e−rM2

)
. (3.33)

The constraints for a neutron-dependent fifth force are shown in Fig. 3.3 (taken from
Ref. [52], see references therein for a description of the experiments), where

|α̃| ≡ 1
4πGNu2

(
e(ξ − sWχ)

4sW cW

)2

, λ ≡ 1
M2

. (3.34)

For an Earth-Sun-distance range we take the conservative bound |α̃| < 10−11, corre-
sponding to

(ξ − sWχ) < 5× 10−24 , (3.35)

whereas an Earth-radius range Z ′ only yields |α̃| < 5 × 10−9, corresponding to (ξ −
sWχ) < 10−22.

3.4.2 Big Bang Nucleosynthesis

Additional relativistic degrees of freedom, like new light neutrinos or our Z ′ boson,
can potentially affect the physics of the early Universe, e.g. the successful Big Bang
Nucleosynthesis (BBN) [55]. We will briefly review relevant BBN processes: At a tem-
perature TD ∼ 1 MeV, the neutrinos decoupled from the primordial plasma, because
their interaction rate Γνint ∼ G2

FT
5 (describing processes like n→ p e νe, νe n→ p e and

e+ n→ p νe) became smaller than the expansion rate of the Universe H ∼ √g∗T 2/MPl.
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Figure 3.3: Bounds on a neutron-dependent long-range force (from Fig. 5 of Ref. [52], based
on Refs. [53, 54], see references therein for details on the experiments). The region above the
curves is excluded at 95% C.L. The definition of the parameters is given in Eq. (3.34).

Shortly thereafter, the neutron-proton ratio froze out, slowly decreasing through neu-
tron decay; this process stopped with the formation of nuclei, most importantly 4He
(since it has the highest binding energy). In the approximation that all neutrons went
into 4He, the abundance parameter Y (mass ratio of 4He) equates to

Y =
nn
2 × (2mn + 2mp)
nnmn + npmp

≈ 2nn/np
1 + nn/np

. (3.36)

The ratio nn/np depends on the freeze-out temperature, which in turn is a function
of g∗, the number of relativistic degrees of freedom at freeze-out (Tfreeze ∼ (g∗)1/6MeV).
Consequently, the measured value of Y can constrain g∗. The Standard Model predicts
g∗(TD) = 10.75; deviations ∆g∗ from that value are often expressed via the number of
additional neutrinos ∆Nν that these d.o.f. correspond to (∆g∗ = (7/4)×∆Nν).

Current measurements [56] give Y = 0.2565 ± 0.0010 (stat.) ± 0.0050 (syst.). The
resulting effective number of neutrino species depends on the baryon-photon ratio and
the neutron lifetime, which apparently has huge systematic problems. The values with
2σ errors are shown below for a neutron lifetime τn = 885.4±0.9 s, and τn = 878.5±0.8 s,
respectively [56]:

∆Nν = 0.68+0.80
−0.70 , ∆Nν = 0.80+0.80

−0.70 . (3.37)

How does the Z ′ affect the above discussion? The processes that lead to an equilibrium
between the Z ′ and the neutrinos are shown in Fig. 3.4 and result in an interaction rate
Γ ∼ g′4T . So, for high temperatures, these processes are slow compared to the expansion
rate of the Universe, i.e. the behaviour is opposite to that of the weak interactions.
If the Z ′ bosons were in equilibrium at the temperature TD, they would contribute
∆Nν = 3× (4/7) ≈ 1.7 to Y (treating the Z ′ as massive). Since this value is more than
two standard deviations away from the best-fit values, we require the Z ′ equilibrium to
set in at lower temperatures, i.e. TZ′ < 1 MeV. This translates into the constraint [24]

g′2

4π
< 1.7× 10−11 , (3.38)
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Figure 3.4: Equilibrium processes involving the Z ′.

or, in a more useful form, g′ < 1.5× 10−5.
However, there are processes at higher temperatures that are still sensitive to such

small values; let us assume a coupling between 10−18 < g′2/4π < 10−11 (derivation
of the lower bound below). The upper bound states that the process νν → Z ′Z ′ is
much slower than the Hubble expansion, so equilibrium sets in some time after the
neutrinos decouple, hence the process is irrelevant. At temperatures T ∼ mµ

4 however,
the process γµ→ Z ′µ has an interaction rate Γ ∼ e2g′2T 3/m2

µ and induces equilibrium
of muons, photons and Z ′. After the muon annihilation below T ∼ mµ, the Z ′ freeze
out and contribute to the expansion rate via g∗, but in an entropy suppressed way
(entropy density s ∼ g∗T 3, energy density ∼ g∗T 4):

∆Nν = 3× 4
7
×
(
g∗(1 MeV)
g∗(mµ)

)4/3

≈ 0.9 . (3.39)

This value is well within the currently allowed range, so there is for now no reason to
exclude this range 10−18 < g′2/4π < 10−11. If we were to do so (should the experimental
accuracy improve), we should demand that the Z ′ bosons are not in equilibrium at
T ∼ mµ, yielding the constraint [26]

g′2

4π
< 4× 10−18 , (3.40)

or g′ < 7.1× 10−9.
Nothing interesting happens at T ∼ mτ , because the g′2 limit scales as

√
g∗(mτ )mτ

and is therefore weaker than 3.40. Stated in a different way, there is no possibility for
the Z ′ boson to be in equilibrium at mτ and not at mµ.

The results are summarised in Tab. 3.2, we will take Eq. (3.38) as a bound on g′.
A similar limit can be obtained from the additional Z ′ luminosity in the supernova
1987a [25].

g′2/4π 0 . . . 4× 10−18 4× 10−18 . . . 1.7× 10−11 1.7× 10−11 . . . 1

∆Nν 0 0.9 1.7

Table 3.2: Number of additional neutrinos at BBN, induced by the ultralight Z ′ boson for
different values of the coupling constant g′.

4While we actually do not have direct information about the processes at these temperatures, we can
extrapolate using the degrees of freedom of the SM plus Z′.
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Figure 3.5: Contribution of the Z ′ boson to the magnetic moment of the muon (left); corre-
sponding contours of ∆aµ in the MZ′–g′ plane (right). The allowed parameter space is left of
the ∆aµ ∼ 10−9 contour.

3.4.3 Anomalous Magnetic Moment of the Muon

Since the Z ′ boson couples to the muon, it contributes to the muon’s anomalous mag-
netic moment, aµ = (gµ − 2)/2, via loop-diagrams like Fig. 3.5 (left). This corresponds
quantitatively to [38]

∆aµ =
g′2

4π
1

2π

1∫
0

dx
2m2

µx
2(1− x)

m2
µx

2 +M2
Z′(1− x)

=
g′2

4π
1

2π

{
1 for MZ′ � mµ ,

2m2
µ/3M

2
Z′ for MZ′ � mµ ,

(3.41)

the mass range around mµ is shown in Fig. 3.5 (right). For the ultralight Z ′, this
translates into a constraint on the coupling g′. The current experimental value of aµ
differs by 3.2σ from the Standard Model prediction, although there is some uncertainty
in the hadronic contributions [57, 22]. We can use g′ to explain this difference by setting
∆aµ = aexp

µ − aSM
µ . 255× 10−11 (⇒ g′ . 4.49× 10−4). As we have seen in Sec. 3.4.2,

BBN requires a significantly smaller g′, so the Z ′ will essentially not contribute to the
magnetic moment of the muon.

3.4.4 Effect on Electromagnetic Interactions

The Z–Z ′ mixing also changes the electromagnetic behaviour, as can be seen from the
Lagrangian in Eq. (3.4), slightly rewritten and shown only for muons, electrons and
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protons:

LZ2 =−
{[
g′ + ecWχ− (ξ − sWχ)

e

sW cW
·
(
s2
W −

1
4

)]
µγβµ

+
[
ecWχ− (ξ − sWχ)

e

sW cW
·
(
s2
W −

1
4

)]
eγβe

−
[
ecWχ− (ξ − sWχ)

e

sW cW
·
(
s2
W −

1
4

)]
pγβp

+ (ξ − sWχ)
e

sW cW

[
−1

4
eγβγ5e− 1

4
µγβγ5µ+

1
4
pγβγ5p

]}
Zβ2 + . . . .

(3.42)

Ignoring, for simplicity, any spin dependence (i.e. the axial currents), and interference
with the photon, we obtain in the non-relativistic limit5 an electron-proton potential
(in direct analogy to the derivation in Sec. 3.2)

VH(r) = − e2

4πr
− e2

4πr
Q̃2
P × e−rM2 . (3.43)

We introduced the “charge” Q̃P ≡ −(ξ − sW χ)(1/4 − s2
W )/(sW cW ) − cWχ for con-

venience. On atomic scales, the factor e−rM2 can be omitted, resulting in an effective
change of the fine-structure constant, albeit only in second order of the mixing angles.
Since the equivalence principle sets already very strong bounds on the mixing angles,
we can safely ignore the Q̃2

P terms, i.e. the fine-structure constant yields inferior con-
straints.

A bound state of µ+ and e− (muonium) on the other hand has the potential

Vmuonium(r) = − e
2

4π

(
1 +

[
Q̃2
P −

g′

e
Q̃P

]
× e−rM2

)
1
r
≈ − e

2

4π

(
1− g′

e
Q̃P

)
1
r
, (3.44)

which means muonium should have a different fine-structure constant than non-muonic
atoms, i.e. muons would seem to have a different electric charge than electrons and
protons. We interpret the ratio of the potentials as the ratio of the muon/proton charge:6

eµ+

ee+,p
=
Vmuonium

VH
=

e2

4π

(
1 + Q̃2

P − g′

e Q̃P

)
e2

4π

(
1 + Q̃2

P

) ≈ 1− g′

e
Q̃P , (3.45)

which has been measured via the muonium hyperfine-structure [58] to be 1 with an
accuracy of 10−9, corresponding to a limit

g′
(
χ+

(1− 4s2
W )

3sW
ξ

)
< 3.5× 10−10 . (3.46)

5In the non-relativistic limit, the vector current ψγµψ has a vanishing spatial part, while the axial
current ψγµγ5ψ has a vanishing time-like part (the µ = 0 component). Therefore, the coupling jV jA
vanishes, while jAjA does not. It describes a spin-dependent potential which goes with Q̃2

P and is thus
highly suppressed.

6Since the equality of proton charge |ep| and electron charge |ee| is measured to a high accuracy
(∼ 10−21 [22]), from experiments on the neutrality of matter, we do not distinguish between them.
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The contribution of ξ is reduced by (1−4s2
W )/3sW ≈ 0.05 compared to χ. It is obvious

from this limit that we need the mixing angles to be non-zero to influence electro-
magnetic interactions. Only the proposed “true muonium” (a bound state of µ− and
µ+) [59] could give constraints depending only on g′.

We mention that there are experiments probing modified electromagnetic potentials
of the form

V (r) = − e2

4πr

(
1 + βe−r/λ

)
(3.47)

over a wide range of λ (Ref. [60, 61]), but with very weak constraints for the ultralight
Z ′ discussed here (λ = 1/M2).7

3.4.5 Connection to Paraphotons

For convenience, we repeat the relevant part about paraphotons from Sec. 1.4.2:
The usual framework for paraphotons consists of the electromagnetic gauge group

U(1)EM and one additional U(1)′:

L ⊃ −1
4
Fµν1 F1µν − 1

4
Fµν2 F2µν +

1
2
m2Aµ2A2µ + jµEM (eA1µ + e2A2µ) (3.48)

or some variation of this. The coupling of the paraphoton A2 to the electromagnetic
current can also be generated by kinetic mixing e2 ∼ eχ. The crucial point is the
creation of the two mass eigenstates A1 and A2 by a charged source, which leads
to photon-paraphoton oscillations in direct analogy to neutrino oscillations. Since the
linear combination eA2 − e2A1 does not couple to jEM, the oscillation can lead to so-
called “light shining through a wall” (LSW) effects [21], i.e. photons oscillate into the
sterile component, pass through an opaque barrier and oscillate back.

Our ansatz however was a mixing with the hypercharge, not the electric charge. This
generates a coupling to the neutral current, so even though there will also be a “sterile”
linear combination of γ and Z2 (the Z1 decouples at a short distance due to its high
mass), it will not be sterile with respect to the weak current. This should either forbid
“light shining through a wall” or at least modify it significantly. While this may be
interesting in its own right, we will not go into details and simply omit constraints
from these kinds of experiments, as even their strongest limits are weaker than those
from the equivalence principle.

3.4.6 Atmospheric Neutrino Oscillations

The strongest limit on our potential V (α) stems from Atmospheric Neutrino Oscilla-
tions (AνO). The aforementioned Le − Lµ,τ model [27] (based on the potential gener-
ated by electrons inside the Sun) uses the two-neutrino framework to fit their coupling
strength αe µ,τ = g2

e µ,τ/4π to Super-K data (from only 3 years of operation). In the

7For a boson of Earth-radius range (M ′Z ∼ 10−14 eV), there exists the limit β < 10−2 from the
magnetic field of the Earth [61], corresponding to (3sWχ+ (1− 4s2W )ξ) < 0.2.
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notation

i
d
dt

(
νµ
ντ

)
=

(
−∆m2

23
4Eν

cos 2θ23
∆m2

23
4Eν

sin 2θ23
∆m2

23
4Eν

sin 2θ23
∆m2

23
4Eν

cos 2θ23 − Veτ

)(
νµ
ντ

)
, (3.49)

with Veτ = 3.3×10−11 eV
(

αeτ
3.3×10−50

)
, they obtain an upper bound of αeτ < 6.4×10−52

at 90% C.L. for a force of Earth-Sun distance. This is equivalent to:

Veτ < 6.4× 10−13 eV . (3.50)

In the two-neutrino framework, we can write

i
d
dt

(
νµ
ντ

)
=

(
−∆m2

23
4Eν

cos 2θ23 + Veτ
2

∆m2
23

4Eν
sin 2θ23

∆m2
23

4Eν
sin 2θ23

∆m2
23

4Eν
cos 2θ23 − Veτ

2

)(
νµ
ντ

)
− Veτ

2

(
νµ
ντ

)
,

where the last term does not contribute to the oscillation, and hence can be dropped.
We therefore have the correspondence to our Lµ − Lτ model via V =̂ Veτ

2 , leading to
the bound V < 3.2× 10−13 eV, or, expressed as a bound on α:

α = g′(ξ − sWχ) < 8.9× 10−50 . (3.51)

The improved bounds [28] on αe µ,τ from an analysis with solar neutrino and Kam-
LAND data can not be translated that freely, since the above argument fails in the
three-neutrino framework and would require a full three-flavour fit to all data, which
is outside the realm of this work.

We will however improve the bound (3.51) in Sec. 3.7, where we perform an analogous
analysis on a more recent dataset.

3.4.7 Non-Standard Neutrino Interactions

Comparing the form of our potential V (α) in flavour basis to the NSI matter potential
Eq. (1.12), we find a correspondence

εµµ = −εττ =̂
V (α)√

2GFne(x)
, (3.52)

all other NSI parameters being zero. Can we relate the constraints on εµµ to α? Un-
fortunately, we have to take the position dependence of the electron density ne(x) into
account. For long-baseline experiments (discussed below), neutrinos travel through the
crust of the Earth with a basically constant ne, which would make it possible to use
Eq. (3.52) directly. But since the limits on the NSI parameters we are concerned with
stem predominantly from atmospheric neutrinos, which travel through all the diffe-
rent layers of the Earth, we cannot use Eq. (3.52). Moreover, since the NSI potential
and V (α) (even if we take its true position dependence into account) have a different
position dependence, it might not be possible to extract a limit on α from NSI at all.

We postpone the discussion of the NSI limits until Sec. 3.7, where we examine the
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(ξ − sWχ) < 5× 10−24 EP (95% C.L.)

g′ < 1.5× 10−5 BBN (equilibrium below TD)

g′ . 4.5× 10−4 Muon magnetic moment

g′
(
3sWχ+ (1− 4s2

W )ξ
)
. 5.1× 10−10 Muon fine structure

α = g′(ξ − sWχ) < 8.9× 10−50 AνO (90% C.L.)

ξ ≤ 0.036 Z boson mass (3σ)

g′ξ < 1.1× 10−3 Z–τ coupling (3σ)

Table 3.3: Current constraints on a U(1)Lµ−Lτ gauge boson of Earth-Sun-distance range.

position dependence of V (α) and perform a χ2-fit to atmospheric neutrino data.

3.4.8 Electroweak Precision Data

The Z–Z ′ mixing is in principle constrained through precision data from LEP and
other collider experiments, but far less than through EP, BBN and AνO. For example,
the mass mixing with Z changes the so-called ρ parameter, ρ ≡ M2

W /M
2
Zc

2
W , from its

SM value 1. However, since its precision is of order 10−3 [22], it cannot compete with
the EP bounds. Similar conclusions hold for the modified coupling of Z to fermions.
For completeness, we list the dominant constraints from electroweak precision data in
Tab. 3.3.

All constraints are summarised in Tab. 3.3, most of which derived under the assump-
tion ξ � 1, χ� 1, δM2 �M2

Z and M2
Z′ �M2

Z . The, by far, most dominant bound is
given by the atmospheric neutrino oscillations in addition to the equivalence principle.
For χ ≡ 0, the bounds simplify to g′ < 7.1× 10−9 (BBN), g′ξ < 8.9× 10−50 (AνO) and
ξ < 5× 10−24 (EP), the allowed parameter space is shown in Fig. 3.6.
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Figure 3.6: Constraints on g′ and ξ for the case χ ≡ 0. BBN limit from decoupling at T = mµ.
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3.5 Simulation with GLoBES

GLoBES [62, 63] (“General Long-Baseline Experiment Simulator”) is, as the name
suggests, a software package (C library) to simulate long-baseline experiments, i.e. sim-
ulate the oscillation of neutrinos in different settings. It uses the Abstract Experiment
Definition Language (AEDL) to specify the details of a concrete experiment, such as

• length of baseline and matter profile (Earth matter density profile from Refs. [64,
65]),

• running time of the experiment and detector mass,

• energy of the neutrinos, resolution functions, smearing algorithms, cuts and bin
definition,

• cross sections and neutrino fluxes,

• efficiencies, background and oscillation channel definition.

Since GLoBES is designed to simulate neutrino point sources, we differentiate between
four kinds of experiments at our disposal:

• Superbeam experiments
Low-energy, high-intensity muon neutrino beam created in accelerator facilities
such as CERN or FermiLab. Measurement of νe-appearance signals and/or νµ
disappearance.

• Neutrino factory (Nufact)
Neutrino beam created through muon decay in storage rings. The beam consists
of νµ and νe (in the ν-run), so a magnetised detector is necessary to distinguish
the µ− from νµ  µ− and the µ+ from the oscillated νe → νµ  µ+ (both
through charged-current interactions in the detector).

• Reactor experiments
Detecting neutrinos from radioactive decay in a nuclear power reactor. Looking
for disappearance of the created electron neutrinos.

• Beta beams
Electron neutrinos are created in an accelerator through the decay of different
isotopes (e.g. 18Ne for νe and 6He for νe). The specification of the experiment
strongly depend on the relativistic acceleration factor γ of these isotopes.

With the creation and detection of the neutrinos defined in the AEDL file, GLoBES
calculates the neutrino evolution using the full three-neutrino framework, i.e. it calcu-
lates the S-matrix for given oscillation parameters θ12, θ13, θ23, ∆m2

21, ∆m2
31 and δCP,

including the specified matter effects. From this, we get rates and ∆χ2-values, allowing
us to analyse the sensitivity of an experiment to one parameter, or combination of pa-
rameters (we can also perform a simultaneous analysis of different experiments). One
of the main features of GLoBES is the projection of ∆χ2 to any parameter subspace
by local minimisation.
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Experiment Baseline Running time [yrs] Beam energy [GeV] Detector mass
T2K 295 km 5 ν (+5 ν) 0.2− 2 22.5 kt
T2HK 295 km 4 ν + 4 ν 0.4− 1.2 500 kt
SPL 130 km 2 ν + 8 ν 0.01− 1.01 500 kt
NOνA 812 km 3 ν + 3 ν 0.5− 3.5 15 kt
Nufact 3000 km 4 ν + 4 ν 4− 50 50 kt

Table 3.4: Future long-baseline experiments (T2K already started taking data).

We refer to App. B for an introduction to the necessary statistical tools (χ2 analysis
in real and simulated experiments). Since all the data is simulated, we need to specify
some true parameter values, against which we can minimise. The values used by us
(and their errors) are given in Tab. 1.2, the average matter density will be kept fixed.
The experiments are summarised in Tab. 3.4, and further described below; the obtained
sensitivities of the experiments to the non-standard parameter α are tabulated at the
end of this chapter, in Tab. 3.5.

3.5.1 The Setting

We simulate the effect of α on the neutrino oscillations at different types of long-baseline
experiments. Since α mainly affects the νµ and ντ oscillations, we expect a correlation
with the atmospheric observables θ23 and ∆m2

31. We will therefore concentrate on su-
perbeam and neutrino factory experiments.

We use the pre-defined AEDL files provided by GLoBES [62, 63] (in version 3.0) and
calculate the S-matrix following from our neutrino evolution equation (3.18) numeri-
cally as described in Ref. [63]. The values for the parameters are given in Tab. 1.2 and
stem from the February 2010 update of Ref. [1] (including νe-appearance data from
MINOS). The errors on θ12 and θ23 correspond to 1σ errors, translated via

δθ ≈ dθ
d sin2 θ

δ(sin2 θ) =
1

2 sin θ cos θ
δ(sin2 θ) . (3.53)

Although the analysis in Ref. [1] favours a non-zero θ13 (best-fit value and 1σ errors:
sin2 θ13 = 0.013+0.013

−0.009), we will take θ13 = 0 as the true value with the 2σ error sin2 θ13 ≤
0.039 as the error in our computation. For simplicity, we choose symmetric error bars,
i.e. we approximate the experimental error via e.g. sin2 θ23 = 0.50+0.07

−0.06 → 0.50± 0.07.
For the most part, we will examine the normal hierarchy (NH) case, inverted hierarchy

(IH) will be briefly discussed in Sec. 3.5.7. In the following subsections, we show some
projections on χ2 hyperplanes where all other oscillation parameters are minimised
over (matter density kept fixed). The projections show the ∆χ2 = 2.3, 6.18 and 11.83
confidence levels8 (corresponding to 1, 2 and 3σ or 68.27%, 95.45% and 99.73% C.L.),
following the commonly used condition for 2 parameters [22] (see App. B). The best-fit
value in all cases corresponds to α = 0 (our true parameter value). The graph χ2 vs. α
also shows the 1, 2 and 3σ ranges for 1 parameter (∆χ2 = 1.0, 4.0 and 9.0).

8Since our true parameter values are defined at χ2 = 0, we have ∆χ2 ≡ χ2 in the following.
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Figure 3.7: α dependence of χ2 for the 5 year ν-run at T2K.

3.5.2 T2K

The T2K (Tokai to Kamioka) experiment [66, 67] uses the water Čerenkov detector of
the Super-Kamiokande experiment in Kamioka, Japan, to measure a muon neutrino
beam produced, using a high intensity proton accelerator, at J-PARC in Tokai village,
Japan. Two of the main goals are to measure the νe-appearance signal and in turn θ13,
as well as precision measurements of the oscillation parameters ∆m2

31 (to 10%) and θ23

(to 1%) via νµ disappearance.
The νe appearance is described by (see perturbative expression in App. D)

Pµe(α = 0 = A) ≈ sin2(2θ13)s2
23 sin2

(
∆m2

31L

4E

)
+ c2

23 sin2(2θ12)
(

∆m2
21L

4E

)2

+ 4c12s12c
2
13s13c23s23

(
∆m2

21L

4E

)[
cos δ sin

(
∆m2

31L

2E

)
− 2 sin δ sin2

(
∆m2

31L

4E

)]
,

(3.54)

so the probability is proportional to sin2 2θ13, for not too small θ13 (for θ13 below ∼ 10−2

the third term will be important too).
The neutrino beam is generated at J-PARC by the collision of protons with a target,

subsequently producing pions which decay dominantly (99.988%) via π+ → µ+νµ, thus
creating an almost pure νµ beam with a peak energy 0.5 − 0.7 GeV. The (2.5 degree
off-axis9) detection at Super-Kamiokande (22.5 kt fiducial mass) measures the Čerenkov
light cone produced by muons (electrons) after quasi-elastic (charged-current) neutrino-
nucleon scattering of the νµ (νe) with the water in the detector. The sharpness of the
light cone is used to distinguish between electrons and muons.

The simulation uses the two AEDL files 0709-t2k.glb and 0709-t2k-anti.glb (not
distributed with GLoBES, but available on their website) to describe the 5 year ν-run
and the 5 year ν-run, respectively, using the sources10 [68, 69, 70, 71, 72].

For the 5 year ν-run we obtain the α dependence of χ2 in Fig. 3.7, from which we

9A detector slightly off-axis to the beam is desirable, because it allows for an almost monochromatic
neutrino flux. The neutrino energy is approximately connected to the pion energy via Eν ∼ Eπ/(1 +
θ2E2

π/m
2
π), so any angle θ 6= 0 will drive the dependence dEν/dEπ to zero for large Eπ.

10Since there is no accurate, public information on the Super-Kamiokande performance with a ν beam,
the simulated ν-run should be viewed as an approximation based on extrapolated data.
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Figure 3.8: Correlation between α and θ13 (left), α and θ23 (middle) and α and ∆m2
31 (right),

for the 5 year ν-run at T2K. Shown are the 1, 2 and 3σ contours corresponding to ∆χ2 = 2.3,
6.18 and 11.83.

read off a sensitivity of α < 11.8 × 10−50 at 99.73%. The nontrivial correlations with
other oscillation parameters are shown in Fig 3.8 (the contours denote ∆χ2 = 2.3, 6.18
and 11.83).

As expected, we find a correlation with the parameters θ23, ∆m2
31 and θ13. Including

a 5 year ν-run we increase the sensitivity significantly (Fig. 3.9), but wash out the
strong correlations; the reason being the different behaviour of νµ and νµ under the
potential V (α). We obtain a sensitivity of α < 4.3× 10−50 at 99.73% C.L.

3.5.3 T2HK

The T2HK superbeam experiment is an upgrade of the T2K experiment (Phase II,
improved beam power and larger detector (Hyper-Kamiokande)), the differences are
given in Tab. 3.4. From now on we will only show the results of a combined ν+ν analysis.
The GLoBES simulation uses the AEDL file T2HK.glb (distributed with GLoBES) to
describe the experiment [73, 66, 74] with a running time of 4 years ν and 4 years ν.

We obtain a sensitivity of α < 1.7 × 10−50 at 99.73% C.L., an improvement by a
factor of 2.5 over the T2K sensitivity. The correlations with the other parameters look
qualitatively like those of T2K.
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Figure 3.9: Correlations for the full T2K running time (5 year ν plus 5 years ν).
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3.5.4 NOνA

The NOνA [75] (NuMI Off-axis νe Appearance) experiment (begin data taking ∼ 2013),
uses a 15 kt liquid scintillator near Ash River, Minnesota to detect an off-axis muon
neutrino beam created at Fermilab (810 km baseline). The νµ beam is created through
collisions of protons with a graphite target, resulting in pions and kaons which subse-
quently decay into muons and neutrinos. To improve the knowledge about the beam,
there will also be a small near detector, about 1 km from the target. Part of the NOνA
project is an upgrade of the existing NuMI (Neutrino at Main Inject) beam to 700 kW.
The main goals of NOνA are a measurement of νe appearance and therefore θ13, pre-
cision measurements in the νµ → νµ channel to determine θ23, and a determination of
the sign of ∆m2

31, i.e. the mass hierarchy.
The GLoBES simulation uses the AEDL file 0709-NOvA.glb (not distributed with

GLoBES, but available on their website) to describe the experiment [76, 77] with a
running time of 3 years ν and 3 years ν.

We obtain an overall sensitivity of α < 1.9× 10−50 at 99.73% C.L. Since the correla-
tions with the other parameters look very similar to T2K (of course with rescaled axes),
we omit from showing them here. Since both T2K and NOνA are designed to probe
the atmospheric neutrino parameters and hence have a similar L/E value, one would
expect a similar sensitivity to α (similar detector mass and running time). However, as
mentioned in Sec. 3.3.1, the effect of α is dominantly of the form η ∼ V E/∆m2, so the
doubled neutrino energy of NOνA compared to T2K means an enhancement of α by
roughly a factor of 2. This can also be understood by means of the longer baseline, see
Eq. 3.28.

3.5.5 SPL

The SPL [70] (Super Proton Linac) experiment is proposed to use a 500 kt water
Čerenkov detector in the Fréjus tunnel, 130 km away from CERN, to study a neu-
trino beam created by decays of pions, muons and kaons, produced after hitting a Hg
target with protons accelerated in a linear collider. The beam is almost pure νµ, the
contamination with νe is ∼ 0.7% (∼ 6% in the ν run) [70]. SPL will measure θ13 through
the νµ → νe appearance channel. The GLoBES simulation uses the AEDL file SPL.glb

(distributed with GLoBES) to describe the experiment [78, 79] with a running time of
2 years ν and 8 years ν.

We obtain a sensitivity (Fig. 3.10) of α < 7.5× 10−50 at 99.73% C.L.

3.5.6 Neutrino Factory

In a neutrino factory [80] (Nufact), muons are accelerated to energies O(10) GeV and
injected into a storage ring with long straight sections, where the muons decay via
µ− → e−νeνµ (ν-run) or µ+ → e+νeνµ (ν-run). The well-known beam (νµ, νe or νµ, νe
depending on beam polarity) allows for very precise measurements of e.g. νe → νµ
(golden channel) and/or νe → ντ (silver channel).11

11The silver channel is possible because the neutrinos in a Nufact can have energies above the threshold
of 3.5 GeV for the production of tauons in charged-current interactions [72].
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Figure 3.10: Correlations for the full running time at SPL (2 year ν plus 8 years ν).

We use the parameters listed in Tab. 3.4 with the AEDL file NFstandard.glb (dis-
tributed with GLoBES) to describe the experiment [73]. In particular, we do not use the
silver channel here, only (ν)

µ appearance and disappearance (using a 50 kt magnetised
iron neutrino detector).

For a standard neutrino factory we obtain a sensitivity (Fig. 3.11) of

α < 5.3× 10−51 (3.55)

at 99.73% C.L., due to the high energy of the neutrinos (and the very long baseline).
We also have a small correlation with δCP (albeit practically insignificant).

Neutrino Factory with Silver Channel We will now consider an improved Nufact with
an additional 5 kt emulsion cloud chamber for the detection of tauons. The rest of the
setup will be similar to the standard neutrino factory discussed above (baseline, energy),
except for the treatment of the disappearance channels. In the standard Nufact, the
charge identification is used to reduce the background from the appearance neutrinos,
whereas here the appearance and disappearance rates are treated as indistinguishable
for the disappearance channel, meaning we throw away the information whether the
measured charged lepton was a muon or an antimuon. This can actually improve the
analysis, since it allows the use of low-energy events with higher efficiency [81]; the
efficiencies and thresholds used are similar to MINOS [49]. Therefore we cannot compare
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Figure 3.11: Correlations for a Nufact with a running time of 4 year ν and 4 year ν.
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Figure 3.12: Effect of a non-zero α on the ∆m2
31–θ23 and θ13–δCP correlations for NOνA.

this simulation with the standard neutrino factory, but must use a setting with the same
systematics.

The comparison is done with the AEDL files NFvar.glb and NF GoldSilver.glb

(distributed with GLoBES), the latter including the silver channel [82]. We simulated
4 years of ν-running (gold channel) plus 4 years of ν-running (gold and silver channel).12

The results are virtually indistinguishable, the difference between the χ2 is of order
of 0.1, so we conclude that an additional ντ -appearance channel will not improve the
sensitivity to α. A similar conclusion has been reached for the determination of NSI
parameters in Ref. [83].

3.5.7 Effect on Other Correlations

Having discussed the correlations of α with the other parameters, we will state the
effects of α 6= 0 on other correlations. In particular, we will examine the resolution of
the mass hierarchy and the sign of α.

NOνA To look at the effect of a non-zero α on the sensitivity of other oscillation
parameters, we show the θ23–∆m2

31 plane for α = 0 and α = 1× 10−50, calculated for
the NOνA experiment, as well as an analogous fit in the θ13–δCP plane (Fig. 3.12). As
expected from all the α correlations discussed above, a non-zero α tightens the allowed
θ23 range, but slightly enlarges that of ∆m2

31. The effect of α < 0 differs only marginally.
The different correlations in the θ13–δCP plane for normal and inverted hierarchy

allow in principle to resolve the two cases (if θ13 6= 0), except for a small parameter
space [84]. α shifts the contours towards θ13 = 0, irrespective of its sign or the assumed
hierarchy (we only show the (α > 0)-NH case as to not clutter the plot). As a result,
while NOνA can in principle resolve the mass hierarchy, it is not helpful for measuring
the sign of α.

Neutrino Factory The described effects in the θ23–∆m2
31 plane of NOνA are merely

enhanced for a Nufact. More interesting is the correlation of θ13 and δCP (Fig. 3.13),
since it introduces a distinction between ±α. In case of normal hierarchy, a positive α
12Since the neutrino-nucleon cross section is smaller for ντ (at these energies σ(νN)/σ(νN) ≈ 3− 2),

we only consider the silver channel in the ν-run (stored µ+).
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Figure 3.13: Effect of a non-zero α on the θ13–δCP correlation for Nufact, shown for normal
(left) and inverted hierarchy (right).

favours a δCP around 120◦, while a negative α selects just the other one, around 280◦.
For inverted hierarchy it is just the other way around; this could be used to determine
sgn(α), assuming the mass hierarchy is known, e.g. from NOνA.

The reason for this behaviour is an interplay with the usual matter effect, since at
these baselines it is significant and leads to CP violation in correlation with δCP.

3.5.8 Discovery Limits

As mentioned in App. B, there is a second interesting quantity concerning the oppor-
tunities of a simulated experiment to certain model parameters, beside the sensitivity
to it. This so-called discovery potential gives the concrete value a parameter needs to
have in order to exclude another value at a certain confidence level. For the parameter
α this means we vary the true value αtrue and find the value at which

χ2(α = 0)
∣∣
αtrue

− χ2(α = αtrue)
∣∣
αtrue

= ∆χ2 , (3.56)

where, of course, χ2(α = αtrue) = 0 by definition and we will choose ∆χ2 = 9.0 to
exclude the value α = 0 at 99.73% C.L. (3σ).

While this seems easy enough, we will illustrate the problem we encounter at the
example of NOνA. Setting αtrue = 2×10−50, we obtain the simulated χ2(α) of Fig. 3.14
(left). The second (local) minimum around α = 0 favours a non-maximal mixing,
θ23 6= π/4. Increasing αtrue to lift this second minimum over the 99.73% C.L. barrier
requires true values that are already excluded by atmospheric neutrino oscillations,
hence it makes no sense to define a discovery potential for α in this way.

Even though the above discussion suggests that α cannot be “discovered” at LBL
experiments, this would be an oversimplification. Assuming we have non-maximal mix-
ing in the atmospheric sector, a non-zero α gives rise to CP violation that could be
easily discovered by comparing neutrino and antineutrino rates (e.g. in the MINOS
experiment 3.6). If we actually have maximal mixing, then χ2(α = 0) gets pushed to
high values as the error on θ23 tightens, making it possible to define a proper discovery
limit. To illustrate this point, we assume an improved error of θ23 = π/4 ± 0.02 and
show that NOνA could then discover an α = 2 × 10−50, 3σ away from the standard
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Figure 3.14: χ2(α) for αtrue = 2 × 10−50 at NOνA. The assumed standard deviation of θ23 is
0.07 (left) and 0.02 (right), the latter allowing to set a discovery limit of α = 2× 10−50.

oscillation value α = 0 (see Fig. 3.14 (right)).

3.6 MINOS Anomaly

In this section, we will show how the model under consideration can explain the different
neutrino oscillation behaviour of ν and ν̄, as measured by the MINOS experiment [51].
It serves as a short version of the paper we wrote on the subject [85], but contains an
improved discussion of the possible shortcomings.

3.6.1 Introduction

The MINOS (Main Injector Neutrino Oscillation Search) experiment is a two detector
long-baseline experiment which uses the NuMI beam line from Fermilab. The far de-
tector is set up 735 km from the source, resulting in an L/E ∼ 500 km/GeV, sensitive
to atmospheric neutrino oscillations (∆m2

32 and sin2 2θ23). With 7 × 1020 Protons On
Target (POT) for the neutrino run and 1.7× 1020 POT for the antineutrino run, they
obtain the best-fit values

∆m2 =
(
2.35+0.11

−0.08

)× 10−3 eV2 , sin2 2θ > 0.91 ,

∆m2 =
(
3.36+0.45

−0.40

)× 10−3 eV2 , sin2 2θ = 0.86± 0.11 ,
(3.57)

in a respective fit of the oscillation probability to the data. The apparent difference of
the neutrino and antineutrino parameters has motivated several explanation attempts,
in the form of CPT violation [86, 87, 88], NSIs [89, 90, 91], gauged B − L plus sterile
neutrinos [92] and, of course, via gauged Lµ − Lτ [85]. Most of these explanations are
problematic in a certain way [93], we will however mainly comment on our model.

3.6.2 Fitting our Model

As shown in the previous sections, the introduction of the potential Vµτ leads to a dif-
ferent oscillation behaviour for electron, muon and tauon neutrinos. Since the potential
changes sign for the corresponding antineutrinos, it also changes the oscillation of ν`
and ν̄`, which could explain the MINOS results (3.57).
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Using the exact two-flavour results derived in Sec. 3.3.1, we obtain the survival prob-
abilities for neutrinos and antineutrinos

P ≡ P (νµ → νµ) = 1− sin2 2θV sin2 ∆m2
V

4E
L , (3.58)

P = P (νµ → νµ) = P (νµ → νµ)(α↔ −α) , (3.59)

with the energy-dependent parameters

sin2 2θV =
sin2 2θ

1− 4 η cos 2θ + 4 η2
, (3.60)

∆m2
V = ∆m2

√
1− 4 η cos 2θ + 4 η2 = ∆m2

√
sin2 2θ/ sin2 2θV . (3.61)

The parameter η ≡ 2E V
∆m2 contains our potential and therefore changes sign for antineu-

trinos. Since η only contributes in the form η cos 2θ, a non-maximal mixing angle θ is
necessary to induce different ν and ν̄ behaviour. Since we introduce only one additional
parameter α, we predict a connection between the oscillation parameters for ν and ν̄,
e.g. from (3.60) ∆m2 sin 2θ = ∆m2 sin 2θ, which could distinguish our model from other
solutions.

Using the expressions (3.58, 3.59), we have performed a χ2-fit to the MINOS data
(given in bins of energy Ei) on the ratio of observed events divided by the expectation
for no oscillations. This data was taken, as in Ref. [89], from the slides of the talk
referred to in our Ref. [51]. In case of asymmetric errors, the largest one was used and
inserted in the χ2-function

χ2(θ,∆m2, α) =
∑
i

(
P (θ,∆m2, α, Ei)−Ri

σ2
i

)2

+
∑
i

(
P (θ,∆m2, α, Ei)−Ri

σ2
i

)2

,

(3.62)

where P (P ) is the survival probability P (νµ → νµ) from Eq. (3.58) (from Eq. (3.59)),
Ri (Ri) the ratio of observed events relative to the no-oscillation expectation, and σi
(σi) the error for the neutrino (antineutrino) data set.

We have checked our analysis by setting α = 0 and have obtained the best-fit values
∆m2 = 2.28×10−3 eV2, sin2 2θ = 0.94 for the neutrino data set, and ∆m2 = 3.38×10−3

eV2, sin2 2θ = 0.81 for the antineutrinos, in good agreement with the MINOS results.
A fit to the total data set yields ∆m2 = (2.38+0.20

−0.17)× 10−3 eV2 and sin2 2θ = 0.89+0.08
−0.07,

with χ2
min/Ndof = 49.43/51 ' 0.97.

The result of our fit including α is

sin2 2θ = 0.83± 0.08 ,

∆m2 = (−2.48± 0.19)× 10−3 eV2 ,

α =
(
1.52+1.17

−1.14

)× 10−50 ,

(3.63)

with χ2
min/Ndof = 47.77/50 ' 0.96. Recall the degeneracies for the two-flavour oscilla-

tion listed in Eq. (3.30). In Fig. 3.15 we show the experimental data together with the
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Figure 3.15: The oscillation probabilities for the best-fit values from Eq. (3.63) for neutrinos
and antineutrinos, superimposed on the MINOS data. Also plotted are the cases α = 0 and the
value for the second (local) minimum of χ2(α).

results of our fit.

One can see that the non-zero value of α puts in particular the data points at the
oscillation minimum in better agreement with the curves. From the plot of the χ2-
function in Fig. 3.16 one sees that there is a second (local) minimum, corresponding
to sin2 2θ = 0.98, ∆m2 = 2.36 × 10−3 eV2 and α = 4.41 × 10−50, with χ2

min/Ndof =
48.73/50 ' 0.97. The curves for this point are also plotted in Fig. 3.15. The second
minimum also explains the “rabbit head looking” shape of the contours in α–∆m2 and
α–sin2 2θ space shown in Fig. 3.17.

The goodness-of-fit is not particularly worse for the absence of new physics, which
has been noted also in Ref. [89].

Setting the true parameter values of α, θ and ∆m2 (and their errors) to our best-
fit values from Eq. (3.63), we can see how the “precision” on α can be improved by
future LBL experiments, using GLoBES (see Sec. 3.5 for details). From the plots of χ2 in
Fig. 3.18 one sees that NOνA would give α = (1.52±0.27)×10−50, T2K would yield α =
(1.52±0.46)×10−50 and Nufact would determine very precisely α =

(
1.52+0.11

−0.21

)×10−50.
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Figure 3.16: χ2 from Eq. (3.62) as a function of the fit parameters. The horizontal lines define
the 1, 2 and 3σ ranges, for one parameter defined as ∆χ = 1, 4 and 9.
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3.6.3 Discussion

The best-fit value for α is not in conflict with any of the constraints discussed in Sec. 3.4,
but it would be in conflict with NSI constraints if we took the correspondence (3.52),
namely

εµµ = −εττ =̂
V (α)√

2GFne(x)
, (3.64)

seriously. This is because our best-fit α results in a potential V ≈ 5.5 × 10−14 eV,
together with the approximately constant matter density along the path of flight we
obtain εµµ ≈ 0.5, or half of that, depending on how we treat the εµµ = −εττ condition.
Either way, this is an order of magnitude above the current limit and therefore excluded.

However, one has to take into account where the NSI bound actually comes from;
bounds based on ν–e scattering [94], which changes in the presence of NSI due to
changed couplings, are not applicable, since in our case the coupling (be it g′ or ξ) is too
small to be observable in single particle scattering. Therefore the bounds from neutrino
oscillation experiments have to be used; for the NSI parameters under consideration here
these stem from atmospheric neutrinos (measured for example at Super-Kamiokande).
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Figure 3.18: The sensitivity on α which can be obtained by T2K (left), NOνA (middle) and a
neutrino factory (right) if αtrue =

(
1.52+1.17

−1.14

)× 10−50.
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The analysis of atmospheric neutrino data is based on zenith-angle distributions, i.e.
the direction where the neutrinos come from (and hence the amount of matter they
travel through). In this case, it is important to take the radial dependence of the NSI
potential into account, since it changes from the core to the crust of the Earth in
a different way than our potential V (α). The entire next section is devoted to the
examination of the position dependence, and how one can relate the NSI bound to
α. The result will be that, while it is not possible to relate them directly, a slightly
better estimate of their connection weakens the bound given above. Fitting our model
for a potential with Earth-radius range to atmospheric neutrino data yields constraints
that, while excluding the MINOS best-fit value, still allow values within one standard
deviation, i.e. α = αbest − 1σ saturates the Super-K constraint derived below.

The other solutions for the MINOS anomaly, mentioned in the introduction, suffer
worse problems [93]; for example, the NSI solution via the off-diagonal element εµτ
suggests values ∼ 0.1, while a gauge-invariant approach to NSI gives limits of order
10−4 from charged-lepton decays.

The implications of breaking the CPT symmetry to explain MINOS, as put forward
in Refs. [86, 87, 88], are of course much more severe on a conceptional level than in
actual constraints.

Independent of whether or not our model can actually explain the MINOS anomaly,
it must be emphasised that with the low statistics accumulated until now by the MI-
NOS collaboration, neither of the BSM physics models mentioned in the introduction
improves the fit significantly. Only time will show if the MINOS anomaly survives and
how it can be explained theoretically.

3.7 Effects of a Position-Dependent Potential

In the previous sections, we approximated the Z ′ potential as constant, which allowed
us to solve at least the simplest two-flavour neutrino oscillation probabilities exactly.
The solution of the differential equation

i
d
dt
νM =

1
2E

(
m2

2 0
0 m2

3

)
νM + V (x(t)) · U †

(
1 0
0 −1

)
UνM (3.65)

can only be obtained numerically. In this section, we will comment on the effects arising
from a proper treatment of V (r) and verify that, for the LBL experiments discussed so
far, a constant potential is indeed a very good approximation. This is however not the
case for AνO, since the through-going neutrinos see the high potential inside the Earth.
Since the effect will be most important for a force of Earth-radius range (contributions
from the Sun would smoothen the potential considerably), we will consider M2 ∼ 1/R⊕
and denote α as α⊕. To compare the values from the previous sections, one needs to
rescale α according to Tab. 3.1.
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The proper potential generated by the neutrons of the Earth is given by

V (x) ∼
∫
n(x′)

e−|x−x
′|M2

|x− x′| d3x′, (3.66)

which can be evaluated, assuming a rotationally symmetric neutron distribution nn(r)
and letting once again M2 → 0, to

V (r ≤ R⊕) =
α⊕e

4sW cW

R⊕∫
r

dr′

r′2

 r′∫
0

ds nn(s)s2

+ V (R⊕) (3.67)

inside the Earth and V (r > R⊕) = V (R⊕)R⊕/r outside, where it coincides with our
previous potential (rescaled to Earth-radius range). It is easy to verify that (3.67)
satisfies the Poisson equation ∆V (x) = − α⊕e

4sW cW
nn(x) (3.8) in spherical coordinates

1
r2

∂

∂r

(
r2∂V (r)

∂r

)
= − α⊕e

4sW cW
nn(r), (3.68)

and has integration constants chosen to make V (r) continuous and vanishing as r →∞.
The neutron density nn(r) is proportional to the matter density ρ(r) ≈ 2mnnn(r) and
is therefore highly discontinuous if we follow the Preliminary Reference Earth Model
(PREM) [64]. Due to the two integrations, the potential will however be smooth and
differentiable, albeit a little difficult to actually calculate. We will therefore at first
analyse the simplified model of a constant neutron density, where the integrations (3.67)
are easily executed:

Vr(r) = α⊕Nn
e

4sW cW
1

4π

{
1/r, r > R⊕,

(3− r2/R2
⊕)/2R⊕, r ≤ R⊕,

(3.69)

with the radius of Earth R⊕ and the total number of neutrons Nn. We show this sim-
plified version together with the full potential based on the PREM matter density in
Fig. 3.19; the difference is rather small and only important near the core, i.e. for neu-
trinos that travel through the whole Earth. This will be analysed later for atmospheric
neutrinos. Also shown is the form of the PREM matter density, which is proportional
to the usual NSI potential VNSI(r) =

√
2GFne(r)εαβ ∼ ρPREM(r).

The path of flight r(t) for a neutrino depends on the baseline; for example, in a
parameterisation t ∈ [0, L]:

r(t) =
√

(t− L/2)2 +R2
⊕ − L2/4. (3.70)

With this Vr(r(t)) we can solve Eq. (3.65) numerically, but first we look at the potential
itself. For L� R⊕, we can expand in L/R⊕ and find Vr(r(t)) = Vr(R⊕)(1+O(L2/R2

⊕)),
i.e. the corrections due to the position dependence of the potential are quadratic
in L/R⊕ and hence very small for the future long-baseline experiments discussed in
Sec. 3.5. The biggest difference occurs, of course, at t = L/2, yielding the relative cor-
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Figure 3.19: Proper radial dependence of the potential Vr(r) for a constant neutron density
inside the Earth (red) and using the full PREM density (blue). The potential scales with
α⊕/10−50. The dotted black curve gives a conveniently rescaled NSI matter potential VNSI(r) ∼
ρPREM(r).

rection (Vr−V )/V = L2/8R2
⊕, which is even small for the Nufact distances L ∼ 3000 km

(of order of a few percent). It is therefore not surprising that the oscillation probability
Pµτ undergoes only minor changes.

We plot Pµτ (E) for the cases V ≡ 0 (standard neutrino oscillation), V ∼ α⊕/R⊕
(constant potential as discussed in the previous sections) and V = Vr(r, L), with the
oscillation parameters ∆m2 and θ23 from Tab. 1.2, α⊕ = 15× 10−50 and L = 3000 km
(Fig. 3.20 (left)). The difference between V = const. and V = V (r) is very small, hence
the large value chosen for α⊕. Since the difference ∆P (E,α⊕) ≡ Pµτ (V = const.) −
Pµτ (V = V (r)) is largest at the maximum of Pµτ (E), we show it explicitly as a function
of α⊕, for energies around the maximum E ∼ 6 GeV (Fig. 3.20 (right)).

3.7.1 Approximate Solution

Even though we do not have an exact solution for Eq. (3.65) like in the V = const.
case, we can nevertheless find an approximate solution for some limiting cases, like the
LBL limit L� R⊕. To obtain it, we note that the reason why we cannot just write the

V = 0

V = VHrL
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Figure 3.20: Left panel: Oscillation probability Pµτ (E) for standard neutrino oscillations (α⊕ =
0 = V ) (red), for a constant potential (V ∼ α⊕/R⊕) (purple) and with the proper, position-
dependent potential V = Vr(r) (black). Right panel: Difference Pµτ (V = const.) − Pµτ (V =
V (r)) as a function of α⊕ for energy values around the maximum.
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solution as

νM (t) = exp

−i t∫
0

dt′HV (t′)

 ν0 , (3.71)

with the Hamiltonian

HV (t) =
1

2E

(
m2

2 0
0 m2

3

)
+ Vr(x(t)) · U †

(
1 0
0 −1

)
U , (3.72)

is the fact that HV (t1) does not commute with HV (t2), i.e. we need to introduce a time-
ordering into Eq. (3.71). This can be done using the so-called Magnus expansion13 of
the exact solution [95], i.e. we can write

νM (t) = exp

[
−i

∞∑
k=0

Ωk(t)

]
ν0 , (3.73)

with the first three terms

Ω1(t) =

t∫
0

dt1HV (t1) , Ω2(t) =
(−i)

2!

t∫
0

dt1

t1∫
0

dt2 [HV (t1), HV (t2)] ,

Ω3(t) =
(−i)2

3!

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3 {[HV (t1), [HV (t2), HV (t3)]] + (t3 ↔ t1)} .
(3.74)

An explicit calculation of the first arising commutator gives

[HV (t1), HV (t2)] ∼ ∆m2

2E
sin 2θ

(
0 −1
1 0

)
[Vr(t1)− Vr(t2)] , (3.75)

with a vanishing integral at t = L, so Ω2(L) = 0 (this does no longer hold using a non-
constant matter density). Assuming only a minor correction due to Ω3, we conclude
that Eq. (3.71) is a good approximation for the exact solution. Since Vr is the only
position-dependent quantity in Eq. (3.71), we can simply replace V · t → ∫

dt Vr(r(t))
in the exact two-flavour solution derived in Sec. 3.3.1. For a LBL measurement of
P (νµ → ντ ), this simply corresponds to the replacement of V = const. with the mean
potential

〈Vr〉 =
1
L

L∫
0

dt Vr(r(t)) = V (R⊕)
(

1 +
L2

12R2
⊕

)
. (3.76)

13In contrast to other expansion schemes, the Magnus expansion provides a unitary time-evolution

operator even for the truncated series exp
h
−i

PN
k=0 Ωk(t)

i
, because the Ωk are hermitian.
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The dominant effect of the position dependent potential can, for LBL experiments, be
approximated by replacing α⊕ → α⊕ × (1 + L2/12R2

⊕), which is once again only a
percent correction.

Note that the Magnus expansion is not an expansion in the small quantity V (or α⊕

to take a proper perturbation parameter), which is the approach of the NSI expansion
in App. D. From Eq. 3.75 we see however, that all higher terms Ωj>1 vanish not only
for V ≡ 0, but more generally for V = const., hence this expansion provides interesting
information about the position dependence of V . A discussion of Ω3 will show the
accuracy of the approximation; we calculate

Ω3(L) =

V (R⊕)2∆m2L5 sin 2θ
720 ER2

⊕

−
(

1 + 2L2

21R2
⊕

)
sin 2θ cos 2θ − 21

84
∆m2

V (R⊕)E + 8
84

L2

R2
⊕

cos 2θ

· +
(

1 + 2L2

21R2
⊕

)
sin 2θ

 ,

which is to be compared to

Ω1(L) = V (R⊕)L


(

1 + L2

12R2
⊕

)
cos 2θ

(
1 + L2

12R2
⊕

)
sin 2θ

· −
(

1 + L2

12R2
⊕

)
cos 2θ + ∆m2

2V (R⊕)E

 .

We extract the condition for Ω1 � Ω3 from the overall prefactor (this is of course
arbitrary to some degree)

V (R⊕)L� V (R⊕)2∆m2L5 sin 2θ
720 ER2

⊕
, (3.77)

which translates into

V (R⊕)� 720
ER2

⊕
∆m2L4

L→2R⊕−→ 45
E

∆m2R2
⊕
≈ 1.8× 10−14 eV

E

1 GeV
. (3.78)

It is important to note that the mean-potential approximation is very good in the LBL
limit, due to the L4 factor, but for atmospheric neutrino oscillations we have to consider
“baselines” up to L = 2R⊕, which enlarges Ω3. In this case one needs to include the
higher corrections Ωj>1 or solve Eq. (3.65) numerically.

3.7.2 Comparison with Non-Standard Neutrino Interactions

Having discussed the radial dependence of V (α⊕), we can finally discuss NSI con-
straints. As already mentioned in Sec. 3.4.7, the difficulty in comparing our potential
to NSI lies in the different position dependence, even though they share the same flavour
structure and energy dependence. From Fig. 3.19, we see that our potential increases at
most by a factor of 1.8 from the surface to the core of the Earth, the NSI potential by
a factor 4− 5. From our above discussion it seems plausible as a first approximation to
compare the mean potentials 〈V 〉 = 1

L

∫ L
0 dt V (r(t)) along some baseline L, rather than

just the plain potential at the surface. The effects enhance with the amount of matter
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the neutrinos travel through, so the strongest bounds should hold for L ≈ 2R⊕. An
NSI constraint [6] εµµ < 0.068 corresponds to a mean potential 〈VNSI〉 < 2.2×10−14 eV
and leads to the bound α⊕PREM < 1.9 × 10−50 for the potential of range R⊕ discussed
in this section.14 This might be off by a factor of 2, depending on how one treats the
Vµµ = −Vττ condition our model imposes and which NSI bound one applies (this ambi-
guity will be discussed in Sec. 4.2.1). In any case, these bounds are not to be taken too
literally, since they are only derived for the longest baseline and in the approximation
Ω1 � Ωj>1. Taking all baselines into account is basically equivalent to a direct fit to
atmospheric neutrino data; this will be the subject of the next subsection, where we
derive constraints of roughly the same order.

To reiterate: The different radial dependence of V (α⊕) and VNSI forbids a direct
comparison of the limits. An estimation gives bounds similar to the ones we will derive
below (in general slightly tighter).

3.7.3 Atmospheric Neutrino Oscillations

The radial dependence of V (r) is most important for AνO, which will be discussed
in this section. Since it is not clear if the limits from NSI are valid for our model
(different position dependence, only in lowest order (3.71) directly comparable), we
will perform our own χ2-fit (following the analysis of Ref. [27]), based on data from
Super-Kamiokande I,II and III [96] (1489.2+798.6+518.1 days of exposure), namely νµ
appearance for different energies and zenith-angles. These data are given in 10 bins for
the cosine of the zenith angle (cos θz = −0.9, . . . ,+0.9), which corresponds to baselines

L =
√

(R⊕ + h)2 −R2
⊕(1− cos2 θz)−R⊕ cos θz , (3.79)

where h ≈ 15 km denotes the height where the atmospheric neutrinos originate. Since
the oscillation probability Pµµ(E,L(cos θz)) oscillates very fast over one cos θz bin,15

we take the average:

P iµµ(E) ≡ 〈Pµµ(E, cos θiz)〉 ≡
1

0.2

cos θiz+0.1∫
cos θiz−0.1

d cos θz Pµµ (E,L(cos θz)) . (3.80)

The corresponding number of muon neutrinos (νµ + νµ) per bin, with energies from E1

to E2, is then given by

(νµ + νµ)i =

E2∫
E1

dE
[
P iµµ(E) Φµ(E, cos θiz)σν(E) + P iµµ(E) Φµ(E, cos θiz)σν(E)

]
,

(3.81)

14Going back to the constant potential for the Earth-Sun distance, this translates into α� < 0.62 ×
10−50.

15The fast oscillations mainly occur in the first couple of the cos θz bins, corresponding to large baselines
L.
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with the atmospheric neutrino flux Φ (we use the Honda-flux 2006 given in Ref. [97]
in (E, cos θiz) bins). σν denotes the total cross section for neutrino-nucleon scattering,
roughly σν ∼ E, σν/σν ≈ 0.5 [47] (we use values from Ref. [98] for σν , which corrects
small deviations from the linear energy dependence for sub-GeV energies). The value
(νµ + νµ)i, of course, depends on the oscillation parameters (for two flavours: θ and
∆m2); to make contact with experiment, we calculate the ratio

ri(θ,∆m2, E1, E2) ≡ (νµ + νµ)i(θ,∆m2)
(νµ + νµ)i(0, 0)

, (3.82)

which is to be compared to the measured number of events divided by the expected
number without neutrino oscillations (given by a Monte Carlo simulation in Ref. [96]).
In this way the overall normalisation and detector efficiencies hopefully cancel out.

As data samples we take the two multi-GeV datasets Multi-GeV 1-ring µ-like

(FC+PC stop)16 with energies 1−2.5 GeV and > 2.5 GeV, respectively,17 and one sub-
GeV dataset Sub-GeV 1-ring µ-like 1-decay with the energy range 0.63 − 1 GeV.
All of them are divided into 10 cos θiz bins, so we have 30 datapoints to fit our func-
tion (3.82).

The χ2-function we use for each dataset is simply

χ2(θ,∆m2, E1, E2) =
10∑
i=1

(
ri(θ,∆m2, E1, E2)− datai(E1,E2)

dataiMC(E1,E2)

)2

(
dataierror(E1, E2)

)2 , (3.83)

so the total χ2 is just the sum over the different energy regions:

χ2(θ,∆m2) = χ2(θ,∆m2, 0.63 GeV, 1 GeV)

+ χ2(θ,∆m2, 1 GeV, 2.5 GeV)

+ χ2(θ,∆m2, 2.5 GeV, 100 GeV) .

(3.84)

After a lot of numerical calculations, we obtain the best-fit values for θ and ∆m2

sin2 2θ = 0.98−0.03 , ∆m2 =
(
3.75+0.83

−0.66

)× 10−3 eV2 , (3.85)

with confidence levels shown in Fig. 3.21 (left). The value (and range) for ∆m2 is way
off from the Super-K best-fit, ∆m2 = (2.1+0.45

−0.10) × 10−3 eV2 [96], which is based on a
far more sophisticated analysis. Our result is however reminiscent of that of Ref. [27],
on which our analysis is dominantly based (the authors present a best-fit value of
∆m2 = 3.9× 10−3 eV2, based on multi-GeV SK-I datasets). Therefore it seems to be a
systematic error in the applied method, most likely due to detector effects.

Performing the same analysis including our potential V (r) (using PREM), we obtain

16Fully Contained (FC) events lie in the inner detector, while particles produced in Partially Contained
(PC) events reach the outer detector and are further classified into stopping and through-going events.

17To calculate the integral (3.81) for the latter, we choose an upper bound of 100 GeV. Since the flux
drops like E−2.7, the actual upper bound is not that important.
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Figure 3.21: Left panel: Two-flavour fit to data from SK-I, II and III, with best-fit values
sin2 2θ = 0.98, ∆m2 = 3.75 × 10−3 eV2 (contours at 68.27, 90 and 99% C.L.). Right panel:
χ2(α), marginalised over θ and ∆m2 (68.27, 95.45 and 99.73% C.L.).

χ2(θ,∆m2, α⊕). The best-fit values shift to

sin2 2θ = 0.95+0.04
−0.03 , ∆m2 =

(
4.44+0.48

−1.26

)× 10−3 eV2 , α⊕ = 1.03× 10−50 , (3.86)

with a slight improvement of the overall fit by one unit.
Marginalising over θ and ∆m2, we can set a 90% C.L. limit18 α⊕ < 3.1 × 10−50,

see Fig. 3.21 (right). The χ2(θ,∆m2, α⊕) contours in the θ–∆m2 plane move towards
non-maximal mixing for increasing α⊕.

Since we only discussed the potential with range R⊕ in this section, let us make a few
comments concerning the MINOS experiment (Sec. 3.6). Rescaling the MINOS best-fit
value to Earth-radius range, we obtain

α⊕MINOS =
(
6.94+5.35

−5.21

)× 10−50 . (3.87)

For LBL experiments like MINOS, the position dependence is insignificant, so we can
directly compare (3.87) to our new 90% C.L. Super-K bound α⊕ < 3.1 × 10−50. The
best-fit value is obviously excluded (to a high degree actually, looking at Fig. 3.21), but
at least the one sigma intervals overlap.

With this section we improved the constraint on α⊕ obtained in Sec. 3.4.6 by a factor
of 13, by accounting properly for the position dependence of V (r), using a larger dataset
and the most recent calculations for fluxes and cross sections.

3.8 Possible Higgs Sector

Having discussed the fifth-force Z ′ in a rather effective approach, our penultimate
section deals with the final part missing in our theory, the scalar particles that break
the U(1)′. It is not easy to construct a Higgs sector for the ultralight Z ′; some of the
problems mentioned below should apply to the U(1)Le−Lµ,Lτ models in Refs. [36, 27]
as well.

18This is to be compared to the (rescaled to Earth-radius range) constraint of Sec. 3.4.6: α⊕ < 4.57×
8.9× 10−50 ≈ 40× 10−50 at 90% C.L.
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As mentioned above, we need δM̂2 6= 0 to affect neutrino oscillations at all (which is
far more interesting than the alternative); if we restrain from generating δM̂2 via loops
this makes it necessary to have a scalar field in a nontrivial representation of SU(2)L,
i.e. a doublet φ, a triplet ∆, or a field with even more components. The mass of the
Z ′ will be given by M̂Z′ ∼ g′v, where v denotes the vacuum expectation value of the
electrically neutral component of our U(1)Lµ−Lτ -charged Higgs field. Since we do not
want to make g′ too small, we should choose v � vSM. Counting degrees of freedom
makes clear that we will end up with at least one additional neutral scalar besides the
SM Higgs.19 To reiterate, we will try to build a Higgs sector which accommodates:

• Ultralight Z ′,

• Small, but non-zero δM̂2 (for a measureable effect on oscillations),

• Neutrino masses ∼ 0.1 eV and proper mixing.

The calculation of the neutrino mass matrices for the different Higgs sectors is given
in Sec. 5.1, albeit for Lµ − Lτ breaking around the electroweak scale; the formulae are
still valid here. While the three points above are already hard to combine, the biggest
problem turns out to be a light physical scalar field coupling to Z, since it contributes
to the (invisible) Z width and is thus highly constrained by LEP measurements.

Let us consider the triplet Higgs at first, since its VEV is already constrained to
be 〈∆〉 ∼ vT . 1 GeV from its contribution to the ρ parameter (Sec. 5.1.4). The
neutrino masses scale like Mν ∼ Y vT , so we should keep vT > 10−2 eV. A fifth force
with the range RA.U., MZ′ < 10−18 eV, then implies g′ . 10−16. The parameter α
can be simplified to α ∼ gZM

2
Z′/M

2
Z ∼ 10−58 – too small to be observable in neutrino

oscillations, at least if we stick to RA.U. range. Now to the crux of this model, the scalar
sector. Even though we need more than one triplet for valid neutrino mixing angles, we
will focus on one extra scalar field in the representation ∆ ∼ (1, 3,+2)(Y ′).

Since there cannot be any “trilinear” terms in the scalar potential, i.e. the term

V ⊃ µHT
SMiσ2∆†HSM (3.88)

is not U(1)Lµ−Lτ gauge invariant, the only mass scales in the potential are the quadratic
“mass-terms” (not necessarily positive), which are connected to the VEVs. The phys-
ical spectrum contains a light neutral scalar hT with mass m2

hT
= λv2

T (λ is just a
combination of Yukawa couplings) and a coupling to the Z boson

L ∼ e

sW cW
MZ′Z

′
µZ

µhT . (3.89)

Since MZ′ ,mhT � MZ , this opens up a decay channel Z → Z ′hT with a contribution
to Γinv(Z) about 100-times higher than allowed, without any adjustable parameters.
This problem is well known from Majoron models (spontaneously broken global lepton
number) and usually cured by introducing the µ term (3.88). One could therefore try

19A notable exception is the Stückelberg model (see App. C), where no physical scalars occur and MZ′

can be arbitrarily small. However, this model cannot accommodate a viable neutrino mass matrix.
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to induce this term by introducing a scalar field S with the same Y ′ as ∆, and replace
µ→ 〈S〉 ≡ vS . Since µ will also contribute to MZ′ we should make it small, i.e. µ ∼ vT ,
resulting in a similar model as in Ref. [99], the crucial difference being the additional
scalar ReS. It turns out that the mass matrix for ReS and the real part of the neutral
component of ∆, ReH0, looks like

M2
ReH0,ReS ≈

λ

2
v2

SM

(
vS/vT −1
−1 vT /vS

)
, (3.90)

resulting once again in a massless (or, at most, mh ∼ vT �MZ) physical scalar h that
allows the decay Z → Z ′h. Triplet models are therefore quite though to realise and
demand a large number of additional fields (also needed for a realistic neutrino mass
matrix, as we will see in Sec. 5.1.4).

Similar complications arise in the doublet models, in this case because the term

V ⊃ m2
12H

†
SMφ , (3.91)

which could push the scalar masses above MZ , even for a light VEV vD = 〈φ〉, is not
gauge invariant. Here, however, we can simply allow a higher VEV, and therefore scalar
masses above MZ , thus prohibiting the direct decay. So, we will take vD ∼ 100 GeV,
resulting in g′ . 10−29 for RA.U. range and α is once again ∼ 10−58. Earth-radius range
MZ′ ∼ 10−14 eV implies g′ ∼ 10−25 and α ∼ 10−50, in principle observable in neutrino
oscillations (note that a force of shorter range is less restricted by experiments testing
the equivalence principle). The Higgs sector with all masses and interactions is derived
in Sec. 5.1.3; the potentially dangerous decay Z → Z ′Z ′Z ′ via virtual scalars now gives
Γ ∼ 10−2 MeV, well within the errors of Γinv(Z).

Unfortunately, this U(1)′ breaking around the electroweak scale has no longer “nat-
urally” small neutrino masses, like in the triplet model (even though in the model at
hand we really should not bring up the topic of naturalness). This can be cured by
the seesaw mechanism to a certain degree, but we end up with a Lµ − Lτ symmetry
breaking around the electroweak scale and therefore with perturbations of the Lµ−Lτ -
symmetric neutrino matrix of the same order as the actual entries. The doublet model
can therefore not explain the observed neutrino mixing angles in a natural way. We
will see how this can be cured, by the addition of one singlet, in Sec. 5.5, which al-
lows the doublet VEV to be as low as needed. In any case, the effective VEV of all
U(1)′ charged scalars, v2

eff =
∑

i Y
′2
i 〈φi〉2, has to be around the electroweak scale in the

simplest models, which would naturally generate a Z ′ mass of similar order.
Let this suffice as an overview over the possible problems one encounters when con-

structing a Higgs sector for such an ultralight gauge boson (we will see that some of the
problems are also present for the heavy Z ′). We conclude this section by stating, that
neutrino oscillation experiments are not only sensitive to the coupling constant g′ and
the mixing parameters ξ and χ, but, for specific, mixing-inducing Higgs sectors, also
to the mass of the Z ′, since α ∼ gZM

2
Z′/M

2
Z for the simplest doublet/triplet models;

inserting numbers we find that current experiments are sensitive to forces of R⊕ range,
a lower mass induces not enough mixing for observable effects.
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Experiment Sensitivity to α/10−50 at 99.73% C.L.
T2K (ν-run) 11.8
T2K (full) 4.3
T2HK 1.7
SPL 7.5
NOνA 1.9
Combined Superbeams 1.4
Nufact 0.53

Table 3.5: Sensitivity of the different long-baseline experiments to α. Also given is the result of
an analysis of all Superbeams combined.

3.9 Conclusion

In this chapter, we discussed the effects of an ultralight Z ′, coupling to first-generation
particles only through mixing with the Standard Model Z boson. The most dominant
bounds come from equivalence-principle experiments, strongly constraining long-range
neutron-dependent forces and therefore our mixing angles, and Big Bang nucleosynthe-
sis, limiting the allowed number of additional relativistic particles, which translates into
a bound for the gauge coupling g′. Since the BBN constraint is more severe than the
one from the anomalous magnetic moment of the muon, it is not possible to explain the
measured deviation by the contribution of the ultralight Z ′. Neutrino oscillations are
influenced by the mixing-induced neutron potential generated by the Earth and/or the
Sun in a similar vein as the usual MSW or NSI potentials, but not confined to matter,
due to the long-range nature. This modifies oscillations mainly in the µ–τ sector, and
gives strong constraints on the involved parameters (coupling constant times mixing
angles). The most interesting new effect is an additional source of CP violation, result-
ing in different transition probabilities for neutrinos and antineutrinos. The size of the
CP violation is not only linked to the potential VLµ−Lτ , but also to the neutrino mixing
angles; it vanishes for tri-bimaximal mixing. We determined the necessary value for
the potential to explain the MINOS anomaly; while the best-fit value is incompatible
with atmospheric neutrino oscillations measured at Super-Kamiokande, allowed values
could still improve the MINOS fit. Due to the implications of our model in the µ–τ
sector, we have the opportunity to explore this model in future long-baseline neutrino
oscillation experiments. A neutrino factory would have the strongest sensitivity, while
in the near future the NOνA experiment could be twice as sensitive as T2K, due to the
longer baseline (Tab. 3.5).



Chapter 4

The Physics of a Heavy Z′

Following the elaborate discussion of the ultralight Z ′, this chapter will provide an
overview over a Z ′ boson with a mass in the electroweak range (10 − 1000 GeV). We
will illustrate the indirect effects on precision observables and the direct detection possi-
bilities at current colliders. Furthermore, we discuss the effect on neutrino oscillations,
since this model gives an explicit realisation of NSI parameters. Eventually, we per-
form a χ2-fit to a large amount of electroweak precision observables to find the allowed
regions for MZ′/g

′ and g′ sin ξ.

4.1 Decay Width

Since we will need it later on, we will quickly derive the decay width of a massive vector
boson, coupled to leptons via the interaction terms

L ⊃ −gψγµ(gV − gAγ5)ψXµ . (4.1)

The tree-level decay amplitude for X(p, λ)→ ψ(k, s), ψ̄(q, s′) is then given by

iM = ε̄µλ(p)ūs(k)γµ(−ig)(gV − gAγ5)vs′(q) , (4.2)

resulting in a spin-averaged squared amplitude

〈|M|2〉 =
1
3
g2

 ∑
λ=0,±1

ε̄µλε
ν
λ

 tr
[
(/k +m)γµ(gV − gAγ5)(/q −m)γν(gV − gAγ5)

]
=

4
3
g2M2

X

[
g2
V

(
1 +

2m2

M2
X

)
+ g2

A

(
1− 4m2

M2
X

)]
,

(4.3)

where the last line was equated in the centre of mass system. The total decay rate
follows from an integration over the phase space:

Γ(X → ψψ̄) =
g2

12π
MX

√
1− 4m2

M2
X

[
g2
V

(
1 +

2m2

M2
X

)
+ g2

A

(
1− 4m2

M2
X

)]
. (4.4)
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An unmixed U(1)Lµ−Lτ (no decays into quarks or electrons) has only vector couplings:

Γ(Z ′ → µ̄µ, τ̄ τ) =
g′2

12π
MZ′

√
1− 4m2

µ,τ

M2
Z′

(
1 +

2m2
µ,τ

M2
Z′

)
,

Γ(Z ′ → ν̄µνµ, ν̄τντ ) ≈ 1
2
g′2

12π
MZ′ ,

(4.5)

where the neutrino masses have been ignored.

4.2 Constraints on a Heavy Z′

We will now derive the constraints on a heavy Z ′ with mass 10 GeV . MZ′ . 1 TeV.
Taking M2, g′, ξ and χ as free parameters, we will derive bounds from the ρ parameter,
the anomalous magnetic moment of the muon ∆aµ, NSI, and collider experiments. We
will concentrate on the region M2 < MZSM

, i.e. we try to construct a gauge boson
lighter than Z (as opposed to the TeV Z ′ bosons most other models look for).

Electroweak Constraints Measurements around the Z pole examined the mass eigen-
state Z1 and its couplings to fermions. We recall the formulae from Sec. 2.2, in particular
the change of the current-Vector interactions in the presence of mixing

ejEMA+
e

2sW cW
jNCZ + g′j′Z ′ →

(
ejEM

e
2ŝW ĉW

jNC g′j′
)1 −ĉW sin ξ tanχ −ĉW cos ξ tanχ

0 cos ξ + ŝW sin ξ tanχ ŝW cos ξ tanχ− sin ξ
0 sin ξ

cosχ
cos ξ
cosχ


A

Z1

Z2

 ,

(4.6)

with the Weinberg angle from Eq. (2.25)

1
ŝW ĉW

=
1

sW cW

M̂Z

M1
=

1
sW cW

√
1 + sin2 ξ

(
M2

2

M2
1

− 1
)
. (4.7)

Therefore the strength of the Z1 coupling to fermions changes through mixing to (using
already that the mixing angles χ and ξ need to be small to satisfy the constraints)

e

2sW cW
→ e

2sW cW

[
1 +

ξ2

2

(
M2

2

M2
1

− 1
)

+ sW ξχ

]
≡ e

2sW cW

[
1 +

αEMT

2

]
, (4.8)

so the ρ parameter changes to

ρ ≈ 1 + αEMT ≈ 1 + 2sW ξχ− ξ2

(
1− M2

2

M2
1

)
. (4.9)

The current value from a fit of the Standard Model parameters to experimental data
is ρ = 1.0008+0.0017

−0.0007 [22], the 3σ contours are shown in Fig. 4.1 (left). Since χ and ξ

contribute with different signs, a non-zero χ weakens the bound. The vector and axial
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Figure 4.1: Left panel: ρ parameter contours (3σ) for values of the kinetic-mixing angle χ = 0,
0.05 and 0.1. Right panel: ∆aµ contours for different values of ξ and χ. The solid, dashed and
dotted lines represent the ∆aµ = 2× 10−9, 2.55× 10−9 and 3× 10−9 contours, respectively.

couplings of Z to the tauon change with g′ to

gτV → 2s2
W −

1
2
− 2

sW cW
e

g′ξ, gτA → −
1
2
, (4.10)

so the asymmetry parameter Aτ ≡ 2gτV g
τ
A/((g

τ
V )2 + (gτA)2) becomes approximately

Aτ → Aτ +Aτ
4sW cW
1− 4s2

W

g′ξ

e
≡ Aτ + ∆Aτ (g′ξ) . (4.11)

This quantity is measured to be Aτ = 0.143 ± 0.004 [22], while the SM expectation is
Aτ = 0.1495. The measured Aτ and Aµ are of the same order, while a non-zero g′ξ

shifts them in different directions, we will therefore require ∆Aτ (g′ξ) to be within the
measured error, i.e. ∆Aτ (g′ξ) < 0.004. At 3σ, this restricts g′ξ to values

g′ξ < 1.1× 10−3 . (4.12)

This limit is stronger than e.g. the coupling of Z to νµ or the ratio of the decay widths
Γ(Z → µ+µ−)/Γ(Z → e+e−), where

Γ(Z → `¯̀) =
αEMMZ

12s2
W c

2
W

(
(g`V )2 + (g`A)2

)
(4.13)

at tree-level, ignoring lepton masses (see Eq. (4.4) for the full expression and derivation).

Anomalous Magnetic Moment of the Muon As already mentioned in Sec. 3.4.3, in
the unmixed case (ξ = χ = 0), and for MZ′ � mµ, we have the Z ′ contribution to the
anomalous magnetic moment of the muon:

∆aµ =
g′2

4π
1

3π
m2
µ

M2
2

, (4.14)
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so a constraint ∆aµ . 255× 10−11 corresponds to g′/M2[GeV] . 5.2× 10−3. From the

inequality M2 .MZ′ , and the expression MZ′ = g′
√∑

i Y
′2
i v

2
i , we conclude

192 GeV .
√∑

Y ′2i v
2
i . (4.15)

We should be more thorough though and include all the Z–Z ′ mixing terms. A chiral
Z-like boson yields a one-loop contribution to the magnetic moment [100, 101]

aµ(Z − like) = − m2
µg

2

8π2M2
Z

2
3
(
(CL − CR)2 − CLCR

)
, (4.16)

where CL,R denotes the coupling to µL,R; a vector boson (CL = CR) gives a positive
δaµ. The Standard Model Z boson (CR = s2

W , CL = s2
W − 1/2, and g = e/sW cW )

contributes at one-loop:1

aSM
µ (Z) = −GFm

2
µ

8
√

2π2

1
3

(
5− (1− 4s2

W

)2) ≈ −1.94× 10−9 . (4.17)

To calculate the real change of aµ with Z ′, we subtract the Standard Model contribution
aSM
µ (Z) and add aµ(Z1) + aµ(Z2) with the changed couplings and masses. Actually we

should also consider the scalar interactions, but they turn out to be negligible in the
Higgs sector we pursue in Ch. 5 (the one-singlet-one-doublet model, see discussion in
Sec. 5.5). The couplings change to:

gCL(Z1)→ e

ŝW ĉW

(
−1

2
+ ŝ2

W

)
(cos ξ + ŝW sin ξ tanχ) + g′

sin ξ
cosχ

+ eĉW sin ξ tanχ,

gCR(Z1)→ e

ŝW ĉW

(
ŝ2
W

)
(cos ξ + ŝW sin ξ tanχ) + g′

sin ξ
cosχ

+ eĉW sin ξ tanχ,

gCL(Z2)→ g′
cos ξ
cosχ

+
e

ŝW ĉW

(
−1

2
+ ŝ2

W

)
(ŝW cos ξ tanχ− sin ξ) + eĉW cos ξ tanχ,

gCR(Z2)→ g′
cos ξ
cosχ

+
e

ŝW ĉW

(
ŝ2
W

)
(ŝW cos ξ tanχ− sin ξ) + eĉW cos ξ tanχ .

(4.18)

We want to explain the measured ∆aµ and therefore set

(aµ(Z1)− aSM
µ (Z)) + aµ(Z2) . 255× 10−11 . (4.19)

The ∆aµ bound is shown in Fig. 4.1 (right), the mixing angles are only important for
small coupling g′ and mass M2. Diagrams similar to Fig. 3.5, but with Z instead of γ,
lead to non-universal Z–` couplings; the limits from LEP measurements are however
weaker than those from ∆aµ [37].

1The W± bosons give the positive contribution aSM
µ (W±) = +

GFm
2
µ

8
√

2π2
10
3

, making aEW
µ positive.
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4.2.1 Z′-Induced NSI

Non-standard neutrino interactions have been introduced in Sec. 1.3, here we will show
how a heavy, non-universal gauge boson Z ′ induces NSI parameters εαβ. Limits on
these parameters can be obtained by fitting atmospheric and solar neutrino oscillation
data, as well as neutrino scattering experiments [94], but most of the limits are obtained
assuming only one non-zero εfPαβ at a time [6, 5]. We will therefore use a limit from a two-
neutrino fit to atmospheric and K2K data [102] (a very thorough analysis based only
on Super-Kamiokande (I+II) data but with weaker constraints can be found in [103]).
The used fit parameters in this case are ε ≡ εdLµτ + εdRµτ and ε′ ≡ εdLµµ + εdRµµ − εdLττ − εdRττ .
Unfortunately, it is common to only consider the d-quark NSI as the neutrino travels
through Earth, while we need a combined constraint on εe,d,u, because they are all
connected in our model (see below). We will therefore translate the 90% C.L. bound2

|ε′| = |εdVµµ − εdVττ | < δε′ = 0.029 , (4.20)

with εV = εL + εR, into the approximated Earth-like matter NSI constraint

|ε⊕µµ − ε⊕ττ | ≡ |(εeVµµ + 3εuVµµ + 3εdVµµ )− (εeVττ + 3εuVττ + 3εdVττ )| < 3 δε′ , (4.21)

basically just replacing 3εdVµµ →
∑

f
nf
ne
εfVµµ in Earth-like matter.

We will now discuss NSI in the context of the gauged U(1)Lµ−Lτ ; in the case of a
heavy Z ′ we can integrate it out to obtain an NSI operator. Using the full Z2 Lagrangian
from Eq. (2.21), we get

Leff
Z2

=
−1
M2

2

(
g′

cos ξ
cosχ

j′ − eĉW cos ξ tanχjEM

+
e

ŝW ĉW
(ŝW cos ξ tanχ− sin ξ)(j3 − ŝ2

W jEM)
)2

.

(4.22)

The terms proportional to g′2 do not involve e, u or d, and are therefore irrelevant
for NSI. The terms without g′ will be generation independent and can be ignored
in neutrino oscillations. We are left with the terms linear in g′ (generating the NSI
parameters εµµ and εττ = −εµµ) and read off the relation

2
√

2GF εfPµµ =
2
M2

2

g′
cos ξ
cosχ

F fP , (4.23)

with F fP = e
ŝW ĉW

(ŝW cos ξ tanχ− sin ξ)(T f3 − ŝ2
WQ

f )− eĉW cos ξ tanχQf . Just like in
the fifth-force case, the effect goes with g′ times mixing angles and therefore vanishes
in an unmixed scenario.

To get some numbers, we take χ ≡ 0 and calculate the effective, Earth-like matter

2Since the NSI limits are obtained by fitting ε and ε′ simultaneously, the limit on ε′ alone should
actually be a little bit stronger. This is because the fit favours a non-zero ε, so the χ2 is larger if we
do not marginalise over ε, but set it to zero. The effect is however rather small and does not justify a
reanalysis.
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NSI parameter to lowest order in ξ:

ε⊕µµ = εeVµµ + 3εuVµµ + 3εdVµµ

=
1
2

1√
2GF

e

sW cW

g′

M2
2

cos ξ sin ξ

≈ 217 g′ cos ξ sin ξ
(

10 GeV
M2

)2

.

(4.24)

This expression is constrained to be < 3δε′/2 ≈ 0.044 (since ε⊕ττ = −ε⊕µµ):

g′ cos ξ sin ξ
(

10 GeV
M2

)2

< 2.00× 10−4 . (4.25)

A full analysis should also take the modified Z couplings into account, i.e. integrate
out Z1, keep only the linear g′ coupling and compare to Eq. (1.11). This gives the NSI
parameters

εfPµµ =
g′√

2GF cosχ

(
sin ξ
M2

1

F fP1 +
cos ξ
M2

2

F fP2

)
(4.26)

with the couplings

F fP1 =
e

ŝW ĉW
(ŝW sin ξ tanχ+ cos ξ)(T f3 − ŝ2

WQ
f )− eĉW sin ξ tanχQf ,

F fP2 =
e

ŝW ĉW
(ŝW cos ξ tanχ− sin ξ)(T f3 − ŝ2

WQ
f )− eĉW cos ξ tanχQf .

(4.27)

The summation over f and P for the effective Earth parameter ε⊕µµ only leaves the
T e3 term because the Earth is neutral and the up- and down-quark belong to the same
doublet, i.e. T u3 + T d3 = 0. The expression simplifies to

ε⊕µµ =
−g′

2
√

2GF cosχ
e

ŝW ĉW

[
cos ξ sin ξ

(
1
M2

1

− 1
M2

2

)
+ ŝW tanχ

(
sin2 ξ

M2
1

+
cos2 ξ

M2
2

)]
,

(4.28)

which is dominated by the 1/M2
2 terms; expanding in small mixing angles gives ε⊕µµ ∼

(δM̂2 + sW M̂
2
Z′χ)/M̂2

Z (totally analogous to the α parameter in the fifth force case).
The constraint from the NSI parameter ε⊕µµ is shown in Fig. 4.2 (left) for different values
of χ and ξ. A non-zero χ weakens the bound since it contributes with an opposite sign
to the 1/M2

2 term. We show the mass range starting at M2 = 1 GeV, one has to be
careful though since for such low masses it might not be valid to integrate out the Z ′

to obtain the NSI parameter.

Also shown in Fig. 4.2 (right) is the NSI constraint for χ = 0 together with the
bound from ∆aµ (only weakly dependent on ξ). To explain the anomalous magnetic
moment of the muon, one needs to choose parameter values around the green band.
The qualitative behaviour of the contours is obvious from Eq. (4.14) and Eq. (4.24),
which give ∆aµ ∼ g′2/M2

2 and ε⊕µµ ∼ ξg′/M2
2 , resulting in the different slopes in the
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Figure 4.2: Left panel: Constraint from the NSI parameter |ε⊕µµ| for different values of χ and ξ.
The dashed line corresponds to the 90% C.L. bound, the solid line is twice that value, so the
allowed parameter space is below the curves. Right panel: Some |ε⊕µµ| contours (90% C.L.) for
χ = 0; the green band shows the parameter space that resolves ∆aµ.

double-logarithmic plot. This explicit realisation of NSI parameters does not suffer from
charged-lepton flavour-violating (LFV) decays, which typically give stronger constraints
on NSI if one takes into account one-loop effects [94]. The absence of LFV is rooted in
the diagonal structure of the NSI parameters εαβ in flavour space, as imposed by our
symmetry. Consequently, LFV will enter into our model via the symmetry breaking
sector. This will be discussed in Ch. 5 for a number of specific Higgs models. The LFV
bounds typically constrain Yukawa couplings and do not change our above discussion
of the NSI.

4.2.2 Collider Searches

For mτ �M2 < MZ0 , the decay width of the Z ′ is approximately (see Sec. 4.1)

Γ(Z ′ → µ̄µ, τ̄ τ, ν̄µνµ, ν̄τντ ) ≈ 3g′2

12π
MZ′ =

3g′3

12π
veff , (4.29)

where we ignored the decay channels into other particles, such as quarks, since they
would be proportional to mixing angles; the decay into or via Higgs particles will be
ignored since we assume the scalars to be heavy, we will come back to that later on in the
discussion of the Higgs sector. For veff = 192 GeV this equates to Γ(Z ′) ≈ g′3 15.3 GeV.

Since current colliders work with first-generation particles in their beams, the cross
sections for σ(p̄p, e+e− → Z ′)×BR(Z ′ → µ+µ−) will be proportional to (gEW,EMξ)2g′2,
instead of g4

Z′ as in generation-independent Z ′ models. Collider bounds can be satisfied
by making the cross section small (g′ξ small) or the width of Z ′ small so to make it fit
into a gap between data points (g′ small for fixed VEV). The most promising process
for non-zero mixing would be the s-channel resonance e+e− → Z ′∗ → µ+µ−, τ+τ−,
because these interactions are the lowest order in the mixing angle sin ξ.

Collider data for the process e−e+ → µ−µ+, in the range
√
s = 14− 207 GeV, from

Petra [104], Tristan [105] and LEP [106, 107, 108], is shown in Fig. 4.3; also shown
are the SM prediction, and some examples for the case of non-zero mixing. Even for
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Figure 4.3: Total cross section σ(e+e− → µ+µ−) for different values of M̂Z′ , g′ and sin ξ. Data
points from Petra, Tristan and LEP.

small mixing sin ξ, as to not influence the ZSM pole too much, we can have sizable cross
sections from Z ′. We will however not take the possibility of a very narrow Z ′ seriously,
i.e. we do not attempt to perform a χ2-analysis on the data.

In higher order, but still at tree-level, processes like

e+e− → Z∗, γ∗ → µµ∗ → µµZ ′∗ → µ+µ−µ+µ−, µ+µ−τ+τ− (4.30)

can constrain the Z ′ even in the unmixed case ξ = χ = 0. The Feynman diagram of this
process is shown in Fig. 4.4 (omitting the possible neutrino final states). An analysis of
these final states around the Z pole has been performed by the ALEPH collaboration
at LEP [109]. The authors calculated the Standard Model prediction of 20.0 ± 0.6 4µ
and 12.9± 0.4 2µ2τ events, against the measured 20 and 15, respectively.

√
s [GeV] 88.361 89.419 90.218 91.234 92.078 93.020 93.928

L [pb−1] 1.34 10.15 1.42 52.68 1.45 10.49 1.52
σSM [pb] 0.0433 0.0819 0.149 0.239 0.158 0.0771 0.0442

Table 4.1: ALEPH data [109] and our calculated cross sections for e+e− → µ+µ−µ+µ− via
the Standard Model particles Z and γ.

e−

e+

Z, γ

µ+, τ+

Z ′
µ−, τ−

µ+, τ+

µ−, τ−

Figure 4.4: Electron-positron scattering process with an unmixed Z ′.
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Since the 4µ final state gives the strongest bounds, we will only consider this process,
following the analysis of Ma et al. [37]. The integrated luminosities at the energies
around the Z pole are given in Tab. 4.1, together with our calculated Standard Model
cross section for this process. We excluded diagrams involving the Higgs boson since the
contribution to the cross section is several orders of magnitude smaller than that of the
Z and γ (small Yukawa couplings compared to gauge couplings and no Higgs resonance
since mH & 114 GeV >

√
s). The calculation of the tree-level cross sections has been

performed with the program CompHEP [110, 111], which uses Monte Carlo integration3

for the 4-particle phase space; we implemented the cuts for the transverse momentum
of the final muons pT > 3 GeV, necessary for muon identification. Since this calculation
is less sophisticated than the one performed by ALEPH and we furthermore do not
have the proper cuts and detector efficiencies εi at all 7 energies, we will approximate
the additional number of muon events through Z ′ via

∆Nµ =
∑
i

εi × σZ′(si)× L(si) ≈ 20.0∑
j σSM(sj)× L(sj)

∑
i

σZ′(si)× L(si) . (4.31)

Here, σZ′ ≡ σSM+Z′ − σSM denotes the effect of Z ′ on the cross section, including
interference terms. The ALEPH collaboration also gave the distribution of the invariant
mass of µ+µ− and e+e− final-state pairs and found no events with mass > 24 GeV,
in agreement with the Monte Carlo simulation. The additional Z ′ contribution with
24 GeV < MZ′ <

√
s will generate events in this invariant-mass range differing from

zero. According to the Poisson distribution, we will set the 95% C.L. at 3 additional
events. The range below 24 GeV will not be considered here.

We used the values ξ = χ = 0 and, in Fig. 4.5 (left), g′ = 1 for a plot against the
Z ′ mass, resulting in a limit MZ′ > 65 GeV. The corresponding contour in the MZ′–g′

plane is shown in Fig. 4.5 (right), together with the limits from the anomalous magnetic
moment ∆aµ.

3The MC integration causes a statistical error on the cross section that was kept below 1% through
enlargement of samplings and iterations.
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This should improve the analysis of Ref. [37], which was based only on the dominant
Feynman-diagram ee → Z∗ → µµZ ′ with the subsequent decay Z ′ → µµ in the nar-
row width approximation. The results including interference and full width differ only
slightly, showing how good the cross section is described by the process ee → Z∗ →
µµZ ′. Since the narrow width approximation is based on Γ ∼ g′2MZ′ � MZ′ our cal-
culation should improve the behaviour at large g′, which is unfortunately the already
excluded region.

In any case, the constraints from this process are not that much stronger than those
from ∆aµ; however, taking the viewpoint that the Z ′ should explain the anomalous
∆aµ (i.e. the parameter space is reduced to the dashed blue line in Fig. 4.5 (right)), we
extract the constraint MZ′ & 51 GeV.

An analysis with a larger data sample would be very interesting since it offers for
MZ′ ≤

√
s the possibility to find the Breit-Wigner resonance peak in the invariant mass

distribution of any µ−µ+ pair. The discovery limits at future linear colliders (e+e− at√
s = 500, 1000 GeV) and the LHC have been derived in Ref. [37], following again the

narrow-width approach. Since our more elaborate analyses will only marginally change
these results, we will restrain from a reevaluation. The four muon final state is particu-
larly interesting at the LHC, since it also constitutes the so-called “gold plated channel”
for Higgs discovery h→ ZZ → 4µ, and will therefore be carefully analysed [112].

4.3 Z′ Above 100 GeV

We will now briefly discuss the constraints for M2 > M1, i.e. the light mass eigenstate
is now the mainly ZSM one. The ρ parameter is in that case ≥ 1, we show the 1 − 3σ
contours in Fig. 4.6 (right), together with direct detection constraints from Tevatron.

To explain ∆aµ, while still in the perturbative range g′ ∼ 1, we need M̂Z′ ≈ 190 GeV.
Tauon coupling then constrains the mixing to δM̂ < 3 GeV for χ = 0, or χ < 2× 10−3

for δM̂ = 0.

This scenario is also constrained by direct detection measurements, e.g. at the Fer-
milab Tevatron collider. With first-generation particles in the initial state, we should
look at least for final muon or tauon states, to make the combined Z ′ coupling as big
as possible. Since tauons are harder to identify at hadron colliders, the dimuon final
state is the better choice. Such a dimuon final state has been analysed by the DØ
collaboration at Tevatron (very detailed in Ref. [113] on L = 0.17 fb−1 of integrated
luminosity and shortly thereafter for L = 0.25 fb−1 (still preliminary [114])) and more
recently by the CDF collaboration [115, 116] (on 4.6 fb−1 of data). The limits are given
on the cross section σµ ≡ σ(pp̄ → Z ′) × BR(Z ′ → µµ̄) against the invariant mass
of the final muon pair, corresponding to the mass of the Z ′ in the s-channel process
pp̄→ Z ′∗X → µµ̄X. To arrive at the theoretical expression, we use the approximations
from Ref. [8], namely a narrow width Z ′ resonance, approximated structure functions
for the quarks and, most importantly, subdominant mixing effects, i.e. we only include
the mixing via the Z ′ coupling to quarks (since otherwise the Z ′ decouples completely).
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This leads to the cross section

σµ ≡ σ(pp̄→ Z ′)× BR(Z ′ → µµ̄) ≈ 1
s
cZ′ C exp

(−AMZ′/
√
s
)
, (4.32)

where cZ′ contains the information about the Z ′ couplings:

cZ′ =
4π2

3
ΓZ′
MZ′

BR(Z ′ → µµ̄)
(

BR(Z ′ → uū) +
1
Cud

BR(Z ′ → dd̄)
)
. (4.33)

The other parameters are for proton-antiproton collisions given by A = 20, C = 300
and Cud = 25 [8].

The total number of produced muon pairs by this process is Nµ = σµL, typical cross
sections and luminosities result in O(1−10) relevant signals. We will for simplicity only
consider χ = 0, so the coupling of Z2 to quarks leads to the decay rates

Γ(Z ′ → qq̄) ≈ Nc

(
e sin ξ

2sW cW

)2 MZ′

12π
(
g2
V (q) + g2

A(q)
)
, (4.34)

where gV,A are the usual ZSM couplings:

gV (u) =
1
2
− 4

3
s2
W , gA(u) =

1
2
, (4.35)

gV (d) = −1
2

+
2
3
s2
W , gA(d) = −1

2
, (4.36)

and Nc = 3 counts the different colours of the quarks. For small mixing, the Z ′ boson
decays mainly in µ, τ, νµ and ντ , so we approximate ΓZ′ ≈ g′2MZ′/4π and BR(Z ′ →
µµ) = 1/3. We will also approximate the leading order QCD corrections via K ≈
1 + αs

2π
4
3(1 + 4

3π
2) ≈ 1.3. This leads to

σµ ≈ 100π
3

K

(
e sin ξ

2sW cW

)2(
g2
V (u) + g2

A(u) +
g2
V (d)
25

+
g2
A(d)
25

)
e−20MZ′/

√
s

s
. (4.37)

Surprisingly, the coupling constants g′ cancel each other, because mixing introduces a
branching ratio BR(Z ′ → qq̄) ∼ sin2 ξ/g′2, instead of just a number. This leaves us with
a formula only dependent on MZ′ and sin ξ.4 The above mentioned DØ results from pp̄

collisions at an energy
√
s = 1.96 TeV are shown in Fig. 4.6 (left), the corresponding

95% C.L. exclusion contour in the MZ′–sin ξ plane in Fig. 4.6 (right). The limits are
not particularly strong.

The more recent analysis by the CDF collaboration is also shown in Fig. 4.6, yielding,
of course, stronger bounds. At MZ′ ≈ 200 GeV we get sin ξ . 0.03, corresponding
roughly to δM̂ . 30 GeV. In any way, the precision results obtained from measurements
around the Z pole will give stronger limits than direct detection because of better
statistics, as can be seen in Fig. 4.6 (right). The approximations we used for the cross
section become more accurate for higher MZ′ , where however the constraints weaken.

4Due to all the other approximations, it does not really matter if we take M̂Z′ or M2, the difference is
negligible for sin ξ . 0.1.
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Figure 4.6: Left panel: 95% C.L. limits for σ ×BR(Z ′ → µµ) from DØ and CDF, for different
values of the mixing angle ξ (with χ = 0). Right panel: The corresponding 95% C.L. exclusion
limit in the MZ′–sin ξ plane, together with the stronger indirect 1 − 3σ constraints from the
ρ parameter. The region above the curves is excluded.

The range MZSM
< MZ′ < 200 GeV has been probed by LEP II, the corresponding

e+e− → µ+µ− cross section is already shown in Fig. 4.3. Just like in the MZ′ < MZSM

case, we will not analyse this data, since it would only yield the obvious narrow-width
peaks in the gaps between data points.

4.4 A Fit to Electroweak Precision Data

Using a recent version (April 2010) of the Fortran program GAPP (Global Analysis of
Particle Properties) [117, 118], kindly provided by Jens Erler, we can fit the U(1)Lµ−Lτ
model, with a mass around the electroweak scale, to a vast amount of electroweak preci-
sion data (listed in App. G), including radiative corrections of the Standard Model. For
simplicity, we set the kinetic-mixing angle to zero and leave the Higgs sector unspeci-
fied. The implemented analysis assumes MZ′ > MZ , so the interpretation of the results
is tricky; in particular we performed all fits with the fixed coupling constant g′ ≡ 1, and
extrapolated the bounds using the scaling MZ′ →MZ′/g

′ and sin ξ → g′ sin ξ (which is
the usual approach [7]). The reasoning is as follows and only valid for sin ξ � g′: We
have already seen in the NSI discussion in Sec. 4.2.1, how integrating out the Z2 gives
effective interactions Leff

Z2
= −g′2/M2

2 j
′µj′µ + O(g′ξ, ξ2), while the Z1 coupling to jNC

gets an additional term ∼ g′ sin ξj′ (Eq. (4.6)). We keep this term, but not the Z2 term
of order g′ξ, since it is further suppressed by 1/M2

2 and we assumed M1 < M2. Since
these are the two lowest order processes one has to take into account for measurements
around the Z1 pole, it is indeed valid to restrict the analysis to g′ = 1, and rescale
afterwards. We checked this scaling law explicitly for several values of g′ in the range
0.1− 3.

As fit parameters, we used the conventional set of masses (Z, Higgs, top-, bottom-
and charm-quark) and couplings (strong coupling constant αs and the radiative con-
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SM SM+Z ′

MZ [GeV] 91.1877 91.1877
mt [GeV] 164.0 164.0
mb [GeV] 4.199 4.200
mc [GeV] 1.270 1.278
αs 0.1183 0.1185
∆α(3)

had(1.8 GeV) 5.75× 10−3 5.72× 10−3

mH [GeV] 114.4 114.4
MZ′/g

′ [GeV] − 219.6
g′ sin(ξ) − −2.5× 10−4

χ2
min/Ndof 43.8/44 36.4/42

Table 4.2: Fit parameters and their best-fit values in an analysis with/without Z ′. The masses
denote pole masses.

tribution of the lightest three quarks to the QED coupling constant ∆α(3)
had

5), listed in
Tab. 4.2. We also enforced the direct 95% C.L. exclusion limit mH > 114.4 GeV given
by LEP; since a Higgs mass ∼ 90 GeV is favoured by an unconstrained fit, mH lies at
its lower bound. The results of our SM fit differ only slightly from those given by the
PDG [22] (well within a standard deviation), which are also based on GAPP and give a
χ2

min/Ndof = 43.0/44, not imposing the lower Higgs bound.6 Except for MZ′ and sin ξ,
we will not bother calculating the errors on the best-fit values, since they are not of
interest here.

The best-fit values for the SM parameters hardly change with the addition of the
Z ′. As can be seen, the χ2 reduces by 7.4 units with the addition of the two effective
parameters MZ′/g

′ and g′ sin ξ, a significant improvement. Marginalising over sin ξ we
can visualise the narrowness of the χ2-minimum (Fig. 4.7).

In Fig. 4.8 we show the contours ∆χ2 = 2.30, 4.61 and 9.21, corresponding to 68.27%,
90% and 99% C.L. for 2 parameters. The best-fit value at g′ sin ξ = −2.5 × 10−4 and
MZ′/g

′ = 219.6 GeV is shown as well.
As can be seen, there is a preferred area for a Z ′ around MZ′/g

′ = 200 − 300 GeV,
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Figure 4.7: χ2 as a function of MZ′/g
′, marginalised over sin ξ.

5Contributing to the on-shell coupling via α(MZ) = α/[1−∆α(MZ)].
6Without the lower Higgs bound, we obtain χ2

min/Ndof = 43.0/44 for the Standard Model fit as well.
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Figure 4.8: χ2 contours (68.27%, 90% and 99% C.L.) in the MZ′–sin ξ plane.

mainly constrained by ∆aµ.
The reason for the difference between the best-fit value MZ′/g

′ ≈ 220 GeV obtained
here and the one based only on ∆aµ in Sec. 4.2 (MZ′/g

′ ≈ 190 GeV) is just the proper
treatment of the error on ∆aµ (about 25%) in GAPP, while we ignored it previously.
Consequently, our previous value lies well within the 1σ range of the GAPP result. It is
interesting to note that the best-fit values suggest the possibility that the U(1)′ and the
SU(2)L×U(1)Y breaking coincide, implying an additional symmetry in the Higgs sector.

However, since MZ′/g
′ is in general not a single VEV, but rather MZ′/g

′ =
√∑

Y ′i
2v2
i ,

this only works for one scalar with the charge Y ′ = ±1. Since the one-doublet and
one-triplet models are excluded, a breaking scale vS = vEW is only possible with one
scalar singlet S±1, which however gives wrong neutrino oscillation angles (Sec. 5.1.2).

Performing a separate minimisation for each of the parameters (marginalising over
the others), we derive the 90% C.L. bounds:

160 GeV .MZ′/g
′ . 560 GeV ,

−0.0008 < g′ sin ξ < +0.0003 .
(4.38)

Keeping these values fixed we can calculate the induced NSI parameter ε⊕µµ, as a
function of g′.7 Since parts of the above analysis are based on MZ′ � MZ we restrict
g′ & 0.4; over the 90% C.L. ranges this yields values for ε⊕µµ roughly ∼ 100-times smaller
than the current upper limit, i.e. not observable in neutrino oscillations any time soon.

Ignoring the constraint MZ′ �MZ , we need to take the direct-detection limit MZ′ >

51 GeV from ALEPH (Sec. 4.2.2) into account. The largest NSI value allowed by the
conditions (4.38) is then a factor of 10 below the current limit.

Analysis Without ∆aµ To underline the importance of ∆aµ in the previous fit, we
calculated the χ2 without the ∆aµ terms. Not surprisingly, the mass constraint stems
solely from ∆aµ. Since we only needed MZ′ � mµ in the analysis for ∆aµ, our con-
straint (4.38) should be valid irrespective of MZ′ > MZ , so g′ can be arbitrarily small.

7While NSI based on neutrino oscillations were not part of the analysis, the different couplings of Z to
muons and tauons (and their neutrinos) were, resulting in a similar constraint on g′ sin ξ.
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4.5 Muon Collider

In this section we will briefly discuss the discovery potential of a future muon collider
for our model. A muon collider would provide a nice framework to study the SM and
its extensions, since it uses elementary particles in the initial state (as opposed to
proton colliders which have to deal with large QCD backgrounds), and can reach high
energies due to low bremsstrahlung effects (as opposed to an electron collider). It is
under discussion as a Higgs factory [119], making use of the higher Yukawa coupling of
the muon compared to the electron (gHµµ/gHee ∼ 200), which allows sizable production
of a Higgs particle in the s-channel, ideal for precision measurements of its mass and
width.

A muon collider allows for the detection of an unmixed Z ′, since the processes µµ→
µµ, ττ include an s-channel contribution from Z ′, resulting in a Breit-Wigner resonance
peak in the invariant mass of the final state (in complete analogy to the Z peak in e+e−

collisions at LEP). If a fixed energy
√
s is used (e.g. tuned to the Higgs mass, if by then

discovered at the LHC) the cleanest observation would be in a final state µ+µ−X, so
energy can be properly distributed to X when the invariant mass M(µ+µ−) is clustered
around MZ and MZ′ . For sizable coupling g′, this allows a unique direct detection for
masses MZ′ ≤

√
s. A mass above

√
s still gives indirect signals, visible, for example, in

the a higher number of ττ final states compared to ee.
Detecting the MZ′ peak and its width would then give insides into the symmetry

breaking sector of the U(1)′, e.g. by scalar contributions to the invisible width. In a
similar vein, a measurement around the SM Higgs resonance would provide an accurate
measurement of its Yukawa couplings to fermions, making it possible to discriminate
different extensions of the Higgs sector that change these couplings through mixing
effects (such as 2HDM-Types, see App. F).

The fact that the heavy right-handed neutrinos can be charged (see Sec. 2.1) under
the extended gauge groupGSM×U(1)′ allows for the direct production via Z ′. For lowNi

masses, the process µµ̄ → Z ′ → NiN̄i, with subsequent Ni decay into light neutrinos
and scalars, could be probed (very challenging). This is similar to the discussion in
Ref. [120], where the mediator to the heavy neutrino sector is the neutral gauge boson
of the U(1)B−L. N1, being the only true singlet of the extended gauge group, can not
be produced in this manner.

4.6 Conclusion

In this chapter, we discussed the breaking of U(1)Lµ−Lτ in the range 10 − 1000 GeV,
most naturally connected to a Z ′ with mass of similar order. We visualised some indi-
rect constraints on the heavy-Z ′ model, and mentioned direct detection possibilities at
current colliders. A fit of the model parameters to electroweak data improves the usual
Standard Model fit by 7.4 units, mainly due to the resolved magnetic-moment anomaly
of the muon. The preferred model parameters 160 GeV .MZ′/g

′ . 560 GeV, together
with the direct-detection limit MZ′ > 51 GeV, can only result in small NSI effects, so
the most promissing detection experiments are current colliders and of course improved
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measurements/calculations of the muon’s anomalous magnetic moment. We make the
obvious observation that the nicest way to probe this model would be an expensive
muon collider.



Chapter 5

The Scalar Sector

To complete our model, we will now investigate several symmetry-breaking sectors and
their imprint on the neutrino mass matrix. We discuss the interactions of the various
scalar particles arising from spontaneously breaking the U(1)′ symmetry. Even though
we will construct the model for a heavy Z ′, many results can be applied to the fifth-
force case as well, simply by choosing g′ � 1, and maybe lowering the U(1)′-breaking
VEVs.

In the following (and actually everywhere else), the terms singlet, doublet and triplet
only denote the representations of (complex) dimension 1, 2 and 3 under the SU(2)L;
consequently, even “singlets” can still be charged under SU(3)C × U(1)Y × U(1)′. We
will choose all scalars to be in the trivial representation of SU(3)C . In order to construct
an electrically neutral VEV, we choose hypercharges Y = −2T3; for singlets this fixes
Y = 0, whereas doublets can have Y = ±1.

5.1 Neutrino Masses

An unbroken U(1)Lµ−Lτ symmetry gives diagonal Dirac mass matrices and Majorana
matrices of the form

MMajorana =

a 0 0
0 0 b

0 b 0

 , (5.1)

sporting the discrete µ–τ symmetry (see Sec. 1.2 for the most general µ–τ -symmetric
mass matrix), which implies vanishing θ13 and maximal mixing in the νµ–ντ sector
(θ23 = π/4). Either way, such neutrino matrices will not be in accord with oscillation
experiments (especially with solar data); we will therefore break the U(1)Lµ−Lτ spon-
taneously via an extended Higgs sector. The next subsections are devoted to a brief
discussion of the simplest extensions (additional scalar singlet, doublet and triplet)
embedded in a seesaw mechanism.
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5.1.1 Seesaw Mechanism and Neutrino Mixing Angles

As mentioned in Sec. 2.1, we can extend the fermion content of our theory, without
introducing anomalies, by three right-handed neutrinos in the representations1

N1 ∼ (1, 1, 0)(0) , N2 ∼ (1, 1, 0)(+1) , N3 ∼ (1, 1, 0)(−1) . (5.2)

The gauge invariant Yukawa couplings are (with NT
i C−1Nj = −NT

i CNj = −N c
iNj)

L ⊃ 1
2
NT
i C−1(MR)ijNj + λeLeH̃SMN1 + λµLµH̃SMN2 + λτLτ H̃SMN3 + h.c. , (5.3)

where MR has the structure

MR =

X 0 0
0 0 Y

0 Y 0

 . (5.4)

SM symmetry breaking (HSM → (0, 1√
2
(hSM + vSM))T ) generates the bilinear terms

L ⊃ −
(
νe νµ ντ

)mνe 0 0
0 mνµ 0
0 0 mντ


N1

N2

N3

+ h.c. , (5.5)

where we introduced the Dirac mass matrix mD with the entries mνi ≡ λiv/
√

2.
Combining the neutrinos into a vector ωTR ≡

(
νce νcµ νcτ N1 N2 N3

)
, we obtain

the full mass matrix

L ⊃ −1
2
ωcR

(
03x3 mD

mT
D MR

)
ωR + h.c. , (5.6)

which in the limit X,Y � mi results in a (symmetric) Majorana mass matrix for the
light mass eigenstatesMν = −mDM−1

R mT
D, in our case it takes of course the Lµ−Lτ -

symmetric form

Mν = −mDM−1
R mT

D = −


m2
νe
X 0 0
· 0 mνµmντ

Y

· · 0

 , (5.7)

with the eigenvalues ±mνµmντ
Y and −m2

νe
X . This can also be understood by integrating

out the heavy fields Ni; assuming a negligible kinetic energy, the equations of motion
for the Ni (from ∂L

∂Nj
= 0) can be algebraically solved to MRN ∼ mT

Dν. This leads
to the desired low-energy mass matrix when inserted back into the Lagrangian (5.5).
The scale of the neutrino masses can therefore be made small by a high Ni-scale X,Y 2

1The trivial possibility of right-handed neutrinos in the singlet representation of the whole gauge group
GSM × U(1)′ will be discussed briefly in App. E.

2In the context of grand unified theories possibly their breaking scale ΛGUT ∼ 1016 GeV.
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(hence the name seesaw), rather than by small Yukawa couplings. The mixing pattern
of the neutrinos is however determined by our generation-dependent symmetry.

Due to the Majorana nature of the resulting mass eigenstates, the matrix Mν can
be diagonalised via UTMνU = diag(m1,m2,m3); note the transposed unitary matrix
U instead of a conjugated.

The phenomenology of texture zeros in neutrino mass matrices (like in Eq. (5.7))
has been discussed, for example, in Ref. [121], where a classification for the different
structures is given. Most importantly, an analysis shows that Mν can have at most
two texture zeros to be phenomenologically successful [122]. In the next sections, we
will see that spontaneously breaking the U(1)Lµ−Lτ symmetry via scalar fields leads to
additional entries in the mass matrix (5.7), but in the simplest cases still leaves some
texture zeros. For example, introducing one scalar doublet, with charge Y ′ = −1, gives
a low-energy neutrino mass matrix of the form

Mν =

A C 0
· D B

· · 0

 , (5.8)

corresponding to the form B4 of Frampton, Glashow and Marfatia [121]. The mass
matrix can be analysed by evaluating Mν = U∗diag(m1,m2,m3)U † and solving the
texture zeros Meτ

ν = Mττ
ν = 0 for m1,2 as a function of the other parameters. For

quasi-degenerate masses this leads to a valid structure, the most interesting relation
one finds is

∆m2
�/∆m

2
atm ≈

4s13(t23 + 1/t23) cos δCP∣∣t12(1− t423)± 2s13(t23 + 1/t23) cos δCP

∣∣ , (5.9)

so a non-maximal θ23 and a non-zero θ13 are necessary for the mass splitting (one needs
to choose the sign as to make the denominator minimal, depending on whether θ23 is
larger or smaller than π/4). To get the desired ∆m2

�/∆m
2
atm ≈ 0.03, one typically

needs s13 ∼ 10−2− 10−3 (varying s23 around its 1σ interval). We also find the relations
(for δCP = 0)

A/B = −1/t23 +O(s13) ,

C/B =
s13

c23s2
23

+O(s2
13) ,

D/B = t23 − 1/t23 +O(s2
13) ,

(5.10)

demonstrating that we are indeed dealing with degenerate masses and the entries C
and D are suppressed, i.e. a small U(1)Lµ−Lτ breaking suffices.

Since the one-doublet model is excluded by its large NSI parameters (Sec. 5.3), we
will not go into any more details about the induced neutrino mixing angles. We merely
mention that the allowed Higgs sectors, e.g. one singlet plus one doublet, contain enough
parameters (and entries in Mν) to create a successful neutrino phenomenology.
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νe νµ

〈HSM〉 〈HSM〉〈S+1〉

N1 N1 N3 N2

Figure 5.1: νe–νµ transition operator with a scalar singlet (Y ′ = +1).

5.1.2 Higgs Singlets

We will now introduce additional scalar singlets into our theory, which are charged
under U(1)Lµ−Lτ and can be used to break the symmetry. The singlet SY ′ ∼ (1, 1, 0)(Y ′)
can introduce additional MR entries via Yukawa couplings

−p+1N
c
1N3S+1 − p−1N

c
1N2S−1 − p+2N

c
3N3S+2 − p−2N

c
2N2S−2 + h.c. , (5.11)

which after breaking SY ′ → 1√
2
(vs + hs) generate the mass matrix

MR =

X
vs√

2
p−1

vs√
2
p+1

· vs√
2
p−2 Y

· · vs√
2
p+2

 ≡
X s−1 s+1

· s−2 Y

· · s+2

 . (5.12)

Using the seesaw mechanism, we obtain the low-energy mass matrix

Mν = − [XY 2 −Xs−2s+2 − 2Y s−1s+1 + (s+1)2s−2 + (s−1)2s+2

]−1

×

m2
νe(Y

2 − s−2s+2) mνemνµ(s−1s+2 − Y s+1) mνemντ (s+1s−2 − Y s−1)
· −m2

νµ(Xs+2 − s2
+1) mνµmντ (XY − s+1s−1)

· · −m2
ντ (Xs−2 − s2

−1)


≈ −


m2
νe
X 0 0
· 0 mνµmντ

Y

· · 0

+
1

XY 2

m2
νes−2s+2 mνemνµY s+1 mνemντY s−1

· m2
νµXs+2 mνµmντ s+1s−1

· · m2
ντXs−2

 ,

(5.13)

where the last approximation is based on X,Y � si, viable for U(1)′ breaking around
the EW scale. The result can be understood by means of Fig. 5.1, where the operator
for the νe–νµ transition is depicted; the scale can be read off from the VEVs and fermion
propagators to be

(Mν)eµ ∼ 〈HSM〉 1
X
〈S+1〉 1

Y
〈HSM〉 , (5.14)

in accordance with Eq. (5.13).

Choosing a pair of singlets with sj = s−j (e.g. via an additional discrete symmetry)
one can reinstate the µ↔ τ symmetry even in the broken-U(1)Lµ−Lτ case.

To keep at most two texture zeros, we need at least two singlets in our theory.
The breaking scale needs to be pretty high to make terms like m2

X
s
Y not that much
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smaller than m2

X . The corrections should be of magnitude s
Y ∼ 10−2 − 10−3, so for

m ∼ mµ,τ this would set a lowest breaking scale of s ∼ 105 GeV. Another possibility
is X ∼ 1 TeV,m ∼ me, allowing the low scale s ∼ 100 GeV. In this case, the heavy
neutrino sector could be probed at the LHC.

The connection to the Z ′ mass is (the same holds for doublets and triplets below)

MZ′ = g′
√∑

Y ′i
2v2
s ∼ g′s . (5.15)

For the sake of completeness, we will now consider the case of just one singlet (w.l.o.g.
S+1), but without the approximation s � X. The low-energy neutrino mass matrix
takes the simple form

Mν(S+1) =
m2
νe

X

1 −ε 0
· ε2 r

· · 0

 , (5.16)

with ε = mνµ
mνe

s+1

Y and r = mνµmντ
m2
νe

X
Y . While this has only two texture zeros, it gives

wrong oscillation angles for all values of ε and r (typically too high θ13 for realistic θ12).
This is not in contradiction to the discussion of the B4 structure (5.8) above, since here
we have the B4 form with an additional constraint D = C2, which reduces the degrees
of freedom.

This can be cured in the two-singlet model (S+1+S−1). The approximated low-energy
mass matrix in this case is

Mν(S+1 + S−1) = −m
2
νe

X

1 −x −y
· 0 r − xy
· · 0

 , (5.17)

with x = mνµs+1

mνeY
, y = mντ s−1

mνeY
and r = mνµ

mνe

mντ
mνe

X
Y . For x ≈ y ≈ 1 − r � 1, this matrix

is diagonalised by tri-bimaximal mixing; to get the observed mass ratio ∆m2
�/∆m

2
atm,

one needs values r ≈ 0.5− 0.6.

5.1.3 Higgs Doublets

Introducing U(1)′-charged Higgs doublets φY ′ ∼ (1, 2,+1)(Y ′) gives rise to the Yukawa
terms

L ⊃ −wαβLαφY ′βR − uαβLαφ̃Y ′Nβ + h.c. , (5.18)

where the first term generates lepton flavour violation (LFV) in the charged lepton
sector and will be ignored henceforth (the corresponding Yukawa couplings wαβ can be
made small enough to stay within experimental bounds).
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νe

〈HSM〉 〈φ−1〉

N1 N1 νµ

Figure 5.2: νe–νµ transition operator with a scalar doublet (Y ′ = −1).

Breaking U(1)′ via 〈φ〉 = (0, vd√
2
)T brings forth new elements in the Dirac mass matrix

mD =

mνe d+1 d−1

d̃−1 mνµ d−2

d̃+1 d+2 mντ

 , (5.19)

with di = uαβ
vd√

2
. This yields a light neutrino matrix (see Fig. 5.2 for a qualitative

Feynman diagram)

Mν = −


m2
νe
X 0 0
· 0 mνµmντ

Y

· · 0



−


2d−1d+1

Y
mνe d̃−1

X + mνµd−1

Y + d+1d−2

Y
mνe d̃+1

X + mντ d+1

Y + d−1d+2

Y

· d̃2−1

X + 2mνµd−2

Y
d̃−1d̃+1

X + d+2d−2

Y

· · d̃2+1

X + 2mντ d+2

Y

 .

(5.20)

The requirement of at most two texture zeros can be fulfilled by one doublet with
Y ′ = ±1. One can once again reinstate a µ–τ exchange symmetry by adding pairs of
doublets with dj = d−j . The corrections are of order d2

X and md
X , that means the relative

corrections are d
m and d2

m2 .

5.1.4 Triplet-Higgs Model

Instead of additional fermions Ni, we can also introduce a scalar triplet to the La-
grangian, allowing for a breaking of the Lµ−Lτ symmetry and hence additional entries
in Mν . We consider

∆ =

(
H+

√
2H++

√
2H0 −H+

)
∼ (1, 3,+2)(Y ′) , (5.21)

where the H i denote the electric charge eigenstates after EWSB. The allowed Yukawa
couplings are

L ⊃ −1
2
gαβL

T
αC−1iσ2∆Lβ + h.c.

= −1
2
gαβ

[√
2ναC−1H0νβ − ναC−1H+`β − `αC−1H+νβ −

√
2`αC−1H++`β

]
+ h.c.

(5.22)
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The neutral part of ∆ can now obtain a VEV 〈H0〉 = vT√
2

to break the U(1)′ and
generate a Majorana mass matrix vT gαβ. The structure of the symmetric gαβ depends
on the charge Y ′, as depicted below (tY ′ ∼ 〈H0(Y ′)〉):

Mν = vT gαβ =

t0 t−1 t+1

· t−2 t̃0
· · t+2

 . (5.23)

Since Mν can have at most two texture zeros, we need at least three triplets in our
theory. Alternatively, we could introduce once again the three Ni and use the seesaw-I
mechanism to create the Y ′ = 0 entries in gαβ. So 3NR + 2∆ could also be a viable
candidate.3

5.1.5 One Doublet Plus One Singlet

We take S−1 ∼ (1, 1, 0)(−1) and φ−1 ∼ (1, 2,+1)(−1) and, since the neutrino mass
matrix is rather wide, we define s ≡ s−1, d ≡ d−1 and d̃ ≡ d̃−1 to fit it on one page. We
choose Y ′(S) = −1 to fill the zeros in the mass matrix (5.8). We obtain the low-energy
Majorana mass matrix

Mν =
−1
XY 2

(mνeY − ds)2 Y (d̃mνeY − d(d̃s−mνµX)) smντ (ds−mνeY )
· d̃2Y 2 Y mντ (mνµX − d̃s)
· · m2

ντ s
2

 .

(5.24)

We will not attempt to discuss the resulting neutrino phenomenology, because the one-
doublet model alone already gives viable mixing angles; it should be clear that we can
use s to improve the results even though its effect is suppressed by s/X compared to
m and d.

Another possibility to fill the zeros is the field S−2, leading to the fairly simple matrix

Mν = −


m2
νe
X − d2−1s−2

Y 2
d̃−1mνe

X + d−1mνµ
Y −d−1mντ s−2

Y 2

· d̃2−1

X

mνµmντ
Y

· · −m2
ντ
s−2

Y 2

 . (5.25)

5.2 Two Singlets

Having discussed the impact of the different scalar models on neutrino phenomenology,
we will go on to examine the scalar sector in more detail. We start once again with
singlets. Breaking the Lµ − Lτ symmetry in the right-handed neutrino sector causes
only minor changes in Standard Model particle interactions. We explicitly show the
potential for two singlets, with Y ′ = ±1, in addition to the Standard Model doublet

3There are no additional Yukawa couplings of ∆ to the Ni.
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HSM:

V =− µ1|HSM|2 + λ1|HSM|4 − µ2|S1|2 + λ2|S1|4 − µ3|S2|2 + λ3|S2|4
+ δ1|HSM|2|S1|2 + δ2|HSM|2|S2|2 +

(
δ3S1S2|HSM|2 + h.c.

)
+ δ4|S1|2|S2|2 +

(
δ5S

2
1S

2
2 + h.c.

)
+
(
M2

12S1S2 + h.c.
)
.

(5.26)

We will choose for simplicity all the parameters in V to be real to obtain a CP-
conserving potential. The fields acquire the VEVs vSM, v1 and v2, so we parameterise
HT

SM = (H+, (Reh+ vSM + iImh)/
√

2) and Sj = (ReSj + vj + iImSj)/
√

2.
In unitary gauge, the fields H± and Imh are absorbed by W± and Z, the linear

combination (Goldstone boson) G ∼ v1ImS1 − v2ImS2 is absorbed by the Z ′ boson,
leaving us with the degrees of freedom

HSM → 1√
2

(
0

Reh+ vSM

)
, Sj → 1√

2

(
ReSj + i

vj
vS
A

)
. (5.27)

We introduced the effective U(1)′ VEV vS =
√
v2

1 + v2
2, and the CP-odd physical scalar

A = (v2ImS1 + v1ImS2)/vS , which has a mass

m2
A = − v2

S

2v1v2

(
δ3v

2
SM + 2M2

12 + 4δ5v1v2

)
. (5.28)

The contributing parameters in mA can be understood by noticing that for δ3 = δ5 =
0 = M2

12, the potential (5.26) has not only the local U(1)Lµ−Lτ symmetry, but the larger
global U(1)× U(1), via Sj → eiθjSj . The spontaneous breakdown of these two abelian
symmetries, by the VEVs v1 and v2, yields two massless Goldstone bosons, ImS1 and
ImS2 (or G and A). In the presence of the parameters δ3, δ5 and M2

12 however, there
remains only one flat direction (G), so A becomes massive (pseudo-Goldstone).

Obviously, we need at least one of the parameters δ3, δ5,M
2
12 to be negative to give

a positive m2
A. There are surely bounds from the positivity constraint of the poten-

tial (5.26), on how negative these parameters can get, we will however not derive them
(the parameter M2

12 is not affected by this, since it is the coefficient of a quadratic
coupling). The CP-even scalar fields mix according to the mass matrix (in the basis
(Reh,ReS1,ReS2))

M2
s =

2λ1v
2
SM vSM(δ1v1 + δ3v2) vSM(δ2v2 + δ3v1)
· 2λ2v

2
1 − 1

2
v2
v1
δ3v

2
SM − v2

v1
M2

12 M2
12 + 1

2δ3v
2
SM + (δ4 + 2δ5)v1v2

· · 2λ3v
2
2 − 1

2
v1
v2
δ3v

2
SM − v1

v2
M2

12

 .

(5.29)

As can be seen, we have either a mixing in the CP-even sector (and therefore, if
one of δ1, δ2 or δ3 is non-zero, a coupling of our new scalar fields to first-generation
fermions and Z,W±), or a massless pseudoscalar A, which couples to Z ′, the Ni and, of
course, the other scalars. As can already be seen from the potential (5.26), the Standard
Model Higgs h decouples from the “new physics” for δ1 = δ2 = δ3 = 0. In contrast to
the cxSM model (SM plus one complex scalar singlet, see Ref. [123] for a discussion),
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h3 h4 S3
i S4

i A4 A2S2
i A2h2 S2

1S
2
2 A2S1S2

h2S1S2 A2h A2Si S2
1S2 S1S

2
2 S2

i h h2Si hS1S2

Z2h Z2h2 W+W−h W+W−h2 Z ′ASi Z ′2A2 Z ′2S2
i Z ′2Si

Table 5.1: Interaction vertices involving scalars among themselves (first row), and with vector
bosons (second row), not in mass basis yet.

the pseudoscalar A is in general unstable, because it can decay via Z ′ and Si (see
interaction terms below), and is therefore no candidate for dark matter. Let A be the
lightest of the scalars in the following.

Since the potential in terms of the physical scalars is long and not particularly inter-
esting, we merely list the occurring interaction vertices in Tab. 5.1. The scalars listed
are not mass eigenstates and we denote, for simplicity, ReS1 ≡ S1, ReS2 ≡ S2, abusing
the notation.

The gauge interactions are described by the Lagrangian

L ⊃ 1
2

e2

4s2
W c

2
W

v2
SMZ

2 (1 + h/vSM)2 +
e2

4s2
W

v2
SMW

+W− (1 + h/vSM)2 +
1
2
g′2(v2

1 + v2
2)Z ′2

+ g′Z ′µA∂
µ

(
v2

vS
S1 − v1

vS
S2

)
− g′Z ′µ

(
v2

vS
S1 − v1

vS
S2

)
∂µA

+
1
2
g′2Z ′2

(
A2 + S2

1 + S2
2

)
+ g′2Z ′2 (v1S1 + v2S2) .

(5.30)

We calculate the decay Z ′ → AS1,2 → AAA in the limit mA ≡ 0, i.e. all mixing
parameters to zero, and also, for simplicity, MZ′ � mSi . A long calculation gives

Γ(Z ′ → AAA) ≈ 1
2304

g′5

(2π)3

|v4
1 − v4

2|
(v2

1 + v2
2)3/2

, (5.31)

highly suppressed compared to Γ(Z ′ → ν̄ν). If instead mSi < MZ′ , the decay channel
Z ′ → ASi can be comparable:

Γ(Z ′ → AS1) =
1

48π
v2

2

v2
S

g′2MZ′ +O(m2
S1
/MZ′)

≈ g′3

48π
v2

2

(v2
1 + v2

2)1/2
=

1
2
v2

2

v2
S

Γ(Z ′ → ν̄ν) .
(5.32)

For small mixing parameters δ1,2,3, one mass eigenstate will be mainly h, the Standard
Model Higgs boson. If the mass of A is negligible, there will be the new decay channel
h→ AA, approximately (where we set, for simplicity, v1 = v2)

Γ(h→ AA) ≈ 1
128π

v2
SM

mh
(δ1 + δ2 − 2δ3)2 ≈ 1.2 GeV

(
120 GeV
mh

)
(δ1 + δ2 − 2δ3)2 .

(5.33)

So A can contribute to, or even dominate, the invisible branching ratio of the Higgs,
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especially for low mh. In that case, the LEP limits on the Higgs mass are weakend,
because they are based on the no longer dominant decay modes h → bb̄, τ−τ+; this
would improve the current fit of the Standard Model to experimental data, since it
favours a Higgs mass ∼ 90 GeV.

The decay S1 → AA, for mA � mS1 , can be calculated analogously:

Γ(S1 → AA) ≈ 1
32π

1
mS1

v2
1

v2
S

(
2λ2v

2
2 + (δ4 − 2δ5)v2

1 − 4δ5v
2
2

)2 ≈ 1
128π

m3
S1

v2
1

, (5.34)

where the last approximation uses v1 = v2 and δ4,5 � λ2.

We close by mentioning that this model is naturally free of LFV at tree-level (except
in the neutrino sector), because the Si do not couple to charged fermions. The model
is difficult to test experimentally, probably the best way would be the measurement of
the invisible branching ratio of h; but since |M2

12| can be arbitrarily large, the (Si, A)
sector might as well decouple completely. The Higgs sector of the two-singlet model
therefore lacks predictability. In general, measurements around the Z ′ pole (e.g. at a
muon collider) could be used to measure the invisible width of Z ′, probing for light A
or Si; it would however be impossible to distinguish the origin of the light scalars, i.e.
the concrete Higgs sector.

The mixing of CP-even scalars, and their effect on the S, T and U parameters,
is discussed in Ref. [124]. The authors show that the two-singlet extension (which is
effectively what we have with the mass matrix (5.29)), has a large allowed parameter
space, for scalar masses around 140 − 250 GeV. As far as a possible detection at the
LHC goes, they conclude that at most one scalar φi can be detected in the channel
φi → ZZ∗ → 4`, while some mixing angles actually render all the scalars unobservable
at an integrated luminosity of 30 fb−1 (thereby “hiding” the Higgs, as put forward in
the Refs. [125, 124]).

5.3 One Doublet

In the one-doublet model (with Y ′ = ±1 to generate enough entries in the neutrino
mass matrix) we have the parameters 〈φ±1〉 ≡ vD/

√
2 and g′, which lead to the mass

parameters in our Lagrangian (2.4):

M̂2
Z =

e2

4s2
W c

2
W

(v2
SM + v2

D) , δM̂2 =
eg′

2sW cW
v2
D , M̂2

Z′ = g′2v2
D . (5.35)

This constitutes the simplest nontrivial model, in the sense that it reduces the number
of free parameters from (M̂Z′ , δM̂

2, g′) to (vD, g′). We will now show that it is already
excluded by NSI measurements. For small mixing we can approximate Eq. (4.28) to

ε⊕µµ ≈
g′√
2GF

e

2sW cW
ξ

1
M2

2

, (5.36)
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which can be further approximated, using the expressions for the mass M2 ≈ M̂Z′ =
g′vD and the mixing angle ξ ≈ δM̂2/M2

1 = e
2sW cW

g′v2
D/M

2
1 , to

ε⊕µµ ≈
1√

2GF

(
e

sW cW

)2 1
M2

1

≈ 0.9 , (5.37)

only weakly dependent on the Z ′ parameters. Since this is roughly a factor 20 higher
than the current 90% C.L. bound, this excludes the one-doublet model, at least in the
range of validity of our NSI parameters and approximations (1 GeV . M2 . 90 GeV).
Note that this does not exclude this model for the fifth-force case, since the NSI are
not well defined in that limit.

5.4 One Triplet

The one-triplet model is ruled out by LEP measurements, as we will show now. The
kinetic term of the triplet ∆ takes the form

L ⊃ 1
2

tr
(

(Dµ∆)†Dµ∆
)

(5.38)

where the covariant derivative acts on ∆ in the way

Dµ∆ = ∂µ∆− ig2

2
W a
µ [σa,∆]− ig1Bµ∆− ig′Y ′Z ′µ∆ . (5.39)

A tedious calculation results in

1
2

tr
(

(Dµ∆)†Dµ∆
)

=

|∂µH++ − i2eAµH++ − i e

sW cW
(c2
W − s2

W )ZµH++ − ig′Y ′Z ′µH++ + i
e

sW
W+
µ H

+|2

+ |∂µH+ − ig′Y ′Z ′µH+ − ieAµH+ + ie
sW
cW

ZµH
+ + i

e

sW
W−µ H

++ − i e
sW

W+
µ H

0|2

+ |∂µH0 − ig′Y ′Z ′µH0 + i
e

sW cW
ZµH

0 − i e
sW

W−µ H
+|2 ,

(5.40)

which gives rise to a vast amount of possible interactions. After H0 acquires a VEV,
this leads to the mass terms

M2
W =

e2

2s2
W

v2
T , M2

Z =
e2

s2
W c

2
W

v2
T , M2

Z′ = g′2Y ′2v2
T , δM2 =

e

sW cW
g′Y ′v2

T . (5.41)

Additional mass terms arise, of course, from the SM Higgs, for g′ = 0 we get

M2
W =

e2

2s2
W

(
v2
T +

v2
SM

2

)
, M2

Z =
e2

s2
W c

2
W

(
v2
T +

v2
SM

4

)
, (5.42)



90 Chapter 5. The Scalar Sector

changing the ρ parameter to4

ρ =
M2
W

c2
WM

2
Z

=
1 + 2 v2T

v2SM

1 + 4 v2T
v2SM

≈ 1− 2
v2
T

v2
SM

. (5.43)

Current EW fits give the constraint vT /vSM < 0.017, so vT can at most be in the
GeV range.5 Taking three triplets and assuming a common breaking scale vT , the ρ
parameter changes to ρ ≈ 1− 6v2

T /v
2
SM, yielding vT /vSM < 0.010.

For completeness, we also show the scalar potential, for simplicity for only one triplet:

−L ⊃ −m2|HSM|2 + λ1|HSM|4 − 1
2
M2tr

(
∆†∆

)
+
λ2

4

(
tr
(

∆†∆
))2

+
λ3

2
det
(

∆†∆
)

+ λ4|HSM|2tr
(

∆†∆
)

+ λ5

(
H†SMσiHSM

)
tr
(

∆†σi∆
)

+
(

1√
2
µHT

SMiσ2∆†HSM + h.c.
)
,

(5.44)

where the µ term is only gauge invariant for Y ′(∆) = 0.
Going into unitary gauge, we find a Z ′ boson with mass ∼ g′vT , but also a light

neutral scalar hT with mass ∼ vT . The interaction term

L ⊃ 2
e

sW cW
g′Y ′Z ′Z|H0|2 (5.45)

gives rise to the decay channel Z → Z ′hT , which is, in the approximation MZ′ ,mhT �
MZ , of the order O(100 MeV), in direct contradiction to the invisible decay width
Γinv(Z), as measured at LEP (accurately described by Z → ν̄ν to ∼ 1 MeV).

In the usual seesaw-II mechanism, the µ term in Eq. (5.44) can be used to make
the scalar fields heavy enough to forbid such decays. Since a U(1)′-charged ∆ does not
allow such a term, this excludes the one-triplet model.

A possible solution could be an additional Higgs singlet VEV, which can push the
Z ′ mass higher than MZ . Consequent decays Z → hTZ

′ → hT ν̄ν are then suppressed
by the Z ′ propagator and could be small enough. We would need even more scalars to
get successful neutrino phenomenology, which results in a complicated scalar potential
and particle content. This shall not be discussed further.

5.5 One Doublet Plus One Singlet

The doublet models are interesting for the breaking scale we are considering, because
they naturally generate neutrino mass entries of similar order to the Standard Model
Higgs (in contrast to the entries from singlet scalars); we will therefore try to cure the
problems of the one-doublet model.

4This is also valid for g′ 6= 0, because the mass mixing between Z and Z′ gives a contribution to ρ of
order (vT /vSM)4, i.e. cannot be used to weaken the constraint.

5To be precise: vT < 0.017 · 246 GeV ≈ 4.2 GeV at 95% C.L.
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One extension that has already been considered for U(1)Lµ−Lτ is the two-doublet
model (e.g. Ref. [37]), albeit with little discussion of its phenomenology. Taking two
doublets φ1,2 with opposite U(1)′ charge reduces the Z–Z ′ mixing, because the off-
diagonal mass element has the form δM2 ∼ gZg

′(v2
1 − v2

2). This can lead to a model
that is free of Z–Z ′ mixing and features a µ–τ -symmetric neutrino mass matrix. Since
this has already been considered and will furthermore result in a quite messy scalar
potential (without invoking the exchange symmetry), we will not discuss it here.

Instead, we look at the simplest extension, one doublet plus one singlet (occasion-
ally abbreviated as 1D1S later on), i.e. we basically only add g′2v2

S to M̂2
Z′ . The NSI

parameter (5.37) is no longer constant, but depends on the ratio vS/vD in the form

ε⊕µµ ∼
1

1 + v2
S/v

2
D

. (5.46)

This factor needs to be smaller than ∼ 1/20 (for χ = 0), leading to vS/vD > 4.6, inde-

pendent of g′. The anomalous magnetic moment ∆aµ gives the constraint
√
v2
S + v2

D &

192 GeV, so to generate sufficiently small NSI values and still explain ∆aµ we need (for
χ = 0) vS & 190 GeV and vD . 40 GeV. Slightly weaker constraints come from the ρ
parameter (Z–Z ′ mixing is small for g′v2

D �M2
Z), we will in the following use the limit

vD � vS , to be on the safe side. This automatically makes the corresponding entries in
the neutrino Dirac mass matrix small, whereas the diagonal entries,coming from vSM,
rely on small Yukawa couplings. As a matter of convenience we will denote the VEVs
vS , vD and vSM as s, d and v in the following.

5.5.1 Scalar Potential

The potential for the scalar fields

H =

(
h+

h0

)
∼ (1, 2,+1)(0) , φ =

(
φ+

φ0

)
∼ (1, 2,+1)(−1) , S ∼ (1, 1, 0)(−1) , (5.47)

can be written as

V =− µ1|H|2 + λ1|H|4 − µ2|φ|2 + λ2|φ|4 − µ3|S|2 + λ3|S|4
+ δ1|H|2|φ|2 + δ2|H†φ|2 + δ3|H|2|S|2 + δ4|φ|2|S|2

−
(√

2|µ|eiκH†φS + h.c.
)
.

(5.48)

The positivity of the potential gives constraints on the coefficients, easily derived using
Sylvester’s criterion for positive-definite quadratic forms:

0 < λ1 , 0 < 4λ1λ2 − (δ1 + δ2)2 ,

0 < 4λ1λ2λ3 + (δ1 + δ2)δ3δ4 − λ1δ
2
4 − λ2δ

2
3 − λ3(δ1 + δ2)2 .

(5.49)

Additional constraints come from the positivity of the scalar masses, which are however
more intricate and will not be explicitly derived here; neither will the bounds from
perturbativity and unitarity, which, in principle, give upper bounds on the couplings.
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Introducing the VEVs6

ReS → s/
√

2 , Reφ0 → d/
√

2 , Reh0 → v/
√

2 , (5.50)

and minimising the potential, gives three equations for µ1,2,3, which we plug back into
the potential. To calculate the masses we will go to unitary gauge, i.e. eliminate the
unphysical degrees of freedom, as determined by the kinetic terms:

L ⊃ (DµH)†(DµH) + (Dµφ)†(Dµφ) + (DµS)†(DµS)

= |∂µh0 − i e

2sW cW
Zµh

0 − i e√
2sW

W−µ h
+|2

+ |∂µh+ − i e

sW cW
(c2
W − s2

W )Zµh+ − ieAµh+ − i e√
2sW

W+
µ h

0|2

+ |∂µφ0 + ig′Z ′µφ
0 − i e

2sW cW
Zµφ

0 − i e√
2sW

W−µ φ
+|2

+ |∂µφ+ + ig′Z ′µφ
+ − i e

sW cW
(c2
W − s2

W )Zµφ+ − ieAµφ+ − i e√
2sW

W+
µ φ

0|2

+ |∂µS + ig′Z ′µS|2 .
(5.51)

Expanding the fields around the VEVs, we find the mass terms for the gauge bosons

M2
W =

e2

4s2
W

(v2 + d2) , M2
Z =

e2

4s2
W c

2
W

(v2 + d2) ,

M2
Z′ = g′2(d2 + s2) , δM2 = − e

2sW cW
g′d2 ,

(5.52)

and cross terms between gauge bosons and Goldstone bosons, namely:

L ⊃− e√
2sW cW

Zµ∂
µ(d Imφ0 + v Imh0) +

√
2g′Z ′µ∂

µ(d Imφ0 + s ImS)

− e

2sW
iW+

µ ∂
µ(dφ− + v h−) + h.c.

(5.53)

We read off the Goldstone fields (not properly normalised)

G− ∼ dφ− + v h−, GZ ∼ d Imφ0 + v Imh0, G′ ∼ d Imφ0 + s ImS , (5.54)

which are not orthogonal. Using the gauge freedom to fix G− = GZ = G′ = 0 would
result in physical scalars with unconventional kinetic terms; this can be avoided by first
constructing a orthonormal basis from GZ and G′. We define the physical field σ via
σ ∼ G′ × GZ , then “rotate” GZ to G̃Z ≡ σ × G′. These fields are connected to the

6While we choose all VEVs real and positive for simplicity, it must be stressed that this is not the most
general case.
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gauge eigenstates by a unitary transformation:G′

G̃Z
σ

 =

 cos θ sin θ 0
− cosβ sin θ cosβ cos θ sinβ
sinβ sin θ − sinβ cos θ cosβ


 ImS

Imφ0

Imh0

 (5.55)

with the two angles

tan θ ≡ d

s
, tanβ ≡ v

sd

√
s2 + d2 =

v

s sin θ
. (5.56)

The expected scaling d � s ∼ v implies sin θ, cosβ � 1. The unitary gauge, G′ =
G̃Z = 0, leaves the physical field σ, contributing to the potential through ImS

Imφ0

Imh0

 =

 cos θ sin θ 0
− cosβ sin θ cosβ cos θ sinβ
sinβ sin θ − sinβ cos θ cosβ


T 0

0
σ

 =

 sinβ sin θ σ
− sinβ cos θ σ

cosβ σ

 .

(5.57)

The field σ consists mainly of Imφ, so the imaginary part of h0 is not zero as in the
SM, but suppressed by cosβ.

The charged Goldstone boson is easier to handle, we have(
φ−

h−

)
=

(
cosβ− − sinβ−

sinβ− cosβ−

)(
G−

σ−

)
G−→ 0−−−−−−→

(
− sinβ− σ−

cosβ− σ−

)
, (5.58)

with the angle tanβ− ≡ v/d = cos θ tanβ ≈ tanβ � 1. The physical fields σ, σ±,
ReS ≡ S, Reφ0 ≡ φ and Reh0 ≡ h (abuse of notation) are not mass eigenstates.
Setting, for simplicity, the CP-violating angle κ in the potential (5.48) to zero, we can
at least read off the masses for σ and σ±:

m2
σ =
|µ|vs
d

+
|µ|ds
v

+
|µ|vd
s

, (5.59)

m2
σ± =

|µ|vs
d

+
|µ|ds
v
− 1

2
δ2(d2 + v2) . (5.60)

In the approximation we will use extensively, d� s ∼ v, only the first term contributes
and mσ ≈ mσ+ . The masses mσ and mσ± increase for decreasing d, reminiscent of an
inverse seesaw mechanism; useful values for |µ| will be discussed below.

The CP-even scalars share the symmetric mass matrix (in (S, φ, h) basis)

M2
CP−even =

2λ3s
2 + |µ|vd

s −|µ|v + δ4ds −|µ|d+ δ3vs

· 2λ2d
2 + |µ|vs

d −|µ|s+ (δ1 + δ2)vd
· · 2λ1v

2 + |µ|ds
v

 , (5.61)

with the approximate eigenvalues (labelled according to the predominant field in the
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unmixed scenario)

m2
h̃,S̃
≈ λ1v

2 + λ3s
2 ±

√
(λ1v2 − λ3s2)2 + δ2

3s
2v2 , (5.62)

m2
φ̃
≈ |µ|vs

d
. (5.63)

For small cosβ ≈ d/v, the fields σ, σ+ and φ have degenerate masses. In contrast
to other 2HDM (and our two-singlet model), we do not have a light pseudoscalar σ.
In the next section, we will see that the charged scalar mass is bounded from below,
mσ± & 80 GeV, so there are no decay modes of h into real σσ, σ+σ− or φφ, unless h
has a mass of at least 160 GeV. S could, in principle, have a mass low enough to allow
h→ SS, depending on λ3. Decay channels as signatures in collider experiments will be
discussed below. We point out that without large mass splittings in the scalar sector,
the quantum corrections to the ρ parameter, due to scalar loops, will be small [126].

Obviously, the µ term in the potential is crucial for the generation of large scalar
masses, without it, we would end up with masses ∼ d, either below MZ (introducing
new invisible decay channels for Z) or above it (introducing too large of a Z–Z ′-mixing
angle). The potential in the (σ, σ±, S, φ, h) basis is ridiculously lengthy and will not
be shown here. It involves the interaction terms given in Tab. 5.2; also shown are
the interactions with the gauge bosons. Making |µ| and the δi small, e.g. |µ| ∼ d,
results in small mixing; for simplicity, we will work in zeroth order and treat S, φ and
h as mass eigenstates. The additional mass mixing could be of the same order as the
mixing through β and β−, consequently the combined mixing could be larger or smaller,
depending on their relative sign in the coupling. Since we are only performing order of
magnitude approximations in the scalar sector, we do not care about this.

Just as an aside, we mention that none of the scalars are stable. The scalars σ and
σ− couple directly to fermions (albeit weakly) and will decay through this channel. The
scalars φ and S couple predominantly to the heavy neutrino sector, but can in any way
decay via a Z ′Z ′. So, without invoking some additional discrete symmetries, this model
provides no candidate for dark matter.

5.5.2 Yukawa Interactions and Lepton Flavour Violation

The gauge invariant Yukawa interactions of the two doublets H and φ and the singlet
S to the leptons and right-handed neutrinos Ni can be written as:

−L ⊃ + λeeHLeHeR + λµµH LµHµR + λττH LτHτR

+ λe1HLeH̃N1 + λµ2
H LµH̃N2 + λτ3

H Lτ H̃N3

+ λeµφ LeφµR + λτeφ LτφeR

+ λe3φ Leφ̃N3 + λµ1
φ Lµφ̃N1 + λ12

S N
c
1N2S + h.c.

(5.64)
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h3 h4 S3 S4 φ3 φ4 σ4

σ2h hφS σ2φ σ2S φ2S2 h2S2 h2φ2

σ2φ2 σ2h2 h2S h2φ φ2h σ2S2 φ2S

S2φ hS2 σ+σ−σ+σ− h2σ+σ− φ2σ+σ− σ2σ+σ− hσ+σ−

φσ+σ− Sσ+σ− hφ σ+σ− S2σ+σ−

Z2h W+W−φ Z2σ+σ− ZAσ+σ− ZW−σ+φ A2σ+σ− Z2h2

W−Aσ+φ W+W−σ2 W+W−φ2 ZW−σ+σ W+Aσ−σ W+W−σ+σ− ZW−σ+h

W−Aσ+h W+W−h W+W−h2 Z2σ2 Z2φ Z2φ2

Z ′2φ2 Z ′2S2 W−Z ′σ+φ ZZ ′σ+σ− AZ ′σ+σ− W+Z ′σ−σ Z ′2σ+σ−

W+Z ′σ− Z ′2φ Z ′2S Z ′2σ2 ZZ ′σ2 ZZ ′φ ZZ ′φ2

Aσ+σ− Zσ+σ− Zσh Zσφ W−σ+σ W−σ+h W−σ+φ

Z ′φσ Z ′σS Z ′σ+σ−

Table 5.2: Interaction vertices involving scalars among themselves (first row), with SM vector
bosons (second row), with the Z ′ boson (third row), and couplings to vector bosons involving
derivatives (last row).

In unitary gauge, denoting sinβ with sβ etc., this becomes:

−L ⊃
∑

`=e,µ,τ

λ``H

[
v√
2
`L`R +

1√
2
`L`R(h+ icβσ) + c−β ν``Rσ

+

]

+ λe1H

[
− v√

2
νeN1 − 1√

2
νeN1(h− icβσ) + c−β eLN1σ

−
]

+ (e1→ µ2, τ3)

+ λeµφ

[
d√
2
eLµR +

1√
2
eLµR(φ− isβcθσ)− s−β νeµRσ+

]
+ (eµ→ τe)

+ λe3φ

[
− d√

2
νeN3 − 1√

2
νeN3(φ+ isβcθσ)− s−β eLN3σ

−
]

+ (e3→ µ1)

+ λ12
S

[
s√
2
N
c
1N2 +

1√
2
N
c
1N2(S + isβsθσ)

]
+ h.c. ,

(5.65)

which can be further simplified using ¯̀
L`R(h+icβσ)+h.c. = ¯̀(h+icβγ5σ)`, emphasising

the pseudoscalar nature of σ.

The coupling to quarks is of the same form as in the Standard Model (since they are
singlets under U(1)′):

−L ⊃
∑

i,j=1,2,3

λijd Q
i
LHd

j
R +

∑
i,j=1,2,3

λijuQ
i
LH̃u

j
R + h.c. (5.66)

Diagonalisation of the mass matrices goes through as usual, via biunitary transforma-
tions [32]. We end up with

−L ⊃ dLDddRH
0 + uLDuuRH

0 + uLV DddRH
+ − dLV †DuuRH

− + h.c. , (5.67)
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with the matrices in generation space

Dd ≡
√

2/v diag(md,ms,mb) , Du ≡
√

2/v diag(mu,mc,mt) , (5.68)

and V (the usual unitary Cabibbo-Kobayashi-Maskawa matrix of the Standard Model).
In the SM, the terms with H± vanish in unitary gauge, while in our case we have the
Yukawa interactions:

−L ⊃
∑
i

md
i

v
d
i
Ld

i
R(h+ icβσ) +

∑
i

mu
i

v
uiLu

i
R(h− icβσ)

+ c−β

√
2
v

∑
i,j

md
jVij u

i
Ld

j
Rσ

+ − c−β
√

2
v

∑
i,j

mu
j V
∗
ji d

i
Lu

j
Rσ
− + h.c.

(5.69)

The flavour-changing interactions are suppressed by the Yukawa couplingsmq/v and the
angle cosβ− ≈ d/v, compared to those induced by W±. The interaction of the charged
scalars with the quarks is very similar to the Two-Higgs-Doublet Model of Type I
(2HDM-I) [127, 128] (see App. F for a short overview over the 2HDM-Types), where
the parameter cosβ− is denoted by tanβ. The corresponding bound mσ− & 80 GeV
on a charged scalar with decay channels σ− → c̄s, τ ν̄τ , set by LEP [129, 130], applies.
Additional contributions from σ± to charged-current decays are already well suppressed;
for example, the decay τ → ντσ

− → ντνµµ has the width

Γ(τ → ντνµµ) ≈ 1
192

1
(2π)3

(
c−β
mσ−

)4 (mτmµ

v2

)2
m5
τ , (5.70)

resulting in an additional branching ratio of ∆BR ≈ 10−3(c−β /mσ− [GeV])4, which is
already small enough and presents no bound on c−β .

There are two different kinds of Lepton Family number Violation (LFV) associated
with this model, we will discuss them in the following. Since we choose the charge
Y ′ = −1 for our Higgs fields φ and S, the Lµ − Lτ number of a process will only
changed by 1 unit in the simplest Feynman diagrams, i.e. we expect decays τ → eX

and µ→ eX, but not τ → µX.

LFV Mediated by Z′ As can be seen immediately in Eq. (5.65), the VEV d introduces
non-diagonal elements in the mass matrix of the charged leptons:

Mleptons =
1√
2

λeeHv λeµφ d 0
0 λµµH v 0

λτeφ d 0 λττH v

 . (5.71)

The mass eigenbasis is obtained by means of a biunitary diagonalisation, i.e. `L → UL`L,
`R → UR`R, with UL 6= UR. Since these matrices operate in flavour space, they do not
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change the normal SM gauge interactions, but only the Z ′ coupling:

j′µZ
′µ =

∑
i=L,R

`i

0
1
−1

 γµ`iZ
′µ

→
∑
i=L,R

`iU
†
i

0
1
−1

Uiγµ`iZ
′µ ,

(5.72)

Since U †i diag(0, 1,−1)Ui is not diagonal, Z ′ introduces decays like τ → eZ ′∗ → eµµ̄.
This also generates a coupling of Z ′ to electrons, suppressed by sin2 θL,R, and further-
more all the couplings become chiral, i.e. the Z ′ couples differently to left- and right-
handed fermions. The same reasoning applies to LFV mediated by neutral scalars, since
they couple in a generation-dependent way as well. Setting for simplicity λeµφ = 0, and
using the approximations me,mµ � mτ �MZ′ , we obtain the LFV decay ratio

Γ(τ → eµµ̄)
Γ(τ → µντ ν̄µ)

≈ 1
4G2

F

(
g′

MZ′

)4 (
s2
L + s2

R

)
≈
(

200 GeV
MZ′/g′

)4 (
s2
L + s2

R

)
,

(5.73)

which is constrained to be < 3.7× 10−8/0.1736 = 2.1× 10−7 [22]. The angles θL,R can
be approximated via

s2
L + s2

R ≈ s2
R ≈ θ2

R ≈
1
2

(
λτeφ d

mτ

)2

, (5.74)

so for d ∼ mτ and MZ′/g
′ ∼ 200 GeV we find the constraint λτeφ < 10−3 − 10−4 for

the coupling. There are, of course, additional channels mediated by neutral scalars,
which should give similar limits, depending on the scalar masses. Since nothing in the
motivation for our model depends on λeµφ and λτeφ , we can make them arbitrarily small.
On the other hand, any observation of LFV can be used to distinguish this model from
other BSM effects, since it features a unique pattern, to be discussed now.

To discuss the general case λeµφ , λ
τe
φ 6= 0, we approximate the rotation matrices for

the left- and right-handed fields as

UL,R ≈

 1 θL,R12 θL,R13

−θL,R12 1 θL,R23

−θL,R13 −θL,R23 1

 , (5.75)

where a proper calculation gives the rough scaling θ23 � θ13 ∼ θ12. Setting θ23 = 0
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µ e

γ

N1

σ−

Figure 5.3: Charged-scalar mediated lepton-flavour-changing radiative decay.

yields the Z ′-coupling matrix

U † diag(0, 1,−1) U ≈

0 −θ12 θ13

· 1 θ13θ12

· · −1

 . (5.76)

As expected, our model basically only allows the LFV τ → e and µ → e, with τ → µ

being highly suppressed.

LFV via Loops The second source of LFV stems from the charged scalars, inducing
the decays µ → eγ and τ → eγ via diagrams like Fig. 5.3, with a heavy right-handed
neutrino in the loop. Since these decays involve the same Yukawa coupling λ`i that
generate the U(1)′-breaking elements in the neutrino mass matrix, they better not
be zero in our model. Calculating the branching ratio of the decay µ → eγ in the
approximation mN � mσ+ ,mµ,me, we find [131]

BR(µ→ eγ) ≈ 3
128π2

d2

v2

(
λe1Hλ

µ1
φ

mµGFmN

)2
!
< 1.2× 10−11 , (5.77)

which is highly suppressed by the neutrino masses. Expressing the λ`i via the entries of
the Dirac mass matrix mD for the neutrinos, we can translate this into a bound on the
matrix element of the low-energy neutrino matrixMν (see the discussion in Sec. 5.1.5):

(Mν)eµ ≈
mνe1mνµ1

X

!

. 1 keV , (5.78)

easily satisfied since we choose X ∼ mN high enough to scale Mν ∼ 0.1 eV.

Contribution to ∆aµ The physical scalars contribute to the anomalous magnetic
moment of the muon via loop diagrams similar to Fig. 3.5. Setting the LFV Yukawa
couplings λeµφ = λτeφ = 0, only h, σ and σ− couple directly to the muon. The one-loop
contributions from the pseudoscalar σ and the charged σ− are [132]

δa1−loop
µ =

−m4
µ

8π2v2

1∫
0

dx

( c−β
mσ−

)2
x(1− x)

1 + (x− 1)m2
µ/m

2
σ−

+
(
cβ
mσ

)2 x3

1− x+ x2m2
µ/m

2
σ

 ,
(5.79)
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Figure 5.4: Dominating two-loop Barr-Zee-type diagram contributing to ∆aµ (left), actual val-
ues for ∆aµ in the approximation cosβ− ≈ cosβ, mσ ≈ mσ− (right).

which are orders of magnitude below the current limit, even for cβ ∼ 1. The two-loop
contribution of σ however is also important [133] due to a larger coupling of σ to heavy
fermions in the loop, which compensates the additional loop suppression (see Fig. 5.4).
The dominant effect gives

δa2−loop
µ =

α

8π3

m2
µ

v2
c2
β

∑
f=t,b,τ

Nf
colourQ

2
f

m2
f

m2
σ

1∫
0

dx
ln
(
m2
f/m

2
σ

x(1−x)

)
m2
f/m

2
σ − x(1− x)

, (5.80)

the combined one and two loop contributions are shown in Fig. 5.4 (right) for the case
cosβ− ≈ cosβ, mσ ≈ mσ− , corresponding to the d � v limit we are interested in. As
can be seen the effects are about two orders of magnitude too small to have any effect.

5.5.3 Signatures at the LHC

The effects of additional scalars in collider experiments, especially concerning the dis-
entanglement of different nHDM, has been reviewed in Ref. [134]; since our model is
similar to the 2HDM-I in the decoupling limit, we expect similar signatures. The best
candidate for observation will be the scalar h, with couplings reduced by mass mixing,
which we did not discuss before, and smaller branching ratios due to the additional
decay modes via the other scalars (h → σσ, σ+σ−, φφ, φS, SS) and in association
with gauge bosons (h→ ZW−σ+, AW−σ+, W−σ+, Zσ), most important for a heavy
h. An analysis of the branching ratios of h will therefore not suffice to distinguish our
model from the 2HDM-I. Since the interactions of σ, σ±, φ and S with the leptons are
suppressed not only by cosβ, but also by their small Yukawa couplings, whereas the
gauge boson couplings scale with cosβ, this sector will be the most interesting. For ex-
ample the decay channel h→ Zσ (discussed in Ref. [135]) scales with cosβ; the decay
h → Z ′σ is induced by mass mixing of the scalars and thus goes roughly with µ/v, of
the same order as cosβ. This could lead to interesting signatures, since the invariant
mass of the subsequently created leptons gives information about the virtual particles,
their angular distribution about the spin of the bosons and the rates of electrons, muons
and tauons about the admixture of Z ′ over Z. Such an analysis would however require
a lot of luminosity. In general, the most dominant effect of the scalars and Z ′ will be
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the difference in the e, µ, τ rates due to Z ′ decays.

5.6 Conclusion

In this chapter, we presented several models to spontaneously break the U(1)Lµ−Lτ
symmetry. We already concluded from the neutrino mass matrix (Sec. 5.1), that a viable
tree-level seesaw mechanism is only possible by adding at least two complex scalar fields
to the theory. Here we showed that the minimal scenario (two SM singlets charged under
U(1)′) works, but is hard to detect experimentally. The other model with two scalar
fields (combined to an SU(2)L doublet) is basically excluded by NSI measurements,
although there are regions in parameter space where some of our approximations are not
valid (MZ′ . 1 GeV) and the one-doublet model could still be allowed, but this is not
particularly interesting. To cure the one-doublet model of its problems, we introduced
an additional scalar that pushes the Z ′ mass high enough to forbid dangerous decays,
without increasing the Z–Z ′-mixing angle. This model provides a rich phenomenology,
similar to conventional two-Higgs-doublet models, such as charged scalars, mixing of
the neutral scalars, in principle additional CP violation and LFV. The distinction to
other 2HDM can, in principle, be done via its LFV, but will ultimately demand a
combined measurement with Z ′, to extract the necessary quantum numbers.
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Conclusion and Outlook

Motivated by the µ−τ -symmetric structure of the neutrino mass matrix and the absence
of quantum anomalies in the global U(1)Lµ−Lτ symmetry of the Standard Model, we
have considered the gauged abelian U(1)Lµ−Lτ flavour symmetry. Only small perturba-
tions to the U(1)Lµ−Lτ -symmetric neutrino mass matrix are necessary to generate the
observed mixing angles. We showed that we can generate a valid neutrino mass matrix
at tree-level (using the seesaw mechanism) by extending the scalar sector by at least two
complex fields that acquire a vacuum expectation value. We discussed the implications
of said fields for the neutral gauge boson Z ′ associated with the local U(1)Lµ−Lτ and
its mixing with the Standard Model Z boson. The mixing effects generate interesting
additional neutrino interactions, not discussed previously.

Specifically, we first examined the limiting case of an ultralight Z ′, giving rise to a
new long-range force between muonic and tauonic leptons. The generally present Z–
Z ′ mixing exposes first-generation particles to this force, resulting in a potential for
the muon- and tauon-neutrinos generated by the large number of neutrons inside the
Earth and/or the Sun. This affects neutrino oscillations (mainly those in atmospheric
and long-baseline experiments) in an intricate way, different from the usually consid-
ered contact interactions (non-standard neutrino interactions). Our model describes in
general a different oscillatory behaviour for νµ,τ and νµ,τ (CP violation), an effect that
has recently been measured at MINOS, albeit with low precision. By performing a sim-
ulation with the GLoBES software, we showed how the constraints can be improved in
various long-baseline experiments.

Aside from the ultralight limit, we also examined the more mainstream Z ′ around
the electroweak scale. Once again the Z–Z ′ mixing affects neutrino interactions, this
time as a concrete realisation of the NSI parameters εµµ = −εττ . We discuss the current
constraints, from the anomalous magnetic moment (that our model seeks to explain)
to direct detection at colliders. Performing an involved global fit to a vast amount of
electroweak precision data, we find a preferred region in (MZ′ , g

′, sin ξmix) space that
improves the Standard Model fit and can lead to small NSI:

160 GeV .MZ′/g
′ . 560 GeV ,

−0.0008 < g′ sin ξmix < +0.0003 .

To complete the model, we discussed several simple models of spontaneous symmetry
breaking. We exclude the simplest possible models (one singlet/doublet/triplet) but find
the two-singlet and one-singlet-one-doublet models to be viable. Further analysing the
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implications of the scalar sector, we deem the two-singlet model very difficult to observe,
while the one-singlet-one-doublet model provides an interesting phenomenology and is
in principle testable at the LHC. It is however challenging to distinguish this sector
from conventional models with two Higgs doublets; measurements together with the Z ′

are needed to analyse the U(1)Lµ−Lτ quantum numbers of the scalars.
The most promising way to test the model would be a pure muonic system, such as a

low-energy bound state (muonium) or µµ scattering (muon collider). Both experiments
are challenging due to the finite lifetime of the muon, but have been under serious
consideration for many years. This could not only probe the unmixed U(1)Lµ−Lτ vec-
tor boson but more generally lepton universality, shedding light on whether the three
families of the Standard Model are really just copies with different masses or if there
is more to it.

A worthwhile expansion of the work presented here would be an analysis of higher-
order effects, i.e. the running and stability of our parameters under the renormalisation
group. This would of course be most interesting in the fifth-force case, since there we are
working with highly fine-tuned parameters that might change significantly. Especially
loop-generated mixing effects are of interest, since they are in a sense naturally small.
Radiatively generated neutrino masses, e.g. in the vein of the Zee-Babu model [136, 137],
could give interesting signatures as well. In the framework of unification, the question
arises if GSM × U(1)Lµ−Lτ can be embedded in a larger GUT, for example in family-
unifying models with all generations in one irreducible representation, as proposed by
Georgi [138] (typically needs gauge groups of high dimension like SU(9) or SU(11)).

An analogous discussion of models based on gauged U(1)Le or U(1)Le−Lµ−Lτ symme-
tries (killing the anomalies by additional charged fermions) will be interesting mainly
in the symmetry-breaking sector, i.e. the generation of viable neutrino matrices. Oth-
erwise, the models will be much more constrained than U(1)Lµ−Lτ , not only by the
additional charged fermions, but also by the precision experiments with electrons.
Neutrino oscillations will be barely influenced, since the flavour structure of the po-
tentials (be they long-range or contact interactions) is of the form diag(1, 0, 0) and
diag(1,−1,−1) = diag(2, 0, 0)−diag(1, 1, 1), respectively, so this merely changes to the
usual MSW potential (only the NSI parameter εee will be generated).
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A Notation, Conventions and Constants

Units Throughout this thesis, we make use of natural units, i.e. we replace the reduced
Planck constant ~, the Boltzmann constant kB and the speed of light in vacuum c,
with 1. Consequently, masses, energies, momenta and temperatures will mostly be given
in units of eV, while distances and time have units eV−1. The conversion back into the
SI unit system follows from the identities

(1 GeV)/c2 = 1.783× 10−24 g ,

(1 GeV)−1(~c) = 0.1973× 10−13 cm ,

(1 GeV)/kB = 1.1605× 1013 K .

(A.1)

Cross sections will be given in units of barn, where 1 barn = 10−24 cm2. Unless otherwise
indicated, we take all numerical values for masses and coupling constants from the
Particle Data Group (PDG) [22], we list a selection in Tab. A.1.

Metric We adopt the West coast convention for the Minkowski metric, i.e. ηµν =
diag(+1,−1,−1,−1), resulting in the on-shell condition for massive particles p2 =
ηµνp

µpν = +M2. In unitary gauge (the limit ξ → ∞ of the more general Rξ gauges),
the propagator of a massive gauge boson becomes

iDµν(q) = i

[
−ηµν + qµqν

M2

q2 −M2 + iε

]
, (A.2)

while the useful relation for calculations with an unpolarised external vector boson
reads ∑

λ=0,±1

εµλε̄
ν
λ = −ηµν +

qµqν

M2
. (A.3)

The corresponding relations for unpolarised external fermions and antifermions are∑
s=±

us(p)ūs(p) = /p+m,
∑
s=±

vs(p)v̄s(p) = /p−m. (A.4)

Hypercharge and SU(2) Invariants We use the electric charge convention Q = T3 +
Y
2 , yielding the SU(3)C ×SU(2)L×U(1)Y representations of Tab. 1.1, for convenience
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α 1/137.036
α(MZ) 1/128.91
GF 1.16637× 10−5 GeV−2

MZ 91.1876 GeV
MW 80.399 GeV
sin2(θW )(MZ) 0.23108
αs(MZ) 0.118
me 0.511 MeV
mµ 105.658 MeV
mτ 1776.82 MeV

Table A.1: Numerical values for masses and couplings in the Standard Model [22]. The Weinberg
angle is defined in the NOV-scheme, i.e. via s2

W c
2
W ≡ πα(MZ)√

2GFM2
Z

.

repeated here for the first generation and the SM Higgs:

Le =

(
ν

e

)
L

∼ (1, 2,−1) , eR ∼ (1, 1,+2) , HSM =

(
h+

h0

)
∼ (1, 2,+1) , (A.5)

QuL =

(
u

d

)
L

∼ (3, 2,+1/3) , uR ∼ (3, 1,−4/3) , dR ∼ (3, 1,+2/3) . (A.6)

To construct SU(2)-invariant expressions of fields in the fundamental representation,
one can use the invariant symbols δij (Kronecker delta) and εij ∼ iσ2 (Levi-Civita
tensor). To simplify notation, we do not use the latter explicitly, but rather define a
field that transforms again like a doublet, but with opposite hypercharge:

H̃SM ≡ −iσ2H
∗
SM =

(
−h0

h+

)
≡
(
−h0

h−

)
∼ (1, 2,−1) . (A.7)

This allowes gauge invariant Yukawa couplings like QLHdR and QLH̃uR, where the
scalar product QLH̃ has the metric δij , i.e. QLH̃ ≡ uL(−h0) + dLh−.

Low Energy Kinetic Mixing In the literature, different conventions are used to de-
scribe kinetic mixing, namely the choice of the abelian part of the SM (U(1)EM or
U(1)Y ). We use the hypercharge, since this ensures gauge invariance even above the
electroweak scale; other authors use kinetic mixing in the low-energy regime, i.e.

L ⊃ sinχFµνEMF
′
µν . (A.8)

Since we can write FµνY = cWF
µν
EM − sWZµν , this effectively drops the contribution of

the Z boson. While this may be appropriate for low energies, we will try to keep our
model as general as possible, especially since the mixing with the Z (albeit actually
from mass mixing) induces the main effect under study in Ch. 3. We just mention that
the constraints on the kinetic mixing angle basically differ by a factor cW , depending
on which model is used.



B. Statistics 105

B Statistics

In this appendix, we will give a brief introduction to the statistical tools used in this
thesis, namely the chi-square test, confidence intervals, as well as sensitivity. Most of
this section is based on the “Statistics” chapter of the PDG review [22], albeit in a
radically simplified manner.

Chi-Square Test When trying to compare a set of N independent measurements yi
(with variance σ2

i ) at points xi to the expected mean F (xi;θ), a quantity is needed to
describe the compatibility as a function of the unknown parameters θ. The method of
least squares uses the function

χ2(θ) ≡
N∑
i=1

(yi − F (xi;θ))2

σ2
i

, (B.1)

to describe how far off the expected value F (xi) is from the measured yi, compared
to the variance σi. As such, a perfect agreement would mean χ2(θ) = 0, which is
however extremely unlikely due to the statistical nature of any measurement process.
More reasonable is an agreement within the variance, yielding χ2 ∼ N .

The process of fitting a physical model to data describes, how to find the n parameters
θ of our model that maximise the level of agreement with the data, i.e. that minimise
χ2(θ):

∂

∂θi
χ2(θ)

∣∣∣∣
θ=θ̂

= 0 , i = 1 . . . n . (B.2)

These n equations reduce the number of degrees of freedom from N to nd ≡ N − n
(for Poisson-distributed data), and we expect (B.1) to be distributed according to the
chi-squared distribution for nd degrees of freedom, i.e. following the probability density
function (p.d.f.)

f(x;nd) =
1

2nd/2Γ(nd/2)
xnd/2−1e−x/2 , (B.3)

with a mean µ = nd. This can be used, to properly define how probable the datapoints
(xi, yi) are under the assumption of the model parameters θ̂ (“goodness-of-fit”). To
that effect we define the p-value

p =

∞∫
χ2(θ̂)

dx f(x;nd) , (B.4)

which gives the probability to find a χ2 larger than χ2(θ̂). For example, for nd = 1, the
probability to find a χ2 > 2.71 is 10%. To summarise, we found a way to determine
the best-fit values θ̂ (minimising χ2(θ) (B.1)), and to quantify how good these values
describe the data (the value χ2(θ̂) compared to nd = #d.o.f.).

Now we want to define an estimate for the statistical precision of the obtained θ̂ (a
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(1− α) (%) m = 1 m = 2

68.27 1.00 2.30
90. 2.71 4.61
95. 3.84 5.99
95.45 4.00 6.18
99. 6.63 9.21
99.73 9.00 11.83

Table B.1: ∆χ2 corresponding to a coverage probability 1 − α in the large data sample limit,
for joint estimation of m parameters [22].

“confidence interval”); assuming for a large number of experiments we obtain values
for θ̂i in the interval [θi1, θ

i
2] with a probability (1 − α) (confidence level), then the

corresponding χ2(θ̂i) (following the χ2 p.d.f. with one degree of freedom, if we vary only
θi) changes in the interval [χ2

min(θ̂i), χ2
min(θ̂i)+∆χ2] which covers the same probability:

(1− α) =

χ2
min(θ̂i)+∆χ2∫
χ2

min(θ̂i)

dx f(x; 1) . (B.5)

So, if we want values for θi that cover the real value with a probability of, say 99%,
we have to find the interval around χ2

min in which χ2(θi) changes by 6.63 units (see
Tab. B.1). In general, the θi are not independent, and one needs to take this into
account by specifying the confidence interval by all θ satisfying

χ2(θ) = χ2(θ̂) + ∆χ2(α,m) , (B.6)

where ∆χ2 not only depends on the confidence level (1 − α), but also on the number
of parameters m ≤ n estimated together. Due to the form of χ2 (B.1), the contours of
constant ∆χ2 are typically ellipses in the θi-space, the angles between the major axes
of which and the θi-axes give information about the correlation of the parameters (e.g.
the covariance matrix). In practice, this just means that it is not enough to state the
best-fit value θ̂i with its error-estimate δθi (e.g. its 1σ standard deviation corresponding
to (1− α) = 68.27%); one should rather include information about the correlations to
the other parameters θj , be it in form of a covariance matrix, a correlation coefficient or
by simply projecting the χ2 onto different (θi, θj)-planes to illustrate the dependence.

Let this suffice as an introduction to the used statistical tools for fitting a model to
real-life data. In the next paragraph we will describe the interpretation of such fits for
simulated data.

Analysis of Simulated Data While the above χ2 analysis can be performed in exactly
the same way with simulated data (as used in Sec. 3.5 for the simulation of future LBL
experiments with GLoBES), the interpretation of the ∆χ2 contours obviously has to
change. There are essentially two different ways to analyse a simulated experiment. One
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can either simulate data with a true value θ̂i and then perform a χ2-analysis, this gives
the “sensitivity” of said experiment to the parameter θi, i.e. one can predict how the
statistical error will improve (e.g. the standard deviation of that parameter), and how
it depends on the values and errors of the other parameters (in case the parameters are
not independent).

The other way is to vary the true value and each time perform a χ2-analysis. This
way one obtains a confidence interval [θ1, θ2] as a function of the true value θ̂, which
can be used to find the value θ̂ at which some other value θ̂′ is excluded at a given
confidence level. This is referred to as the “discovery” potential of that experiment. As
an example, one can try to find out which real value the mixing angle θ13 has to have
to exclude the θ13 = 0 hypothesis at a given experiment.

C Stückelberg Mechanism

For a gauged abelian symmetry (it does not extend to non-abelian symmetries) there
exists an interesting mechanism to generate a massive gauge boson, while retaining
renormalisability [139] (see Ref. [140] for a recent review of Stückelberg extensions of
the Standard Model). It can be understood as a Higgs mechanism with a scalar field σ in
an affine representation of the U(1)′ (which is isomorph to R). A gauge transformation
of a matter field ψ and the gauge boson Z ′ takes the form

ψ → e−ig
′Y ′θ(x)ψ ,

Z ′µ → Z ′µ − ∂µθ(x) .
(C.1)

Defining the gauge transformation of σ as

σ → σ +MZ′θ(x) , (C.2)

it is easy to see that the Lagrangian

L = −1
4
Z ′µνZ ′µν +

1
2

(MZ′Z
′
µ + ∂µσ)(MZ′Z

′µ + ∂µσ) (C.3)

is gauge invariant. Fixing the gauge σ(x) ≡ 0 reduces the above Lagrangian to the
usual Proca-Lagrangian for a massive vector boson. Interestingly, this formalism does
not “leave” any scalar particles, like the usual Higgs mechanism, it is the most economic
way to introduce a massive vector boson, concerning degrees of freedom.

The most general Lagrangian for the gauge group GSM × U(1)′ takes the form

L ⊃ −1
4
Ẑ ′µνẐ ′µν −

1
4
B̂µνB̂µν − sinχ

2
B̂µνẐ ′µν +

1
2

(
∂µσ + M̂Z′Ẑ

′
µ + M̂BB̂µ

)2
, (C.4)

where σ is charged under both U(1)′ and U(1)Y , i.e. transforms like

σ → σ + M̂Z′θZ′(x) + M̂BθB(x) . (C.5)
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Fixing the gauge σ ≡ 0 via θZ′ , we obtain

L ⊃ −1
4
Ẑ ′µνẐ ′µν −

1
4
B̂µνB̂µν − sinχ

2
B̂µνẐ ′µν +

1
2
M̂2
Z′Ẑ

′2 +
1
2
M̂2
BB̂

2 + M̂Z′M̂BẐ
′
µB̂

µ ,

(C.6)

in addition to the mass terms from the Standard Model Higgs:

L ⊃ +
1
2
M̂2
ZẐ

2 = +
1
2
M̂2
Z

(
ĉ2
W Ŵ

2
3 − 2ĉW ŝW Ŵ

µ
3 B̂µ + ŝ2

W B̂
2
)
. (C.7)

We diagonalise the kinetic terms by performing a non-unitary transformation B̂

Ŵ3

Ẑ ′

 =

1 0 − tanχ
0 1 0
0 0 1

cosχ


 B̃

W̃3

Z̃ ′

 ≡ R
 B̃

W̃3

Z̃ ′

 , (C.8)

leading to the mass matrix in (B̃, W̃3, Z̃
′) basis

1
2
R†

ŝ2
W M̂

2
Z + M̂2

B −ĉW ŝW M̂2
Z M̂Z′M̂B

−ĉW ŝW M̂2
Z ĉ2

W M̂
2
Z 0

M̂Z′M̂B 0 M̂2
Z′

R . (C.9)

This can be diagonalised analogously to the mass mixing case discussed in Sec. 2.2,
basically with similar phenomenology as discussed before. Since the determinant of the
mass matrix vanishes, one of the bosons will be massless. While this may be interesting
in its own right, there is a huge drawback in the neutrino sector. Although the Z ′ in
this scenario is massive, we did not “break” the Lµ − Lτ symmetry, i.e. the σ does
not acquire a VEV which could lead to additional Yukawa terms. The σ actually does
not couple to anything but the Z ′, because of its unusual transformation properties.
To get a neutrino mass matrix without the Lµ − Lτ symmetry, we must break it with
additional fields. This can lead to interesting models, for simplicity we only consider
one additional scalar, charged with Y ′ = 1 under U(1)′:

L =− 1
4
Z ′µνZ ′µν +

1
2

(MZ ′µ + ∂µσ)(MZ ′µ + ∂µσ)

+ |(∂µ − ig′Z ′µ)S|2 + µ2|S|2 − λ|S|4 .
(C.10)

After S acquires the VEV v =
√
µ/λ and we fix the unitary gauge, this leads to

L =− 1
4
Z ′µνZ ′µν +

1
2
M2
Z′Z

′2 +
1
2

(∂µφ)2 − 1
2
m2
φφ

2 +
1
2

(∂µH)2

+ g′
M

MZ′
Z ′µ (H∂µφ− φ∂µH) +

g′2

2
Z ′2
(
φ2 + 2vφ+

M2

M2
Z′
H2

)
− λ

4
φ4 − λvφ3 − λ

2
M2

M2
Z′
φ2H2 − λv M

2

M2
Z′
φH2 − λ

4
M4

M4
Z′
H4 ,

(C.11)

where M2
Z′ = M2 + g′2v2, m2

φ = 2λv2 and we introduced the real fields φ = Re (S) and
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H = g′v
MZ′

σ − M
MZ′

Im (S), the latter being massless.

D Perturbative Formulae for Oscillation Probabilities

To show the effect of α on the oscillation probabilities in the full three-flavour frame-
work, we perform a perturbation expansion. We use the second-order formulae (in the
constant matter density approximation) given in Ref. [141], where an expansion in the
parameters ∆m2

21/∆m
2
31, s13 and εαβ is made, assuming them to be of the same order

ε. Here, εαβ are the usual NSI parameters (introduced in Sec. 1.3), which in our case
are all zero except for

ε ≡ εµµ = −εττ = 2EV/A ≈ 0.96
(

ρ

g/cm3

)−1 α

10−50
. (D.1)

Since the average matter density in long-baseline experiments is ρ ≈ 3 g/cm3, we need
α . 10−50 for an accurate expansion.

The expressions were obtained rewriting the Hamiltonian as H = H0 + H1(ε) and
using the usual time-dependent perturbation theory for the S-matrix. It proves conve-
nient to work in the flavour basis but without the 23-rotation, i.e. H̃ = U †23HflavourU23.
With this, the S-matrix (in flavour basis) can be written as

S(L) = U23e
−iH̃0LΩ(L)U †23 ,

where Ω(x) follows from the expansion

Ω(x) = 1 + (−i)
x∫

0

dx′
[
eiH̃0x′H̃1(x′)e−iH̃0x′

]

+ (−i)2

x∫
0

dx′
[
eiH̃0x′H̃1(x′)e−iH̃0x′

] x′∫
0

dx′′
[
eiH̃0x′′H̃1(x′′)e−iH̃0x′′

]
+O(ε3) .

In the presence of NSI, it is useful to also omit the 13-rotation, i.e. work in the basis
˜̃H = U †13U

†
23HflavourU23U13 in an analogous way. The oscillation probabilities follow

from the S-matrix in the usual way, via P (νβ → να, L) = |Sαβ|2.

With P (να → νβ) ≡ Pαβ one obtains

Pee = 1− 4c2
12s

2
12

(
∆m2

21

A

)2

sin2

(
AL

4E

)
−
(

2s13∆m2
31

∆m2
31 −A

)2

sin2

(
∆m2

31 −A
4E

L

)
(D.2)
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and

Peµ = 4c2
23c

2
12s

2
12

(
∆m2

21

A

)2

sin2

(
AL

4E

)
+
(

2s23s13∆m2
31

∆m2
31 −A

)2

sin2

(
∆m2

31 −A
4E

L

)
+ 8c23s23c12s12s13

(
∆m2

31∆m2
21

A2

)
A(cos δ + sin δ)

∆m2
31 −A

× sin
(
AL

4E

)
cos
(

∆m2
31L

4E

)
sin
(

∆m2
31 −A
4E

L

)
,

(D.3)

so α has no effect on the electron oscillation to this order, but it appears in third
order. The same holds for Peτ , which can be obtained from Peµ by the transformation
s23 → c23, c23 → −s23. The muon survival probability consists of two lengthy parts,
one without α:

Pµµ = 1− 4c2
23s

2
23 sin2

(
∆m2

31L

4E

)
− 4c2

23c
2
12s

2
12

(
∆m2

21

A

)2

sin2

(
AL

4E

)
− 2c2

23s
2
23c

2
12s

2
12

(
∆m2

21

A

)2(
AL

2E

)
sin
(

∆m2
31L

2E

)
+ 8c2

23s
2
23c

2
12s

2
12

(
∆m2

21

A

)2

sin
(
AL

4E

)
sin
(

∆m2
31L

4E

)
cos
(

∆m2
31 −A
4E

L

)
−
(

2s23s13∆m2
31

∆m2
31 −A

)2

sin2

(
∆m2

31 −A
4E

L

)
− 2

((
c23s23s13∆m2

31

)2
∆m2

31 −A
L

2E

)
sin
(

∆m2
31L

2E

)

+ 8
(
c23s23s13∆m2

31

∆m2
31 −A

)2

cos
(
AL

4E

)
sin
(

∆m2
31L

4E

)
sin
(

∆m2
31 −A
4E

L

)
+ 8c23s23c12s12s13

(
∆m2

31

∆m2
31 −A

∆m2
21

A

)
cos δ

[
s2

23 sin2

(
∆m2

31 −A
4E

L

)
+c2

23 sin2

(
AL

4E

)
− s2

23 sin2

(
∆m2

31L

4E

)
− (c2

23 − s2
23)

A

∆m2
31

sin2

(
∆m2

31L

4E

)]
,

(D.4)
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and finally with the α-dependent part:

Pµµ(α) = Pµµ

+ 2c2
23s

2
23

(
s2

13∆m2
31 + c2

12∆m2
21 − 4EV (s2

23 − c2
23)
)( L

2E

)
sin
(

∆m2
31L

2E

)
− c2

23s
2
23

(
4EV (s2

23 − c2
23)− c2

12∆m2
21

)2( L

2E

)2

cos
(

∆m2
31L

2E

)

+ 8c23s23(c2
23 − s2

23)
[
c12s12s13 cos δ∆m2

21 − 4EV c23s23

]sin2
(

∆m2
31L

4E

)
∆m2

31


− 16EV c2

23s
2
23(c2

23 − s2
23)
(
4EV (s2

23 − c2
23)− c2

12∆m2
21

)( 1
∆m2

31

)
×
[(

L

2E

)
sin
(

∆m2
31L

2E

)
− 2

(
1

∆m2
31

)
sin2

(
∆m2

31L

4E

)]
− (8EV )2 c4

23s
4
23

(
1

∆m2
31

L

2E

)
sin
(

∆m2
31L

2E

)
− (8EV )2 c2

23s
2
23

(
(c2

23 − s2
23)2 − 4c2

23s
2
23

)( 1
∆m2

31

)2

sin2

(
∆m2

31L

4E

)
.

(D.5)

The probability for νµ → ντ follows from

Pµτ = 4c2
23s

2
23 sin2

(
∆m2

31L

4E

)
+ 4c2

23s
2
23c

2
12s

2
12

(
∆m2

21

A

)2(
AL

4E

)
sin
(

∆m2
31L

2E

)
− 8c2

23s
2
23c

2
12s

2
12

(
∆m2

21

A

)2

sin
(
AL

4E

)
sin
(

∆m2
31L

4E

)
cos
(

∆m2
31 −A
4E

L

)
+ 4c2

23s
2
23s

2
13

(
(∆m2

31)2

∆m2
31 −A

)(
L

4E

)
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(

∆m2
31L

2E
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− 8c2

23s
2
23s

2
13

(
∆m2

31

∆m2
31 −A

)2
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(
AL

4E

)
sin
(

∆m2
31L

4E

)
sin
(

∆m2
31 −A
4E

L

)
+ 8c23s23(c2

23 − s2
23)s13c12s12

(
∆m2

21

∆m2
31 −A

)
cos δ sin2

(
∆m2

31L

4E

)
+ 8c23s23s13s12c12

(
∆m2

21

∆m2
31 −A

∆m2
31

A

)
sin
(
AL

4E

)
sin
(

∆m2
31L

4E

)
×
[
s2

23 cos
(
δ − ∆m2

31 −A
4E

L

)
− c2

23 cos
(
δ +

∆m2
31 −A
4E

L

)]
(D.6)

and

Pµτ (α) = Pµτ − (Pµµ(α)− Pµµ) = Pµτ + Pµµ − Pµµ(α) . (D.7)
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E Seesaw with Different NR Charge Assignments

In Sec. 5.1, we discussed the U(1)Lµ−Lτ charges of the three right-handed neutrinos nec-
essary for the seesaw mechanism. While it seems natural to assign them the same lepton
numbers as νe, νµ and ντ , it is not strictly mandatory. Introducing three right-handed
neutrinos Ni is also possible in the trivial way, i.e. taking them to be singlets under the
full gauge group GSM × U(1)′, Ni ∼ (1, 1, 0)(0), without introducing anomalies.

The Majorana mass matrixMR is arbitrary and will be chosen to be diagonal (MR =
diag(X,Y, Z)) while the Dirac matrix mD, with only the Standard Model Higgs, has
the form

mD =

a b c

0 0 0
0 0 0

 , (E.1)

so we obtain the low-energy neutrino mass matrixMν = diag(a2/X+b2/Y +c2/Z, 0, 0).
Including scalar singlets with U(1)′ charge changes nothing, so we take doublets with
charge Y ′ = ±1, which acquire a VEV. This changes the Dirac matrix to

mD →

 a b c

a−1 b−1 c−1

a+1 b+1 c+1

 , (E.2)

giving rise to the low-energy neutrino mass matrix

Mν = −


a2

X + b2

Y + c2

Z
aa−1

X + bb−1

Y + cc−1

Z
aa+1

X + bb+1

Y + cc+1

Z

· a2
−1

X +
b2−1

Y +
c2−1

Z
a−1a+1

X + b−1b+1

Y + c−1c+1

Z

· · a2
+1

X +
b2+1

Y +
c2+1

Z

 . (E.3)

The discussion is now similar to the one-doublet case in Sec. 5.1.3, the main difference of
this model being, that we do not break the Lµ−Lτ symmetry to improve an otherwise
almost viable model, but rather have to break it to get anything in accordance with
experiment (because without the doublets, there would be only one massive neutrino).

F Conventional Two-Higgs-Doublet Models

The addition of one or more scalar fields is the simplest extension of the SM Higgs
sector. While the extension with SU(2)L singlets (dubbed xSM or cxSM, if the scalar
is complex [123]) is interesting, models with more than one SU(2)L doublet have been
under much more consideration due to their impact on the fermion sector. One distin-
guishes between four kinds of Two-Higgs-Doublet Models (2HDM), depending on their
allowed interactions with fermions (e.g. by imposing additional discrete symmetries).

In all models, the VEVs are constrained by theW and Z masses to fulfil v2
SM = v2

1+v2
2,

so one can parameterise them via v1 = vSM cosβ, v2 = vSM sinβ. The most general
2HDM predicts Flavour-Changing Neutral Currents (FCNC), yielding constraints on
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tanβ and the couplings to fermions.

• The Type-I 2HDM (2HDM-I) contains the two doublets Ψf and Ψ0, the latter
not coupling to fermions. Hence, there are no FCNC at tree-level.

• 2HDM-II consists of Ψu and Ψd with hypercharge Yu,d = ±1, coupling only to
up- and down-type fermions, respectively:

−L ⊃
∑

i,j=1,2,3

λijd Q
i
LΨdd

j
R +

∑
i,j=1,2,3

λijuQ
i
LΨuu

j
R +

∑
`=e,µ,τ

λ`L`Ψd`R + h.c.

This is also the pattern of the MSSM Higgs sector (at tree-level), making it a
widely researched model.

• 2HDM-III is the most general model, allowing all Yukawa interactions consistent
with gauge symmetry.

• The 2HDM-IV (goes also by the names leptonic 2HDM, leptophilic 2HDM, lepton-
specific 2HDM, L2HDM) consists of the two doublets ΨQ and ΨL, coupling solely
to quarks and leptons, respectively (see e.g. Ref. [142]):

−L ⊃
∑

i,j=1,2,3

λijd Q
i
LΨQd

j
R +

∑
i,j=1,2,3

λijuQ
i
LΨ̃Qu

j
R +

∑
`=e,µ,τ

λ`L`ΨL`R + h.c.

The 2HDM provide a rich phenomenology, e.g. the possibility of a new source of CP
violation, the occurrence of charged scalars and possibly stable pseudoscalars.

G Electroweak Precision Observables

In this appendix, we list the electroweak precision data used in the fit with GAPP in
Sec. 4.4. We also provide the definitions of some of the more involved observables, such
as

σhad ≡ 12π
M2
Z

Γ(e+e−)Γ(Z → hadrons)
Γ2
Z

, R` ≡ Γ(had)
Γ(`¯̀)

, (G.1)

Rq ≡ Γ(qq̄)
Γ(had)

, q = b, c , Rν ≡ σNC
νN

σCC
νN

, (G.2)

AFB ≡ σF − σB
σF + σB

, ALR ≡ σL − σR
σL + σR

. (G.3)

κ ≡ 2s
us+ds

denotes the relative size of the strange sea in the nucleon and QW stands
for the weak charge:

QW (Z,N) ≡ −2 [C1u(2Z +N) + C1d(Z + 2N)] ≈ Z(1− 4s2
W )−N . (G.4)
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Z lineshape: W properties:
MZ , ΓZ MW (LEP)
σhad ΓW (LEP)
Re, Rµ, Rτ MW (Tevatron)
AFB(e) ΓW (Tevatron)
AFB(µ) gauge couplings and related:

AFB(τ) ∆α(3)
had (1.8 GeV)

other LEP 1 measurements: (gµ − 2− α/π)/2
P (τ) τ lifetime
PFB(τ) neutrino-nucleon DIS:
sin2 θeff

e (QFB) g2
L (NuTeV 2002)

AFB(s) (DELPHI + OPAL) g2
R (NuTeV 2002)

Rd,s/(Rd +Ru +Rs) κ (CCFR 1997)
LEP 1 and SLC heavy flavour: Rν (CHARM 1984)
Rb Rν (CDHS 1984)
Rc Rν (CHARM 1984)
AFB(b) Rν (CDHS 1984)
AFB(c) Rν (CDHS 1979)
AFBLR (b) other low energy:

AFBLR (c) g
(ν,e)
V (CHARM II)

other SLD asymmetries: g
(ν,e)
A (CHARM II)

ALR (hadrons) QW (e) (SLAC E-158)
ALR (leptons) QW (Cs)
AFBLR (µ) QW (T l)
AFBLR (τ) 4C1d+ 9C1u (pol. e- scattering)
Ae(QLR) 9C1d− 4C1d (pol. e- scattering)
AFBLR (s) CKM 1st row unitarity
quark masses: B(b→ sγ)/B(b→ ceν)
mt (pole) lepton + jets (CDF I) other Tevatron:
mt (pole) dilepton (CDF I) AFB(e) (CDF II amd D0)
mt (pole) all hadronic (CDF I) PVDIS
mt (pole) lepton + jets (D0 I) other LEP 2:
mt (pole) dilepton (D0 I) σ(hadrons)(183 GeV)
mt (pole) lepton + jets (CDF II) σ(µ)(183 GeV)
mt (pole) dilepton (CDF II) σ(τ)(183 GeV)
mt (pole) all hadronic (CDF II) AFB(µ)(183 GeV)
mt (pole) l+j JES free (CDF II) AFB(τ)(183 GeV)
mt (pole) lepton + jets (D0 II) σ(hadrons)(183 GeV)
mt (pole) dilepton (D0 II) σ(µ)(183 GeV)
mt (pole) all hadronic (D0 I) σ(τ)(183 GeV)
mt (pole) TOTAL TEVATRON average AFB(µ)(183 GeV)
mc(mc) AFB(τ)(183 GeV)
mb(mb)
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