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The ability to track the temporal struc-
ture of events in a dynamic environment 
is crucial to cognition and action alike. In 
order to guide timely reactive and proactive 
behavior the individual has to draw upon 
some internal representation of temporal 
relations or temporal structure. Here an 
event may be defined as a perceived change 
in the formal structure of the environment, 
i.e., the identity (“what”) or the position 
(“where”) of an object. In turn, the tempo-
ral relation between events may be defined 
as the temporal structure (“when”) of the 
environment.

Temporal structure develops on different 
timescales (Buonomano, 2007). For exam-
ple, starting and stopping to walk from 
one position to another marks events with 
a certain temporal relation, typically in the 
seconds-to-minutes range. Yet, contact of 
a foot with the surface establishes another 
kind of event, with successive steps mark-
ing temporal structure in the milliseconds 
range. Such marking of the beginning and 
the end of an action sequence is represented 
in prefrontal and supplementary motor cor-
tices (Fujii and Graybiel, 2003; Shima and 
Tanji, 2006). However, the question arises 
as to whether the perception and produc-
tion of the corresponding temporal struc-
ture in the milliseconds-to-seconds range is 
intrinsic or whether it is based on an explicit 
representation generated by a dedicated 
temporal processing system (Karmarkar 
and Buonomano, 2007; Ivry and Schlerf, 
2008; Spencer et al., 2009). Compelling 
evidence suggests that temporal process-
ing, i.e., the neural mechanisms that engage 
in encoding, decoding, and evaluating of 
temporal structure, relies on brain regions 
involved in action control: the cerebellum, 
the basal ganglia, and the supplementary 
motor area (SMA; for a review see Coull 
et al., 2011).

However, a high-level function such as 
action control incorporates various lower-
level processes. This becomes apparent if 
one considers the role of the SMA in action 
control. Located bilaterally in Brodmann 
area 6 of the medial frontal lobe, the SMA 
has traditionally been linked to the plan-
ning and the preparation of future, sequen-
tial, and rhythmic performance, as well as 
to the initiation, inhibition, preservation, 
and repetition of action (Brickner, 1939; 
Penfield, 1950; Goldberg, 1985; Tanji, 1996). 
Crucially, SMA lesions affect non-verbal 
and verbal behavior. They may result in 
the inability to speak, stuttering, hesitations, 
“slowliness,” the prolonging of sounds, and 
persistent dysfluency, phenomena, which 
impact the continuous flow or pacing, i.e., 
the rate and rhythm of speech (Jonas, 1981; 
Ziegler et al., 1997). These phenomena cor-
roborate a role of the SMA in controlling 
temporal relations in action, but leave open 
whether temporal processing is intrinsic or 
explicitly dedicated. However, evidence for 
a dedicated temporal processing system 
comes from studies, which confirm a role 
of the SMA not only in the production, but 
also in the perception of temporal structure 
(Macar et al., 2002; Ferrandez et al., 2003; 
Coull et al., 2004).

The SMA, or more specifically, the SMA 
and its striato-thalamic connections, is a 
candidate neural substrate for a “tempo-
ral accumulator” engaged in the encoding 
of temporal structure (Akkal et al., 2004; 
Pouthas et al., 2005; Macar et al., 2006; 
Casini and Vidal, 2011). Furthermore, 
considering a structural differentia-
tion of the SMA into a rostral pre-SMA 
and a more caudal SMA-proper (Picard 
and Strick, 2001), it has been suggested 
that pre-SMA is essential for attention-
dependent quantification (Coull et al., 
2004; Macar et al., 2004) or “tagging” of 

temporal structure (Pastor et al., 2006). 
Such functional specification based on 
structural differentiation may reflect an 
interaction within a distributed temporal 
processing network, which is determined 
by unique connections from the pre-SMA 
and the SMA-proper to other cortical and 
subcortical regions (Johansen-Berg et al., 
2004; Akkal et al., 2007).

Among others, connections from the 
pre-SMA target the prefrontal cortex, while 
connections from the SMA-proper target 
motor and pre-motor cortices (Johansen-
Berg et al., 2004). However, the thalamus 
connects both pre-SMA and SMA-proper to 
essential nodes within a dedicated temporal 
processing network, namely the cerebellum 
and the basal ganglia. Connections from 
both SMA subareas to the basal ganglia 
maintain a rostro-caudal gradient in their 
structural and functional organization and 
establish a cortico-striato-thalamo-corti-
cal looped system (Johansen-Berg et al., 
2004; Draganski et al., 2008). Connections 
between the pre-SMA and the cerebellum 
originate in the non-motor part of the cer-
ebellar dentate nucleus, whereas connec-
tions to the SMA-proper originate in its 
motor part (Dum and Strick, 2003; Akkal 
et al., 2007).

In general, the SMA receives more input 
from the basal ganglia than from the cer-
ebellum (Akkal et al., 2007). Next to direct 
subcortico-subcortical connections (Hoshi 
et al., 2005; Bostan and Strick, 2010; Bostan 
et al., 2010), this structural embedding of 
the pre-SMA and the SMA-proper into sub-
cortico-thalamo-cortical processing streams 
instantiates interaction between the cerebel-
lum and the basal ganglia in temporal pro-
cessing (Schwartze et al., in press). Note, that 
the role of the thalamus as a mere relay sta-
tion is therefore simply underspecified (see 
Sherman, 2007). Rather, the thalamus should 
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tion of movement patterns (Tanji, 1996). 
If, for example, changes in the environ-
ment require the adaptation of an action 
sequence (i.e., walking on uneven ground) 
such adaptation necessitates proactive and 
reactive adjustments – processes, which in 
turn benefit from a precise representation of 
temporal structure. Consequently, impre-
cise temporal processing may affect both 
cognitive and motor behavior. Hence, the 
proposed network has major implications 
for the modeling of basal ganglia dysfunc-
tions (i.e., motor and cognitive) as exempli-
fied in Parkinson’s disease (PD).

Parkinson’s disease is but one of several 
pathologies associated with impaired tem-
poral processing (for a review see Allman 
and Meck, 2011). Early on PD has been 
linked to temporal processing deficits both 
in production and perception (Pastor et al., 
1992; O’Boyle et al., 1996; Harrington et al., 
1998). More recent data suggest that such 
deficits are rather diverse and may be more 
pronounced in the suprasecond than the 
subsecond range (Smith et al., 2007; Koch 
et al., 2008, but see Jahanshahi et al., 2006), 
and probably reflect different PD subgroups 
(Merchant et al., 2008). These studies allow 
drawing conclusions about the involvement 
of the basal ganglia in temporal processing 
based on the known neuropathology of PD. 
However, it is evident that the basal ganglia 
are not the only brain region that engages in 
temporal processing and is affected by PD. 
Combined activation of the basal ganglia 
and the SMA is a common observation in 
temporal processing (e.g., Ferrandez et al., 
2003; Pouthas et al., 2005; Jahanshahi et al., 
2006; Stevens et al., 2007). This emphasizes 
that the basal ganglia and the SMA contrib-
ute to the pathogenesis of PD. Thus, if the 
basal ganglia and SMA are considered as 
nodes within a dedicated temporal pro-
cessing network spanning both perception 
and production, the question arises as to 
whether connections originating in, and tar-
geting the SMA are at the core of impaired 
temporal processing in PD. However, PD 
is a progressive disease and different stages 
of the disease may be reflected in dynamic 
changes in the network. For example, a 
selective loss of pyramidal neurons in the 
pre-SMA in PD may cause underactivity 
in this region (MacDonald and Halliday, 
2002), which, in turn, may result in erratic 
temporal processing. In contrast, stronger 
activation of the pre-SMA in action 

hand, in perception the pre-SMA plays a 
pivotal role in the allocation of attention 
in time and in the encoding of temporal 
relations conveyed in a sequence of events. 
On the other hand, in production, the 
SMA-proper engages in the correspond-
ing implementation of sequential action. 
Crucially, the SMA-proper integrates 
information regarding the temporal rela-
tion between successive actions provided 
by the pre-SMA and the basal ganglia. In 
other words, the function of the pre-SMA 
relates to the explicit encoding of temporal 
structure in perception and production, 
while the SMA-proper uses this informa-
tion to implement a sequential action. This 
account of pre-SMA function is compat-
ible with, and extends the dual role of the 
pre-SMA in the planning and the acquisi-

be considered a key structure in modeling the 
neural basis of temporal processing. Thalamic 
neurons convey information to cortical tar-
gets in either a tonic or a burst firing mode 
(Sherman and Guillery, 2002). The tonic fir-
ing mode preserves input linearity, whereas 
the burst firing mode affords better input 
detectability. The burst firing mode is thus 
ideally suited to signal changes in the environ-
ment to cortical targets by means of stronger 
cortical excitation (Sherman, 2001). These 
firing mode characteristics not only support 
the linking of several nodes, but also allow 
speculating about their impact on functional 
interactions within such a dedicated temporal 
processing network (Figure 1).

In this network pre-SMA and SMA-
proper engage in different but related 
aspects of temporal processing. On the one 

FIgure 1 | A dedicated temporal processing network. In perception, detailed information regarding the 
formal structure of an object (O1) reaches the thalamus. This information is then transmitted in a linear, 
faithful fashion by means of thalamic tonic and burst firing (Sherman, 2001) to sensory cortices (not in 
view) in order to establish as well as to access a memory representation of an object. In parallel, less 
detailed information reaches the cerebellum. Here a salient change in the formal structure of an object is 
encoded as an event. A sequence of objects (On) may give rise to a precise event-based representation of 
temporal structure. Such event-based representation implicitly encodes the temporal relation between 
events. Potentially amplified via thalamic burst firing, events may provide attractors to adaptive cortical 
oscillations implicated in dynamic attending. Attention oscillations may generate an “expectancy scheme” 
via entrainment to different hierarchical levels of temporal structure (Large and Jones, 1999; Drake et al., 
2000). Alternatively or additionally, events may activate ensembles of non-adaptive cortical oscillations, 
which, according to the influential striatal-beat-frequency model, provide a unique pattern of input to the 
basal ganglia (Matell and Meck, 2004). These oscillations serve interval-based temporal processing and, by 
additional recruitment of working memory, the subsequent evaluation of temporal structure. Both kinds of 
oscillations may reflect the combined effort of the pre-SMA and the prefrontal cortex (PFC), as well as the 
associated striato-thalamo-cortical loops to “tag” the temporal structure of the sequence. In production, 
the intention to act (PFC) draws upon the pre-SMA and its connections to the basal ganglia to initiate action 
and to define the temporal structure of a sequence of actions, i.e., the pre-SMA is recruited to temporally 
structure forthcoming motor behavior (Mita et al., 2009). The actual implementation of action (dotted line) 
recruits the SMA-proper and pre-motor/primary motor cortices (PMC/M1). Via its connections to the 
SMA-proper, the cerebellum may engage in the temporal fine-tuning of actions. In turn, each action 
constitutes an object in the environment. A sequence of actions (On) generates changes in the formal 
structure of the environment and establishes a sensorimotor processing cycle.
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that temporal structure provides informa-
tion that is central to efficient behavior. 
Moreover, high precision in temporal pro-
cessing benefits behavior as it allows gener-
ating precise predictions about upcoming 
events, a phenomenon that appears to be 
affected in PD. The current opinion sum-
marizes previous evidence and synthesizes 
as well as accentuates a novel perspective on 
the structural and functional differentiation 
of the “SMA” in temporal processing and 
its relevance in a broader and integrative 
subcortico-thalamo-cortical dedicated tem-
poral processing network.

RefeRences
Akkal, D., Dum, R. P., and Strick, P. L. (2007). 

Supplementary motor area and presupplementary 
motor area: targets of basal ganglia and cerebellar 
output. J. Neurosci. 27, 10659–10673.

Akkal, D., Escola, L., Bioulac, B., and Burbaud, P. (2004). 
Time predictability modulates pre-supplementary 
motor area neuronal activity. Neuroreport 15, 
1283–1286.

Allman, M. J., and Meck, W. H. (2011). Pathophysiological 
distortions in time perception and timed perfor-
mance. Brain doi: 10.1093/brain/awr210

Bostan, A. C., Dum, R. P., and Strick, P. L. (2010). The 
basal ganglia communicate with the cerebellum. Proc. 
Natl. Acad. Sci. U.S.A. 107, 8452–8456.

Bostan, A. C., and Strick, P. L. (2010). The cerebellum 
and basal ganglia are interconnected. Neuropsychol. 
Rev. 20, 261–270.

Brickner, R. M. (1939). A human cortical area pro-
ducing repetitive phenomena when stimulated. J 
Neurophysiol. 3, 128–130.

Buonomano, D. V. (2007). The biology of time across 
different scales. Nat. Chem. Biol. 3, 594–597.

Casini, L., and Vidal, F. (2011). The SMAs: neural sub-
strate of the temporal accumulator? Front. Integr. 
Neurosci. 5:35. doi: 10.3389/fnint.2011.00035

Coull, J. T., Cheng, R., and Meck, W. H. (2011). 
Neuroanatomical and neurochemical substrates of 
timing. Neuropsychopharmacology 36, 3–25.

Coull, J. T., Vidal, F., Nazarian, B., and Macar, F. (2004). 
Functional anatomy of the attentional modulation of 
time estimation. Science 303, 1506–1508.

Cunnington, R., Iansek, R., Thickbroom, G. W., Laing, 
B. A., Mastaglia, F. L., Bradshaw, J. L., and Phillips, J. 
G. (1996). Effects of magnetic stimulation over sup-
plementary motor area on movement in Parkinson’s 
disease. Brain 119, 815–822.

Draganski, B., Kherif, F., Klöppel, S., Cook, P. A., 
Alexander, D. C., Parker, G. J. M., Deichmann, 
R., Ashburner, J., and Frackowiak, R. S. J. (2008). 
Evidence for segregated and integrativeconnec-
tivity patterns in the basal ganglia. J. Neurosci. 28, 
7143–7152.

Drake, C., Jones, M. R., and Baruch, C. (2000). The 
development of rhythmic attending in auditory 
sequences: attunement, referent period, focal attend-
ing. Cognition 77, 251–288.

Dum, R. P., and Strick, P. L. (2003). An unfolded map 
of the cerebellar dentate nucleus and its projections 
to the cerebral cortex. J. Neurophysiol. 89, 634–639.

sequencing may reflect an early, preclinical 
compensation mechanism (Van Nuenen 
et al., 2009). Crucially, input from the cere-
bellum should influence this compensatory 
mechanism. Hyperactivation of cerebellar-
pre-SMA connections as a consequence of 
internally cued actions during the early clin-
ical stages of PD further supports this view 
(Wu and Hallett, 2005; Eckert et al., 2006; 
Lewis et al., 2007). However, hyperactiva-
tion is not necessarily limited to internally 
cued action. Rather, it may also reflect a 
stronger weighting toward cerebellar-SMA 
connections in externally cued action (i.e., 
finger-tapping: Sen et al., 2010). While this 
perspective is compatible with the proposed 
temporal processing network, i.e., a role of 
the cerebellum in transmitting the temporal 
structure of changes in the environment to 
the pre-SMA, such compensatory activity 
necessitates further differentiation of cer-
ebellar function in the perception of tem-
poral structure.

Functional connectivity indicates that 
during the perception of temporal struc-
ture the cerebellum projects to regions 
involved in perceptual orienting including 
the pre-SMA (Coull et al., 2004; O’Reilly 
et al., 2008). The functional interpretation 
of a larger network affected in PD is com-
patible with the notion of a dedicated and 
integrative temporal processing network 
(Kotz and Schwartze, 2010). Moreover, 
such a framework offers a suitable expla-
nation for the effectiveness of intervention 
methods such as repetitive transcranial 
magnetic stimulation (rTMS) that allow 
targeting the respective functional contri-
bution of network areas in PD. It has been 
shown that rTMS affects motor planning 
in PD patients and controls differently 
(Cunnington et al., 1996). Koch et al. (2004) 
showed that rTMS over the SMA improved 
time perception, while Hamada et al. (2008) 
reported improved motor behavior after 
similar rTMS treatment over the SMA. The 
fact that different rTMS protocols (Koch, 
2010) and stimulation of target network 
nodes (i.e., bilateral cerebellum and SMA) 
lead to either improvement or slight func-
tional loss (Koch et al., 2005) clearly suggest 
further intra- and inter-hemispheric struc-
tural and functional differentiation within 
relevant network nodes.

We conclude that the perception and pro-
duction of temporal relations is not merely 
a by-product of cognition and action, but 

Kotz and Schwartze SMA and temporal processing

Frontiers in Integrative Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 86 | 3

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


estimation as a function of stimulus duration range 
and modality. Brain Cogn. 64, 130–143.

Spencer, R. M. C., Karmarkar, U., and Ivry, R. B. (2009). 
Evaluating dedicated and intrinsic models of temporal 
encoding by varyi ng context. Philos. Trans. R. Soc. 
Lond. B Biol. Sci. 364, 1853.1863.

Stevens, M. C., Kiehl, K. A., Pearlson, G., and Calhoun, 
V. D. (2007). Functional neural circuits for mental 
timekeeping. Hum. Brain Mapp. 28, 394–408.

Tanji, J. (1996). New concepts of the  supplementary motor 
area. Curr. Opin. Neurobiol. 6, 782–787.

Van Nuenen, B. F. L., van Eimeren, T., van der Vegt, J. P. 
M., Buhmann, C., Klein, C., Bloem, B. R., and Siebner, 
H. R. (2009). Mapping preclinical compensation in 
Parkinson’s disease: an imaging genomics approach. 
Mov. Disord. 24, S703–S710.

Wu, T., and Hallett, M. (2005). A functional MRI study 
of automatic movements in patients with Parkinson’s 
disease. Brain 128, 2250–2259.

Ziegler, W., Kilian, B., and Deger, K. (1997). The role 
of the left mesial frontal cortex in fluent speech: 
evidence from a case of left  supplementary 
motor area hemorrhage. Neuropsychologia 35, 
1197–1208.

Received: 30 November 2011; accepted: 02 December 2011; 
published online: 22 December 2011.
Citation: Kotz SAE and Schwartze M (2011) Differential 
input of the supplementary motor area to a dedicated 
temporal processing network: functional and clinical 
implications. Front. Integr. Neurosci. 5:86. doi: 10.3389/
fnint.2011.00086
Copyright © 2011 Kotz and Schwartze. This is an open-
access article distributed under the terms of the Creative 
Commons Attribution Non Commercial License, which 
permits non-commercial use, distribution, and reproduc-
tion in other forums, provided the original authors and 
source are credited.

Pastor, M. A., Artieda, J., Jahanshahi, M., and Obeso, 
J. A. (1992). Time estimation and reproduction is 
abnormal in Parkinson’s disease. Brain 115, 211–225.

Pastor, M. A., Macaluso, E., Day, B. L., and Frackowiak, 
R. S. J. (2006). The neural basis of temporal auditory 
discrimination. Neuroimage 30, 512–520.

Penfield, W. (1950). The supplementary motor area in the 
cerebral cortex of man. Arch. Psychiatr. Nervenkr. Z. 
Gesamte Neurol. Psychiatr. 185, 670–674.

Picard, N., and Strick, P. L. (2001). Imaging the premotor 
areas. Curr. Opin. Neurobiol. 11, 663–672.

Pouthas, V., George, N., Poline, J., Pfeuty, M., Van de 
Moorteele, P., Hugueville, L., Ferrandez, A., Lehéricy, 
S., LeBihan, D., and Renault, B. (2005). Neural net-
work involved in time perception: an fMRI study 
comparing long and short interval estimation. Hum. 
Brain Mapp. 25, 433–441.

Schwartze, M., Rothermich, K., and Kotz, S. A. (in press). 
Functional dissociation of pre-SMA and SMA-proper 
in temporal processing. Neuroimage. doi: 10.1016/j.
neuroimage.2011.11.089

Sen, S., Kawaguchi, A., Truong, Y., Lewis, M. M., and 
Huang, X. (2010). Dynamic changes in cerebello-
thalamo-cortical motor circuitry during progression 
of Parkinson’s disease. Neuroscience 166, 712–719.

Sherman, S. M. (2001). A wake-up call from the thalamus. 
Nat. Neurosci. 4, 344–346.

Sherman, S. M. (2007). The thalamus is more than just a 
relay. Curr. Opin. Neurobiol. 17, 417–422.

Sherman, S. M., and Guillery, R. W. (2002). The role 
of the thalamus in the flow of information to the 
cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 
1695–1708.

Shima, K., and Tanji, J. (2006). Binary-coded monitoring 
of a behavioral sequence by cells in the pre-supple-
mentary motor area. J. Neurosci. 26, 2579–2582.

Smith, J. G., Harper, D. N., Gittings, D., and Abernethy, 
D. (2007). The effect of Parkinson’s disease on time 

Parkinson’s disease on the striato-thalamo-cortical 
and cerebello-thalamo-cortical motor circuitries. 
Neuroscience 147, 224–235.

Macar, F., Anton, J., Bonnet, M., and Vidal, F. (2004). 
Timing functions of the supplementary motor area: 
an event-related fMRI study. Brain Res. Cogn. Brain 
Res. 21, 206–215.

Macar, F., Coull, J. T., and Vidal, F. (2006). The supple-
mentary motor area in motor and perceptual time 
processing: fMRI studies. Cogn. Process. 7, 89–94.

Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, 
V., Vidal, F., and Maquet, P. (2002). Activation of the 
supplementary motor area and of attentional net-
works during temporalprocessing. Exp. Brain Res. 
142, 475–485.

MacDonald, V., and Halliday, G. M. (2002). Selective 
loss of pyramidal neurons in the pre-supplementary 
motor cortex in Parkinson’s disease. Mov. Disord. 17, 
1166–1173.

Matell, M. S., and Meck, W. H. (2004). Cortico-striatal 
circuits and interval timing: coincidence detection 
of oscillatory processes. Brain Res. Cogn. Brain Res. 
21, 139–170.

Merchant, H., Luciana, M., Hooper, C., Majestic, S., and 
Tuite, P. (2008). Interval timing and Parkinson’s dis-
ease: heterogeneity in temporal performance. Exp. 
Brain Res. 184, 233–248.

Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., and 
Tanji, J. (2009). Interval time coding by neurons in the 
presupplementary and supplementary motor areas. 
Nat. Neurosci. 12, 502–507.

O’Boyle, D. J., Freeman, J. S., and Cody, F. W. J. (1996). 
The accuracy and precision of timing of self-paced, 
repetitive movements in subjects with Parkinson’s 
disease. Brain 119, 51–70.

O’Reilly, J. X., Mesulam, M. M., and Nobre, A. C. (2008). 
The cerebellum predicts the timing of perceptual 
events. J. Neurosci. 28, 2252–2260.

Kotz and Schwartze SMA and temporal processing

Frontiers in Integrative Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 86 | 4

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive
http://creativecommons.org/licenses/by-nc/3.0/

	Differential input of the supplementary motor area to a dedicated temporal processing network: functional and clinical implications
	References


