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Abstract

Zusammenfassung
Die Theorie von Neutrinooszillationen, erstmals eingeführt zur Interpretation des
Sonnenneutrinoproblems, hat sich bald als nützlich zur Deutung von weiteren
Neutrinoexperimenten erwiesen sowie berechtigte Zweifel an der Endgültigkeit
des heutigen Standardmodells aufgeworfen. In dieser Arbeit wird die Theorie
von Neutrinooszillationen im Vakuum im Rahmen der Quantenmechanik behan-
delt, wobei zunächst die Wahrscheinlichkeit für Flavoroszillationen auf einfache
Weise hergeleitet wird. Die resultierende Formel wird auf Abhängigkeiten un-
tersucht und für den Zwei-Neutrino-Fall gemittelt, was Rückschlüsse auf den
Mischungswinkel erlaubt. Die Fragwürdigkeit der bei der einfachen Herleitung
gemachten Annahmen wird erläutert und im Anschluss daran der konsistentere
Wellenpaketansatz vorgestellt, von welchem zwei zusätzliche Kohärenzbedingun-
gen in Form eines Lokalisierungs– und Kohärenzterms abgeleitet werden. Zwei
unterschiedliche Herleitungen der Oszillationsformel mithilfe einer gaußschen und
einer allemeineren Wellenpaketform werden gegenübergestellt und die Äquivalenz
der resultierenden Kohärenzbedingungen aufgezeigt. Die Grenzen des Wellenpa-
ketansatzes bezüglich der Beschreibung von Produktions– und Detektionsprozess
werden beschrieben und zugehörige quantenmechanische Unschärfen diskutiert.
Schließlich werden Materie-Effekte für den Zwei-Neutrino-Fall erläutert und die
Möglichkeit des Auftretens von CP-Verletzung im Drei-Neutrino-Fall gezeigt.

Abstract
Being first applied to solar neutrinos related to the solar neutrino problem, the
theory of neutrino oscillations has shown to provide an expedient explanation of
successive neutrino measurements as well as given rise to reasonable doubts about
the definitiveness of the present Standard Model. In this thesis, the theory of
vacuum neutrino oscillations is reviewed in the framework of quantum mechanics,
beginning with the standard derivation of the oscillation probability which is
analyzed and, for two neutrino mixing, also averaged, allowing for constraints
on the mixing angle. The lack of justification of the underlying assumptions of
the standard approach is pointed out and consequently the more consistent wave
packet approach is introduced, followed by the analysis of the therein implied
(de)coherence effects, embodied in a localization and coherence condition. A
Gaussian and a more general approach are contrasted, showing to yield equivalent
coherence conditions. The limits of the wave packet approach regarding the
account for neutrino production/detection and the corresponding uncertainties
are disclosed. Finally, matter effects are addressed in the case of two neutrino
mixing and the possibility of occurrence of CP violation for three neutrino mixing
is shown.
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1 Introduction
In a way, the discovery of the neutrino is representative for physics in the 20th century
until now, where the postulation of particles or effects precedes the experimental dis-
covery and represents an approved method to promote progress in science in contrast
to the former custom of solely “inductive” science in a strict sense [1].
In order to remedy the contradictions in energy conservation as well as spin-statistics

in the β decay, Wolfgang Pauli postulated in 1930 the existence of a neutral weakly
interacting particle, a so-called “neutron”. In particular, the energy spectrum of the
β decay was continuous in comparison to discrete α or γ radiation, which could not
been understood by considering β decay as a pure two-body decay. Furthermore, in a
β± decay both parent and daughter nucleus have either integer or half-integer spin, so
a single e± with spin 1

2 is not able to comply with angular momentum conservation.
In 1932, the present-day name “neutrino” was introduced by Enrico Fermi. Finally,
in 1956, the (electron) neutrino was discovered by F. Reines and C.L. Cowan via the
inverse β decay ν̄e + p → e+ + n.
Following the discovery of muon and the lepton, the muon and tau neutrino were

discovered.
In the Standard Model (SM), neutrinos – being described by left-handed (chiral)

Weyl spinors, implying that neutrinos are massless in the SM – interact only through
weak interactions due to their charge neutrality and zero mass. Though neutrino
oscillations, which are discussed below, indicate that neutrinos have non-zero, albeit
low mass, the effect of gravitational interaction is negligible for most purposes and shall
not be taken into account.
Weak interaction can be classified into two types, mediated by different gauge bosons.

The first one, in which the electric charge varies by one, ∆Q = ±1, is called charged-
current (CC) interaction and is mediated by charged W± bosons. The second one is
called neutral-current (NC) interaction, mediated by neutral Z0 bosons and does not
cause any variation in charge.
Interacting only weakly, the discovery of parity violation in weak interaction had

considerable consequences for neutrino physics. Parity violation in weak interaction
was indicated by the θ-τ puzzle in 1956 and confirmed in 1957 by C.S. Wu who observed
the β decay of polarized 60Co. Likewise, it was observed in the π+ → µ+ + νµ decay,
indicating that the muon neutrino νµ has helicity h = −1, i.e. the spin of the neutrino is
oriented antiparallel to the direction of its momentum. Indeed, the helicity of neutrinos
was found to be always h = −1 while for antineutrinos h = +1.
It is very important to realize, however, that because it is a neutral particle with a

very low mass which has not yet been experimentally determined, the flavor or kind
of a neutrino is determined solely by means of its leptonic interaction. That is, for
instance, the neutral particle released in the β− decay concomitant with the electron
is called antineutrino ν̄e while it is called neutrino νe when released concomitant with
a positron in the β+ decay. This feature is crucial for flavor detection and in a way is
what allows neutrino oscillations in the first place.
Initially, neutrino oscillations were proposed by B. Pontecorvo in 1957 in analogy

with kaon oscillations K0-K̄0, based on a quantum mechanical description of neutrino
states. Though this analogy did not prove successful, neutrino oscillations in terms of
flavor oscillations have de facto shown to be of great importance for neutrino physics
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Introduction

which became apparent in the late 1960s when the Homestake experiment first mea-
sured the solar electron neutrino flux. The measurement data confirmed the predicted
Solar Neutrino Problem (SNP) which is at present believed to be due to electron neu-
trino oscillations in the Sun, pursuant to the MSW effect.
In this thesis, the quantum mechanical description of neutrino oscillations is being

discussed, beginning with the Standard derivation of the vacuum neutrino oscillation
formula in Sec. 2. Subsequently, the oscillation formula is analyzed, using two neutrino
mixing as an example. In Sec. 3, the vacuum oscillation probability is derived using the
more proper wave packet approach and therein appearing (coherence) conditions for
the occurrence of observable neutrino oscillations are studied. In addition, the impact
of quantum mechanical uncertainties in the production/detection process is addressed.
A generalization of the phenomenon of neutrino oscillations is performed in Sec. 4,
regarding matter effects as well as the consequences of three neutrino mixing. Two
(historically) prominent types of neutrino oscillation experiments are discussed briefly
in Sec. 5, followed by a concluding discussion in Sec. 6. The calculations only being
shortly mentioned in the main part are shown in more detail in Appendix A.
The following discussion is based mainly on the book by C. Giunti and C. W. Kim

[2]; Refs. [3, 4] have also been used when so indicated. Moreover, Ref. [2] contains a
more detailed discussion of neutrino physics’ history which has been mostly followed
here.
In order to ensure better readability, some conventions have been adopted in the

text. First of all, natural units are used, i.e.

c = ~ = 1. (1.1)

Moreover, in the notation of quantum mechanical neutrino states, Greek letters as
indices imply flavor states while Roman letters imply mass states.
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2 Vacuum oscillation probability
2.1 The Standard Derivation

Considering the properties of flavor neutrinos mentioned above (i.e. smallness of mass,
discriminable detection only via CC-interactions), it suggests itself – from a quantum
mechanical point of view and in analogy to the mixing of quark flavors participating
in weak interaction (cf. Sec. 4.2) – to describe the neutrino flavour state α as a
superposition of massive neutrino states

|να〉 =
∑
j

U∗αj |νj〉 (α = e, µ, τ), (2.1)

with U being the lepton mixing matrix which specifies the composition of each neu-
trino flavor state1. Conversely, by inverting the relation (2.1) one obtains the massive
neutrino state

|νj〉 =
∑
α

Uαj |να〉. (2.2)

Furthermore, the massive neutrino states (or mass eigenstates) are chosen in such a
way that they are orthonormal:

〈νj|νk〉 = δjk. (2.3)

For physical reasons (i.e. the number of particles must not change2), U has to be a
unitary transformation, which means

U †U = UU † = 1 ⇔
∑
j

U∗αjUβj = δαβ,
∑
α

U∗αjUαk = δjk, (2.4)

and implies that the flavor states are orthonormal as well, as was expected. In the
following discussion, U is assumed to be non-diagonal, or else the whole reasoning
would become meaningless.
In contrast to the flavor neutrino states in (2.1), the massive neutrino states hold

the property that they are eigenstates of the Hamiltonian,

H0 |νj〉 = Ej |νj〉 , (2.5)

with Ej being the energy eigenvalue of state j that can be Taylor expanded for ultra-
relativistic neutrinos (i.e. p = |~p| � m), yielding

Ej =
√
~p2 +m2

j ' E +
m2
j

2E , (2.6)

at first order in m2
j , neglecting the mass contribution to the energy, i.e. E = |~p|.

This means, however, that it is the massive neutrino states which propagate through
space with a definite momentum ~p and a definite energy E, not the flavor states. It
is obviously a specific feature of neutrinos in contrast to charged leptons that flavor

1 For antineutrinos, the complex conjugation of U has to be dropped. In the following, only neutrinos
are being considered; however, the generalization is straightforward.

2 A possible deviation due to neutrino decay or absorption is not taken into account since the
corresponding probabilities are negligible [5].
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Vacuum oscillation probability

states and mass states do not coincide3.
Knowing that the time evolution of a quantum mechanical state is given by the

Schrödinger equation
i

d
dt |νj(t)〉 = H0 |νj(t)〉 , (2.7)

it is easily seen that the time evolution of the massive neutrino states is given by the
plane wave solution

|νj(t)〉 = e−iEjt |νj〉 , (2.8)

provided that the Hamiltonian is time-independent.
With these results in mind, we can proceed in the derivation of the flavor transition

probability, recalling that in quantum mechanics the amplitude of a transition is given
by the projection of the final state on the initial state,

Aψα→ψβ ≡ 〈ψβ|ψα〉, (2.9)

whereas the transition probability is given by the absolute square of the amplitude,

Pψα→ψβ = |Aψα→ψβ |2. (2.10)

Consequently, the transition amplitude Aνα→νβ for the states specified above is

Aνα→νβ(t) ≡ 〈νβ|να(t)〉 =
∑
k,j

U∗αjUβke
−iEjt〈νk|νj〉 =

∑
j

U∗αjUβje
−iEjt, (2.11)

which leads to
Pνα→νβ(t) =

∑
j,k

U∗αjUβjUαkU
∗
βke
−i(Ej−Ek)t. (2.12)

Assuming that the different mass eigenstates have same momentum (though distinct
mass) and – being ultrarelativistic – propagate almost at the speed of light, we can
approximate the energy according to Eqn. (2.6) as well as the time between production
and detection by the distance L between source and detector, i.e. L ' t, which allows
for the final expression

Pνα→νβ(L,E) =
∑
j,k

U∗αjUβjUαkU
∗
βk exp

(
−i

∆m2
jkL

2E

)
, (2.13)

with ∆m2
jk being the squared-mass differencem2

j−m2
k. In the following, for convenience,

the massive neutrino states are assumed to be ordered in such a way that the heavier
the massive neutrino state, the larger the number of the index j, leading e.g. in the
two-neutrino mixing case to the positive squared-mass difference ∆m2

21.
By the way, the same result (2.13) is obtained by assuming the mass eigenstates to

have same energy. Approximating

pj =
√
E2 −m2

j ' E −
m2
j

2E , (2.14)

3 To be more exact, there is the possibility of a coherent superposition of charged lepton states, as can
be seen from considering aW -boson decay. Though, in contrast to neutrinos which share the common
property of having very low mass irrespective of their flavor, charged leptons vary considerably in
mass, so no coherent propagation of flavor states is possible (cf. Sec. 6, Ref. [6]).
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Vacuum oscillation probability

and using the phase factor for the spatial propagation of the mass states, eipjx, one
obtains the same oscillation probability as in Eqn. (2.13) [4].
The flavor oscillation probability (2.13) is usually called transition probability when

α 6= β while survival probability when α = β.
Though the so obtained oscillation probability in (2.13) is correct, its derivation does

not stand on firm ground since the underlying assumptions are not consistent. Let us
therefore at this point summarize the assumptions which are made in the derivation of
the standard oscillation probability for further discussion:

(i) Flavor neutrino states can be described by their mass states as in Eqn. (2.1),
independent of the production or detection process.

(ii) The massive neutrino states have same momentum (or same energy), but different
mass.

(iii) The propagation time t between production and detection can be approximated
by the distance L between source and detector (light ray approximation).

Assumption (i) is justified only in the case that the neutrino experiments are not
sensitive to mass-difference induced variations of the production/detection amplitudes.
This property is somewhat discussed in Section 3 and in general valid for present-day
neutrino oscillation experiments. A satisfying discussion of this topic is not possible,
however, without a proper quantum field theoretic treatment (cf. Sec. 6).
Assumption (ii) is in fact in general not tenable as discussed in Section 3 and requires

a justification of the derived oscillation probability from behind, which can be done by
using wave packet respectively quantum field theoretic treatment.
Assumption (iii) is utilized explicitly only by the same momentum assumption, yet

not justified in plane-wave treatment at all since plane-wave treatment is incompatible
with neutrino propagation (see Section 3 as well).
The implied assumption that neutrinos are ultrarelativistic is certainly appropriate

in general, yet a proper justification in this regard is given in Section 3.1.
Anyhow, before discussing the validity of this simple derivation in more detail, let

us start by drawing some conclusions from the oscillation probability (2.13).

2.2 Two neutrino mixing
It is clear from Eqn. (2.13) that in order to obtain a concrete oscillation formula
that allows for a more detailed analysis especially in regard to measurement data,
the mixing matrix U has to be specified. In many cases, it is adequate to consider
only two neutrino mixing, i.e. the mixing of two flavor neutrinos which may be either
two of the three known flavor neutrinos (e.g. νe, νµ) or linear combinations of flavor
neutrinos (e.g. νe, cµνµ+cτντ ), satisfying the normalization condition c2

µ+c2
τ = 1. Such

an approximation is often possible since many experiments are not sensitive to three
neutrino mixing, e.g. in the case when only a certain flavor neutrino can be detected.
Furthermore, considering only two neutrino mixing allows for simple calculations

with fewer parameters involved, which makes the interpretation of measurement data
even more straightforward.
For two neutrino mixing, the mixing matrix can be parametrized by a simple rotation

matrix because the three additional phases which a general unitary matrix would pos-
sess can be eliminated by a rephasing of the neutrino fields as discussed in Section 4.2.
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Thus, specifying the mixing matrix in (2.13) by

U =
(

cosϑ sinϑ
− sinϑ cosϑ

)
, (2.15)

one obtains after a straightforward calculation shown in Appendix A.1:

Pνα→νβ = 1
2 sin2 2ϑ

[
1− cos

(
∆m2L

2E

)]
(α 6= β). (2.16)

It is worth noting that in Eqn. (2.16) the oscillation probability is symmetric under the
exchange ϑ↔ π/2− ϑ which implies that the oscillation probability is degenerate with
respect to the mixing angle. This is the case, however, only for vacuum oscillations
and is resolved by matter effects which play an important role for many of the observed
neutrino oscillations (cf. Section 4.1). Though resulting in the same oscillation prob-
ability, the two mixing angles ϑ, π/2 − ϑ are by no means physically equivalent: the
mixing angle determines the composition of the flavor neutrinos, differing substantially
for distinct mixing angles 0 ≤ ϑ ≤ π/2.
The simple oscillation formula (2.16) is very useful for drawing concrete conclusions

about neutrino oscillations as well as for the analysis of experimental data. Yet, before
exploiting Eqn. (2.13) in this sense, some more general implications lend itself to
examination.

2.3 Analysis of the oscillation formula
First of all, it is instructive to analyze the dependencies of the flavor oscillation proba-
bility (2.13) with respect to “constants of nature”, i.e. quantities which do not depend
on the production/detection process, for these quantities require experimental deter-
mination.
In detail, Eqn. (2.13) depends on the squared-mass differences of the massive neu-

trino states, not their absolute value. Hence, measurements of neutrino oscillations do
not allow to determine the absolute value of neutrino masses, but their squared-mass
differences; the absolute mass scale needs to be set by other experiments. Neutrino
oscillation measurements only show that neutrinos are not massless and can provide a
lower bound for the neutrino masses.
Besides, Eqn. (2.13) depends on the quartic products of the elements of the lepton

mixing matrix U4,
U∗αjUβjUαkU

∗
βk, (2.17)

which imply that the oscillation probability does not depend on the specific parame-
terization of the mixing matrix respectively the choice of the phases (see Section 4.2).
Admittedly, to allow for a theoretical model involving parameters subject to experimen-
tal determination respectively matching, the parameterization needs to be specified.
For a more lucid discussion it is convenient to split the oscillation probability (2.13)

into the real and imaginary parts of the mixing matrix components as shown in Ap-

4 Relating to the statement above about constants of nature, this obviously does not mean that the
mixing angles are left untouched by matter effects (cf. Section 4.1), but that they are fixed for a given
matter potential, e.g. for vacuum.
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pendix A.2. In fact, writing Eqn. (2.13) as

Pνα→νβ(L,E) = δαβ − 4
∑
j>k

Re
[
U∗αjUβjUαkU

∗
βk

]
sin2

(
∆m2

jkL

4E

)

+ 2
∑
j>k

Im
[
U∗αjUβjUαkU

∗
βk

]
sin

(
∆m2

jkL

2E

)
(2.18)

allows for straightforward conclusions in the following considerations.
Except for the transition probability Pνα→νβ , one can also consider the survival prob-

ability Pνα→να , linked to the transition probability via (α fixed)

Pνα→να = 1−
∑
β 6=α

Pνα→νβ , (2.19)

and obtained explicitly by setting α = β in Eqn. (2.18),

Pνα→να(L,E) = 1− 4
∑
j>k

Re|Uαj|2|Uαk|2 sin2
(

∆m2
jkL

4E

)
. (2.20)

Which of these two probabilities is most relevant for the analysis of experimental data
depends on the specific experiment, i.e. whether the experiment is an appearance or
disappearance experiment, in the sense as defined in Section 5.1.
The validity of Eqn. (2.19) hinges on the conservation of probability∑

β

Pνα→νβ = 1, respectively
∑
α

Pνα→νβ = 1, (2.21)

for fixed α respectively β. At this point, the conservation of probability (2.21) follows
directly from the unitarity of the mixing matrix (2.4) which can be seen by summing
first over β (respectively α) and making use of the Kronecker delta. In general, as
discussed in Section 3, production and detection processes have to be taken into account
to obtain the oscillation probability. If the the production/detection amplitudes now
exhibit distinct dependencies on the massive neutrino momenta (e.g. due to a particular
energy threshold for the detection process) or the like, the conservation of probability
is no longer ensured by the unitarity of the mixing matrix. In this case, in the quantum
mechanical approach the constraint (2.21) is usually imposed by hand [5].
Furthermore, neutrino oscillations may exhibit a CP asymmetry. A CP transforma-

tion denotes combined charge (C) and parity (P) transformation by which neutrinos
and antineutrinos are related via

να
CP←→ ν̄α, and consequently να → νβ

CP←→ ν̄α → ν̄β. (2.22)

A CP transformation interchanges neutrinos with antineutrinos and reverses their he-
licity, thus being consistent with the case of Majorana neutrinos whose type does not
change by charge conjugation, but is determined by the helicity5. Likewise, time re-

5 To be precise, in the Majorana case neutrino and antineutrino are linked by the Majorana condition
νj = νCj . Yet, since neutrinos seem to interact weakly only with definite helicity (cf. Sec. 1), the
type of a neutrino is rather given by its helicity, so the states with negative helicity are conventionally
called neutrinos whereas antineutrinos when having positive helicity [2]. However, definite helicity
exists only for massless neutrinos.
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Vacuum oscillation probability

versal (T) interchanges initial and final states.
In order to quantify CP violation, denoting an asymmetry of the oscillation proba-

bilities with respect to CP transformations, one defines

ACP
αβ = Pνα→νβ − Pν̄α→ν̄β , (2.23)

yielding by the help of Eqn. (2.18)

ACP
αβ = 4

∑
j>k

Im
[
U∗αjUβjUαkU

∗
βk

]
sin

(
∆m2

jkL

2E

)
. (2.24)

In the case of two-neutrino mixing, the asymmetry term (2.24) is identical to zero since
the mixing matrix is real. Though, this must not hold in general, as can be seen for
the realistic case of three neutrino mixing (cf. Section 4.2).
Since CPT transformations (combined charge, parity and time inversions) are a sym-

metry of any local quantum field theory [2, p.257], we have Pνα→νβ = Pν̄β→ν̄α , showing
explicitly that only appearance experiments, respectively the measurement of flavor
transitions can yield information about CP violation in neutrino oscillations.
A so far disregarded case is the possibility of incoherent production or detection (also

discussed in more detail in Section 3) which does not allow for the interference in Eqn.
(2.13). In fact, the incoherent oscillation probability is given by the constant term

P incoherent
να→νβ =

∑
j

|〈νβ|νj〉e−iEjt〈νj|να〉|2 =
∑
j

|Uαj|2|Uβj|2, (2.25)

coinciding with the the incoherent average 〈Pνα→νβ〉 over detector uncertainties (e.g.
energy or distance) due to decoherence effects.
Let us now define the characteristic length

Losc
jk = 4πE

∆m2
jk

, (2.26)

which denotes the distance at which the phase generated by ∆m2
jk becomes equal to

2π. With the help of this definition, the sensitivity of neutrino oscillation experiments
to ∆m2

jk, given a fixed ratio L/E, can be discussed qualitatively. This discussion is
most stringent for two neutrino mixing, which is why we adopt to this case.
It can be seen from Eqn. (2.16) that no oscillation can be observed for

L� Losc

2π , (2.27)

due to the negligible variation in phase of the different massive neutrino states. Nor
can any oscillation be measured if

L� Losc

2π , (2.28)

owing to the fact that as a result of detector uncertainties, only the averaged probability
〈Pνα→νβ〉 is measured, yielding information only about the mixing angle

〈Pνα→νβ〉 = 1
2 sin2 2ϑ (α 6= β), (2.29)
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in the case of two neutrino mixing. The averaged probability (2.29) results from Eqn.
(2.25), specified with the mixing matrix (2.15).
In contrast, if

L ∼ Losc

2π , (2.30)

the experiment is able to measure oscillations generated by the squared-mass difference
∆m2, so by means of (2.30) one can determine the order of sensitivity to the squared-
mass difference ∆m2, given a ratio L/E.
As afore mentioned, it is impossible to determine L respectively E without uncer-

tainties in practice, for both source and detector have spatial uncertainties and uncer-
tainties in energy, i.e. the emission or detection process takes finite time. Hence, it is
natural for the source to possess an energy spectrum respectively for the detector to
possess a finite energy resolution.
In the case of two-neutrino mixing, one can account for this uncertainties by aver-

aging the cosine in the transition probability (2.16) over an appropriate distribution
φ(L/E) of L/E. For simplicity, we assume the distribution to have Gaussian shape,

φ
(
L

E

)
= 1√

2πσ2
L/E

exp
−(L/E − 〈L/E〉)2

2σ2
L/E

 , (2.31)

with σL/E being the standard deviation and 〈L/E〉 the mean. Calculating the average〈
cos

(
∆m2L

2E

)〉
=
∫

cos
(

∆m2L

2E

)
φ
(
L

E

)
dL
E

(2.32)

as shown in Appendix A.3, one obtains as result (A.8),
〈

cos
(

∆m2L

2E

)〉
= cos

(
∆m2

2

〈
L

E

〉)
exp

−1
2

(
∆m2

2 σL/E

)2
 , (2.33)

which can be inserted into Eqn. (2.16), yielding the averaged transition probability

〈Pνα→νβ〉 = 1
2 sin2 2ϑ

1− cos
(

∆m2

2

〈
L

E

〉)
exp

−1
2

(
∆m2

2 σL/E

)2
 (α 6= β).

(2.34)
Eqn. (2.34) indicates that the standard deviation σL/E causes an attenuation of the
oscillatory behaviour of the transition probability. In fact, due to a stronger averaging
out, the larger the uncertainty σL/E becomes, the more the oscillation amplitude is
suppressed, leading in the limit of large uncertainties σL/E to (2.29).
Using ∆m2 = 2× 10−3 eV2, σL/E = 0.2 〈L/E〉 and ϑ = π/4, the averaged transition

probability (solid line) is plotted over 〈L/E〉 in logarithmic scale in Figure 2.1a; the
dotted line indicates the unaveraged transition probability. One can clearly see that
for a large ratio 〈L/E〉, only the averaged probability (2.29) is observed, originated in
the larger uncertainty σL/E. This implies that even if the experiment does not observe
any neutrino oscillation, the data can be used to set an upper bound on the averaged
transition probability,

〈Pνα→νβ(L,E)〉 ≤ Pmax
να→νβ , (2.35)

9



Vacuum oscillation probability

where Pmax
να→νβ denotes the measured transition probability. In case of two-neutrino

mixing, this can be rewritten explicitly, yielding an upper limit of sin2 2ϑ as a function
of ∆m2 for fixed 〈L/E〉, σL/E:

sin2 2ϑ ≤
2Pmax

να→νβ

1−
〈
cos

(
∆m2L

2E

)〉 . (2.36)

10 100 1000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

〈L/E〉 [km/GeV]

〈P
α
→

β
(L

,E
)〉

(a) Averaged transition probability as a func-
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(b) Exclusion plot in the sin2 2ϑ-∆m2 plane.

Figure 2.1: Analysis of the two-neutrino flavor transition probability, after Fig.s 7.2,
7.4 in Ref. [2].

Plotting reversely the squared-mass difference ∆m2 as a function of sin2 2ϑ for a
fixed value 〈L/E〉, a so called exclusion plot is obtained as shown in Figure 2.1b,
where the region to the right of the solid line corresponds to the excluded region of
the oscillation parameters. For Figure 2.1b, the values Pmax

να→νβ = .05, 〈L/E〉 = 1
km/GeV and σL/E = 0.15 km/GeV were used. Figure 2.1b depicts also the limits
on the significance of the exclusion plot with respect to sin2 2ϑ for large and small
squared-mass differences: for small ∆m2, the variation of the cosine function in (2.34)
is negligible, so no constraint on sin2 2ϑ can be set. Likewise, for large ∆m2 the
oscillation length (2.26) is small compared to the uncertainty σL/E, giving rise to a
vanishing average. The bound on sin2 2ϑ is most confining if the average of the cosine
function in Eqn. (2.36) is equal to minus one, which is the case for

∆m2

2

〈
L

E

〉
' π. (2.37)

It is clear that by superposing the exclusion curves of several measurements, the
allowed region for sin2 2ϑ, ∆m2 is gradually restricted, leading ideally to a clearly
localized, small region for the allowed parameters. A positive measurement of flavor
transitions allows for an exclusion plot as well, with the only difference that in this case
both lower and upper bound can be set on the averaged transition probability, leading
to a band of allowed parameters in the sin2 2ϑ-∆m2 plane. In general, however, there
is no global L/E distribution, so the exclusion plots have to be generated subsequently,
taking the distribution function of each interval L/E into account.
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3 A more proper discussion
3.1 Wave packet approach

As has become clear at the end of Section 2.1, the assumptions made in the standard
derivation of the neutrino oscillation probability are not at all a priori justified, but
rather stress the need for an accurate treatment providing some hints why in this
special case an improper derivation yields a correct result.
Indeed, the assumption of propagation is inconsistent with the plane wave solution

(2.8), using t ' L. This can be seen by asking the simple question how a quantum
mechanical neutrino state with definite momentum would look like in position space.
There, its spatial propagation is given by the phase factor eipx which implies that no lo-
calization is possible, in contrast to the assumption of propagation between production
and detection.
In addition, the equal momentum (or energy) assumption is not tenable. Approxi-

mating the energy analogous to (2.6) and considering a Lorentz frame O in which the
neutrinos have equal momentum, yet different energy due to the mass contribution,
one can consider another Lorentz frame O′, having velocity v with respect to O along
the neutrino path (in opposite direction of their motion) [7]. In this frame, the massive
neutrino state j has momentum p′j,

p′j = γp+ vγ

(
p+

m2
j

2p

)
=
√

1 + v

1− vp+ v√
1− v2

m2
j

2p = p′ + v

1− v
m2
j

2p′ , (3.1)

with p′ =
√

1+v
1−v p and γ being the Lorentz factor γ ≡ 1/

√
1− v2. Calculating the

difference in momentum in frame O′, one obtains

∆p′jk = v

1− v
∆m2

jk

2p′ , (3.2)

showing that even if neutrinos had equal momentum6 in one Lorentz frame, this does
not hold any more in another frame.
Besides, even the assumption that the massive neutrino states have definite momenta

respectively energies is untenable. From energy-momentum conservation follows that
the kinematic properties of massive neutrinos are determined by the kinematics of
the production process, i.e. the particles involved in the production process need to
have definite momenta respectively energies. In this case, since flavor neutrinos do not
have definite kinematic properties (consisting of massive neutrinos), energy-momentum
conservation must hold for all massive neutrino states simultaneously. This, however,
does not comply with the definite kinematic properties of the initial particles, so the
whole concept of definite energy/momentum of the massive neutrino states has to be
abandoned in a proper treatment. Furthermore, the stipulation of definite kinematic
properties of the initial particles would constrain them to be completely delocalized in
time and space, thus contradicting the assumption of a localized process. Though, as
stressed in Refs. [4, 8], exact energy-momentum conservation does hold when applied to

6 The same argument contradicts analogous the equal energy assumption; one needs just to replace
approximation (2.6) by (2.14) and consider ∆Ejk [7].
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all particles in the system and with respect to each individual momentum component
contributing to a wave packet, whereas with respect to a specific process involving
wave packets, energy-momentum conservation is fulfilled only up to some quantum
mechanical uncertainties.
In the framework of quantum mechanics, a more proper treatment of neutrino oscil-

lations is based on the wave packet approach. In this approach, neutrinos are described
by wave packets, i.e. (normalized) superpositions of plane waves, allowing for the de-
scription of real localized particles. Instead of a unique momentum, a wave packet
is described by a peaked momentum distribution, thus having a mean, so to say “ef-
fective” momentum and a momentum uncertainty, quantified for Gaussian shape by
the standard deviation. The velocity of a neutrino is consequently given by the group
velocity of the wave packet which in general differs for distinct massive neutrinos,
giving rise to (de)coherence effects discussed below. Moreover, the uncertainties in
energy/momentum depend on the production/detection process and need therefore to
be taken into account jointly.
To allow for a more accurate discussion, which follows Ref. [2], let us at first consider

an asymptotic final state |f〉 resulting from an interaction with the asymptotic initial
state |i〉, which is given in the framework of quantum field theory by the action of the
S-matrix operator S on the initial state,

|f〉 = S |i〉 . (3.3)

Regarding a neutrino produced in the generic decay process

PI → PF + `+
α + να, (3.4)

the production amplitude of state |νj, `+
α , PF 〉 in the decay above is given by

APαj = 〈νj, `+
α , PF |f〉 = 〈νj, `+

α , PF | S |PI〉 . (3.5)

Likewise, the detection amplitudeADαj indicating the probability with which the charged
lepton `−α is released through CC interaction of νj with DI is given by

ADαj = 〈νj, DI | S† |DF , `
−
α 〉 . (3.6)

Taking into account leptonic mixing in CC interactions (cf. Eqn. (4.29)), the ampli-
tudes APαj, ADαj can be written as

APαj = U∗αjMP
αj, ADαj = U∗αjMD

αj, (3.7)

with the interaction matrix elementsMP,D
αj .

The neutrino states relevant for the discussion of neutrino oscillations are described
by the wave packet states

|νP,Dα 〉 = NP,D
α

∑
j

∫ d3p

(2π)32Ej
∑
h

AP,Dαj (~p, h) |νj(~p, h)〉 , (3.8)

12



A more proper discussion

where h denotes the helicity of the states and NP,D
α the normalization factors

NP,D
α =

∑
j

∫ d3p

(2π)32Ej
∑
h

|AP,Dαj (~p, h)|2
−1/2

. (3.9)

Neglecting the normalization factors, the flavor transition amplitude Aνα→νβ reads

Aνα→νβ(~L, T ) = 〈νDβ | e−i(EjT−~p·
~L) |νPα 〉

∝
∑
j

∫ d3p

(2π)32Ej
∑
h

AD∗βj (~p, h)APαj(~p, h)e−i(EjT−~p·~L). (3.10)

It is important to stress at this point the reason for the phase factor e−i(EjT−~p·~L) looking
slightly different than the one used before in Eqn. (2.8). The difference originates in
the fact that as a result of a more accurate treatment, spatial separation of production
and detection have been explicitly taken into account in Eqn. (3.10) (i.e. production
and detection are separated by a space-time interval (~L, T )), evoking the additional
phase, causing Lorentz invariance of the evolution factor7.
As has been stressed in Ref. [2, p.297], the Lorentz invariance of the evolution phase

implies that the assumption of neutrinos being ultrarelativistic is justified because an
appropriate Lorentz frame can always be chosen in which this assumption holds, having
no influence on the phase of the (Lorentz invariant) oscillation probability.
For simplicity, aiming to derive the oscillation probability, let us approximate the

production and detection amplitudes by

APαj(~p, h)AD∗βj (~p, h) ∝ U∗αjUβj exp
[
−(~p− ~̃pj)2

4σ2
p

]
, (3.11)

where ~̃pj denotes the average mean momentum of the massive neutrino j and σp denotes
the combined momentum uncertainty; again, only neutrinos are being considered.
Though being discussed below, it is important to realize at this point that σp depends

on both production and detection uncertainties. The same applies to ~̃pj: this average
momentum is due to the fact that the detection process might single out slightly
different momenta of the massive neutrino states than the ones with which they were
produced. This follows from energy–momentum conservation and is accounted for
by ~̃pj: only flavor neutrinos can be detected which do not have definite kinematic
properties, so production and detection momenta do not need to coincide exactly,
particularly if the processes have different energy thresholds or the like. Hence, the
wave packet treatment discussed in this section is an effective treatment but requires
additional input in order to yield meaningful results.
Furthermore, in order to obtain Eqn. (3.11), additional approximations had to be

made. In particular, the detection experiment is assumed not to be sensitive to the
dependence of the interaction matrix elements (which are assumed to be smooth func-
tions of the massive neutrino momenta) on the neutrino masses and for σp is assumed
to hold: σp � 〈pj〉 = |~̃pj|. Please note that the validity of the above assumptions is cru-
cial for the correctness of the neutrino states used for the subsequent derivation in the

7 The Lorentz invariance of the phase is easily seen by writing −i(EjT − ~p · ~L) = −ipµxµ in an
obvious notation.
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framework of quantum mechanics. Under these assumptions, however, the interaction
matrix elements can be factored out of Eqn. (3.10), as shown in Eqn. (3.11).
Expanding Ej(~p) around ~̃p,

Ej(~p) ' Ej(~̃p) + ∂Ej(~p)
∂~p

∣∣∣∣∣
~p=~̃pj

(~p− ~̃pj) = Ẽj + ~vj(~p− ~̃pj), (3.12)

one can rewrite the amplitude Aνα→νβ as

Aνα→νβ(~L, T ) ∝
∑
j

U∗αjUβje
−iẼjT+i~̃pj ·~L

∫
d3p e

i(~p−~̃pj)·(~L−~vjT )−
(~p−~̃pj)2

4σ2
p . (3.13)

In Eqn. (3.12), Ẽj =
√

(~̃pj)2 +m2
j and ~vj = ~̃pj/Ẽj is a sort of an “effective” group

velocity since it depends on both production and detection process.
Performing the integral over the momentum space as shown in (A.9), we obtain

Aνα→νβ(~L, T ) ∝
∑
j

U∗αjUβj exp
−iẼj + i~̃pj · ~L−

(~L− ~vjT )2

4σ2
x

, (3.14)

which allows for the calculation of the oscillation probability. Yet, since most experi-
ments do not measure production and detection times, the oscillation probability must
be integrated over the unmeasured time T . This integration is not invalidated even in
cases when the neutrino time of flight is measured, since the typical time extension σt
of the wave packets is much smaller than the ordinary time scale of the measurement
[4]. Accordingly,

Pνα→νβ(~L) ∝
∫

dT |Aνα→νβ(~L, T )|2, (3.15)

where the proportionality sign indicates, inter alia, that the proper normalization factor
has been omitted. Usually, to avoid the calculation of the proper normalization factor,
one imposes the unitarity condition (2.21) by hand, which is an ad hoc procedure and
should not happen in a consistent framework. However, in the framework of QM this
potential inconsistency cannot be avoided easily [5].
The evaluation of Eqn. (3.15) yields after a slightly lengthy but straightforward

calculation shown in A.4:

Pνα→νβ(~L) ∝
∑
j,k

U∗αjUβjUαkU
∗
βk exp

{
−i
[
(Ẽj − Ẽk)

~vj + ~vk
v2
j + v2

k

− (~̃pj − ~̃pk)
]
· ~L
}

× exp

− L2

2σ2
x

+ (~vj · ~L)2 + (~vk · ~L)2

2σ2
x(v2

j + v2
k)

−

[
(~vj − ~vk) · ~L

]2
4σ2

x(v2
j + v2

k)
− (Ẽj − Ẽk)2

4σ2
p(v2

j + v2
k)

 . (3.16)

Eqn. (3.16) clearly shows that the neutrino oscillation probability is given by an oscil-
lating phase and an attenuating term, both with various dependencies. To simplify the
inspection of the oscillation probability, it is useful to introduce some approximations
to allow for clear-cut conclusions.
At first, it is easily seen that the first two terms in the damping term cancel if

the velocities ~vj, ~vk and ~L are collinear. On the other hand, if the deviation from
collinearity increases, the damping increases as well. This fact is brought about by the
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physical reason that the trajectories of the massive neutrinos don’t “hit” the detector
even in the present spatial and momentum uncertainties if the deviation of the neutrino
momenta from collinearity with ~L is not extremely small, thus preventing unsuppressed
interference.
In practice, where for the wave packet length usually σνx � L holds, the effect

of deviation from collinearity is negligible, reducing the three dimensional expression
(3.16) to a one dimensional one. This is assumed to be the case in the following since a
more general treatment does not shed much more light on the conditions for observable
neutrino oscillations (for a slightly more detailed discussion on this topic see Ref. [2]).
Hence, taking into account the (first order) deviation of massive neutrino momenta

due to the neutrino mass, the average momenta can be approximated by

p̃j ' E − ξ
m2
j

2E , with ξ = −2E ∂pj
∂m2

j

∣∣∣∣∣
mj=0

, (3.17)

where E = p denotes momentum respectively energy of a massless neutrino and the
value of ξ the “sensitivity” to squared–mass deviation, depending on the production
process, particularly on the energy released in the process.
The energy Ẽj and the velocity vj can be similarly approximated, yielding

Ẽj ' p̃j +
m2
j

2p̃j
' E + (1− ξ)

m2
j

2E , (3.18)

vj = p̃j

Ẽj
'

E − ξm
2
j

2E

E + (1− ξ)m
2
j

2E

' 1−
m2
j

2E2 , (3.19)

at first order in m2
j .

Respecting the approximations (3.17), (3.18) and (3.19), the oscillation phase in
Eqn. (3.16) reads, at first order in m2

j,k,[
(Ẽj − Ẽk)

vj + vk
v2
j + v2

k

− (p̃j − p̃k)
]
L '

∆m2
jkL

2E

[
(1− ξ) vj + vk

v2
j + v2

k

+ ξ

]

'
∆m2

jkL

2E

[
(1− ξ)

(
1 +

m2
j +m2

k

4E2

)
+ ξ

]

'
∆m2

jkL

2E , (3.20)

exhibiting the well–known dependency on the squared-mass differences. It is indeed
very remarkable that the deviations in energy and momentum which depend on the
production process cancel in the oscillation phase, since these deviations are by no
means negligible. Considering the pion decay π+ → µ+ + νµ, we have for the energy of
the massive neutrino νj in the rest frame of the pion according to energy-momentum
conservation8

Ej = mπ

2

(
1−

m2
µ

m2
π

)
+

m2
j

2mπ

. (3.21)

Splitting Eqn. (3.21) analogous to Eqn. (3.18), the deviation ξ can be quantified for a
8 Respecting Eπ = Eµ +Ej , ~pµ = −~pj and E2

π = m2
π in the rest frame of the pion, one obtains Eqn.

(3.21) after a simple calculation, starting from E2
π = (Eµ + Ej)2.
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pion decay at rest,

ξ = 1
2

(
1 +

m2
µ

m2
π

)
' 0.8, (3.22)

with mπ ' 139.57 MeV, mµ ' 105.66 MeV. Accordingly, though the massive neu-
trino energies/momenta do exhibit a strong dependency on the production process,
the oscillation phase does not, being universal in that sense.
In the same way, the damping term can be rewritten, yielding

− (Ẽj − Ẽk)2

4σ2
p(v2

j + v2
k)
' −σ

2
x

2 (1− ξ)2
(

∆m2
jk

2E

)2

= −2π2 (1− ξ)2
(
σx
Losc
jk

)2

, (3.23)

with Losc
jk as defined in Eqn. (2.26), and

− [(vj − vk)L]2

4σ2
x(v2

j + v2
k)
' − L2

8σ2
x

(
−∆m2

jk

2E2

)2

= −
(

L

Lcoh
jk

)2

, (3.24)

using the coherence lengths

Lcoh
jk = 4

√
2E2

|∆m2
jk|
σx. (3.25)

Consequently, Eqn. (3.16) reduces to

Pνα→νβ(L) ∝
∑
j,k

U∗αjUβjUαkU
∗
βk exp

−i∆m2
jkL

2E −
(

L

Lcoh
jk

)2

− 2π2 (1− ξ)2
(
σx
Losc
jk

)2
.

(3.26)
The last term (3.23) in Eqn. (3.26) is called the localization term while (3.24) is
called the coherence term. In brevity, the localization term accounts for the damping
if the oscillation length Losc

jk is not small compared to σx: If the (spatial) regions
of production and detection are not small compared to the oscillation length, the
oscillations are averaged out in the detection/production process. In addition, (3.23)
guarantees energy conservation within the given energy uncertainty [9]. The coherence
term on the other hand accounts for the spatial separation of the different massive
neutrinos due to their variation in group velocity as can be seen from Eqn. (3.24),
leading to a smaller overlap of the wave packets, thus preventing coherent detection.
Consequently, the localization term allows for decoherence effects as to produc-

tion/detection whereas the coherence term with respect to the propagation of the
neutrino wave packets. A more detailed analysis of the conditions for neutrino oscil-
lations is carried out below, yet it can be seen that if the coherence condition as well
as the localization condition are satisfied, the oscillation probability reduces to the
Standard expression (2.13).
Before presenting a non-Gaussian wave packet approach, it is worth commenting

on an important aspect of the oscillation probability which could not be consistently
derived in Section 2.1: Lorentz invariance. In contrast, in the wave packet approach
beginning with Eqn. (3.10), Lorentz invariance is obtained consistently. This is of
crucial importance since flavor is a Lorentz-invariant quantity which does not depend
on the frame of reference. Indeed, considering a similar set-up as described in the
beginning of Section 3.1, i.e. a Lorentz frame O′ moving with velocity v with respect
to O along the direction of neutrino propagation, the transformations of L and T are
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given by9

L′ = γ(L− vT ), T ′ = γ(T − vL). (3.27)

For L = T 10 in O it follows in O′: L′ = T ′ = γ(1− v)L. Similarly, for E, p:

E ′ = γ(E − vp), p′ = γ(p− vE), (3.28)

implying that in the massless limit E = p we have E ′ = p′ = γ(1− v)E and hence
the same ratio L′/E ′ = L/E, demonstrating the Lorentz invariance of the oscillation
probability [2, p.295],[10].
One could ask whether the conclusions drawn from Eqn. (3.16) could be obtained

without assuming a Gaussian wave packet. This is in fact the case, as can be seen from
the following reasoning which is based on Ref. [4].
Starting with the (production) flavor neutrino state, using customary notation11,

|να(x, T )〉 =
∑
j

U∗αjΨP
j (x, T ) |νj〉, (3.29)

with ΨP
j (x, t) describing the wave packet of the massive neutrino j,

ΨP
j (x, T ) =

∫ dp̃√
2π
fPj (p̃− pj)ei(p̃x−Ej(p)T ), (3.30)

and fPj (p̃ − pj) denoting the production momentum distribution function, sharply
peaked around its mean momentum pj with width σPp � |pj|. Expanding Ej around
pj as in Eqn. (3.12) and shifting the integration variable, p = p̃− pj, Eqn. (3.30) can
be rewritten:

ΨP
j (x, T ) ' eipjx−iEj(pj)T

{∫ dp√
2π
fPj (p)eip(x−vjT )

}
. (3.31)

For further use, we denote the term in curly brackets as gPj (x − vjT ). The detecting
flavor neutrino state be described as peaked around the detector coordinate,

|νβ(x− L)〉 =
∑
j

U∗βjΨD
j (x− L) |νj〉, (3.32)

having the wave function

ΨD
j (x− L) =

∫ dp̃√
2π
fDj (p̃− p′j)eip̃(x−L), (3.33)

with p′j being the mean momentum of the detection process. By shifting the integration
variable, p = p̃− p′j, we find

ΨD
j (x− L) = eip

′
j(x−L)

{∫ dp√
2π
fDj (p)eip(x−L)

}
, (3.34)

9 L does not obey the ordinary length contraction since in general, it does not correspond to the
instantaneous source-detector distance, but is determined by the condition L = T .
10 If another relation holds, the same applies to the relation regarding E, p since the phase is Lorentz
invariant (see Footnote 7 on page 13), so the following argument remains valid.
11 I.e. the source is localized at x = 0 and the neutrino is produced at t = 0 with an appropriate time
uncertainty. Only one dimensional description is used, justified by the reason mentioned above.
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with the term in the curly brackets, gDj (x− L), similarly denoting the shape factor of
the detecting wave packet. The oscillation amplitude is given by the projection of the
detection neutrino state on the production neutrino state,

Aνα→νβ(L, T ) =
∫

dx 〈νβ(x− L)|να(x, T )〉, (3.35)

yielding by substitution of (3.29) and (3.32)

Aνα→νβ(L, T ) =
∑
j

U∗αjUβj

{∫
dx gPj (x− vjT )gD∗j (x− L)ei(pj−p′j)(x−L)

}
eipjL−iEj(pj)T ,

(3.36)
where the curly brackets this time embrace the effective shape factor Gj(L−vjT ). This
shape factor can be rewritten as shown in Appendix A.5, leading to

Gj(L− vjT ) =
∫

dp fPj (p)fD∗j (p+ δj)eip(L−vjT ). (3.37)

The oscillation probability Pνα→νβ(L) is given as in Eqn. (3.15) by

Pνα→νβ(L) ∝
∫

dT |Aνα→νβ(L, T )|2 =
∑
j,k

U∗αjUβjUαkU
∗
βkIjk(L), (3.38)

with the integral

Ijk(L) =
∫

dT Gj(L− vjT )G∗k(L− vkT )e−i[(Ej(pj)−Ek(pk))T−(pj−pk)L]. (3.39)

For a more straightforward calculation, it is useful to expand the differences in mo-
mentum around the average momentum p = (pj + pk)/2, assuming relativistic or quasi-
degenerate neutrinos, i.e. |∆E| � E, according to

∆pjk '
∂p

∂E
∆Ejk + ∂p

∂m2 ∆m2
jk = ∆Ejk

vg
−

∆m2
jk

2p , (3.40)

with vg ≡ (vj + vk)/2 being the “effective” average group velocity. By inserting ap-
proximation (3.40) into the phase in Eqn. (3.39), one obtains for the phase

− i [∆EjkT −∆pjkL] ' −i
[

∆m2
jk

2p L− ∆Ejk
vg

(L− vgT )
]
. (3.41)

Considering the above simplifications, one finally obtains for the integral Ijk(L) the
expression calculated in (A.16),

Ijk(L) = e−i
∆m2

2p L 2π
vk

∫
dp fPj (p)fD∗j (p+ δj)

× fP∗k (rp+ ∆E/vk)fDk (rp+ ∆E/vk + δk)eip(1−r)L, (3.42)

with the notation introduced in Appendix A.5. Having come so far, it is now possible
to compare the conditions for unsuppressed oscillations in Eqns. (3.26) and (3.42),
which have been derived using slightly different approaches.
At first, it is clear from Eqn. (3.42) that if δj, δk exceed significantly the combined
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momentum uncertainty of production/detection (corresponding to the widths of the
momentum distribution functions), the oscillation amplitude is strongly suppressed
since otherwise energy-momentum conservation would be violated in the detection
process.
Furthermore, the integrand averages out due to rapid oscillations of the phase if
|p(1− r)L| is not small in the effective momentum uncertainty σp, quantifying the
width of the overlap integral, i.e. if not |1− r|Lσp � 1. This condition can be rewritten
in terms of the average group velocity vg as

L� σx
vg

∆vg
, (3.43)

with ∆vg = |vj − vk| and σx = 1/2σp being the effective spatial uncertainty. From
Eqn. (3.42) can be seen that for uniform effective group velocities no damping occurs
due to the phase factor. This implies that condition (3.43) is equivalent to the one
embodied in the coherence term (3.24) which accounts for the spread of the different
massive neutrino wave packets. As a matter of fact, at first order in ∆m2

jk, condition
(3.43) can be rewritten by means of (3.19) as

vg
∆vg

σx '
[

2E2

|∆m2
jk|
−

(m2
j +m2

k)
2|∆m2

jk|

]
σx '

2E2

|∆m2
jk|
σx, (3.44)

being obviously in agreement with Lcoh
jk in (3.25). The additional term in Eqn. (3.44)

proportional to (m2
j +m2

k)/∆m2
jk has been neglected, owing to the fact that E2 � m2

for ultrarelativistic or quasi-degenerate neutrinos. In conclusion, the meaning of the
coherence condition can be summarized as follows: For unsuppressed oscillations to
exist, the separation of the distinct wave packets due to their variation in group velocity
needs to be small compared to the spatial uncertainty of production/detection.
In addition, the integral in Eqn. (3.42) vanishes if the split of the arguments of the

momentum distribution functions fP,Dj,k exceeds the width of the combined momentum
uncertainty σp, i.e. if

|∆Ejk|
vg

σx � 1, (3.45)

where the uncertainty relation as well as a more intuitive parametrization via vg has
been used12. Again, this expression can be rewritten using Eqns. (3.18) and (3.19),

|∆Ejk|
vg

σx '
(1− ξ)∆m2

jk

2E
1− (m2

j +m2
k)/4E2σx ' (1− ξ)

∆m2
jk

2E σx, (3.46)

at first order in ∆m2
jk, being consistent with the expression derived in Eqn. (3.23).

Consequently, the observability of unsuppressed neutrino oscillations depends mainly
on the localization and coherence condition being satisfied. Since these conditions
contain the production/detection uncertainties, it seems worthwhile to take a closer
look at the relevant quantum mechanical uncertainties which have only been briefly
mentioned up to now.

12 The parametrization via vg instead of vk is possible since vk can be written as vk = vg + ∆vkj ,
so the deviation is given by ∆vkj/vg which is of O(∆m2) and thus negligible for Eqns. (3.43), (3.45)
where the prefactor is already of O(∆m2).
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3.2 QM uncertainties and neutrino oscillations
Neutrino oscillations as introduced above in the framework of quantum mechanics
depend vitally on the existence of QM uncertainties since these uncertainties allow
for a coherent superposition of massive neutrino states in the first place, thus being
of crucial importance for the quantum mechanical interference manifesting itself in
neutrino oscillations. In fact, only the inevitable ignorance of the specific neutrino
mass state renders possible a coherent superposition of neutrino mass states, being the
very reason for neutrino oscillations as the distinct mass states evolve differently in
space-time, causing oscillations of the probability of flavor neutrino measurements due
to the variation in relative phase.
From this point of view, following Refs. [2, 4], it is clear that in order to observe

neutrino oscillations, the sensitivity of the experiment to squared-mass must be smaller
than the actual squared-mass differences, σm2 & ∆m2 (the indices jk have been omit-
ted since they do not bring further insight to the discussion). Assuming energy and
momentum to be independent, the relativistic dispersion relation yields

σm2 =
√

(2EσE)2 + (2pσp)2 ' 2
√

2Eσp, (3.47)

in the ultrarelativistic limit. With the help of Eqn. (3.47) and the uncertainty relation,
the localization condition contained in Eqn. (3.23) can be rewritten in terms of σm2 ,

σx
Losc = ∆m2

8πEσp
' 1

2
√

2π
∆m2

σm2
, (3.48)

showing that the coherence condition σm2 & ∆m2 stipulated above is embodied in the
localization condition. Conversely, if σm2 � ∆m2, the coherence between the different
neutrino mass states is lost, no interference between the mass states can occur, which
leads to the incoherent oscillation probability. Though, even then neutrino oscillations
can be inferred since for the absence of neutrino oscillations, the survival probability
should be equal to one, while the value for the incoherent oscillation probability still
depends on the mixing matrix (cf. e.g. Eqn. (2.25)).
However, the question how uncertainties emerge from the production and detection

processes has not been addressed yet. To begin with, it is helpful to realize that the
energy and momentum uncertainties of both production and detection (to be deter-
mined in the laboratory frame for obvious reasons) depend on the time scale and the
spatial localization of the corresponding process.
In particular, when considering the production process, the spatial uncertainty is

governed by the smallest of the spatial uncertainties of the interacting particles. That is,
coherent emission of massive neutrino wave packets is only possible until the first of the
particles involved in production interacts with the environment. Hence, the dominant
contribution to the spatial uncertainty comes from the smallest one, accounted for by
summing the spatial uncertainties of the particles involved in the interaction reciprocal,
implying by means of the uncertainty relation the corresponding summation for the
momentum uncertainty,(

1
σIx

)2

∼
∑
i

(
1
σix

)2

, (σIp)2 ∼
∑
i

(σip)2, (3.49)
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with I standing for the overall interaction process value whereas the i’s denote the
individual interacting particles.
In principle, as discussed below, σIp and thus the length of the produced neutrino

wave packet can be estimated by Eqn. (3.49). It turns out, however, that the energy
uncertainty σE, depending on the coherence time σIt of the interaction process, is more
decisive pertaining to the wave packet size, stressing the necessity to consider the
coherence time σIt .
In the case of collision broadening, the coherence time can be estimated by summing

up the inverse individual coherence times. As for example in the case when coherence
is lost due to the collision of a particle involved in the interaction with surrounding
particles as discussed above, one has(

1
σIt

)2

∼
∑
i

(
vi
σix

)2

. (3.50)

Respecting vi < 1, it can be seen from Eqn. (3.50) that in general σIt > σIp and thus
σIE ' 1/σIt < σIp.
For the case that no collision broadening occurs, the coherence time is given by the

lifetime τ of the decaying particle, implying that the neutrino wave packet size in the
rest frame of the decaying particle is determined by its distance travelled: σνx ' vgτ
with vg being the average group velocity of the massive neutrino states. In another
frame of reference, the distance travelled by the decaying parent particle while decaying
has to be taken into account. By doing so, one obtains the physically expected result
that the size of the neutrino wave packet is contracted when being emitted in the
direction of motion of the parent particle while dilated when being emitted in the
opposite direction [4].
Until now, only a single interaction process has been discussed, but, as already

stressed above, effective uncertainties have been used in the above derivations. Con-
sidering the overlap integral in Eqn. (3.37), it becomes clear indeed that the momentum
uncertainty of the combined production/detection process is dominated by the smallest
momentum uncertainty of the two processes. As a result, the effective spatial uncer-
tainty is governed by the largest uncertainty of production/detection and can – for
Gaussian wave packets – be estimated by quadratic summation of the production and
detection uncertainties.
As mentioned above, the neutrino wave packet size is rather given by

σνx ∼
vg
σE

(3.51)

than by the spatial uncertainties of production/detection, since in general σE < σp
(illustrated in the paragraph about collision broadening and concluded in Ref. [4]),
and the two quantities are connected via

EσE = pσp, (3.52)

originated in the relativistic dispersion relation E2 = p2 +m2 with m2 being a definite
mass. Eqn. (3.52) is obviously valid only for particles being on-shell, i.e. obeying the
above dispersion relation, being derived with its help. Accordingly, massive neutri-
nos being produced off-shell with uncertainties not obeying (3.52), go on-shell while
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propagating from their production point, so the larger uncertainty shrinks towards the
smaller one, leading to (3.52) being satisfied [4]. This provides an explanation for the
remedy of the potential initial mismatch between the wave packet sizes implied by
momentum uncertainty and coherence time. Though, it must be stressed that for a
comprehensive analysis respecting anisotropy or the like, further analysis is required
since the one dimensional approach developed above provides merely basic considera-
tions.
Under these circumstances, one could ask if neutrino oscillations are banned in prin-

ciple by an extremely small energy uncertainty (i.e. an energy uncertainty smaller than
the variation in energy caused by mass differences) in the production process. The an-
swer is no, yet needing some further explanation: If the momentum uncertainty of the
detection process is large enough, the coherence of the massive neutrino states, lost soon
after production due to the small energy and consequently momentum uncertainty, is
restored in the detection process, rendered possible by the increased uncertainty in
squared-mass detection according to Eqn. (3.47).
For that reason, production/detection processes need to be taken into account jointly

when trying to infer the occurrence of observable neutrino oscillations as done in Sec-
tion 3.1. Hence, the above procedure for determining the effective uncertainties seems
to be slightly ad hoc and mark the feet of clay of the QM approach, depending on being
given appropriate production/detection states since the underlying processes cannot be
described in the framework of quantum mechanics. It is indeed a deficiency of the wave
packet approach that these uncertainties cannot be derived in the underlying frame-
work of QM, but it is clear that by using the more proper description of neutrino states
by wave packets, some crucial aspects of neutrino oscillations could have been derived
and a manageable treatment of neutrino oscillations is made possible. In addition, an
instructive analysis of (de)coherence effects is rendered possible by the wave packet
approach, thus being expedient for the understanding of neutrino oscillations.
In conclusion, to wrap up the discussion on coherence, two conditions must obviously

be satisfied in order to observe neutrino oscillations [8]: the flavor of the neutrino
must be known (otherwise the meaning of flavor “oscillation” is lapsed) and both
production and detection process must be localized (otherwise, there is no gauge on
which oscillations can occur). If, however, these conditions are satisfied, quantum
mechanical uncertainties eventually arise (since, what is more, production/detection
process exhibit a specific, “microscopic” time scale by nature), requiring a detailed
analysis respecting the distinct properties of massive neutrinos in order to conclude
the occurrence of observable neutrino oscillations.
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4 Generalizing neutrino oscillations
4.1 Neutrino oscillations in matter

Though the knowledge about vacuum neutrino oscillations is of use for the understand-
ing of what happens to the neutrinos while travelling through space (e.g. being emitted
by the Sun), it turns out that most of the observed neutrino oscillations (e.g. solar
neutrino oscillations) cannot be understood without taking matter effects into account.
In matter, which consists of quarks and electrons, neutrino interaction is dominated

by coherent forward elastic scattering13. For all flavor neutrinos, but the electron
neutrino, the scattering is given solely by the NC interaction (lepton universality), yet
for the electron neutrino also the coherent elastic weak CC scattering νee− → νee

−

exists. For that reason, only the CC potential is of importance for the understanding
of neutrino oscillations in matter, at least in the two neutrino case if no sterile neutrinos
are respected [11, 12], since the NC interaction generates a common phase to all flavors.
Physically, the additional CC potential can be imagined to increase the index of

refraction of the wave function of the electron neutrino, leading to an additional phase
which requires an adjustment of the flavor Hamiltonian (4.4), leading to a change in
relative phase of the neutrino mass states. However, in the following derivation which
is based on Refs. [2, 3], the matter potential is taken as a given.
In order to understand the matter effects, let us consider the massive neutrino states
|νj〉 which are eigenstates to the time-independent vacuum Hamiltonian

H0 |νj〉 = Ej |νj〉 with Ej ' p+
m2
j

2E , (4.1)

in the ultrarelativistic limit (cf. Eqn. (2.6)). Neglecting the common phase e−ipt
in the following, the Schrödinger equation (2.7) can be written in matrix notation
νm = (ν1, . . . )T as

i
d
dtνm(t) = Hmνm(t) with (Hm)jk =

m2
j

2Eδjk, (4.2)

which becomes in the flavor basis, νm = U †νF
14,

i
d
dtνF (t) = UHmU

†νF (t). (4.3)

Taking into account the CC matter potential VCC by means of ACC ≡ 2EVCC , one
finally obtains

HF = UHmU
† + ACC

2E |νe〉 〈νe| . (4.4)

The matter potential VCC ≡
√

2GFNe with GF being the Fermi constant and Ne

the electron density of the medium is clearly positive, so we know that also ACC is
positive and thus HF real. For two neutrino mixing, with U from Eqn. (2.15) and say

13 The amount of incoherent scattering is usually very small and can thus be neglected [2, p.322].
14 This relation can be obtained by considering the summation in Eqn. (2.2).
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νF = (νe, νµ)T, the Hamiltonian (4.4) can be explicitly written as

HF = 1
2E

(
m2

1 cos2 ϑ+m2
2 sin2 ϑ+ ACC (m2

2 −m2
1) sinϑ cosϑ

(m2
2 −m2

1) sinϑ cosϑ m2
2 cos2 ϑ+m2

1 sin2 ϑ

)
(4.5)

= 1
4E

(
m2

1∆ϑ −m2
2∆ϑ + 2ACC ∆m2 sin 2ϑ

∆m2 sin 2ϑ −m2
1∆ϑ +m2

2∆ϑ

)
+ 1

4E (m2
1 +m2

2)1 (4.6)

= 1
4E

(
−∆m2 cos 2ϑ+ ACC ∆m2 sin 2ϑ

∆m2 sin 2ϑ ∆m2 cos 2ϑ− ACC

)
+ 1

4E [Σm2 + ACC ] 1, (4.7)

with ∆ϑ = cos2 ϑ−sin2 ϑ, Σm2 = m2
1+m2

2 and 1 denoting a 2×2 unit matrix. Obviously,
HF is Hermitian and, even more, real and symmetric which implies that HF can be
diagonalized by an orthogonal matrix such as

UM =
(

cosϑM sinϑM
− sinϑM cosϑM

)
, (4.8)

where ϑM denotes the effective mixing angle in matter. Diagonalizing the non-diagonal
left part15 of HF in Eqn. (4.7) with UM in Eqn. (4.8), one finds for the effective
squared-mass difference in matter

∆m2
M =

√
(∆m2 cos 2ϑ− ACC)2 + (∆m2 sin 2ϑ)2. (4.9)

The effective mixing angle ϑM is obtained by solving the eigenvalue equations

0 = cosϑM
[
−∆m2 cos 2ϑ+ ACC −m2

M1

]
− sinϑM sin 2ϑ∆m2, (4.10)

0 = − sinϑM
[
∆m2 cos 2ϑ− ACC −m2

M1

]
+ cosϑM sin 2ϑ∆m2, (4.11)

with the eigenvector being the first column of UM in Eqn. (4.8) for tanϑM , 1/ tanϑM
and using the relation

tan 2ϑM = 2
1

tanϑM
− tanϑM

= tan 2ϑ

1− ACC
∆m2 cos 2ϑ

. (4.12)

Approximating t ' x and inserting HF from Eqn. (4.4) in the Schrödinger equa-
tion (4.3), Eqn. (4.3) can be rewritten in the massive neutrino basis in matter by
means of νF = UMν

M
m , respecting U †MHFUM = 1/4E diag(−∆m2

M ,∆m2
M) as well as

U †M
d

dxUM = dϑM
dx iσ2

16:

UM i
d

dxν
M
m (x) + i

(
d

dxUM
)
νMm (x) = HFUMν

M
m (x) (4.13)

⇔ i
d

dxν
M
m (x) = 1

4E

(
−∆m2

M −4EidϑM
dx

4EidϑM
dx ∆m2

M

)
νMm (x). (4.14)

The diagonal, right part of the Hamiltonian in Eqn. (4.7) has been omitted since it

15 The right part does not need to be taken into account because the diagonalization is performed
with an orthogonal matrix and the unit matrix commutates with all matrices.
16 σ2 denotes the second Pauli matrix.
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can be eliminated by a common phase shift of the flavor neutrino states.
Transforming Eqn. (4.4) back into the basis of the mass eigenstates of the vacuum

Hamiltonian,

H′m = 1
2E

(
m2

1 + ACC cos2 ϑ ACC sinϑ cosϑ
ACC sinϑ cosϑ m2

2 + ACC sin2 ϑ

)
, (4.15)

it is seen that for ACC 6= 0 the mass eigenstates of the vacuum Hamiltonian are no
longer mass eigenstates of the matter Hamiltonian, i.e. transitions ν1 ↔ ν2 are possible.
Furthermore, if the matter density is constant, i.e. dϑM/dx = 0, the evolution of

the “effective massive neutrinos” in Eqn. (4.14) is decoupled, implying

νMmj(x) = exp
(

(−1)j+1i
∆m2

Mx

4E

)
νMmj(0) (4.16)

and allowing for the calculation of the transition probability Pνe→νµ analogous to the
calculation in Appendix A.1, yielding

Pνe→νµ = sin2 2ϑM sin2
(

∆m2
Mx

4E

)
. (4.17)

If the matter density is not constant, dϑM/dx 6= 0, transitions νM1 ↔ νM2 can
occur. For that reason, the adiabaticity parameter γ = ∆m2

M/4E|dϑM/dx| is usually
introduced, quantifying the amount of these transitions. The evolution of the effective
mass states is adiabatic if γ � 1 for the whole neutrino trajectory, meaning that the
transitions νM1 ↔ νM2 are negligible. This is the simplest case, but can be realized for
solar neutrinos of a certain energy range. In this case, the mass state evolution in space
is given by the phase factor

exp
(

(−1)j+1i
∫ x

0

∆m2
M(x′)

4E dx′
)
, (4.18)

with j indicating the massive neutrino component as before.
Moreover, for a non-constant matter density the mismatch between the mixing angles

at production and detection has to be taken into account. For instance, one can
consider an electron neutrino produced in the Sun with the mixing angle ϑiM , evolving
adiabatically with the phase factor given in (4.18) to the detection point where the
vacuum mixing angle ϑ holds. Hence, the survival amplitude at this point can be
written as

ψee(x) =
∑
j

Uejaj exp
(

(−1)j+1i
∫ x

0

∆m2
M(x′)

4E dx′
)
, (4.19)

with aj denoting the initial mixing angles (i.e. the first column of (4.8)) and Uej the
mixing angles at the detection point. Taking the squared modulus of the amplitude
and minding the relation (A.2), one obtains the survival probability

P adiabatic
νe→νe = 1

2 + 1
2 cos 2ϑ cos 2ϑiM + 1

2 sin 2ϑ sin 2ϑiM cos
(∫ x

0

∆m2
M(x′)

2E dx′
)
. (4.20)

In the case ϑiM ' π/2 the averaged survival probability (where the cosine depending
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on ∆m2
M(x′)/E is averaged out) can be approximated by

P νe→νe '
1
2(1− cos 2ϑ) = sin2 ϑ, (4.21)

implying that flavor transitions are favoured by small vacuum mixing angles (provided
that the adiabaticity condition holds). However, a global fit to solar neutrino data
favours a large vacuum mixing angle (LMA) [2, p.389].
As can be seen from Eqn. (4.12), the mixing angle is largest when the resonance

condition ARCC = ∆m2 cos2 2ϑ, i.e. ϑRM = π/4, holds, allowing for a maximal transition
amplitude between the two flavors (cf. Eqn. (4.17)). The resonance, which refers to
the resonant behaviour of the oscillation amplitude with respect to ACC/∆m2

M , was
discovered by Mikheev, Smirnov and Wolfenstein after whom the mechanism is named
theMSW effect. In order to take effect, the MSWmechanism requires a variable matter
density as well as the production of the flavor neutrinos above the resonance region.
Eqn. (4.12) shows further that due to ACC → −ACC for antineutrinos, flavor tran-

sitions of antineutrinos are disfavoured by the MSW effect, resulting in a CP violation
with respect to the oscillation probabilities of neutrinos and antineutrinos. In addition,
the degeneracy of the transition amplitude regarding ϑ↔ π/2−ϑ is broken since cos 2ϑ
changes sign at ϑ = π/4 while ACC is generally positive, so resonance can only occur
for ϑ < π/4.
In conclusion, it suggests itself to discuss two-neutrino oscillations in the Sun qual-

itatively with the help of the MSW effect as introduced above. Writing down the full
expression for the effective mass in matter17,

m2
M1,2 = 1

2[m2
1 +m2

2 + ACC ∓∆m2
M ], (4.22)

and recalling the definition of the electron density, Ne = ACC/2
√

2EGF , one obtains
from Eqn. (4.12) Figure 4.1a while from Eqn. (4.22) Figure 4.1b. For these figures,
the parameters m1 = 0, ∆m2 = 9 × 10−6 eV2, sin2 2ϑ = 10−3 and E = 1.5 MeV were
used.
Figure 4.1a shows the variation of the effective mixing angle in matter as a function

of the electron density Ne divided by Avogadro’s number NA. Considering an electron
neutrino produced in the core of the Sun where a mixing angle of ϑM ' π/2 applies
(corresponding to the top right corner of the diagram), leaving the Sun after an adi-
abatic journey (corresponding to the bottom left corner of the diagram), we see that
a conversion of the electron neutrino has taken place due to the change of the mixing
angle. Figure 4.1b illustrates the same: When an electron neutrino produced as almost
pure ν2 crosses the resonance, a flavor flip occurs due to the large variation of the
mixing angle, for ν2 remains ν2 if the crossing is adiabatically. Finally, it can be seen
that the squared-mass difference is minimal at resonance.

17 The additional terms in the effective mass term come from the right hand side of Eqn. (4.7), for
the factor 1/2 see right hand side of Eqn. (4.2).

26



Generalizing neutrino oscillations

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Ne/NA [cm−3]

ϑ
M

[◦
]

νµ ' ν1, νe ' ν2

νe ' ν1, νµ ' ν2

NR
e /NA

(a) Effective mixing angle ϑM as a function of
Ne/NA.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

Ne/NA [cm−3]

m
2 M

1
,m

2 M
2
[1
0
−
6
eV

2
]

ν1 ' νµ

ν2 ' νe

ν1 ' νe

ν2 ' νµ

NR
e /NA

(b) Effective squared-masses m2
M1,m

2
M2 as a

function of Ne/NA.

Figure 4.1: Matter effects in two neutrino mixing, after Fig. 9.2 in Ref. [2].

4.2 Three neutrino mixing
Experimental findings have shown that the squared-mass difference for solar and at-
mospheric neutrino oscillation measurements are quite different (cf. Secs. 5.2, 5.3).
Thus, the realistic case of neutrino mixing is three neutrino mixing which allows for
two independent squared-mass differences.
At this point, it is necessary to stress once again that the knowledge about squared-

mass differences does contain only very limited information about the actual neutrino
masses, next to the fact that the squared-masses of at least two of them must be at
least of the order of the observed squared-mass differences. In particular, the hierarchy
of squared-mass differences implied by ∆m2

SOL � ∆m2
ATM cannot be determined by

neutrino oscillation measurements.
In order to understand the consequences of three neutrino mixing, it is essential to

study the leptonic mixing matrix in more detail. Yet, before doing so, the origin of the
leptonic mixing matrix needs to be discussed briefly, following Ref. [2].
Knowing that in the framework of the SM neutrinos are massless because there are no

right-handed (chiral) neutrino fields, it is necessary to introduce right-handed neutrino
fields (in the Dirac case) to allow for neutrino masses. These right-handed fields are
called sterile because they do not participate in weak interaction due to being singlets
of SU(3)× SU(2) and having hypercharge zero18. In the following, only Dirac mass is
considered.
Introducing three right-handed neutrino fields according to the minimally extended

SM, the modified SM Higgs-lepton Yukawa Lagrangian can be written as

LH,L = −
∑
α,β

Y ′`αβLαLΦ`′βR −
∑
α,β

Y ′ναβLαLΦ̃ν ′βR + H.c., (4.23)

where Y ′ denotes the non-diagonal Yukawa coupling matrix, Φ the Higgs doublet, LαL
the weak isospin doublets, `′βR, ν ′βR the weak isospin singlets and H.c. the Hermitian

18 In the SM, weak interaction is described by the symmetry group SU(2) × U(1) in the framework
of electroweak interaction. The generator of the symmetry group U(1)Y is the hypercharge operator.
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conjugate of the whole expression. In unitary gauge, the Lagrangian becomes

LH,L = −
(
v +H√

2

) [
`′LY

′``′R + ν ′LY ′νν ′R
]

+ H.c. (4.24)

In this expression, v denotes the vacuum expectation value (VEV) for the Higgs doublet
and H the Higgs boson field. The Yukawa coupling matrix Y can be diagonalized
through a biunitary transformation,

V ν†
L Y ′νV ν

R = Y ν , (4.25)

containing the coefficients determining the neutrino masses on the main diagonal. Eqn.
(4.25) can be further used to define the chiral massive neutrino arrays

nL = V ν†
L ν

′
L, nR = V ν

Rν
′
R. (4.26)

With this in mind, we can proceed with considering the CC interaction Lagrangian

L CC = − g

2
√

2
(
jηWWη + jη∗WW

†
η

)
, (4.27)

where g denotes the coupling constant, Wη the field creating W− and annihilating W+

bosons and jηW the leptonic and quark charged-currents jηW = jηW,L+jηW,Q. In particular,
the leptonic charged-current is given by

jηW,L = 2
∑

α=e,µ,τ
ν ′αLγ

η`′αL. (4.28)

Taking into account the mismatch between the unprimed fields with definite mass and
the primed fields participating in weak interaction for both leptons and neutrinos, one
finds

jηW,L = 2 nLV ν†
L γηV `

L`L = 2
∑
α,j

νjLU
∗
αjγ

η`αL, (4.29)

with U = V `†
L V

ν
L being the lepton mixing matrix.

The reason why only the CC and not the NC Lagrangian is considered stems from the
fact that due to the unitarity of the matrices VL,R, the NC Lagrangian is left untouched
by the mixing, i.e. the Lagrangian is the same for primed and unprimed fields. This
matter of fact is also called the GIM mechanism [2, p.96].
Aiming to study the mixing matrix in more detail one could ask on how many (and

what kind of) parameters the matrix U depends. In general, a complex N ×N matrix
has 2N2 independent real parameters. By imposing the unitarity condition (2.4) only
N2 parameters remain. These parameters can be divided into

N(N − 1)
2 mixing angles, N(N + 1)

2 phases. (4.30)

However, the electroweak Lagrangian is invariant under global phase transformations
of the lepton fields, i.e.

νjL → eiψ
ν
j νjL, `αL → eiψ

`
α`αL. (4.31)
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Hence, the leptonic charged-current (4.29) for which N = 3 can be written as

jηW,L = 2
∑

α=e,µ,τ

∑
j=1,2,3

νjLγ
ηe−iψ

ν
jU∗αje

iψ`α`αL (4.32)

= 2 e−i(ψν2−ψ`µ)︸ ︷︷ ︸
1

∑
α=e,µ,τ

∑
j=1,2,3

νjLγ
η e−i(ψ

ν
j−ψ

`
2)︸ ︷︷ ︸

N−1

U∗αj e
i(ψ`α−ψνµ)︸ ︷︷ ︸
N−1

`αL. (4.33)

Eqn. (4.33) makes plausible that the physical relevant phases can be reduced by 2N−1
phases, correcting the amount of relevant (relative) phases in Eqn. (4.30) to

(N − 1)(N − 2)
2 physical phases. (4.34)

This immediately explains the fact why we have considered a real 2× 2 matrix with
one mixing angle for two neutrino mixing. Consequently, we have 3 mixing angles and
one physical phase, also called CP-violating phase, for three neutrino mixing.
Regarding Majorana neutrinos, the mixing matrix depends on three physical phases

in the case of three neutrino mixing since the Majorana mass term is not invariant
under the global U(1) gauge transformation in Eqn. (4.31), so only the lepton fields
can be transformed. However, the two additional phases are irrelevant for the os-
cillation probability because they cancel in the quartic product (2.17)19. Therefore,
Dirac and Majorana neutrinos cannot be distinguished by neutrino oscillation mea-
surements which implies that the question whether neutrinos are Dirac or Majorana
particles cannot be answered by neutrino oscillation measurements. Indeed, the dis-
tinct type of Dirac and Majorana neutrinos respectively the likeliness of neutrinos being
of Dirac/Majorana type is far beyond the actual topic of this thesis and for that reason
not studied any further.
With one physical phase in the mixing matrix U , the CP violation quantifying term

in Eqn. (2.24) does not necessarily vanish any more, but can exhibit a deviation
dependent on the mixing matrix as well as the ratio ∆m2

jkL/E. This is similar to the
quark case, where CP violation is believed to be generated by the physical phase in
the quark mixing matrix. The possibility of CP violation in neutrino oscillation is of
interest e.g. on account of the apparent particle-antiparticle asymmetry in the Universe
and is at present much searched for.
Finally, apart from three neutrino mixing, the possibility of active and sterile neu-

trino mixing has to be considered in the general analysis of neutrino oscillation mea-
surement data20. In any case, the discussion of the nature of sterile neutrinos and their
potential impact on neutrino oscillations is out of the scope of this thesis.

19 As can be seen from Eqn. (4.32), the mixing matrix in the Majorana case can be written as
UMαj = UDαje

iϕj . These additional phases cancel in (2.17) [2, p.250].
20 At present, the existence of two additional sterile neutrinos with masses at the eV scale is assumed
in the analysis of neutrino oscillation measurement data, based on the measurement results of the
LSND and MiniBooNE experiment [13].
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5 Neutrino oscillation experiments
5.1 Nomenclature

In general, considering neutrino oscillation experiments, a division into two types is
possible, namely appearance experiments in which the transition probability is mea-
sured, and disappearance experiments in which the survival probability is measured.
Provided that the measured neutrino flavor is absent in the initial beam, sensitivity
to even small mixing angles can be achieved in appearance experiments, while disap-
pearance experiments, not being suited to measure small mixing angles due to statistic
fluctuations, allow for the measurement of large mixing angles.
Moreover, as discussed in Section 2.3, the sensitivity to ∆m2 is determined by the

ratio L/E. For practical reasons, the various kinds of oscillation experiments can be
divided according to their distance L from the neutrino source as shown in Table 5.1,
adopted from Table 7.1 in Ref. [2].
With respect to the production process, another distinction can be made. As for

“man-made” neutrino sources, one can distinguish reactor experiments, which use the
flux of antineutrinos produced by β− decay of heavy fission products in nuclear re-
actions, and accelerator experiments, which use the neutrino flux produced by pion,
muon and kaon decay created by fast protons hitting a target.
With regard to “natural” neutrino sources, the most important are atmospheric

(ATM) and solar (SOL) neutrino experiments. Owing to their specific importance to
neutrino physics, these experiments are discussed in more detail below, based as well
as the above introduction on Ref. [2].

5.2 Solar neutrino measurements
Anachronistically, one could say since the distance Sun-Earth is quite high (∼ 1011 m)
and the energies of detectable solar neutrinos are in a range of some few MeV, so-
lar neutrino measurements allow for a high sensitivity to squared-mass differences
(∆m2 ∼ 10−12 eV2) and are thus crucial for neutrino oscillation research. In addi-
tion, the flux of electron neutrinos produced in the thermonuclear fusion reactions (pp
chain and CNO cycle) in the core of the Sun is extremely large and therefore promising
for experiments. Solar neutrino measurements, moreover, allow to obtain a “real-time”
image of the Sun, especially of the interior of the Sun, being accessible only through
neutrino measurements due to the small cross sections of neutrinos for matter interac-
tions.

Table 5.1: Nomenclature of neutrino oscillation experiments

Naming Distance L Sensitivity to ∆m2

Short BaseLine experiments (SBL) ∼ 10− 103 m ∼ 0.1− 102 eV2

Long BaseLine experiments (LBL) ∼ 103 − 106 m ∼ 10−3 eV2

Very Long-BaseLine experiments (VLB) ∼ 105 − 107 m ∼ 10−4 − 10−5 eV2
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Neutrino oscillation experiments

Historically, the measurement of solar electron neutrinos gave rise to the Solar Neu-
trino Problem (SNP) and was likely one of the catalysts for neutrino oscillation research.
The solar neutrino problem arose when measurements of the solar electron neutrino
flux (e.g. by Homestake, Kamiokande, SAGE) revealed a deficit with respect to the
prediction of the Standard Solar Model (SSM).
Ray Davis’s famous Homestake experiment in 1970 was the first to monitor solar

neutrino flux. The radiochemical experiment was based on the Cl-Ar reaction

νe + 37Cl→ 37Ar + e− (5.1)

which has an energy threshold of Eth = 814 keV and is thus able to monitor only
intermediate and high-energy neutrinos from the pp chain. Such experiments, aiming
at measuring solar (or atmospheric) neutrino flux, need to be positioned underground
in order to be shielded effectively from cosmic radiation background.
Neutrino oscillations were able to give an explanation for the deficit of measured elec-

tron neutrinos relying on the correctness of the SSM. In particular, in the experiments
of Sudbury Neutrino Observatory (SNO), total neutrino flux and electron neutrino flux
could be distinguished, being compatible with both SSM prediction and the (large mix-
ing angle, LMA) neutrino oscillation solution of the SNP [2, p.379-381,389]. The LMA
solution states that the observed neutrino oscillations are caused by matter effects in
the Sun as discussed in Section 4.1. Vacuum oscillations, in contrast, are supposed not
to affect solar electron neutrino oscillations since neither significant seasonal variation
in the oscillation probability has been observed21 nor has the observed oscillation prob-
ability exhibited an energy dependency as implied by the vacuum oscillation formula
(2.16) [2, p.382].
It is believed that by means of the LMA neutrino oscillation solution, the SNP has

been resolved in 2002, based on the data of the SNO experiment. A best-fit of solar
neutrino measurements yields ∆m2 ∼ 8× 10−5 eV2, tan2 ϑ ∼ 0.45 [2, p.389].

5.3 Atmospheric neutrino measurements
Atmospheric neutrinos are created by the interaction of cosmic rays with atomic nuclei
in the upper atmosphere. When cosmic rays, consisting mainly of hadrons (protons),
hit atomic nuclei (essentially nitrogen and oxygen), pions and – at high energies – even
kaons are produced, generating secondary cosmic rays (air showers). These particles,
having a large range of energies, decay subsequently into lighter particles, releasing
atmospheric neutrinos with an energy of 0.5 − 102 GeV. Having a mean free path
of around 1012 m in rock [14], atmospheric neutrinos are not expected to interact
noticeable during their travel through the Earth, so a detector positioned anywhere in
the Earth should not monitor any anomaly.
Measurement data from SuperKamiokande (SK), in particular, has shown a so-called

“up-down anomaly” for muon neutrinos, which means that the measured number of
muon neutrinos from above with path lengths of some 10 km is larger than the one from
below, having path lengths of 1000s of km. Moreover, the measured muon neutrino flux
is in agreement with predictions from Monte Carlo simulations for small ratios L/E,

21 To be precise, no seasonal variation additional to the generic variation ∝ 1/L2 due to surface
correction has been observed.
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Neutrino oscillation experiments

while showing a deficit for large ratios [2, p.420]. For electron neutrinos, however, no
anomaly has been measured.
The measured deficit gives strong indications for flavor oscillations νµ → ντ , which

are able to provide an explanation for the decrease of muon neutrino flux with path
length. For these oscillations, matter effects do not need to be taken into account22

since the interaction of both muon and tau neutrino with matter is the same; only
electron neutrinos sense matter effects due to CC-interactions.
Though the analysis of the data is not trivial, one can determine mixing angle and

squared-mass difference via best-fit, yielding a high probability for maximal mixing,
i.e. sin2 ϑ ∼ 1, and a squared-mass difference of ∆m2 ∼ 2 × 10−3 eV2 [2, p.427].
Especially in respect to neutrino oscillation experiments, the matching of measurement
data from various detectors using different kinds of detection processes is necessary to
allow for definite interpretations, not biased by a specific – maybe not fully understood
– measurement technique.
Hence, the experimental finding ∆m2

SOL � ∆m2
ATM shows the necessity of consid-

ering hierarchic three neutrino mixing as discussed in Section 4.2.

22 This is, however, only valid for two-neutrino mixing [11].
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6 Discussion
Regarding neutrino oscillations, it is an impressive fact that they, though occurring on
a macroscopic scale, can be analyzed by using the framework of quantum mechanics,
even if quantum mechanics usually gives way to classical mechanics in the macroscopic
limit. Neutrino oscillations, being a quantum mechanical interference phenomenon, are
a remarkable exception to that rule, which is strongly related to the very properties
of neutrinos as to their detection: Neutrino oscillations can only be observed if – for a
specified production process – certain general conditions for the detection process (as
to measurement uncertainties) are satisfied.
In the framework of quantum mechanics, the wave packet approach is the most con-

sistent one, respecting the localization of the particles involved as well as (de)coherence
effects. This is not the case for the standard approach, where an oversimplified as-
sumption of definite massive neutrino momenta is outranged by the additional “same
momentum” respectively “same energy” assumption, while the whole derivation is in-
trinsically inconsistent with respect to the concept of propagation of the introduced
massive neutrino states. Nevertheless, the standard oscillation formula is useful for
discussion since it allows to study some general aspects of neutrino oscillations and
emerges in the limit of negligible decoherence effects from the more consistent wave
packet approach. At this point it should not be forgotten to mention that in the above
discussion wave packet spread has been neglected since for relativistic wave packets
such as relevant for neutrinos, the spread is negligible [9].
Admittedly, the reason for an inadequate approach yielding a correct result is not

obvious and can only be understood to be a “fortunate case” where the approxima-
tions of the proper approach yield the same expression as used as starting point for the
standard derivation. In fact, as has been pointed out in Ref. [4], the wave packet ap-
proach allows for the expression obtained in the standard derivation under appropriate
conditions (i.e. the coherence conditions discussed in Section 3.1). For instance, by
first summing over the plane waves with equal momentum/energy but different mass
and afterwards integrating over the whole spectrum, the standard formula is obtained.
Likewise, it is a fact that plane wave neutrinos with definite energy and specific overall
energy spectrum are physically indistinguishable from a wave packet beam having an
energy distribution function whose absolute square is equal to the energy spectrum
mentioned above [4, 15]. This helps to understand why with respect to stationary
sources, i.e. sources which do not exhibit a certain time dependency, the the “equal
energy” approach yields the correct result.
Yet, even the more consistent wave packet approach is limited in its applicability: it

turns out that some aspects of neutrino oscillations (regarding the production/detection
process, consistent normalization) require QFT treatment which is beyond the scope of
this thesis. Being given appropriate neutrino states, however, the QM approach allows
for manageable calculations, particularly with respect to matter effects involving a non-
trivial density profile [4], thus stressing the necessity of studying neutrino oscillations
in the framework of QM.
The vivid picture obtained by imagining a wave packet with “effective shape” prop-

agating through space-time has to be taken with caution since as already discussed,
effective quantities depend on both production and detection, causing a causal in-
consistency of the above picture. Accordingly, the quantum mechanical description of
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neutrino oscillations is not complete, hinging on the correctness of the provided (flavor)
neutrino states which are not accessible to quantum mechanical derivation.
Contrary to the expectation of a fruitful generalization of neutrino oscillations, os-

cillations of charged leptons are not possible because the flavor eigenstates necessarily
coincide with the mass eigenstates: Charged leptons can be distinguished only by
means of their mass (lepton universality), therefore the flavor of a charged lepton is de-
fined by its mass [2, p.317]. Furthermore, a coherent superposition of charged leptons
immediately loses coherence due to the separation of the wave packets, since, owing
to their large mass differences, the group velocities vary considerably. In addition, in
order to observe charged lepton oscillations it must be possible to discriminate coher-
ent superpositions of charged lepton states as well as superpositions of flavor neutrino
states, which cannot be achieved with known (CC) processes [6].
Nonetheless, this does by no means imply that neutrino physics would run out of

questions: Until now, it is not clear yet whether neutrinos have to be regarded as Dirac
particles (for which particle and antiparticle do not coincide) or Majorana particles
(particle and antiparticle are the same). Experiments with neutrinoless double-β-decay
(0νββ) aiming to find whether neutrinos are Majorana or Dirac leptons are still going
on – as well as experiments aiming to determine the (effective) mass of the known
flavor neutrinos. Moreover, it is not clear whether there is firm experimental evidence
for sterile neutrinos, i.e. neutral, massive fermions which mix with the active neutrinos
but do not participate in weak interaction, having been introduced by the see-saw
model in order to explain the smallness of neutrino masses. If there is, one faces the
question which consequences this implies for astrophysics and cosmology, respectively.
The above questions show that neutrino physics faces vital challenges, having been –

despite the fact that studying neutrinos has ever since been a challenge to experimental
physics – boosted by the discovery of neutrino oscillations. Neutrino oscillations have
given rise to reasonable doubts about the definitiveness of the present Standard Model
and might through an accurate analysis of further experimental measurements give
some hints on how the former can be appropriately revised.
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A Calculations
A.1 Transition probability for two neutrino mixing

Specifying the mixing matrix in Eqn. (2.13) by the real mixing matrix (2.15) and using
the convention ∆m2 ≡ m2

2 −m2
1, M

jk
αβ = UαjUβjUαkUβk, one finds for α 6= β:

Pνα→νβ(L,E) =
∑
j>k

M jk
αβ exp

(
−i∆m

2L

2E

)
+
∑
j<k

M jk
αβ exp

(
i
∆m2L

2E

)
+
∑
j=k

M jk
αβ

= − cos2 ϑ sin2 ϑ

[
exp

(
−i∆m

2L

2E

)
+ exp

(
i
∆m2L

2E

)]
+ 2 cos2 ϑ sin2 ϑ

= 2 cos2 ϑ sin2 ϑ

[
1− cos

(
∆m2L

2E

)]

= sin2 2ϑ sin2
(

∆m2L

4E

)
. (A.1)

For the calculation of the survival probability in the case of two neutrino mixing in
matter, the following relation is worth being kept in mind [12]:

cos2 ϑ cos2 ϑiM + sin2 ϑ sin2 ϑiM = 1
2(1 + cos 2ϑ) cos2 ϑiM + 1

2(1− cos 2ϑ) sin2 ϑiM

= 1
2
[
cos2 ϑiM + sin2 ϑiM + cos 2ϑ(cos2 ϑiM − sin2 ϑiM)

]
= 1

2
[
1 + cos 2ϑ cos 2ϑiM

]
. (A.2)

A.2 A convenient notation of the oscillation probability
As discussed in Section 2.1, it is often convenient so split the oscillation probability
(2.13) into the real and imaginary parts of the mixing matrix components. To main-
tain clarity, we introduce the notation M jk

αβ = U∗αjUβjUαkU
∗
βk, Φjk = ∆m2

jkL/2E. By
splitting the summation and keeping in mind Re[a] = (a+ a∗)/2, one finds∑

j,k

M jk
αβe
−iΦjk =

∑
j=k

M jk
αβ +

∑
j>k

M jk
αβe
−iΦjk +

∑
j<k

M jk
αβe
−iΦjk

=
∑
j

|Uαj|2|Uβj|2 +
∑
j>k

[
M jk

αβe
−iΦjk +M jk∗

αβ e
iΦjk

]
=
∑
j

|Uαj|2|Uβj|2 + 2
∑
j>k

Re
[
M jk

αβe
−iΦjk

]
. (A.3)

Multiplying the unitarity relation (2.4) with its complex conjugate, we obtain

δαβ =
∑
j,k

U∗αjUβjUαkU
∗
βk

=
∑
j

|Uαj|2|Uβj|2 + 2
∑
j>k

Re[M jk
αβ], (A.4)
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which can be used to rewrite (2.13) with the help of (A.3) and (A.4):

Pνα→νβ(L,E) = δαβ −
∑
j>k

[
M jk

αβ +M jk∗
αβ

]
+
∑
j>k

[
M jk

αβe
−iΦjk +M jk∗

αβ e
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]
= δαβ −

∑
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[
M jk
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αβ

]
+ 1

2
∑
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) (
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2
∑
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jk∗
αβ

) (
e−iΦjk − eiΦjk

)]
= δαβ − 2

∑
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1
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jk∗
αβ

) (
eiΦjk − e−iΦjk

)
= δαβ − 2

∑
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]
(1− cos Φjk) + 2

∑
j>k

Im
[
M jk

αβ

]
sin Φjk. (A.5)

A.3 Gaussian average of the cosine function
For a Gaussian distribution, the average (2.32) can be calculated analytically. Substi-
tuting

x = L

E
, y± = x−

(
〈x〉 ± i∆m

2

2 σ2
L/E

)
, λ = 1

2σ2
L/E

, (A.6)

and respecting ∫ ∞
−∞

e−λx
2dx =

√
π

λ
, (A.7)

one finds〈
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 . (A.8)
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A.4 Via Gaussian integrals to the oscillation probability
It is one of the main benefits of functions with Gaussian shape that many integrals
can be carried out analytically. In particular, for the integral over dp3 in (3.13) one
obtains:

~q = (~p− ~̃pj), ~q′ = ~q − 2iσ2
p(~L− ~vjT ), λ = 1

4σ2
p

,

∫
d3p e

i(~p−~̃pj)·(~L−~vjT )−
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4σ2
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∫
d3q exp

[
− ~q2

4σ2
p

+ i~q · (~L− ~vjT )
]

=
∫
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p(~L− ~vjT )2
]

=
(
π

λ

)3/2
exp

(~L− ~vjT )2

4σ2
x

 . (A.9)

In Eqn. (A.9), the uncertainty relation σxσp = 1
2 was used.

For the calculation of the integral in Eqn. (3.15) we ignore the irrelevant mixing
matrix components and define the auxiliary variables

~∆p = ~̃pj − ~̃pk, ∆E = Ẽj − Ẽk, λ = 1
4σ2

x

, v2
jk = v2

j + v2
k,

M = ei
~∆p·~L−2λL2
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(~vj + ~vk) · ~L
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− 2σ2
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∆E

v2
jk

 , (A.10)

by whose help we obtain∫
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 , (A.11)

where the uncertainty relation as well as[
(~vj + ~vk) · ~L

]2
= 2

[
(~vj · ~L)2 + (~vk · ~L)2

]
−
[
(~vj − ~vk) · ~L

]2
(A.12)

was used.
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A.5 A more general approach to neutrino oscillations
To simplify further calculations, it is convenient to rewrite the effective shape factor
Gj(L − vjT ). This can be done by inserting the shape factors in Eqns. (3.31), (3.34)
into the effective one in Eqn. (3.36), using the definition of the Dirac delta function

1√
2π

∫ ∞
−∞

dx e−ix(p−p0) =
√

2π δ(p− p0), (A.13)

and substituting p′ = p̃− pj + p′j:

Gj(L− vjT ) =
∫

dx gPj (x− vjT )gD∗j (x− L)ei(pj−p′j)(x−L)

= 1
2π

∫
dx
∫
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∫
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= 1
2π

∫
dx
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∫
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′
e−ipvjT

=
∫

dp fPj (p)fD∗j (p+ δj)eip(L−vjT ). (A.14)

In Eqn. (A.14), δj = pj−p′j denotes the difference of the mean momenta of production
and detection and in the last step, the integration variable has been renamed.
The integral Ijk(L) in Eqn. (3.39) can be calculated by substituting

p1 = p, p2 = vj
vk
p′ + ∆Ejk

vk
≡ rp′ + ∆Ejk

vk
, (A.15)

and inserting the approximated phase (3.41) into Eqn. (3.39):

Ijk(L) =
∫
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dp1

∫
dp2 f

P
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× e
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jk eip(1−r)Le−i
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2p L

{
e
−iL∆E

(
vj−vk
2vgvk
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. (A.16)

Here, MPD
jk stands for the shape factors MPD

jk = fPj (p)fD∗j (p+ δj)fP∗k (rp+ ∆E/vk)
×fDk (rp+ ∆E/vk + δk), r ≡ vj/vk, and the definition of the Dirac delta function (A.13)
has been used in the time integration. The indices jk of energy and squared-mass
difference have been omitted for clarity. At first order in ∆m2, the term in the curly
brackets is equal to one, since both ∆E and (vj − vk)/(2vgvk) are of O(∆m2) (see e.g.
Eqn. (3.19), Ref. [4]).

IV
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