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Thomas Bäckdahl1,a) and Juan A. Valiente Kroon2,b)

1Max Planck Institut für Gravitationsphysik, Albert Einstein Institut, Am Mühlenberg 1,
14476 Golm, Germany
2School of Mathematical Sciences, Queen Mary, University of London, Mile End Road,
London E1 4NS, United Kingdom

(Received 1 December 2011; accepted 23 March 2012; published online 19 April 2012)

Given a compact domain of a three-dimensional hypersurface on a vacuum spacetime,
a scalar (the “non-Kerrness”) is constructed by solving a Dirichlet problem for a
second order elliptic system. If such scalar vanishes, and a set of conditions are
satisfied at a point, then the domain of dependence of the compact domain is locally
isometric to a portion of a member of the Kerr family of solutions to the Einstein
field equations. This construction is expected to be of relevance in the analysis
of numerical simulations of black hole spacetimes. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.3702569]

I. INTRODUCTION

The present article is concerned with the problem of measuring how different a given initial data
set for the Einstein vacuum field equations is from a Kerr initial data set. In Refs. 1, 2, and 4, this
problem has been addressed by the construction of a geometric invariant—the non-Kerrness—on
hypersurfaces with at least one asymptotic end. This setting, although convenient for theoretical
discussions, is not ideal for numerical considerations where very often one needs to make use
of bounded computational domains on a hypersurface. The purpose of this article is to provide a
construction of non-Kerrness on bounded domains.

The construction of the non-Kerrness given in Refs. 1, 2, and 4, is based on a very strong
property of the Kerr spacetime: the existence of a Killing-Yano tensor. A Killing-Yano tensor is an
antisymmetric, rank 2 tensor Yμν satisfying the equation

∇(μYν)λ = 0.

Let ζμ ≡ εμ
νλρ∇νYλρ denote the codifferential of Yμν . If Yμν is a Killing-Yano tensor, then ζμ

satisfies the Killing vector equation. As discussed in Ref. 9, the theory of Killing-Yano tensors can
be conveniently reformulated in terms of the existence of a valence 2 Killing spinor, κAB = κ (AB),
satisfying the equation

∇A′(AκBC) = 0. (1)

The spinorial analogue of the codifferential ζμ is the spinor ξAA′ ≡ ∇A′ BκAB . In general, if κAB

satisfies the Killing spinor equation, then ξAA′ is a complex Killing vector. In the case of the Kerr
spacetime, the real and imaginary parts of this vector are proportional—and by multiplying with a
complex constant, the imaginary part can be set to zero. In general, the existence of a Killing-Yano
tensor is equivalent to existence of a Killing spinor κAB such that ξAA′ is real.

Killing spinors (or alternatively, Killing-Yano tensors) are useful in the characterization of the
Kerr spacetime as the existence of one of these objects severely restricts the algebraic type of the
curvature of the spacetime. Furthermore, the implied existence of a real Killing vector allows to make
contact with the theory of the Mars-Simon tensor—see Refs. 5 and 6. As a result of this analysis,
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it is possible to provide a purely local characterization of the Kerr spacetime—see Theorem 1 in
Ref. 6. Alternatively, one can obtain a somewhat simpler characterization if one combines local
and global requirements: the existence of a stationary, asymptotically flat region with non-vanishing
mass—see Theorem 2 in Ref. 6. Precisely, this result was used in the constructions of non-Kerrness
on non-bounded 3-manifolds described in Refs. 1, 2, and 4.

The construction of the non-Kerrness on bounded domains discussed in the present article makes
use of the local spacetime characterization of the Kerr spacetime given in Theorem 1 of Ref. 6
to show that if the non-Kerrness vanishes on some three-dimensional bounded domain, then the
initial data prescribed on that region is locally isometric to data for a Kerr spacetime. We expect
that this result will be of utility to assess in a quantitative way how a given numerically constructed
dynamical black hole spacetime evolves towards a stationary state described by the Kerr spacetime.
In the process, it will be shown that the general theory of Killing spinor initial data sets used in
Refs. 1, 2, and 4 can be simplified.

A. Overview of the article

The content of this article is structured as follows. Section II provides a summary of key
properties of spacetimes with Killing spinors. It also contains a reformulation in terms of spinors of
a local characterization of the Kerr spacetime by Mars. Finally, a brief discussion of the notion of
Killing spinor candidates is provided. Section III provides a brief summary of the theory of the Killing
spinor initial data equations which encode the existence of a Killing vector at the level of initial data.
Section IV gives a brief discussion of the notion of approximate Killing spinors, the approximate
Killing spinor equations, and the elliptic theory required to discuss the existence of solutions to this
equation with Dirichlet boundary conditions. Section V provides a result regarding the realness of
the Killing vector constructed from the Killing spinor, which will be required in our subsequent
discussion. Section VI provides our main result: a theorem which characterizes Kerr initial data on
a compact domain of a three-dimensional manifold using the notion of approximate Killing spinors.
Finally, Sec. VII provides some concluding remarks. There is an appendix providing a proof of a
theorem discussed in Sec. III, which tells that one of the Killing spinor initial data equations can be
omitted.

B. Notation and conventions

All throughout, (M, gμν) will denote a smooth, orientable, and time orientable globally hy-
perbolic vacuum spacetime. Here, and in what follows, μ, ν, · · · denote abstract four-dimensional
tensor indices. The metric gμν will be taken to have signature ( + , − , − , − ). Let ∇μ denote the
Levi-Civita connection of gμν . The sign of the Riemann tensor will be given by the equation

∇μ∇νξζ − ∇ν∇μξζ = Rνμζ
ηξη.

Spinors will be used systematically. We follow the conventions of Ref. 8. In particular, A, B, . . . will
denote abstract spinorial indices. Tensors and their spinorial counterparts are related by means of
the solder form σμ

AA′
satisfying gμν = σ AA′

μ σ B B ′
ν εAB ε̄A′ B ′ , where εAB is the antisymmetric spinor

and ε̄A′ B ′ its complex conjugate copy. One has, for example, that ξμ = σμ
AA′

ξAA′ . Let ∇AA′ denote
the spinorial counterpart of the spacetime connection ∇μ.

II. A LOCAL SPACETIME CHARACTERIZATION OF THE KERR SPACETIME

Given a spacetime (M, gνν), let Cμνλρ denote the Weyl tensor of the metric gμν . Let
CAA′ B B ′CC ′ DD′ denote the spinorial counterpart of Cμνλρ . There exists a completely symmetric
spinor �ABCD such that

CAA′ B B ′CC ′ DD′ = �ABC D ε̄A′ B ′ ε̄C ′ D′ + �̄A′ B ′C ′ D′εABεC D.
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In terms of the spinor �ABCD, the Bianchi identity can be rewritten as

∇Q
A′�ABC Q = 0. (2)

We recall that the two classical invariants of the Weyl tensor are given by

I ≡ 1
2�ABC D� ABC D,

J ≡ 1
6�ABC D�C DE F�E F

AB .

A. Properties of spacetimes with Killing spinors

In what follows it is assumed one has a region N of the spacetime (M, gμν) where one has a
solution κAB of the Killing spinor equation, Eq. (1). It is then well known that the spacetime must
be of Petrov type D, N, or O at every point where the Killing spinor exists—see, e.g., Ref. 11. In
the sequel, we will concentrate our attention to the case when (M, gμν) is of Petrov type D. In such
case, there exist spinors αA, βA, αQβQ = 1, such that

�ABC D = −ψα(AαAβCβD), (3)

where

ψ ≡ 18J /I. (4)

The sign convention used in this equation differs from the one used in Refs. 1, 2, and 4. The reason
behind this choice is to avoid potential problems with the choice of branch of roots of complex
quantities. The valence 2 Killing spinor is then given by

κAB = ψ−1/3α(AβB), (5)

where the branch with minimal absolute value of the complex argument is used. The conventions
used gives a real and positive ψ for the Schwarzschild spacetime.

As in the introduction, let

ξAA′ ≡ ∇Q
A′κAQ .

Then ξAA′ is (in general) a complex solution to Killing equation

∇AA′ξB B ′ + ∇B B ′ξAA′ = 0.

If ξAA′ is real, we define the Killing form of ξAA′ by

FAA′ B B ′ ≡ 1
2 (∇AA′ξB B ′ − ∇B B ′ξAA′)

= ∇AA′ξB B ′ .

Vacuum spacetimes admitting a Killing spinor such that ξAA′ is real will be said to belong to the
generalized Kerr-NUT class—see Refs. 1 and 2. In the rest of this section, it is assumed that (M, gμν)
is a generalized Kerr-NUT spacetime.

As a consequence of the symmetries of FAA′ B B ′ , there exists a symmetric, valence 2 spinor φAB

such that

FAA′ B B ′ = φAB ε̄A′ B ′ + φ̄A′ B ′εAB,

φAB ≡ 1
2 FAQ′ B

Q′
.

Using (5), one finds the following expressions for ξAA′ , and φAB in terms of ψ and the principal
spinors:

ξAA′ = 1
2ψ−4/3 (

αAβQ + βAαQ
) ∇Q A′ψ,

φAB = − 3
4�ABC DκC D = − 1

4ψ2/3α(AβB).
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The above expression for the spinor φAB is obtained using the Killing spinor equation and by
commutation of covariant derivatives.

For later use, we introduce the norm of the Killing form, the norm of the Killing vector and the
twist 1-form via

� ≡ φP QφP Q, λ ≡ ξAA′ξ AA′
,

ωAA′ ≡ εAA′ B B ′CC ′ DD′ξ B B ′∇CC ′
ξ DD′

,

where

εAA′ B B ′CC ′ DD′ ≡ i (εACεB D ε̄A′ D′ ε̄B ′C ′ − εADεBC ε̄A′C ′ ε̄B ′ D′)

is the spinorial counterpart of the completely antisymmetric volume form, εμνλρ , of gμν . Locally,
ωAA′ is exact, so that there exists ω (the twist potential) such that ωAA′ = ∇AA′ω. Using λ and ω, we
define the Ernst potential, σ , by

σ ≡ λ + iω.

Using expressions (3) and (5), one readily finds the following expressions for �, λ and ωAA′ :

� = − 1
32ψ4/3, (6a)

λ = − 1
4ψ−8/3∇AA′ψ∇ AA′

ψ, (6b)

ωAA′ = Im(4φA
BξB A′), (6c)

In order to obtain an expression for the Ernst potential in terms of ψ , we notice the identities

∇AA′(ψ1/3) = − 16
3 φA

BξB A′, (7a)

∇AA′λ = Re(4φA
BξB A′). (7b)

These identities follow from the Bianchi identity (2), the Killing spinor equation and commuting
derivatives as necessary. One concludes that

∇AA′λ + iωAA′ = − 3
4∇AA′ψ1/3.

The latter can be integrated to give

σ − c = − 3
4ψ1/3, (8)

with c a complex constant. The real part of c is not arbitrary: using Eqs. (7a) and (7b), one obtains
that

Re(c) = λ + 3
4 Re(ψ1/3). (9)

B. A local characterization of Kerr

The analysis of the so-called Mars-Simon tensor presented in Refs. 5 and 6 gives rise to a
local characterization of the Kerr spacetime among the class of spacetimes endowed with a Killing
vector. This characterization involves the Weyl tensor, the Killing form and the Ernst potential—see
Theorem 1 in Ref. 6. For the convenience of our subsequent analysis, here we present a slight
generalization of this result in the language of spinors.

Theorem 1 (Ref. 6): Let (M, gμν) be a smooth, vacuum spacetime admitting a Killing vector
ξμ. Let N ⊂ M be a non-empty open subset satisfying:
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(i) There is a point p ∈ N where � �= 0.
(ii) The Killing form and the Weyl tensor are related by

�ABC D = �φ(ABφC D),

where � is a complex scalar function.

Then there exist two complex constants c̃ and k such that

� = − 12

c̃ − σ
, � = −k(c̃ − σ )4, on N .

If, in addition, Re(c̃) > 0 and k = Re(k) > 0 then (N , gμν) is locally isometric to a portion of the
Kerr spacetime.

Remark 1: This result follows from—and is equivalent to—Theorem 1 in Ref. 6 by introducing
a different normalization in the Killing vector and exploiting the fact that ω is defined only up to an
additive constant.13

Remark 2: As discussed in Ref. 6, it follows from the previous result that the Kerr spacetime is
everywhere strictly of type D. In particular, this implies that ψ �= 0.

C. Killing spinor candidates

The construction of non-Kerrness on a bounded domain requires the notion of a Killing spinor
candidate introduced in Ref. 4:

Definition 2: Let (M, gμν) be a vacuum spacetime. Consider a point p ∈ M for which I �= 0,
J �= 0, and a symmetric spinor ζ AB satisfying at p,

ζAB �= 0, ψ−1�P Q RSζ
P Qζ RS + 1

6ζP Qζ P Q �= 0.

The symmetric spinor given by

κ̆AB = ψ−1/3�−1/2
(−ψ−1�AB P Qζ P Q − 1

6ζAB
)
, (10)

with

� ≡ −ψ−1�P Q RSζ
P Qζ RS − 1

6ζP Qζ P Q,

will be called the ζ AB-Killing spinor candidate at p. The scalar ψ is obtained from the Weyl spinor
�ABCD using formula (4).

Formula (10) can be evaluated for any vacuum spacetime (M, gμν) satisfying the explicit
conditions in Definition 2, that is, it is not restricted to a special Petrov type. The name Killing
spinor candidate is justified by the following result also proved in Ref. 4:

Proposition 3: Let (M, gμν) be a vacuum spacetime. If on N ⊂ M, the spacetime is of Petrov
type D and ζ AB is a symmetric spinor satisfying

� = ψ−1�P Q RSζ
P Qζ RS + 1

6ζP Qζ P Q �= 0,

ζAB �= 0 on N ,

and N contains no branch cuts of ψ1/3 and �1/2, then

κAB = ψ−1/3�−1/2
(−ψ−1�AB P Qζ P Q − 1

6ζAB
)

(11)

is a Killing spinor on N . The formula (11) is independent of the choice of ζ AB.
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Remark. Different choices of branch cuts in ψ1/3 and �1/2 only change the right hand side of (11)
by a constant complex phase. The assumption on the no existence of branch cuts of ψ1/3 and �1/2 is
included to ensure the smooth existence of derivatives of the various fields—see also Assumption 7
below.

III. THE KILLING SPINOR INITIAL DATA EQUATIONS

Key for the construction of the non-Kerrness discussed in Refs. 1,2, and 4, is the idea of how to
encode that the development of an initial data set (S, hi j , Ki j ) admits a solution to the Killing spinor
equation, Eq. (1). This question can be addressed by means of the space-spinor decomposition of
the Killing spinor equation, Eq. (1). For a more detailed description see Ref. 2.

In order to perform a space-spinor decomposition of Eq. (1), it is convenient to define the spinors

ξABC D ≡ ∇(ABκC D), ξAB ≡ 3
2∇(A

DκB)D, ξ ≡ ∇ P QκP Q, (12)

where ∇AB denotes the spinorial version of the Sen connection associated to the pair (hij, Kij) of
intrinsic metric and extrinsic curvature. It can be expressed in terms of the spinorial counterpart,
DAB of the Levi-Civita connection of the 3-metric hij, and the spinorial version, KABCD = K(AB)(CD)

= KCDAB, of the second fundamental form Kij. For example, given a valence 1 spinor πA, one has
that

∇ABπC = DABπC + 1
2 K ABC

QπQ,

with the obvious generalizations to higher valence spinors. For expressions involving the commuta-
tors, we refer to the paper.2 The Hermitian conjugate of πA is defined via

π̂A ≡ τA
E ′

π̄E ′ ,

where τ AA′
is the normal to S with length

√
2. The Hermitian conjugate can be extended to higher

valence symmetric spinors in the obvious way. It can be verified that ξABC D ξ̂ ABC D ≥ 0.
Using the notation described in the previous paragraph, we find that the space-spinor decompo-

sition of Eq. (1) renders a set of three conditions intrinsic to the hypersurface S:

ξABC D = 0, (13a)

�(ABC
FκD)F = 0, (13b)

3κ(A
E∇B

F�C D)E F + �(ABC
FξD)F = 0, (13c)

where the spinor �ABCD denotes, in a slight abuse of notation, the restriction to the hypersurface
S of the self-dual Weyl spinor. For the ease of notation, a similar convention will be adopted for
the restriction of other spacetime fields. Whether one is considering the field on spacetime or its
restriction to S will always be clear from the context. Crucially, the spinor �ABCD in Eqs. (13b) and
(13c) can be written entirely in terms of initial data quantities via the relations,

�ABC D = E ABC D + iBABC D,

with

E ABC D = − r(ABC D) + 1
2�(AB

P Q�C D)P Q − 1
6�ABC D K ,

BABC D = − i DQ
(A�BC D)Q,

and where �ABCD ≡ K(ABCD), K ≡ KPQ
PQ. Furthermore, the spinor rABCD is the Ricci tensor, rij, of

the 3-metric hij.
In the Appendix, it is shown that the second algebraic condition (13c) is, in fact, redundant and

a consequence of the conditions (13a) and (13b). In particular, it follows:
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Theorem 4: Let Eqs. (13a) and (13b) be satisfied for a symmetric spinor κ̌AB on an open
set U ⊂ S. Then the Killing spinor equation, Eq. (1) has a solution, κAB, on the future domain of
dependence D+(U).

Remark. This means that the term I2 in the invariants of Refs. 1, 2, and 4 can be omitted.

IV. APPROXIMATE KILLING SPINORS

A. The approximate Killing spinor equation

The spatial Killing spinor equation, Eq. (13a) can be regarded as a (complex) generalization of
the conformal Killing vector equation. As in the case of the conformal Killing equation, Eq. (13a)
is clearly overdetermined. However, one can construct a generalization of the equation which under
suitable circumstances can always be expected to have a solution. One can do this by composing the
operator in (13a) with its formal adjoint—see Ref. 1. This procedure renders the equation

LκC D ≡ ∇ AB∇(ABκC D) − �AB F
(A∇|DF |κB)C − �AB F

(A∇B)FκC D = 0, (14)

which will be called the approximate Killing spinor equation. One has the following result proved
in Ref. 2:

Lemma 5: The operator L defined by the left hand side of Eq. (14) is a formally self-adjoint
elliptic operator.

In order to discuss the solvability of Eq. (14) on a bounded domain,U ⊂ S, one has to supplement
it with appropriate boundary conditions. On ∂U , we will consider the homogeneous Dirichlet operator
B given by

Bu(y) = u(y), y ∈ ∂S.

The combined operator (L, B) satisfies the so-called Lopatinski-Shapiro compatibility conditions—
see Ref. 12 for detailed definitions and discussion. Thus, (L, B) is L-elliptic—see again,
Theorem 10.7 of Ref. 12. Moreover, one has the following theorem—see also Ref. 7.

Theorem 6: Let L denote a smooth second order homogeneous elliptic operator on U . Fur-
thermore, let ∂U be smooth and let B denote the Dirichlet boundary operator. Then for s ≥ 2 the
map

(L, B) : H s(U) → H s−2(U) × H s−1/2(∂U)

is Fredholm. Furthermore, the boundary value problem

Lu(x) = f (x), f ∈ H 0(U), x ∈ U ,

u(y) = g(y), g ∈ H 0(∂U), y ∈ ∂U ,

has a solution u ∈ H 2(U) if ∫
U

f · νdμ = 0,

for all ν ∈ H 2(U) such that

L∗ν(x) = 0, x ∈ U ,

ν(y) = 0, y ∈ ∂U .

Remark 1. In the previous Theorem, the action of B on u is to be understood in the trace
sense—see Ref. 12.

Remark 2: If L has smooth coefficients and Lu = 0, then it follows from Weyl’s Lemma—see,
e.g., Ref. 12—that if a solution to the boundary value problem exists and the boundary data is
smooth, then the solution must be, in fact, smooth—this is the so-called elliptic regularity.
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In what follows let nAB = n(AB) denote the spinorial counterpart of the inward pointing normal
to ∂U . As a consequence of our signature conventions, one has that nPQnPQ = − 1. Theorem 6 will
be used to establish the existence of solutions to the approximate Killing spinor equation, Eq. (14)
with Dirichlet boundary data given by the nAB-Killing spinor candidate. In order to ensure that the
Killing spinor candidate can be constructed on ∂U , we define the set

Q ≡ {z ∈ C | z = �(p), p ∈ ∂U},
where we have chosen ζ AB = nAB in the function �. We make the following assumption:

Assumption 7: The initial data set (S, hi j , Ki j ) and the compact set U are such that I �= 0,
J �= 0 on ∂U and that � is a smooth function over ∂U satisfying

(i) 0 �∈ Q,
(ii) Q does not encircle the point z = 0,

when we choose ζ AB as the inward pointing normal to ∂U .

Remarks: As a consequence of this assumption one can choose a cut of the square root function
on the complex plane such that �1/2(p) is smooth for all p ∈ ∂U . Notice that the nAB-Killing spinor
candidate is only defined at ∂U . The assumptions I �= 0, J �= 0 are justified on the basis that we
are mainly interested in discussing configurations close to Kerr initial data—for which ψ �= 0.

One has the following result:

Proposition 8: Let (S, hi j , Ki j ) be an initial data set for the Einstein vacuum field equations.
Furthermore, let U ⊂ S be a compact subset with boundary ∂S satisfying Assumption 7. Then,
there exists a unique smooth solution, κAB, to the approximate Killing spinor equation, Eq. (14) with
boundary value given by the nAB-Killing spinor candidate given pointwise by Eq. (10) on ∂U .

Proof: The proof of this result follows directly from the second part of Theorem 6. Notice that
as the equation is homogeneous, there is no potential obstruction to the existence of solutions and
one does not need to verify the triviality of the Kernel of the adjoint operator as it is in the case with
asymptotically Euclidean ends—see Refs. 1, 2, and 4. �
V. REALITY OF THE KILLING VECTOR

As discussed in the Introduction, the existence of a Killing spinor is not enough to single out
the generalized Kerr-NUT family from the type D solutions. We also need that the Killing vector
constructed from the Killing spinor is real. This section provides some tools to determine that.

A. Imaginary part of the Killing vector data

In what follows, let κAB solve the Killing spinor equation, Eq. (1) in a spacetime domain D, and
let ξ and ξAB be defined as in (12). In this section, we only study what happens in the domain D. A
computation using the suite xAct for MATHEMATICA starting from Eqs. (13a)–(13c) shows that

DABIm(ξ AB) = − 1
2 Im(ξ )K , (15a)

D(ABIm(ξC D)) = − 1
2 Im(ξ )�ABC D. (15b)

This can be seen by using Eqs. (18a) and (18b) in Ref. 2 and splitting into real and imaginary parts.
Equation (1) implies ∇κAB = − 2

3ξAB , where ∇ denotes the normal derivative τ AA′∇AA′ . Commuting
derivatives and simplifying one obtains

∇Im(ξ ) = Im(ξ AB)K AB, (16a)

∇Im(ξAB) = − 1
2 Im(ξ )K AB + 1

3 Im(ξAB)K + �ABC DIm(ξC D) − DABIm(ξ ) − Im(ξ(A
C )K B)C ,

(16b)
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where KAB is the acceleration vector. For more details about the derivation see Eqs. (32b) and (32c)
in Ref. 2 and their derivations. Making a space spinor split of ξAA′ = ∇B

A′κAB and using Eq. (1),
we find

Im(ξAA′) = 1
2 Im(ξ )τAA′ − Im(ξAB)τ B

A′ .

After differentiating once more, making a further space spinor split, and using Eqs. (15a), (15b),
(16a), and (16b), we have:

Lemma 9: Let κAB solve the Killing spinor equation, Eq. (1) in a spacetime domain D. Assume
that

Im(ξ ) = 0, Im(ξAB) = 0, DABIm(ξ ) = 0, D(A
C Im(ξB)C ) = 0, (17)

at a point p ∈ D. Then Im(ξAA′) = 0 and ∇AA′Im(ξB B ′) = 0 at p.

VI. THE NON-KERRNESS INVARIANT

The approximate Killing spinor κAB obtained in Proposition 8 will now be used, in the spirit
of Ref. 1, to construct a geometric invariant measuring the non-Kerrness of the initial data on the
compact set U . More precisely, we define

I ≡
∫
U

∇(ABκC D)
̂∇ ABκC Ddμ +

∫
U

�(ABC
PκD)P

̂� ABC Qκ D
Qdμ. (18)

A. The main result

The main result of our analysis is the following theorem:

Theorem 10: Let (S, hi j , Ki j ) be an initial data set for the Einstein vacuum field equations, and
let U ⊂ S be a compact connected subset with boundary ∂U satisfying Assumption 7. Let I be as
defined by Eq. (18) where κAB is given as the only solution to Eq. (14) with boundary behaviour
given by the nAB-Killing spinor candidate κ̆AB where nAB is the inward pointing normal to ∂U . If

(i) I = 0,
(ii) there exists a point on U for which

Im(ξ ) = 0, Im(ξAB) = 0, DABIm(ξ ) = 0, D(A
C Im(ξB)C ) = 0, (19)

then the future domain of dependence, D+(U), of U is locally isometric to a subset of a generalized
Kerr-NUT spacetime. If, in addition,
(iii) there exists a point on U for which � �= 0,
(iv) there exists a point on U for which

λ + 3
4 Re(ψ1/3) > 0, (20)

then D+(U) is locally isometric to a portion of a Kerr spacetime. Conversely, on a compact subset
U ⊂ S of a Kerr initial data set, (S, hi j , Ki j ), the properties (i), (ii), (iii), and (iv) are satisfied.

Remark 1: If D+(U) is locally isometric to a portion of a Kerr spacetime, the conditions (ii),
(iii), and (iv) are satisfied on every point. Hence, the choice of which point to check the conditions
in, is not important.

Remark 2: If U is not connected, the conditions (ii), (iii), and (iv) needs to be checked for each
connected component of U .

Remark 3: The conditions (iii) and (iv) can be replaced by an asymptotic flatness condition.
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Proof: If I = 0, then it follows from our smoothness assumptions that Eqs. (13a) and (13b) are
satisfied on U . Hence, from Theorem 4, it follows that D+(U) will contain a Killing spinor κAB.
Then ξAA′ is the spinor counterpart of a (possibly complex) Killing vector. Now, using assumption
(ii) together with Lemma 9 gives Im(ξAA′) = 0 and ∇AA′Im(ξB B ′) = 0 at a point. Using a standard
result about Killing spinors (see Appendix C.3 in Ref. 10), one concludes that Im(ξ ) = Im(ξAB)
= 0 everywhere on D+(U) so that ξAA′ is, in fact, real. Thus, D+(U) is locally isometric to a portion
of a generalized Kerr-NUT spacetime.

As in the main text, let φAB denote the spinorial counterpart of the Killing form for of ξAA′ .
From the discussion in Subsection II A, one concludes that

�ABC D = �φ(ABφC D),

for some function � . Now, if � �= 0 on U , then using Theorem 1, one has that

� = − 12

c̃ − σ
, � = −k(c̃ − σ )4,

for some (possibly complex) constants c̃ and k. Using formulae (8) and (6a), one can identify the
constants c and c̃ and set k = 8

81 . Evaluating c at the point where (20) holds, one obtains that Re(c)
> 0. Thus, the hypothesis of Theorem 1 hold and one concludes that D+(U) is locally isometric to
a portion of the Kerr spacetime.

Now, given a compact subsetU ⊂ S of a Kerr initial data set, (S, hi j , Ki j ), one knows there exist
a spinor κAB for which the spatial Killing spinor equation, Eq. (13a), and Eq. (13b) are satisfied. This
spinor coincides at ∂U (up to an irrelevant constant numerical factor) with the nAB-Killing spinor
candidate. Thus, by uniqueness of the elliptic problem (14), the approximate Killing spinor obtained
from solving the equation and κAB coincide (again, up to an irrelevant numerical factor) and one has
I = 0 and (i) is satisfied. As κAB satisfies the spatial Killing spinor equations, it follows from the
general theory of Ref. 2 that (ξ , ξAB) is a Killing vector initial data set. For Kerr this data corresponds
to the real stationary Killing vector, thus (ii) is satisfied. Now, as ψ �= 0 for the Kerr spacetime, one
has from Eq. (6a) that � �= 0 and thus (iii) holds. Finally, an explicit computation with the Kerr
spacetime shows that (20) holds for any point of the Kerr spacetime—hence one obtains (iv). �
VII. CONCLUSIONS AND DISCUSSION

In this paper, we have devised a way to measure the deviation from Kerr initial data for bounded
domains. The main result is presented in Theorem 10. In the previous papers,1, 2, 4 a similar result
was obtained for cases where the computational domain reached spatial infinity. For such cases, the
asymptotic behaviour of the approximate Killing spinor could be specified in a way that helped us to
exclude all other Petrov type D solutions. Therefore, we could conclude that the data was Kerr data
if and only if I = 0. As the present paper deals with bounded domains, we constructed the boundary
data for the approximate Killing spinor from the curvature. The drawback is that this gives I = 0 for
all type D solutions. Therefore, one requires conditions (ii), (iii), and (iv) in Theorem 10 to single
out the Kerr solution. An effort was put into formulating the conditions so they can be verified at
a single arbitrarily chosen point of the computational domain. Furthermore, we have shown that a
part of the invariant constructed in Refs. 1,2, and 4 can be omitted in the case of a bounded domain
as well the unbounded case.

The results of this paper can be used to numerically evaluate how much any slice of a spacetime
deviates from Kerr data. This gives a tool to quantify decay towards Kerr data for a numerically
evolved spacetime. A project along these lines have been initiated.
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APPENDIX: REDUNDANCY OF THE SECOND ALGEBRAIC CONDITION

The purpose of the present appendix is to prove the assertion made in Theorem 4 that the second
algebraic condition given by Eq. (13c) is a consequence of the conditions (13a) and (13b). As a
consequence of this result, the conditions required on an initial data set to have a development with
a valence 2 Killing spinor become completely analogue to those required to have a valence 1 Killing
spinor—see, e.g., Ref. 3.

The analysis in this appendix proceeds by discussing the various possible algebraic types that
the spinor κAB can have. Our first result is the following:

Lemma 11: Assume that the symmetric spinor κAB satisfies

κABκ AB �= 0, ∇(ABκC D) = 0, �(ABC
FκD)F = 0,

on an open subset U ⊂ S. Then the algebraic condition (13c) is satisfied on U .

Proof: The condition κABκAB �= 0 allows us to choose a spin dyad (oA, ιA) and a scalar field κ

such that oAιA = 1 and κAB = eκo(AιB). Similarly, the condition �(ABC
FκD)F = 0 implies that there

is a scalar field ψ such that �ABCD = ψo(AoBιCιD).

In the next step, we decompose the equation ∇(ABκCD) = 0 into its various components to obtain

oAoBoC∇ABoC = 0, (A1a)

oAιBoC∇ABoC = − 1
2 oAoB∇ABκ, (A1b)

oAoB ιC∇AB ιC − ιAιBoC∇ABoC = 2oAιB∇ABκ, (A1c)

oAιB ιC∇AB ιC = 1
2 ιAιB∇ABκ, (A1d)

ιAιB ιC∇AB ιC = 0. (A1e)

These equations imply, in turn, that

e−κξAB = −3oAoBoC ιDιF∇C DιF − 3ιAιBoC ιDoF∇C DoF

+ 3
2 o(AιB)(o

C oDιF∇C DιF + ιC ιDoF∇C DoF ). (A2)

Now, it is well known that the spacetime Bianchi identity ∇Q
A′�ABC Q = 0 implies the constraint

∇C D�ABC D = 0, (A3)

on S. Substituting �ABCD = ψo(AoBιCιD) and contracting with combinations of oA and ιA, one finds
that the content of (A3) is given by

oAoB∇ABψ = 6ψoAιBoC∇ABoC , (A4a)

oB ιC∇BCψ = 3
2ψιAιBoC∇ABoC − 3

2ψoAoB ιC∇AB ιC , (A4b)

ιAιB∇ABψ = − 6ψoAιB ιC∇AB ιC . (A4c)
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Using Eq. (A2) and the Bianchi identities (A4a)–(A4c), we get

�(ABC
FξD)F + 3κ(A

F∇B
H�C D)F H

= 3
4 eκψιAιB ιC ιDoM oP oQ∇P QoM

− 3
4 eκψoAoBoC oDιM ιP ιQ∇P QιM .

Finally using the information about the derivatives of the spin dyad contained in Eqs. (A1a)–(A1e)
one finds that we get that the second algebraic condition, Eq. (13c), is satisfied on U . Notice that in
this argument one could have had ψ = 0. �

Using similar methods as before, one obtains the following lemma:

Lemma 12: Assume that the symmetric spinor κAB satisfies

κABκ AB = 0, κAB κ̂ AB �= 0, ∇(ABκC D) = 0, �(ABC
FκD)F = 0,

on an open subset U ⊂ S. Then the algebraic condition (13c) is satisfied on U .

Proof: By assumption the κAB is algebraically special, that is, it has repeated principal spinors.
Thus, there exists oA such that κAB = oAoB. We then complete oA to a normalized spinor dyad
(oA, ιA). The equation ∇(ABκCD) = 0 is equivalent to

oAoBoC∇(ABoC) = 0, (A5a)

oAoB ιC∇(ABoC) = 0, (A5b)

oAιB ιC∇(ABoC) = 0, (A5c)

ιAιB ιC∇(ABoC) = 0. (A5d)

These equations imply, in turn, that

ξAB = −2oAoB ιC∇C DoD + 2o(AιB)o
C∇C DoD. (A6)

The condition �(ABC
FκD)F = 0 implies that there is a scalar field ψ such that �ABCD = ψo(AoBoCoD).

Using this together with (A6) yields

�(ABC
FξD)F + 3κ(A

F∇B
H�C D)F H

= −3oAoBoC oDψoP oQιR∇(P QoR)

+ 3o(AoBoC ιD)ψoP oQoR∇(P QoR). (A7)

Finally using the relations (A5a)–(A5d), we get that the second algebraic condition, Eq. (13c), is
satisfied on U . �

With the aid of the previous two lemmas, one can provide a proof of Theorem 4 in the main
text.

Proof: Let U1 be the set of all points in S where κABκAB �= 0 and U2 be the set of all points in S
where κAB κ̂ AB �= 0. The scalar functions κABκ AB : S → C and κAB κ̂ AB : S → R are continuous.
Therefore,U1 andU2 are open sets. Now, letV1 andV2 denote, respectively, the interiors ofS \ U1 and
V1 \ U2. On the open set V1 ∩ U2, we have that κABκAB = 0 and κAB κ̂ AB �= 0. Hence, by Lemma 12,
the second algebraic condition, Eq. (13c), is satisfied on V1 ∩ U2. Similarly, by Lemma 11, the
condition (13c) is satisfied on U1. On the open set V2, we have that κAB = 0 and therefore Eq. (13c)
is trivially satisfied on V2. Using the above sets, the 3-manifold S can be split as

intS ⊂ U1 ∪ (V1 ∩ U2) ∪ V2 ∪ ∂U1 ∪ ∂V2.
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The left hand side of Eq. (13c) is continuous and vanishes on the open sets U1, V1 ∩ U2, and V2. By
continuity, it therefore also vanishes on the boundaries ∂U1 and ∂V2. We can therefore conclude that
(13c) is satisfied everywhere on int S. Again by continuity this extends toS. Finally, using Theorem 2
in Ref. 2, one obtains the existence of a valence 2 Killing spinor on D+(S). �
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