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The mode of a-synuclein binding to membranes depends on lipid composition
and lipid to protein ratio
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Interactions of the presynaptic protein a-synuclein with membranes are involved in its physiolog-
ical action as well as in the pathological misfolding and aggregation related to Parkinsons’s disease.
We studied the conformation and orientation of a-synuclein bound to model vesicular membranes
using multiparametric response polarity-sensitive fluorescent probes together with CD and EPR
measurements. At low lipid to a-synuclein ratio the protein binds membranes through its N-termi-
nal domain. When lipids are in excess, the a-helical content and the role of the C-terminus in bind-
ing increase. Highly rigid membranes also induce a greater a-helical content and a lower polarity of
the protein microenvironment.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Parkinson’s disease is a neurodegenerative disorder involving
the functional loss of dopaminergic neurons in the substantia nigra
of the midbrain [1]. The precise causes of Parkinson’s disease are
unknown but it is characterized by the formation of Lewy bodies,
intraneuronal protein deposits rich in amyloid fibrils of a-synuc-
lein (AS). AS is protein of 140 amino acids expressed presynapti-
cally, which lacks a defined secondary structure in free solution
or as yet well-defined physiological functions, although it has been
implicated with vesicle trafficking [2] and fatty acid metabolism
[3].

AS binds to natural and artificial membranes forming an ex-
tended a-helix oriented parallel to the membrane surface [4]. It
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encompasses the N-terminal and NAC (Non-Abeta Component) re-
gions (residues 9–90) and has an atypical periodicity (3 turns per
11 residues) [4] (Fig. 1). Depending on the system the a-helix
adopts linear [4–6] or horseshoe-like conformation [7–9]. The
affinity for negatively charged bilayers is much stronger than for
neutral bilayers [10] but also depends on membrane phase and
curvature [11].

The N-terminal part of AS plays the determining role in mem-
brane binding [12]. The immersion of different AS domains into
the bilayer has been studied previously by EPR [4,13], tryptophan
fluorescence [14,15] and NMR [16]. The NAC and N-terminal re-
gions are fairly equally immersed in the bilayer [4] but at low li-
pid-to-protein ratio (LPR) the binding of the NAC region
decreases [16]. The C-terminal part is flexible and is not immersed
into negatively charged bilayers [13].

High resolution structural techniques require concentrated pro-
tein solutions and do not allow studies of AS orientation at the high
LPRs required to ensure complete AS binding to membranes with a
close to natural composition. In addition, the membranes of organ-
elles differ in lipid composition, such that an understanding of the
influences of the membrane properties and of the LPR on AS bind-
ing, conformation, and, ultimately, function, is essential.

In this work we studied the dependence of AS orientation on
membrane properties and the LPR. We characterized the environ-
ment of the protein domains upon binding to artificial membranes
of different composition using several independent approaches:
lsevier B.V. All rights reserved.
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Fig. 1. Structure of AS and labels. Labeling positions are marked by arrows. Secondary structures are based on [10].
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(1) The environment polarity in the proximity of the peptide back-
bone was assessed by spectral changes of the solvatochromic ESIPT
(Excited State Intramolecular Proton Transfer) MFC probe [17,18];
(2) The rigidity of the same sites was reported by EPR signal broad-
ening of the MTSL [19]; and (3) The existence of an apolar compart-
ment accessible for transient AS binding was assessed by the
hydrophobic ESIPT probe MFE [11,20], bound through a �1 nm
flexible linker (Fig. 1b).

The labels were placed in one of the three AS domains:
N-terminal, NAC, or C-terminal regions by labeling individual
Ala-to-Cys mutants at positions 18, 90 and 140 (Fig. 1). The differ-
ent environments of the AS domains sensed by the fluorescent
probes revealed a decreased binding of the NAC region at high
Fig. 2. Sensing AS environment polarity with the MFC label. (a) Fluorescence of AS–M
Dependence of the N⁄/T⁄ ratio on polarity in model systems [17,18,23] (small symbols)
curve. Filled circles correspond to free peptide in buffer. (c) Changes in polarity of lip
Comparison of the AS domains environments in membranes of different composition. A l
experiments. AS mutants with label at positions 18, 90 and 140 are marked on all pane
protein density and a participation of the AS C-terminus in the
interaction with neutral membranes.

2. Materials and methods

All experiments with AS were performed in 25 mM Na-PO4, pH
6.5, 150 mM NaCl buffer. Fluorescence and CD spectra were re-
corded at 37 �C.

2.1. Circular dichroism

Circular dichroism spectra were recorded with a JASCO-J720
spectropolarimeter. Protein and lipid concentrations were 4 lM
FC in buffer (dashed) and in the presence of DOPG SUVs (solid); LPR = 500. (b)
and determination of the environment of the AS labeling sites from the calibration
id bilayer as function of the distance from the center (data from [24], DOPC). (d)
ower N⁄/T⁄ corresponds to deeper immersion. Error bars represent variation of three
ls by black, red and green, respectively.
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and 1 mM respectively. The calculation of helicity was performed
as described previously [21].

2.2. Fluorescence spectra

Emission spectra were recorded with a Cary Eclipse spectroflu-
orimeter (Varian). The protein concentration was 100–400 nM.
Lipids were in 500-fold excess, insuring >97% protein binding
[11]. The excitation wavelengths for MFE and MFC were 410 and
350 nm, respectively. The N⁄/T⁄ emission band ratios were calcu-
lated from the peak intensities and showed a <5% (relative) varia-
tion in three independent determinations.

In quenching experiments, solutions of AS labeled by MFE in
presence of excess (500 lipids per protein) of SUV were titrated
with a 100 mM solution of TEMPO ((2,2,6,6-tetramethylpiperidin-
1-yl)oxidanyl) (neutral stable radical) in DMSO. The quenching
constants were determined by fitting the intensity plots to
I/I0 = 1 + Kq�CTEMPO.

2.3. EPR

EPR spectroscopic measurements were carried out on a Bruker
Elexsys E500 CW-EPR equipped with a Super-X microwave bridge
operating at 9.3–9.5 GHz and a standard Bruker X-band ER4119-
SHQE cavity. Sample solution spectra were acquired at room tem-
perature (23 ± 2 �C) in a quartz 150 lL-flat cell (ER160FC-Q) using
5 mW incident microwave power, 3.5 G field modulation ampli-
tude at 100 kHz, 150 Gauss sweep width. Lipid and protein concen-
trations were 5 mM and 20 lM respectively.

2.4. Protein preparation, purification and labeling

AS and its single cysteine mutants were expressed and purified
as described earlier [11].
Fig. 3. Rigidity of AS environment in membranes. (a) Normalized EPR spectra of three
buffer). (b) EPR spectra of AS-18MTSL in different membranes. AS-MTSL and SUV concen
The MFC and MFE labels were synthesized as described in liter-
ature [11,18]. MTSL was purchased from Sigma–Aldrich.

2.4.1. AS–MFE and AS–MFC
AS cysteine mutants were labeled by adding 2-15-fold excess of

MFC or MFE solution in DMSO (48 h at 4 �C, pH 7.2 buffer, 5 mM
TCEP) and purified by exclusion chromatography using Superdex
200HR 10/30 SEC column (See SI). Recovery �70%. The labeling
efficiency, >90%, was determined from the absorbance of the dye
(FE e430 nm = 32,000 M�1 cm�1, e275 nm = 14,100 M�1 cm�1; FC
e345 nm = 16,000 M�1 cm�1 e275 nm = 4800 M�1 cm�1) and the pro-
tein (e275 nm = 5600 M�1 cm�1).

2.4.2. AS-MTSL
To 1 ml of a 0.2 mM solution of single cysteine mutant of AS in

phosphate buffer, pH 7.2, 5 mM TCEP, 0.25 mg (�5-fold excess) of
MTSL (S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl
methanesulfonothioate) label in 0.1 ml of DMSO was added. The
reaction was left for 48 h at 4 �C with mixing. The excess label,
TCEP, and DMSO were removed by gel filtration using PD10 col-
umns (GE Healthcare). The estimated labeling efficiency was >90%.

2.5. Preparation of SUVs

SUVs were prepared by evaporation of CHCl3 lipid solutions,
hydration of the resulting films in buffer and 1 h sonication at tem-
peratures 5–15 �C above the transition points. The size of all vesi-
cles and their stability in the presence of protein were checked by
DLS. (See SI for details.)

3. Results and discussion

The orientation of AS in membranes was determined as a func-
tion of the composition and LPR by measuring polarity, rigidity and
MTSL-labeled AS mutants in DPPC SUVs (the inset shows corresponding spectra in
trations were 20 lM and 5 mM SUVs respectively. See other spectra in Figs. S4–S8.



Table 1
Changes of AS environment upon binding to membrane

Label MFC MTSL MFE

System Label position N⁄/T⁄ Polarity, ET30N I/I0 DH0
�1 G-1 QY % Kq M-1

18 0.91 >0.9 1 0.34 5.0 400
Buffer 90 1.46 >0.9 1 0.34 6.2 400

140 0.98 >0.9 1 0.34 4.7 450
DOPG 18 0.09 0.35 4.9 0.24 32 50
(-1) 90 0.15 0.45 3.6 0.24 32 45
Ld 140 0.42 0.70 1.4 0.34 33 350
DPPC 18 0.055 0.29 5.3 0.24 34 140
(0) 90 0.088 0.34 4.0 0.22 30 130
Gel 140 0.26 0.56 2.2 0.34 30 145
DPPG 18 0.06 0.30 5.6 0.27 35 47
(-1) 90 0.11 0.39 3.2 0.24 41 53
Gel 140 0.40 0.68 1.4 0.34 31 140

N⁄/T⁄, ratio of the N⁄ and T⁄ emission bands. ET30N estimated based from calibration curve (Fig. 2b). I/I0, increase in fluorescence quantum yield of MFC relative to that of free
labeled protein in buffer (0.8, 0.75, and 1.2% for AS labeled at positions 18, 90 and 140 respectively). DH0

�1, reciprocal of the central line bandwidth. QY, fluorescence
quantum yield of MFE-labeled AS. Kq, quenching constant of MFE label in the presence of TEMPO. Experimental errors: N⁄/T⁄, I/I0 and QY, ±5%; DH0

�1, ±0.01G�1; Kq, ±5%.
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water-accessibility of the three proteins domains. Single cysteine
mutants of AS at positions 18, 90 and 140 were labeled with the
(1) polarity-sensitive MFC probe, (2) the rigidity-sensitive MTSL
spin-label, and (3) the MFE probe highly sensitive to membrane
proximity. The binding of all labeled proteins to membrane(s)
was compared to that of WT AS using CD spectroscopy, and
showed <10% differences in binding stoichiometry (Fig. S9). We
compared the responses of the labels upon binding under condi-
tions of excess lipid (bilayer) and employed the most sensitive
(MFE) probe to sense the dependence of AS conformation and ori-
entation in the bound state on the LPR.

3.1. Polarity of labeling sites

For estimating the environment polarities of the AS domains we
applied MFC, a solvatochromic label based on a small water-solu-
ble dye. This label was previously used for monitoring AS aggrega-
tion and does not significantly modify the fibrilization kinetics
[18]. MFC reports the polarity and solvation ability (ET30N) of the
environment by the ratio of the dual emission bands corresponding
to the normal (N⁄, �430 nm) and tautomeric (T⁄, �520 nm) excited
state species [22]. A decrease in polarity leads to a significant in-
crease in the T⁄ band and thus a diminution of the N⁄/T⁄ emission
band ratio [23].

In the case of free monomeric AS in buffer, MFC reported an
environment typical for unstructured proteins and peptides [17–
18]. Upon addition of each of the AS–MFC conjugates to an excess
Fig. 4. Sensing of AS binding to membranes by MFE label. (a) and (b) Spectra of AS labele
compared with protein in buffer (dashed lines). (c) Accessibility of the label at positions
symbols. See titration curves in Fig. S8.
of lipid vesicles, the probe indicated a decrease in polarity (Fig. 2a,
Table 1). The emission band ratio (N⁄/T⁄) of MFC depends on sol-
vent polarity (ET30N). We established a calibration curve based on
data for the probe in model organic solvents [17,23] (Fig. 2b) and
estimated the polarity of MFC attached to different AS domains.
The values were then compared with the calculated profile of
polarity as function of the distance from the bilayer center [24].
The environments of the labels at positions 18 and 90 were similar
to those of polar aprotic media, suggesting an immersion of the
protein only to the level of the lipid polar heads. The environment
of the C-terminus was much more polar but notably different from
that of bulk water (Fig. 2), corresponding rather to the hydration
shell of lipid phosphate groups [24].

The environment of AS bound to membranes in the gel phase
(DPPC, DPPG) was characterized by a lower polarity than in the
case of the Ld (liquid disordered) phase (Table 1, N⁄/T⁄ values for
positions 18 and 90), indicating a deeper insertion of the protein
into the bilayer. The lowest polarity (deepest immersion) of the
C-terminus was observed in the presence of rigid neutral DPPC
(Fig. 2d, Table 1) probably due to the absence of electrostatic
repulsion.

3.2. Rigidity

The rigidity of the MTSL label conjugated to AS in the mem-
branes was probed using EPR spectroscopy. The spin-label was at-
tached to the same positions as MFC. The EPR spectra of all three
d with MFE (at positions 18, 90, and 140) in DOPG and DPPC liposomes, respectively,
18, 90 and 140 for quenching by TEMPO. Error bars are approximately the size of



Fig. 5. Dependence of AS conformation on LPR. (a) Titration of AS by DOPG/DOPC
(1:1) vesicles. Relative changes of fluorescence intensities of AS labeled by MFE at
positions 18 (black), 90 (red) and 140 (green) compared with degree of a-helix
formation (CD at 222 nm, open squares). (b) Scheme of AS orientation on
membrane at low (top) and high (bottom) LPRs.
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AS mutants free in solution showed very sharp lines (reciprocal of
the central line bandwidth: DH�1

0 = 0.34 G�1) consistent with a
high degree of rotational freedom typical for unstructured protein
domains (Fig. 3a, inset) [25]. Upon membrane binding, the EPR
spectra of AS mutants labeled at sites 18 or 90 but not 140 showed
broadening and a decreased intensity of the external hyperfine
lines, indicative of a rigid medium (Fig. 3a) [26]. The broadening
of the spectra was consistent with a shallow location of the probe
on/in the membrane, with the AS a-helix oriented parallel to the
water/membrane interface, as shown for anionic membranes in
the Ld phase [4,13]. The probe at position 18 in neutral (DPPC)
and anionic (DPPG) membranes in the gel phase indicated greater
rigidity than in the case of anionic disordered phase bilayers
(DOPG) (Fig. 3b), although the degree of immobilization was much
less than that typically observed at buried sites in well packed
membrane proteins [26].

In some cases the EPR spectra were consistent with the pres-
ence of more than one component. In particular, the EPR spectra
of AS-18MTSL showed the superposition of at least two compo-
nents, Cm and Ci, with Cm corresponding to the spectrum of a spe-
cies with high mobility (sharp lines), and Ci to a less mobile spin
population (broadened components). Cm may represent free AS in
solution, or AS bound to the membrane, except for the labeled re-
gion with the label [4,13]. Inasmuch as the high LPR (250) insured
>95% protein binding, one can assume that the main contribution
to Cm was from the bound protein.

3.3. Water accessibility

We coupled MFE, a fluorescent probe highly sensitive to envi-
ronment polarity and hydration, to AS cysteine mutants through
a �1 nm flexible linker. The dye is relatively lipophilic and there-
fore senses the minimal polarity in close proximity to the labeling
site rather than the mean environment polarity sensed by MFC.
MFE signals binding of AS to model membranes by an increase in
the fluorescence quantum yield and the appearance of the two-
band emission (Fig. 4) characteristic for an aprotic environment
[11]. The ratio of the two emission bands (N⁄/T⁄) depends on the
relative immersion of the label into a lipid bilayer [20,22] and
has been used as a signature of AS bound to membranes of defined
composition [11].

Binding of MFE-labeled AS to membranes in the gel phase
(DPPC and DPPG) resulted in a lower emission band ratio than in
the case of disordered bilayers (Fig. 4), pointing to a deeper immer-
sion of the AS N-terminal and NAC regions, in accordance with the
responses of MTSL and MFC labels. All of the probes indicated a
lack of correlation between the level of immersion of the AS N-ter-
minal and NAC regions in the bilayer, and the affinity for the mem-
brane [11].

Interestingly, MFE at residue 140 also indicated proximity to
the bilayer, even though the MFC and MTSL probes with shorter
linkers showed only minor changes in polarity and rigidity for this
position. We conclude that the C-terminus was situated at a dis-
tance less than 1 nm from the lipophilic bilayer and was also per-
turbed by the interaction.

A more precise determination of the position of the MFE label in
the membrane and its accessibility to water was achieved in a
quenching experiment using a neutral quencher TEMPO (Table 1,
Fig. 4c). In free solution, the quenching of the label was strong
for all three labeling sites, as expected for an unstructured protein.
Binding to rigid DPPC and DPPG SUVs led to significant screening of
all positions (Fig. 4c). In contrast, in negatively charged disordered
DOPG the quenching of the label at C-terminus was modified only
slightly, whereas the two other segments were efficiently shielded
from water. This observation can be interpreted in the context of
an interaction of the C-terminus with membranes via a
charge-independent mechanism that is probably mediated by
membrane defects [11,27].

3.4. Dependence of the orientation on the AS to lipid ratio

We studied the dependence of the orientation of AS on/in mem-
branes on the LPR by comparing the responses of the labels at the
different positions in the protein sequence upon titration with lip-
osomes. In most cases, the binding curves constructed from the re-
sponse of the label at the N-terminus did not coincide with the
calculation of the a-helical content measured by CD. For example,
the fluorescence of AS-18MFE showed that binding to DOPG/DOPC
vesicles was characterized by a stoichiometry of �20 lipids per
protein, whereas the CD measurements showed that the maximal
transition of the protein to a-helical conformation occurred at
�80 lipids per AS (Fig. 5a). At a ratio of 30 lipids per AS the N-ter-
minus and the NAC region were almost completely membrane
bound, yet the label at the C-terminus showed only <50% of the
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maximal fluorescence increase (Fig. 5a). This LPR corresponds to a
very dense membrane surface coverage by AS (�12 nm2/protein), a
value even smaller than the size of a 90 aa a-helical fragment
(�14 � 1 nm). a-Helix formation under this condition was <50%
of the maximal value. Thus, when the protein is in excess, it binds
via the N-terminal domain that has the highest affinity, leaving the
C-terminus completely water exposed because of the lack of acces-
sible membrane surface (Figs. S2 and S3). The relatively low degree
of the transition to the a-helical form at these low LPRs is probably
due to incomplete binding of the NAC region, although position 90
was clearly close to the membrane according to the fluorescent
probe. At higher LPRs (>100) the membrane surface is sufficient
for binding of all AS domains (>40 nm2/protein) and both the N-
terminal and NAC regions assume an a-helical conformation and
are fully bound. Moreover, the bilayer surface is also accessible
to the C-terminus and it participates in the interaction with the
membrane (Fig. 5b).

The difference in AS/membrane binding stoichiometry deter-
mined by CD and fluorescence of the MFE label placed at the N-ter-
minus indicates that the size of a-helical domains of the protein in
membrane bound form depends on the LPR and increases in the
presence of excess lipid. The membrane composition can also im-
pact the conformation of AS [12]. Indeed, we found that in rigid
DPPG SUVs, AS has a �62% a-helical content, yet only 50% in
charged membranes in the Ld phase (DOPG) (Table S1). This result
is particularly interesting since the affinity of AS for DPPG is lower
than for DOPG [11]. Thus, binding affinity is not directly correlated
with the extent of a-helix formation.

We observed differences in the binding profiles of the N- and C-
terminal segments of AS in many charged model membranes
(Figs. S1, S2 and S3). The binding of AS to neutral membranes is
characterized by virtually identical titration curves of the three la-
beled mutants. This difference points to a significant role of elec-
trostatic interactions between the membrane surface and the
protein N-terminus in the dense mode of AS binding and to a more
lipophilic nature of the interaction in the more stable conformation
adopted by AS in the presence of excess lipid.

Different modes of AS binding to negatively charged multila-
mellar vesicles depending on the LPR were observed recently by
NMR [16]. As in the case of our study, it was shown that the rela-
tive involvement of the N-terminal segment of AS in membrane
binding increases at low LPRs. The fact that the N-terminus of AS
has a strong affinity for negatively charged membranes and can
mediate very dense membrane binding is also supported by the
observation that truncation of first 6 amino acids strongly de-
creases the affinity of AS for membranes [12].
4. Conclusions

In summary, we conclude that binding of AS to negatively
charged membrane does not necessarily require a complete transi-
tion to a-helical form, but rather can be mediated by the N-termi-
nus alone with a requirement for minimal membrane surface
(<15 nm2/molecule). In the presence of lipid excess there are no
significant changes in AS orientation and immersion upon altera-
tions in membrane phase and charge. Upon binding of AS to the
model membranes the N-terminus and NAC regions adopt a-heli-
cal conformation [10]. The labels at positions 18 and 90 indicate
greater rigidity (MTSL) and shielding from water (MFC, MFE), in
accordance with previous results and a model with water/mem-
brane interfacial orientation of AS a-helix [4]. However, it remains
to be established whether the a-helical conformation precedes,
accompanies, or is subsequent to binding. Access to fast kinetic
techniques and the use of fluorescent a-helix reporters should re-
solve this fundamental question.
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