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Abstract
Proteins are the workhorses of life. Understanding protein function on the molecular
level is a very active field of research. Experimental infrared difference spectra
contain valuable information about protein dynamics but the experimental data is
difficult to interpret. Calculated infrared spectra from simulated protein dynamics
contain the desired all-atom information but rely on many approximations which
require experimental validation. Together, experiment and simulation can greatly
increase the knowledge gained about the investigated system.
This thesis presents a method which enables the calculation of anharmonic vibra-

tional difference spectra from short quantum mechanics/molecular mechanics sim-
ulations including the full protein environment. The developed simulation scheme
extends state of the art dipole moment time series analysis methods to active centers
of large solvated proteins. The method does not depend on the choice of quantum
method and can be applied to ground and excited states. Short trajectory lengths
limit the spectral resolution of Fourier spectra. Parameter based alternatives were
investigated to overcome the Fourier resolution limit.
The vibrational difference spectrum for the photoactive yellow protein and its

locked mutant was calculated. The computational cost of simulating the green
fluorescent protein active pocket exceeded the available resources and low spectral
resolution was obtained. The parametric Burg method was identified as a working
Fourier transform alternative for data analysis. A suitable model order estimation
scheme was developed based on the normal mode frequency density. High level
anharmonic vibrational spectra make harmonic normal mode spectra obsolete.

Keywords: Infrared spectrum, anharmonic spectrum, difference spectra, dipole
moment time series analysis, charged dipole moment, GFP, PYP, QM/MM simula-
tions
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1 Introduction

Atoms are peculiar objects. The quantum mechanical behavior of atoms is counter-
intuitive to the human perception of the world. In the classical world, objects can
store continues amounts of energy and trajectories are deterministic. The properties
of atomic systems remain hidden to human sensory organs and can rarely be found
in the macroscopic world. Music instruments are a simple example of quantum prop-
erties in the macroscopic world. The oscillation of the guitar string is a particularly
good example. The guitar string can be extended continuously out of its equilibrium
position. However, the boundary conditions of the instrument restrict the solutions
of the resulting differential equation to discrete harmonic sine functions. This had
important implications for scientists in the eighteenth century [53]. An arbitrary
function of the string extension was expressed as an infinite sum of harmonic sine
functions. This result is a substantial cornerstone in the formulation of Fourier trans-
forms. In the early twenties century, a series of publications by Erwin Schrödinger
[57] beautifully illustrates how the discrete nature of the experimentally measured
hydrogen spectrum contributed to the formulation of modern quantum physics. The
publications relate the differential equation describing the oscillating string to the
spectrum of the hydrogen atom and solve the discrete eigenvalues of the hydrogen
atom wave function.
Today, state of the art experiments reach atomic time and length scales. The focus

has shifted from single atoms towards molecules and large protein systems. This has
vastly increased the complexity of both experimental setups and data analysis. The
purpose is to understand life on all its levels ranging from macroscopic understanding
of the ecosystem earth all the way down to single molecule mechanisms at atomic
resolution. The author of this thesis is interested in the later, namely understanding
the dynamics of life at the atomic scale.
All life is sustained by proteins. Proteins are a diverse set of molecules which are

predominantly assembled from 20 main amino acids found in nature. Interestingly,
certain chain combinations of amino acids form stable reoccurring structures under
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1 Introduction

narrow environmental conditions while others do not. This process is known as
self-assembly or protein folding. Predicting how a sequence of amino acids will fold
is currently only possible for very small proteins [22]. Nature solved the folding
problem in a long natural evolutionary process which is still ongoing today. A
disruption in the expected protein fold will almost certainly result in miss folding
and death of the cell up to the death of the human host. However, it is important to
notice that only part of the information needed to understand life on the atomic scale
is contained in the protein structure. The more important part of the information
is contained in the protein dynamics [40]. This can be related to knowing the shape
of a tool without knowing how to use it or better, how to build a new one.

To the physicist, proteins are molecular machines preassembled by nature with lost
construction manuals. Proteins self assemble without eminent presence of symmetry
or a deterministic relation between folded structure and function. Proteins consist of
bosons and fermions which are subject to electromagnetism. The laws of statistical
and quantum physics describe protein motion and do, in principle, solve all problems
in biology and chemistry. However, the reach of analytical molecular physics ends
somewhere between the hydrogen atom and the hydrogen molecule. From there
on, many approximations are necessary to study and predict protein dynamics from
theory. Without approximations, the computational cost of predicting the time
evolution for thousands of atoms is far out of reach even for the most advanced
computers today and at the current rate of chip development also for many years to
come. Approximations enormously reduce the cost of calculating protein dynamics
but the list of required approximation is long and it is not always clear beforehand
whether a theoretical model will hold or not. Therefore, computational studies of
protein systems must heavily rely on experimental input.

Studying proteins in experiments is not an easy task either. A major challenge in
the experimental quest is information gathering at length scales of nuclear resolution
which corresponds to around 10−10 m. This is well below the wavelength of visual
light and can therefore not be observed using conventional microscopy. X-ray scat-
tering is a powerful tool to overcome this barrier for structure determination. Here,
a periodic crystal of the bio-molecule is required. In the experiment, the diffraction
pattern of the crystal is measured. This corresponds to the absolute square value of
the Fourier coefficients of the structure, the intensity. As only these intensities can
be measured, the complex phase information is lost. The phase information has to
be recovered using computational models of the structure. An alternative method
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are NMR experiments. No crystal is required and measurements can be performed
on solvated proteins. NMR experiments measure the spin coupling of 1H and 13C

atoms. The experimental data is an average of atomic distances r as 〈r−6〉 which
can then be used as constrains in computational structure prediction models. How-
ever, direct determination of molecular structure and especially dynamics currently
remains an unsolved problem.

The inaccessibility of molecular dynamics at atomic resolution challenged the
creativity of the scientific community. The holy grail is the creation of molecular
movies with very high time and spatial resolution. Light is a powerful tool to study
protein dynamics. The effects of light are diverse and can be roughly separated into
three groups.

First, the UV range of the spectrum which carries enough energy to break molec-
ular bonds and can be used to study repair dynamics, i.e. after DNA photo damage.
Second, the visible spectrum of light which excites electronic states of molecules to
higher energy states. This changes the energy landscape generated by the electrons
on the nuclei. The absorbed energy can be passed on as is naturally observed in
the dynamics of plant photo systems or used in the design of FRET experiments.
The energy can also dissipate into heat causing molecular vibrations to increase in
amplitude. Alternatively, the molecular vibrations can directly be excited through
infrared light. Infrared light is the third region of light which is highly interesting
for studying molecular dynamics.

The interaction of infrared light with molecules probes the vibrational degrees
of freedom of the nuclear wave function. In the picture of quantum mechanics,
the motion of atomic nuclei in a molecule is coupled and quantized. For N atoms
there are 3N degrees of freedom which is reduced to 3N − 6 by removing three
translational and three rotational degrees of freedom for the whole molecule. Thus,
a water molecule of three atoms has three collective nuclear degrees of freedom or
collective vibrational modes. Vibrational modes can be localized to a few atoms
or extended over many bonds involving a large number of atoms simultaneously.
Modes can be coupled and exchange energy depending on the overlap between their
vibrational wave functions. According to the standard model, the photon is the
force carrier of electromagnetism. This allows an intuitive description of molecular
orbitals in terms of photon energies. The same holds for molecular vibrations.
Vibrational modes can be quantified in terms of photon energies. For low excitation
numbers, the allowed quantized energy states of each collective vibrational mode are
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an integer multiple of the corresponding ground state photon energy. For a single
water molecule, this results in three distinct ground state photon energies for all
three vibrational modes. Each mode acts as a photon bin which can collect photons
matching its energy signature. For the first few collected photons this signature
is roughly constant but decreased with the number of collected infrared photons.
This corresponds to the solutions of the anharmonic oscillator. The physical effect
of collecting photons is an increase in amplitude of the collective vibrations. At a
certain point the amplitude increases to a point where the molecule falls apart and
the atoms are no longer bound.

Vibrational spectra of proteins can be measured experimentally. The protein is
exposed to a broad pulse of infrared light which is partially absorbed by the protein.
Unfortunately, this experimental pathway towards obtaining vibrational spectra is
not accessible in computer simulations. This is mainly due to the fact that the
collective modes are unknown beforehand and the vibrational wave function is too
expensive to calculate. An elegant way to circumvent the computational complexity
of calculating the vibrational wave function is to explore the potential energy land-
scape using quantum (QM), classical (MM) or combined QM/MM simulations. The
time series data generated from multiple simulation trajectories can then be used to
reconstruct frequency information about the energy landscape [6].

Vibrational difference spectra can be measured in experiments. The experimental
data contains high quality information about differences in protein dynamics be-
tween two protein states. This can be the difference between two protein mutants
or the difference between ground and excited states. However, the data analysis is
often very difficult due to the large number of modes and the lack of all-atom resolu-
tion. This is were simulations can greatly help to extend the knowledge gained from
the experiment. The aim of this thesis is to calculate protein difference spectra from
all-atom molecular simulations which can then be compared to the experimentally
measured spectra.

This thesis attempts to extend the state of the art anharmonic infrared simulation
methodology [1, 9, 24, 37, 38, 44, 58, 74, 77]. The presented method enables the cal-
culation of anharmonic vibrational spectra from QM regions in QM/MM simulations
while the full protein environment is included. The method does not depend on the
choice of QM method which is why excited state spectra can also be calculated. It
does not make assumptions about the underlying potential and does not require the
harmonic approximation. Temperature effects are naturally included and spectral
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bands contain absolute values for the power.
Applications for this method are chromophores and photoactive protein centers.

Two important experimental systems are discussed in this thesis, the green fluores-
cent protein (GFP) and the photoactive yellow protein (PYP). Both proteins are
complex enough to be interesting but also small enough to allow QM/MM simula-
tions. As both systems have charged active pockets, the behavior of the ill-defined
dipole moments for charged systems is investigated and a correction scheme is in-
troduced. The influence of short simulation trajectories from high level QM/MM
simulations is discussed with respect to the spectral resolution limit of the Fourier
transform. It is investigated how the resolution limit can be increased by using
parameter based Fourier transform alternatives. The maximum entropy method as
well as the autoregressive filter based Burg method are investigated. As param-
eter based spectra strongly depend on the model order, an objective model order
estimation scheme is introduced based on the normal mode frequency distribution.
High level anharmonic vibrational difference spectra of the PYP chromophore and

its locked mutant are calculated to illustrate the power of the developed simulation
scheme. The quality of the results render normal mode spectra obsolete. QM/MM
simulations are far superior for the calculation of protein difference spectra.
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2 Theory

2.1 Propagating Proteins in Time

The focus of this study are proteins. The most accurate description of the nuclear
and electronic processes within proteins is the framework of quantum mechanics. For
most proteins relativistic effects are negligible and the time dependent Schrödinger
equation [57] is a very accurate model for propagating quantum mechanical systems
in time.

i~
∂Ψ(t)
∂t

= HΨ(t) (2.1)

Unfortunately, the Schrödinger equation can only be solved analytically for the
smallest of all systems such as the Hydrogen atom, the rigid rotor, the harmonic
oscillator or the particle in a box [2]. The following sections will focus on approxi-
mations which help to extend the Schrödinger equation to large protein systems.

2.2 Molecular Dynamics Principles

The Molecular Dynamics simulation framework reduces the vast computational com-
plexity of solving the time dependent Schrödinger equation down to solving the time
evolution of many classical point charges in a classical, often even partially harmonic,
potentials. Many approximations are necessary to propagate thousands of atoms on
microsecond timescales. Three main approximations are introduced in the following
paragraphs. First, the Born-Oppenheimer approximation is applied to separate the
wave function. Second, classical Newton mechanics are introduced to propagate the
nuclei in time. At this point Hartree-Fock (HF) theory and the post HF complete
active space self consistent field (CASSCF) method are introduced to describe the
electronic wave function. The density formulation of the electron wave function is
introduced subsequently in terms of Density Functional Theory (DFT). Third, the

7



2 Theory

efficient force field approximation to the electronic wave function is introduced.

2.2.1 Born-Oppenheimer Approximation

The Born-Oppenheimer Approximation [8] decouples the electronic from the nuclear
degrees of freedom. In the following, the time independent Schödinger equation is
used but all assumptions directly relate to the time dependent version through the
time propagation operator. First, the wave function Ψ(r, R) is expanded as a product
of the electronic wave function φe(r, R) and the nuclear wave function ψn(R) while
the expansion is truncated after the first term,

Ψ(r, R) ≈ φe(r, R)ψn(R). (2.2)

Here, r are the coordinates of the electrons and R are the coordinates of the nu-
clei. Next, the nuclear degrees of freedom are assumed to be much slower than the
electronic degrees of freedom. One argument to support this approximation is the
large difference in mass between nuclei and electrons leading to much faster elec-
tronic motion. The consequence of this approximation is a parametric dependence
of the nuclear positions in the electronic wave function φe(r;R) instead of a variable
dependence φe(r, R).

2.2.2 Classical Equations of Motion

Within the framework of the Born-Oppenheimer approximation, the Schrödinger
equation can now be solved in two steps. First, the electronic wave function for a
given set of nuclear positions is solved. Second, the electronic potential enters the
nuclear Schrödinger equation as

(T̂n + V̂nn + Ee(R))ψn(R) = Vn(R)ψn(R). (2.3)

The energy Vn(R) of the nuclear wave function is then determined by the nuclear
kinetic energy operator T̂n, the nuclear-nuclear potential energy operator V̂nn and the
contribution from the electronic potential Ee(R). In this approximation, quantum
effects of the nuclear motion are neglected and the nuclear positions are propagated
using Newton’s equations of motion:

F = m
d2R(t)
dt2

= −∇Vn(R) (2.4)
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2.2 Molecular Dynamics Principles

At this point the electronic wave function is required to propagate the system in
time. The problem of obtaining this wave function for reasonably large systems is
the central problem of computational quantum chemistry. Before continuing with
the Molecular Dynamics (MD) force field approximation to the electronic wave func-
tion, three methods of quantum chemistry are introduced. First, the fundamental
Hartree-Fock theory [section 2.2.3] and its extension the Complete Active Space
SCF method [section 2.2.4] are discussed, followed by a short introduction to den-
sity functional theory [section 2.2.5].

2.2.3 Hartree-Fock Theory

Describing wave functions of many electron molecules cannot be handled analytically
and must currently rely on approximations to reduce the computational cost of
the calculation. Hartree-Fock (HF) theory [56, 79] is a fundamentally important
approach for solving the electronic wave function. The theory is mathematically
elegant and computationally efficient. Even though HF theory neglects correlation
effects beyond Coulomb and electron exchange, it provides a suitable basis for higher
level quantum chemical methods. Hartree-Fock theory produces relatively good
ground state structures but fails to describe almost all relevant chemical properties
of molecular systems. More accurate multi Slater determinant and perturbation
based methods exist for including the missing correlation effects and describing
excited states but only at very high computational cost. The reader is referred to
methods such as CCSD, CISD, MP4, CASSCF as described in the literature [35].
Hartree-Fock theory is formulated as an optimization problem [2, 35, 45] where the

optimal solution to the Schrödinger equation is obtained by minimizing the energy
E as a function of a trial wave function Ψ. The energy estimation is obtained from
the expectation value of the Hamiltonian

He = Te + Vne + Vee + Vnn (2.5)

as
Ee = 〈Ψ|He|Ψ〉

〈Ψ|Ψ〉 . (2.6)

The electron/nuclei interaction is described by Vne and analogously the elec-
tron/electron and nuclei/nuclei interaction as Vee and Vnn. The kinetic energy of
the electrons is Te and the energy is given in 〈bra|ket〉 notation. Individual contribu-
tions to equation 2.5 can be grouped together according to their number of electron
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2 Theory

different indices. This leads to the electron operators

hi = −1
2∇

2
i −

Nnucl∑
a

Za
|Ra − ri|

,

gij = 1
|ri − rj|

. (2.7)

The ri denote electron coordinates, Ri and Zi nuclear coordinates and charges
respectively. For normalized wave functions, the denominator in equation 2.6 is
〈Ψ|Ψ〉 = 1. And equation 2.6 can be simplified to

Ee =
〈

Ψ|
Nelec∑
i

hi +
Nelec∑
j>i

gij + Vnn|Ψ
〉
. (2.8)

The molecular orbitals φi in the trial wave function Ψtrial are products of a spatial
and a spin function. The required antisymmetry of the wave function as is required
by the Pauli principle is included using the mathematical properties of determinants.
Thus, a possible guess Ψtrial for the HF minimization problem is often a so called
Slater determinant ΦSD,

Ψtrial = ΦSD = 1√
N !


φ1(1) φ2(1) · · · φN(1)
φ1(2) φ2(2) · · · φN(2)
... ... . . . ...

φ1(N) φ2(N) · · · φN(N)

 . (2.9)

Equation 2.6 can now be written as a Lagrange optimization problem under the
condition that the molecular orbitals remain orthogonal, 〈φi|φj〉 = δij:

L = Ee −
Nelec∑
ij

λij(〈φi|φj〉 − δij). (2.10)

The variation of the Lagrangian follows as

δL = δEe −
Nelec∑
ij

λij(〈δφi|φj〉 − 〈φi|δφj〉). (2.11)

while δEe can be reduced to

δEe =
Nelec∑
i

(〈δφi|Fi|φi〉+ 〈φi|Fi|δφi〉) . (2.12)
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2.2 Molecular Dynamics Principles

Here,

Fi = hi +
Nelec∑
j

(Ji −Ki) (2.13)

is the Fock operator and Ji and Ki are the Coulomb and exchange operators, re-
spectively. The Lagrange condition can be reduced further to the final Hartree-Fock
equations in matrix notation:

Fiφi =
Nelec∑
j

λijφi. (2.14)

Through unitary transformation, the matrix of Lagrange multipliers λi can be made
orthogonal resulting in a pseudo eigenvalue problem of the canonical molecular or-
bitals (MO) φ′i:

Fiφ
′
i = εiφ

′
i. (2.15)

Specific Fock orbitals cannot be calculated individually. This requires the Hartree-
Fock equations to be solved iteratively. Thus, solutions to the HF equations are
called self consistent field (SCF) orbitals.

2.2.4 CASSCF

Figure 2.1: Illustration of a 4 electron 4 orbital CASSCF(4/4) active space; left) HF
wave function; right) two representations of the full active space (green
box).

The Complete Active Space Self Consistent Field (CASSCF) [29] method is a
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2 Theory

computationally efficient truncated version of the full Configuration Interaction (CI)
method. The full CI method is an extension of the Hartree-Fock method which
converges towards the exact solution of the Schrödinger Equation within the basis
set accuracy. The extremely high accuracy comes at the cost of N ! scaling with the
number of electrons [35]. This makes it physically impossible to apply the method
to anything larger than a few electrons. The underlying idea of the CI method is to
include not only the HF ground state Slater determinant but also all possible single
electron and higher excitations [35] as a weighted sum

ΨCI = a0ΦHF,GS +
∑
single

asΦs +
∑

doubble

adΦd +
∑
tripple

atΦt + . . . =
∑
i

aiΦi. (2.16)

In this representation of the wave function, each Φs,d,t,... is a set of many Slater
determinants including all possible combinations for all possible excitation levels.
The new set of coefficients ai is then optimized under the condition of orthogonality
〈ΨCI |ΨCI〉 = 1 using Lagrange multipliers λi as

L = 〈ΨCI |H|ΨCI〉 − λ(〈ΨCI |ΨCI〉 − 1). (2.17)

The CASSCF truncation of this methods is illustrated in figure 2.1. Instead of
treating all electrons at the Full CI level of theory, only a set of selected orbitals is
considered in the CI expansion. However, this approach requires optimizing both the
CI coefficients ai as well as the basis set coefficients from the Slater determinants.

CASSCF recovers most of the static correlation energy which is assumed to be
more important for accurate descriptions of excited states. The dynamic correlation
energy is only recovered poorly for small active spaces. However, including more of
the dynamic correlation energy also significantly increases the computational cost
of the calculation which is not acceptable for calculating dynamics. The accuracy
of the CASSCF method critically depends on the quality of the chosen active space.
This is also the reason why CASSCF is not a black box method. Careful selection
of orbitals is required. Dynamics of large molecules can only be performed using
reduced active spaces. For most reductions, a large number of orbital combinations
exists but only very few will result in high quality wave functions.

12



2.2 Molecular Dynamics Principles

2.2.5 DFT

Large effort has been put into the development of electron density and time de-
pendent density based theories which do not require explicit electron coordinates
but calculate the wave function based on its spatial electron density [4, 14, 21, 55].
Thus, the integration is reduced from 3N to 3 dimensions with a vast increase in
performance compared to multi determinant methods. However, currently there is
no sufficiently physical description of the correlation/exchange contribution with re-
spect to the electron density. Therefore, Density Functional Theory (DFT) requires
fitting against high level quantum Monte Carlo simulations and/or experimental
data which is why many DFT based methods are considered semi empirical.
The underlying idea of Density Functional Theory (DFT) [32, 41] is to separate

the density dependent energy

E[ρ] = Ts[ρ] + Ene[ρ] + J [ρ] + Exc[ρ] (2.18)

into single electron contributions for kinetic energy Ts[ρ], electron/nuclear interac-
tion Ene[ρ] and Coulomb interaction J [ρ]. The correlation and exchange part of the
energy is excluded from the description and stored in the undefined Exc contribution.
The correlation part Ec of this energy is also the motivation for expanding the HF
determinants in the full CI expansion. In HF theory, Ex is exact while Ec is missing
completely. Unfortunately, the HF exact exchange is not directly compatible with
the DFT Exc energy. The first approaches towards describing the correlation ex-
change energy were based on tabulating exact results from high level homogeneous
electron gas simulations. These are homogeneous local density (LDA) and local
gradient extended generalized gradient (GGA) functionals [42]. Note, the often
mentioned non-local corrections refer only to the inclusion of local gradients. This
group of xc functionals fails to describe charge transfer as the needed 1/r behavior
is not recovered with respect to the distance r. Instead, they decay exponentially.
The reader is referred to a graphical representation of non-locality of the correlation
and exchange holes as was calculated by Towler [61] using the variational Monte
Carlo method.
Second, a set of hybrid functionals was developed [42], including B3LYP, PBE0,

Half/Half and others. For these functionals, some part of the missing long range
exchange is mixed into the pure adiabatic approximation (AA) DFT exchange by
directly including Hartree-Fock (HF) exchange. The amount of exact HF exchange
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2 Theory

then determines the long range scaling of the functional, 0.2/r in the case of B3LYP.
Note, further increasing the amount of HF exchange reduces the needed cancellation
of errors in xc-functionals between the correlation and exchange energies. Thus, sim-
ply increasing HF exchange in B3LYP until the 1/r long range behavior is recovered
will introduce large errors in the local description.
Third, long range corrected, Coulomb attenuated or range separated xc-functionals

[13, 28, 67, 68] have been developed in recent years, referred to as LC-functionals
in the following text. They all rely on the separation of the two particle electron-
electron interaction into a short and a long range part as described by Leininger et
al. [46] as

1
ri,j

= g(ri,j)
ri,j︸ ︷︷ ︸
LR

+ 1− g(ri,j)
ri,j︸ ︷︷ ︸
SR

. (2.19)

The separating function was conveniently chosen as g(ri,j) = erf(µri,j), the error
function. From this definition, it becomes clear that LC-functionals introduce an
additional parameter µ which determines the transition between the short range
and the long range description [54, 55]. The underlying idea is to leave the local
description of the xc-functionals, i.e. LDA, GGA unchanged. Thus, retaining the
important cancellation of errors while including exact HF exchange for long range
interactions. The error function is then used to mediate the two contributions to
the energy. Therefore LC-functionals do not fully correct for the one electron SIE
[68], as the local SIE still remains and only the long range SIE is compensated by
the correct 1/r behavior.
All of the mentioned DFTmethods are single configuration methods and especially

for the long range corrected functionals the computational cost becomes similar to
small multiconfigurational CAS active spaces. Thus, excited state simulations using
the CASSCF method are still appealing for QM/MM simulations.

2.2.6 Force Field Approximation

The approximations up to this point allow the accurate time propagation of several
dozen atoms. This level of theory is referred to as Born-Oppenheimer dynamics
(BO) and still too expensive to model large bio-organic systems in solution. The
quantum mechanical potential from equation 2.4 is now replaced by a purely classical
spring potential, the force field.
The basis for the molecular dynamics (MD) simulations performed in this thesis
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2.3 QM/MM Simulations

is the 2006 AMBER99sb force field [33] which is based on the Wang et al. AM-
BER99 [69] and Cornell et al. AMBER94 force field [17]. The AMBER force fields
originate from the 1984 Weiner force field [72]. The AMBER force field is a pairwise
empirical fit to the potential of the electronic wave function. The functional form
has not changed over the years and the differences are in the fitting of the functional
parameters. The function used is a classical ball and spring model of the form

Etotal =
∑
bonds

Kr(r − req)2 +
∑
angles

Kθ(θ − θeq)2 +

∑
dihedrals

Vn
2 [1 + cos(nϕ− γ)] +

∑
i<j

[
Aij
R1
ij2
− Bij

R6
ij

+ qiqj
εRij

]
. (2.20)

The function describes the equilibrium bond distance req and the spring constant
of bond oscillation Kr. The angles between three atoms are described using a
harmonic angle potential with equilibrium angle θeq and force constant Kθ. Out of
plane dihedral motion of an atom chain a-b-c-d describes the rotation of atoms a
and d around the axis of atoms b and c at angle θ. This motion is described by a
Taylor series of a multi well potential whose Fourier coefficients are Vn and the phase
is γ. The Van der Waals potential is described by the parameter for repulsion Aij
and the attraction Bij over the distance Rij. Finally, the last term of the potential
function describes the Coulomb interaction between the atom point charges qi and
qj at distance Rij.
Notice, how for a given set of protein atoms all possible two, three and four atom

connections need to be parametrized. This easily sums up to several ten thousand
force field parameters and implicitly explains why there are so many different force
fields [33]. The problem of generating a good force field is under determined given the
available experimental parameters. This is why after over almost thirty years there
are still improvements made to the original parameter set. Force field development
is a tedious task that will likely continue for many years to come.

2.3 QM/MM Simulations

Molecular dynamics simulations are a powerful tool to describe equilibrium prop-
erties of large molecular systems such as proteins. The approximations made in
the molecular dynamics framework completely neglect explicit electrons and reduce
the effect of the electronic wave function on the nuclei to an empirical classical
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potential, the force field. However, the force field approximation will completely
fail to describe chemical reactions which involve bond breaking or photon absorp-
tion. This renders molecular dynamics useless for the simulation of proton transfer
and excited state processes. The idea behind QM/MM simulations is to lift the
force field approximations on certain parts of the protein by including the electronic
wave function directly through quantum mechanical calculations. This QM/MM
approach enables simulations of processes which require explicit electrons while also
explicitly including the protein environment at low computational cost.
The QM/MM method is consistent with the three main approximations described

above. The efficient propagation of the quantum region (QM) requires the Born-
Oppenheimer approximation as well as Newtons equation of motion for the nuclear
motion. In addition to these two approximations, the protein environment (MM) is
described using also the force field approximation which replaces explicit electrons
with an empirical force field. As both regions approximate nuclear motion by New-
tons equations of motion, the same time propagation algorithm is used for both the
QM and MM region of the system. The MM forces are calculated from the force
field while the QM forces are derived from the electronic wave function.
In order to create a physically meaningful simulation, the QM region must be

allowed to interact with the MM environment. This can be achieved by directly
coupling the quantum region to the environment via embedding of the classical
nuclei into the electronic wave function. This method is called electronic embedding
and includes the classical point charges from the MM region into the quantum
Hamiltonian via [18]:

Hqm/mm = Hqm
electrons −

n∑
i

M∑
J

e2QJ

4πε0riJ
+

N∑
I

M∑
J

e2ZIQJ

πε0RIJ

. (2.21)

In this equation, the first double sum describes the coupling of n quantum me-
chanical electrons to M classical point charges QJ via Coulomb interaction over the
distance riJ . The second double sum couples the N nuclei with charge ZI in the
QM region toM point charges QJ in the MM region with distance RIJ via Coulomb
interaction.
At the border between QM and MM regions, the angles, dihedrals and impropers

connecting the MM to the QM region are taken from the MM force field. A distance
constraint is used to replace the bond between QM and MM region and set to the
corresponding equilibrium distance. As this bond is missing in the QM calculation a
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lone electron pair is created. This artifact is removed by placing a virtual hydrogen
atom along the constrained bond. The virtual hydrogen is included in the QM
calculation and ignored by the MM force field. The resulting force on the hydrogen
is evenly distributed among the QM and MM binding partner.
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3 Spectral Analysis of QM/MM
Trajectories

3.1 The Challenge

The calculation of an-harmonic infrared spectra is a challenging task for large
molecules. A good model should be able to describe the system of interest in its
natural environment rather than in vacuum [59]. It should also include native sup-
port for anharmonicity without having to rely on anharmonic corrections as done
in the case of harmonic normal modes . Additionally, the quality of the calculated
power density spectra should be high enough to allow the calculation of difference
spectra between states of interest. Thus a high resolution in frequency space is de-
sirable. The method of choice should also capture temperature effects and system
dynamics at both the ground as well as the excited state. The method presented
in the following chapters includes all of the mentioned features as it is based on the
time series analysis of finite temperature QM/MM simulations. Here, the system
of interest is simulated at room temperature in its natural environment. From the
trajectory of this simulation, the dipole moment time series is recorded which is the
basis for the calculation of the anharmonic IR spectrum.

3.1.1 IR Transition Probabilities

In short summary, the vibrational spectrum of a molecular system is a representa-
tion of periodic motion among the nuclei. The oscillation frequencies of the different
collective nuclear motions appear as peaks in the spectrum. This motion behaves
quantum mechanically, thus not all vibrations are allowed and their energies are
quantized. In theory, these allowed collective frequencies can be obtained by apply-
ing perturbation theory to the time dependent Schrödinger Equation:
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3 Spectral Analysis of QM/MM Trajectories

Ĥψ(x, t) = −~
i

∂ψ(x, t)
∂t

(3.1)

This section was inspired by the discussion on quantum mechanical transition
probabilities in references [58] and [43]. The perturbation Ĥ ′ is the effect of the
electric field due to infrared light passing the system. This leads to the perturbed
Schrödinger equation

(Ĥ + Ĥ ′)ψ′(x, t) = −~
i

∂

∂t
ψ′(x, t). (3.2)

The resulting perturbed wave function ψ′(x, t) can be expanded in the basis of
the eigenfunctions ψn(x, t) = ψn(x)e−iEnt/~ of the unperturbed Hamiltonian Ĥ as

ψ′(x, t) =
∑
n

an(t)ψn(x)e−iEnt/~. (3.3)

The expansion coefficients an(t) contain valuable information about the probability
pm(t) = |am(t)|2 of finding the original system ψs(x) in the final state ψm(x) after
a time t. Thus, an expression for the expansion coefficient will be derived in the
following paragraphs. First, inserting equation 3.3 into equation 3.2 results in

(Ĥ + Ĥ ′)
∑
n

an(t)ψn(x)e−iEnt/~ = −~
i

∂

∂t

∑
n

an(t)ψn(x)e−iEnt/~

= −~
i

∑
n

ȧn(t)ψn(x)e−iEnt/~

−~
i

∑
n

an(t) ∂
∂t
ψn(x)e−iEnt/~. (3.4)

The relation

∑
n

an(t)Ĥψn(x)e−iEnt/~ = −
∑
n

an(t)~
i

∂

∂t
ψn(x)e−iEnt/~ (3.5)

is applied to the last term of equation 3.4 resulting in a simplified expression for the
derivative of the expansion coefficients an,

∑
n

an(t)Ĥ ′ψn(x)e−iEnt/~ = −~
i

∑
n

ȧn(t)ψn(x)e−iEnt/~. (3.6)
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This equation can be reduced further by left-multiplying ψm(x, t), applying

Em,n = (Em − En) = ~ωm,n

and switching to 〈bra|ket〉 notation resulting in

∑
n

an(t) 〈ψm| Ĥ ′ |ψn〉 eiωm,nt = −~
i

∑
n

ȧn(t) 〈ψm|ψn〉 eiωm,nt

∑
n

an(t)Ĥ ′m,neiωm,nt = −~
i
ȧm(t). (3.7)

The last step requires the orthogonality relation 〈ψm|ψn〉 = δmn and introduces
a shortened notation for the matrix element Ĥ ′m,n = 〈ψm| Ĥ ′ |ψn〉. equation 3.7
provides a set of linear differential equations from which an can be obtained.

However, the infrared relevant first order term can also be obtained by assuming
the perturbation Ĥ ′ to be weak and short lived. This implies that the expansion
coefficients at time t can be approximated by their value at t = 0, analog to a zeroth
order Taylor expansion. Further, the system is assumed to be in state ψ(x, t = 0) =
ψs(x). The ψs(x) state has all zero an coefficients except for as = 1. This simplifies
equation 3.7 to

ȧm(t) = − i
~
Ĥ ′m,se

iωm,st. (3.8)

For time dependent perturbations Ĥ ′(t) = Ĥ ′e−iωt with frequency ω, equation 3.8
changes slightly into

ȧm(t) = − i
~
Ĥ ′m,se

i(ωm,s−ω)t. (3.9)

Equation 3.9 can be integrated on the interval t′ = [0..t] under the assumption that
the final state |m〉 is unoccupied at t = 0, am(t = 0) = 0. The resulting coefficient
equation is

am(t) = 1
~
Ĥ ′m,s

1− ei(ωm,s−ω)t

(ωm,s − ω) . (3.10)

The last result is useful for calculating the transition probability

pm,s(t) = |am(t)|2 = 2
~
|Ĥ ′m,s|2

1− cos((ωm,s − ω)t)
(ωm,s − ω)2 (3.11)

from state |s〉 to state |m〉 via light absorption or emission. This in itself is a very
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3 Spectral Analysis of QM/MM Trajectories

interesting result, as it directly relates the transition probability to the square of the
transition matrix elements. Thus, understanding the factors that influence transi-
tions requires further information about the perturbation. One example for these
perturbations is the electric field ~E(x, t) = ~E0(x)e−iωt of photons which interact
with the electronic dipole µ of the molecule. A simple interaction Hamiltonian

Ĥ ′ = ~µ · ~E(x, t) (3.12)

can be defined for this interaction. The coupling will be maximal when field and
dipole moment are aligned parallel and zero for perpendicular orientations. Inserting
equation 3.12 into 3.11 results in

pm,s(t) = 4
~2 | 〈ψm| ~µ |ψs〉 |

2| ~E0|2cos2(θµ,E0)1− cos((ωm,s − ω)t)
(ωm,s − ω)2 . (3.13)

At this point the transition to the experiment can be made. Equation 3.13 directly
relates the transition probability, or intensity Im,s, to the dipole moment operator
~µ = ∑

i ei~qi. In this representation, ei is the effective charge at atom i and ~qi is the
vector of atom i to the center of mass of the system. Choosing ~qi this way creates
a well defined point of reference even for charged systems, see chapter 3.1.3. The
transition intensity Im,s from state |s〉 to state |m〉 can be expressed in relation to
equation 3.13 as

Im,s ∝
(
[µ̂x]2m,s + [µ̂y]2m,s + [µ̂z]2m,s

)
, (3.14)

where
[µ̂j]m,s = 〈ψm| µ̂j |ψs〉 . (3.15)

Based on this relation for the intensities, transition rules can be obtained for the
harmonic case by Taylor expanding the dipole moment operator with respect to the
normal coordinates Qi as

~µ ≈ ~µ0 +
3N−6∑
i=1

(
∂~µ

∂Qi

)
µ0

Qi. (3.16)

The harmonic approximation results in a finite Taylor series which is convenient
but not required if generalized normal coordinates are available. The expression can
be inserted back into equation 3.15 which finally leads to the important connection
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between the change of the dipole moment and vibrational intensities through

[µ̂j]m,s = 〈ψm| µ̂j |ψs〉

≈ 〈ψm|µ0 +
3N−6∑
i=1

(
∂µ

∂Qi

)
µ0

Qi |ψs〉

= µ0 〈ψm|ψs〉︸ ︷︷ ︸
=0

+
3N−6∑
i=1
〈ψm|

(
∂µ

∂Qi

)
µ0

Qi |ψs〉

=
3N−6∑
i=1
〈ψm|

(
∂µ

∂Qi

)
µ0

Qi |ψs〉 . (3.17)

From this equation the important transition condition

〈ψm|
(
∂µ

∂Qi

Qi

)
µ0

|ψs〉 6= 0 (3.18)

can be derived. The condition explicitly states that the molecular dipole moment
of a given molecule must change with respect to the normal coordinates for allowed
transitions from |s〉 to |m〉. Of course these statements only hold for the truncated
Taylor expansion in equation 3.16 and thus only in harmonic approximation. How-
ever, even for the anharmonic case equation 3.18 is expected to be the dominating
term in the transition probability and therefore also the transition intensities. Ob-
taining the required normal coordinates is highly non trivial especially for large
systems and anharmonic contributions beyond the truncated Taylor expansion, see
section 3.1.5 for further discussion. An additional feature of equation 3.14 is its
dependence on all absolute square value of the transition dipole moment. In this
formulation, forbidden transitions can exist in either one, two or three dimensions
which allows experiments to probe molecules using polarized light. Individual con-
tributions to the total intensity can be probed this way.

3.1.2 Normal Mode Analysis

The Normal Mode Analysis (NMA) provides a framework for obtaining the normal
coordinates Qi in equation 3.16 as well as harmonic frequencies [11, 15, 58]. In this
framework the nuclear motion is approximated by harmonic potentials. The motion
of the nuclei is described using Newton mechanics and Hook’s law mẍ = −kx. The
displacement of the atoms from their equilibrium positions is x, ẍ is the acceleration,
m the mass and k the harmonic spring constant. Figure 3.1 shows a simple mechan-
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Figure 3.1: Example system with two degrees of freedom: ki spring constants, mi

masses, xi equilibrium positions

ical representation of a molecular system similar to a Carbon-(Carbon-Oxygen)-
Hydrogen chain in a molecule, however with only two degrees of freedom. The
coupled equations of motion for this system can be formulated as:

mC ẍ1 = −kCCx1 + kCO(x2 − x1)
mOẍ2 = −kCO(x2 − x1)− kOHx2. (3.19)

In NMA, the assumption of an all atom collective motion leads to the following
Ansatz:

x1 = A1e
iωt

x2 = A2e
iωt. (3.20)

Notice how the angular frequency ω is identical for both atoms but the amplitudes
or weights Ai are different. Thus, a collective motion of all atoms is implied while
not all atoms must participate, i.e. Aj = 0. Inserting Ansatz 3.20 into equation
3.19 leads to the set of coupled linear equations

(kCC + kCO −mcω
2)A1 −kCO A2 = 0

−kCOA1 +(kCO + kOH −mOω
2) A2 = 0. (3.21)

which is defined if the determinant∣∣∣∣∣∣(kCC + kCO −mcω
2) −kCO

−kCO +(kCO + kOH −mOω
2)

∣∣∣∣∣∣ = 0. (3.22)
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The determinant equation 3.22 can easily to transformed into an eigenvalue problem
by substituting ω2 with λ. For the sake of clarity, the spring constants kCC , kCO,
kOH and the masses mO, mC are reduced to the unit mass m as well as the arbitrary
spring constant k using the following set of substitution rules:

kOH = k; kCC = 5k; kCO = 6k; mC = m; mO = (3/4)m. (3.23)

This leads to the two eigenvalues

λ1 =
(

31−
√

433
6

)
k

m
' 1.7 k

m
(3.24)

λ2 =
(

31 +
√

433
6

)
k

m
' 8.6 k

m
(3.25)

and thus the frequencies

ω1 = ±
√
λ1 ' 1.3

√
k

m
(3.26)

ω2 = ±
√
λ2 ' 2.9

√
k

m
(3.27)

The set of eiqenvalues now leads to a set of eigenvectors by substituting ω1 and ω2

back into equation 3.21

A1

A2
= kCO

(kCC+kCO−mcω2
1) ≈ −0.8

A1

A2
= (kCO+kOH−mOω

2
2)

kCO
≈ 0.9 (3.28)

and therefore

~v1 =
 −0.8

1

 ; ~v2 =
 0.9

1

 . (3.29)

The simple two DOF system discussed above already shows how amplitudes can
only be obtained relative to each other in NMA and not in absolute values. There-
fore, A2 = 1 was arbitrarily chosen. It also illustrates how harmonic normal modes
can be projected back onto the molecular structure via the original Ansatz of equa-
tion 3.20 using eigenfrequencies ωi and eigenvectors ~vi. This allows for a visual
inspection of the different normal modes as well as the assignment of spectral bands
to localized groups of atoms. This projection results in a phasic motion (v2) and
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an antiphasic motion (v1) of the two atoms in figure 3.1. In the reference frame of
normal coordinates, there is no energy transfer from these two motions as there are
no anharmonic off diagonal coupling elements included.

3.1.3 Dipole Moments in QM/MM Simulations

An alternative approach towards calculating vibrational spectra is the direct analysis
of system dynamics through time series analysis. In the previous chapters, the
expansion of the wave function in eigenfunctions ψn(x)

ψ(x, t) =
∑
n

an(t)ψn(x)e−iEnt/~

was introduced and explicitly solved for the expansion coefficients an(t), see equation
3.10. This is not practical for larger systems, as the vibrational wave function is com-
putationally not accessible. In order to derive a more feasible simulation scheme, the
coefficients an are related directly to the time series of the time depended Schrödinger
equation solution. This can be archived by rewriting the Fourier transform of the
wave function time correlation function [60]

p(ω) = (2π)−1
∫ ∞
−∞
〈ψ(0)|ψ(t)〉 eiωtdt

as

p(ω) = (2π)−1
∫∫ ∞
−∞

(∑
m

cmψm(x)e−iωnt

)∗ (∑
n

cnψn(x)e−iωnt

)
dxeiωtdt

= (2π)−1
∫ ∞
−∞

∑
m,n

c∗mcnδmne
i(ω−ωn)tdt

=
∑
m

|cm|2δ(ω − ωm) (3.30)

using the orthogonality
〈ψm|ψn〉 = δmn (3.31)

and the relation ∫ ∞
−∞

ei(ω−ωn)tdt = 2πδ(ω − ωn). (3.32)

Here, equation 3.30 is identical to equation 3.11. Thus the spectrum of a quantum
mechanical system can directly be obtained from the system dynamics without the
need of Normal Mode Analysis. Instead of relying purely on a harmonic approxima-
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tion of the underlying energy landscape, the system is allowed to relax and explore
the energy landscape at finite temperature. This intrinsically includes anharmonic
effects and temperature. Unfortunately, the time dependent Schrödinger equation
can currently not be solved for system sizes of interest in this thesis. Instead, the
cheaper QM/MM simulation scheme is used to propagate the wave function in time.
In this section, the dipole moment operator is applied to the QM/MM wave

function and the resulting dipole moment time series is related to the spectrum via
the Wiener−Khinchin Theorem. By choosing the dipole moment as the observable,
the IR activity criterion from equation 3.18 is explicitly met as only dipole active
modes can be identified. Modes which do not change the dipole moment will not
contribute to the dipole moment time series and thus will not be resolved in the
dipole time series analysis.
First, the concept of dipole moment analysis is introduced and sequentially ex-

tended towards charged molecules. The concept of dipole moments arises from
the multipole expansion of the Coulomb potential. In the multipole expansion, the
dipole moment ~p of a continuous charge distribution ρ(~r0) in the volume V is defined
as

~p =
∫
V
ρ(~r0)(~r0 − ~rref )d3r0. (3.33)

In addition to the dependence of the dipole moment on the charge density ρ and
the position r, the dipole moment also depends on a reference point ~rref . It can
easily be shown that this explicit dependence only holds for charged systems. For
systems with a neutral overall charge Q =

∫
V ρ(~r0)d3r0 = 0, the explicit dependence

vanishes as

~p =
∫
V
ρ(~r0)(~r0 − ~rref )d3r0

=
∫
V
ρ(~r0)~r0d

3r0 −
∫
V
ρ(~r0)~rrefd3r0

=
∫
V
ρ(~r0)~r0d

3r0 −Q · ~rref (3.34)

=
∫
V
ρ(~r0)~r0d

3r0

However, the analysis of neutral systems is not sufficient for the analysis of neither
green fluorescent nor photoactive yellow protein as both systems have charged active
sites. It is therefore desirable to find a good reference point. There are a number of
possible candidates for reference points and intuitively, the origin seems like a good
choice. With rref = (0, 0, 0), the second term of the right hand site in equation 3.34

27



3 Spectral Analysis of QM/MM Trajectories

vanishes. However, this is not sufficient as the integral
∫
V ρ(~r0)~r0d

3r0 will not only
depend on position differences but also on the absolute position of the system for∫
V ρ(~r0)d3r0 6= 0. In this case the dipole moment will no longer be translation or
rotation invariant as global motion changes the absolute distance towards the origin.
As translational and rotational invariance is desired, the center of mass

rCOM =
∑N
n=1 mnrn∑N
n=1 mn

(3.35)

can be chosen as reference point for all dipole time series. This effectively shifts
the problem of reference into the internal coordinate frame of the molecule. A
reference bias in the spectrum can only be reduced and will likely not be excluded
this way. To approach this problem, the center of reference is explicitly included
and monitored during all simulations conducted as part of this thesis. Additionally,
the spectral contribution of rCOM motion is calculated in analogy to the dipole time
series analysis. This enables band specific bias estimation which is expected to
become less important for increasing system size as more atoms are included in the
rCOM average.

Choosing a proper reference point is not the only obstacle when applying dipole
time series analysis (DTSA) to large QM/MM simulation trajectories. The large
computational cost of quantum calculations in the QM/MM scheme effectively limits
the number of vibrations that can be identified. For medium sized QM systems,
1000-1500 fs trajectory lengths are feasible which also equals about 1500 samples of
the underlying dynamics. It therefore is no surprise that not all 3N -6 modes for the
entire simulation box can be determined. For GFP and PYP the total number of
DOFs surpasses 105 and can no longer be handled at the QM/MM level.

Figure 3.2 illustrates three ways of calculating the dipole moments for the QM
region in QM/MM simulations. Figure 3.2c) represents the simplest solution which
only includes static MM charges for the QM region. This ensures compatibility
with the MM charges as there are no contributions from induced dipole moments.
There is also no explicit dependence on the electron dynamics which is also missing
in the MM force field. Figure 3.2a) extends this simple picture by refitting the
electron generated electrostatic potential at each time step. This can be done in
analogy to the original parametrization of the MM force field [33] which ensures
consistency with the dipole contribution from the MM region. Both QM methods for
calculating the dipole moment are in good agreement with the MM description. Thus
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Figure 3.2: QM/MM dipole moment simulation schemes with implicit dependence
on MM atoms; left: dynamic fitting of electrostatic qm potential onto
nuclear centers; middle: dipole moment operator applied to qm wave
function; right: static charge scheme using mm charges for qm atoms

frequency offsets should be comparable. This is not the case for figure 3.2b). Here,
the QM wave function with implicit MM atom contributions is used to calculate the
dipole moment expectation value. This quantity will most likely experience different
frequency shifts and cannot easily be added to the MM contribution of the dipole
moment. Taken for the QM region alone, 3.2b) is the most accurate treatment of
the dipole moment.
The sampling problem reduces the need for a coherent QM/MM description of

the dipole moment as the trajectory length is insufficient to include the MM con-
tribution directly. Additionally, the force field approximation in the MM region is
most reasonable for vibrational modes below kBT/h ≈ 200 cm−1 [5]. However, the
infrared region of interest lies above 1000 cm−1 and is therefore not described suffi-
ciently at the MM level of theory. Therefore, the fast degrees of freedom in form of
bond vibrations are excluded from the MM region via constraints [31]. The dipole
time series analysis is therefore limited to only the quantum region of the QM/MM
simulation. However, the constrained MM region is still present implicitly through
point charges in the quantum Hamiltonian. This procedure effectively reduces the
number of modes that need to be fitted and additionally also excludes the low qual-
ity MM modes. For this reason, short QM/MM simulations mostly benefit from the
scheme in figure 3.2b).
At this point a procedure for calculating dipole moment time series from QM/MM

simulations has been introduced. This time series is now related to the power
spectral density using the Wiener−Khinchin theorem.
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3.1.4 Wiener-Khinchin Theorem

The Wiener-Khinchin Theorem is a fundamental part of signal analysis. It relates
the time autocorrelation function R(τ) of a wide sense stationary (WSS) signal
µ(t) to its power spectral density S(ω). However, it was also shown to hold for
deterministic signals as well [16]. The Wiener-Khinchin Theom will be derived in
analogy to derivation by Leon Cohen [16] with the extension of equation block 3.41
for clarity. For the case of random, zero mean, stationary time dependent signals

µ(t) =
 µ(t) |t|<T

0 |t|>T.
(3.36)

the signal Fourier transform F (ω) and inverse Fourier transform can be defined as

F (ω) =
∫ ∞
−∞

µ(t)e−iωtdt (3.37)

µ(t) = (2π)−1
∫ ∞
−∞

F (ω)eiωtdω. (3.38)

The process autocorrelation function R(t, τ) is defined as the ensemble average E[]
of the signal as

R(τ) = E[µ∗(t)µ(t+ τ)]. (3.39)

Under the assumption of ergodicity, the ensemble averaged autocorrelation function
equals the time autocorrelation function.

The power spectral density S(ω) is defined as

S(ω) = lim
T→∞

1
2T E[|FT (ω)|2] (3.40)
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and can be rewritten to result the Wiener-Khinchin theorem since

S(ω) = lim
T→∞

1
2T E[|FT (ω)|2]

= lim
T→∞

1
2T E

[∫ T

−T
µ(t)e−iωtdt

]2

= lim
T→∞

1
2T E

[∫∫ T

−T
µ∗(τ)µ(t)e−iω(t−τ)dtdτ

]

= lim
T→∞

1
2T

∫∫ T

−T
E[µ(τ)µ(t)]e−iω(t−τ)dtdτ

= lim
T→∞

1
2T

∫∫ T

−T
dtR(t− τ)e−iω(t−τ)dtdτ

= lim
T→∞

1
2T

∫ T

−T
dt︸ ︷︷ ︸

=1

∫ ∞
−∞

R(τ ′)e−iωτ ′
dτ ′. (3.41)

Here, the autocorrelation function R(τ) does no longer depend on the time t but
rather on the lag window length τ and therefore the time integral drops out.

S(ω) =
∫ ∞
−∞

R(τ)e−iωτdτ. (3.42)

Equation 3.42 is the Wiener-Khinchin theorem. It enables direct calculation of
power spectra from time autocorrelation functions. In strict mathematical terms,
the autocorrelation function detour is not necessarily required to calculate power
spectra, as can be seen from equation 3.40. The time autocorrelation function is
smooth, time independent and can also exist for signals which cannot be Fourier
transformed directly. This is the case for signals which do not fulfill the condition
of finite energy. Additionally, autocorrelation based spectral estimation has lower
variance than direct spectra, which is desirable [39]. The reason for discussing
the Wiener-Khinchin theorem will become more imminent when introducing the
maximum entropy spectral estimation. Here, the autocorrelation function for short
signals is extended under the boundary condition of maximum entropy.

3.1.5 Assumptions, Approximations and Limitations

The first section of this chapter promised a method for calculating infrared spectra
from QM/MM simulations providing the following feature set:
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• Native support for anharmonicity and temperature effects

• High frequency resolution for difference spectra

• Natural protein environment is included

• Covers both the ground as well as the excited state

These features have all been provided, except for the high resolution in frequency
space which is discussed in chapter 3.2. However, the efficient implementation of the
described method requires several implicit assumptions and approximations which
are important in order to understand the limitations of this approach. Figure 3.3

Figure 3.3: Collective vibrational modes of water; si: vibrational energy levels of the
wave function; green dots: range of QM/MM simulation sampling; blue
dot: idealized location of the NMA structure

illustrates the underlying physics of the three different methods discussed so far.
The three vibrational degrees of freedom ~vi are shown for a single water molecule.
Additionally, the classical potential functions as well as the vibronic states si, s′i
and s′′i of the quantum wave function are drawn. In this picture, upon infrared light
absorption of energy E = ~ωi (purple) the discrete vibronic quantum number si is
increased and the vibronic wave function shifts to a higher energy level. This process
is experimentally observable. The transition probabilities as derived in section 3.1.1
determine the intensity of this light absorption process. At first sight, the QM region
in a QM/MM simulation might seem to cover the physics of this process. However,
this is not completely true as the motion of the nuclei is assumed to be classical
in QM/MM. This assumption allows the nuclei and therefore wave function to be
propagated using the MM propagation scheme and thus Newton mechanics. The
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consequences of this approximation are severe as the vibrational energy states are
approximated classically and the energy dissipation among the vibrational modes
is no longer quantized. Vibrational degrees of freedom can have continuous energy
levels as opposed to discrete quantum levels in the experiment. With respect to
this energy partition issue, the dipole time series analysis (sampled region shown in
green) cannot be expected to significantly improve on the Normal Mode Analysis
results.
However, the dipole time series analysis does have other clear advantages over

NMA. Figure 3.3 illustrates the strong dependence of Normal Mode Analysis on
finding a well energy minimized structure. The blue dot represents the idealized
single starting point configuration for Normal Mode Analysis. Obtaining this be-
forehand unknown point is not trivial especially for large QM systems in a protein
environment such as the GFP active pocket. With dipole time series analysis, the
close proximity of this point is also taken into account through sampling of the dy-
namics. A more severe limitation of Normal Mode Analysis is the assumption of an
harmonic potential energy landscape around the equilibrium position. In physical
terms this can be seen as a very low order Taylor expansion to the potential en-
ergy landscape. Deviations from this set of harmonic orthogonal potentials are not
allowed and energy transfer between different normal coordinates is not possible.
This effectively biases the identified modes towards their closest harmonic equiva-
lent. The time series analysis is more general as it identifies periodic contributions
to a signal without making assumption about the underlying energy landscape.

3.2 Estimating Power Spectral Densities

3.2.1 Fourier Spectra

The relation between the power spectral density and the Fourier transform was
derived in section 3.1.4. The Wiener-Khinchin Theorem was derived under the
assumption of infinite sampling of a periodic signal s(t). Therefore, an exact auto-
correlation function R(τ) = E[s(t)s∗(t + τ)] and infinite boundaries in the Fourier
integral were assumed for the power spectral density

S(ω) =
∫ ∞
−∞

R(τ)e−iωτdτ. (3.43)
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In real world applications such as simulated IR spectra of proteins, this assumption
is not valid as only a finite set of sampling points is available. The high cost of
performing QM/MM simulations severely shortens the available trajectory lengths
to about 1000 sampling points. The transition between the infinite S∞ and finite
ST time series on the interval [−T..T ] can be formulated as a multiplication of Sf
with a rectangular window function

ςrect(t) =
 1 |t|≤|T|

0 |t|>|T|
(3.44)

as
ST = S∞ ∗ ςrect(t). (3.45)

The window multiplication or convolution operation also affects the Fourier repre-
sentation of the signal. The Fourier spectrum of the finite length signal is smoothened
with decreasing window length and spectral resolution is lost. In the ideal case of
infinite sampling, the window function has infinite width and its Fourier transform,
the delta function, does not influence the spectrum. A second effect of finite window
lengths is caused by the truncation of the maximum lag length τ . This results in an
increase in variance of the autocorrelation function estimate for long lag times. The
uneven variance of the estimate is due to the nature of the finite autocorrelation
function in which short lag times τ are better sampled that long ones.

The undesirable variance can be reduced by introducing a lag dependent weighting
function ς(τ) into the autocorrelation function estimate R(τ). This method was
introduced by R.B. Blackman and J.W. Tukey [7] in 1959. The Blackman and
Tukey method describes the weighted power spectral density

S(ω) =
∫ ∞
−∞

ς(τ)R(τ)e−iωτdτ. (3.46)

As a consequence, the weighted power spectrum effectively becomes the convolution
of the true spectral estimate and the Fourier transform of the weighting window.
This convolution can have severe effects on the spectrum as the positivity is not nec-
essarily conserved and spectral amplitude can leak into neighboring peaks. Spectral
positivity can be conserved by using a triangular window of the form

ςtriang(t) =


2τ
L+1 1 ≤ τ ≤ L+1

2
2(L−τ+1)
L+1

L+1
2 < τ ≤ L

(3.47)
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at the cost of effectively reducing the information used to obtain the spectrum in
half. Triangular windows are a simple but wasteful way of reducing spectral variance.
Additionally, triangular windows increase the spectral bias through the mentioned
sidelobe leakage of power as a result of the convolution procedure.
An alternative way of reducing spectral variance is the Bartlett method. The

Bartlett method is simply an average over N statistically independent spectral es-
timates Si(ω) as

S(ω) = 1
N

N∑
i=1

Si(ω). (3.48)

This approach decreases the spectral resolution but also decreases the variance by
a factor of 1/N . It is therefore desirable to have high resolution spectral estimates
Si(ω) before averaging. The Bartlett method is especially appealing for QM/MM
trajectories as many short trajectories are significantly cheaper to calculate than
single long trajectories.

3.2.2 Maximum Entropy Method

The windowing methods discussed so far all assume the autocorrelation estimate
to be zero outside the interval [−2T..2T ]. However, this assumption can be lifted
by extending the signal autocorrelation function under the condition of maximum
entropy. This approach is called Maximum Entropy Method (MEM). The MEM
generates additional information on the autocorrelation function which can then
be used to calculate a Fourier spectrum. The extended autocorrelation function
from approximated data has a higher spectral resolution but will not significantly
decrease the spectral variance. Additionally, the extension of the autocorrelation
function may introduce pseudo peaks into the spectrum due to over fitting for large
extension ranges. MEM should therefore be considered a parametric method for
spectral estimation in contrast to the parameter free Fourier spectrum. The param-
eter estimation and optimization is matter of section 3.3.
In this section, the basic mathematical concepts of the MEM according to the

work of J.P. Burg [12] are introduced and connected to the all pole autoregressive
(AR) filter in analogy to A. van den Bos [64] and D.A. Gray [26]. The definition of
entropy

HN = log(2πe)N/2det{R}1/2 (3.49)

in the MEM originates from statistical physics but is equally important in informa-

35



3 Spectral Analysis of QM/MM Trajectories

tion theory where it can be seen as a measure of spectral uncertainty. Applied to a
power spectrum, the spectral entropy is maximal when all frequencies are equiprob-
able which is defined as white noise. In the context of the MEM, the best spectral
estimate is assumed to be the spectrum which has maximum entropy under the
boundary condition of reproducing the N measured lags ri of the signal autocorre-
lation function

RN =



r0 r1 · · · rN−1

r1 r0
...

... . . . r1

rN−1 rN−2 · · · r0

 . (3.50)

The MEM now extends RN with the estimated lag rN to

RN+1 =



r0 r1 · · · rN−1 rN

r1 r0
...

... . . . r1

rN rN−1 · · · r0

 (3.51)

under the boundary condition of maximizing the estimated entropy

HN+1 = log(2πe)(N+1)/2det{R}1/2 (3.52)

as
∂HN+1

∂rN
= 0. (3.53)

Conveniently, rN was shown [64] to be obtainable from the solution of the determi-
nant equation

det

∣∣∣∣∣∣∣∣∣∣∣∣

r1 r0 · · · rN−2

r2 r1 rN−3
... . . .
rN rN−1 · · · r1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.54)

Based on the N + 1 autocorrelation estimate, the values for N + 2, N + 3, etc. can
be calculated iteratively.
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3.2.3 Burgs Method

In the previous section, the Maximum Entropy Method was introduced which al-
lowed the calculation of power spectra by Fourier transforming an extended auto-
correlation function.

Figure 3.4: All pole autoregressive filter in time domain.

This is just one example of how the spectral resolution can be increased. An
alternative way is to rewrite a signal si in terms of its last P samples and a random
noise input ui as

si = −
P∑
k=1

aksi−k + PNui. (3.55)

This model is known as the all-pole model [47], see figure 3.4. The weights ak are
called filter coefficients. PN is the gain or output power obtained from the resulting
linear prediction model [26], or autoregressive filter. The frequency representation
of this model can be written in terms of a z transform ∑N

n=0 anz
−n as

Sout(z) = PN

[∑P
n=0 anz

−n][∑P
n=0 a

∗
nz

n]
. (3.56)

No Fourier transform is needed and the spectrum Sout(z) is obtained in a P poles
polynomial representation.
The work of J.P. Burg [10, 12, 51] extended this approach by relaying the power

spectrum directly to the prediction error filter coefficients (p.e.f.c.s.). Burg decom-
posed the N + 1 signal samples into an all pole autoregressive filter of order P . The
measured signal si is approximated by the estimate si as

si = −
P∑
k=1

aksi−k. (3.57)

A forward p.e.f.c.s. estimator fi(n) = si − si is constructed for all P filter coeffi-
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cients ai as

f0(n) = xn

f1(n) = xn + a1xn−1
...

fP (n) = xn + a1xn−1 + a2xn−2 + · · ·+ aPxn−P . (3.58)

By reversion of time, a backward p.e.f.c.s. estimator bi(n) is constructed analogously
as

b0(n) = xn

b1(n) = xn−1 + a1xn
...

bP (n) = xn−P + a1xn−P+1 + a2xn−P+1 + · · ·+ aPxn. (3.59)

The filter coefficients ai are then obtained by recursively minimizing the sum of
squares for both forward and backward estimators as

RSS(P ) =
N∑

n=P+1
(f 2
P (n) + b2

P (n)) (3.60)

A more in depth discussion of the Levinson-Durbin recursion for calculating higher
model orders can be found in the literature [12, 51, 62, 63]. Burgs method is a
very powerful tool for calculating the AR filter coefficients ai which also guarantees
positivity of the calculated spectra.

3.2.4 Burg Alternatives for Autoregressive Filters

Burg’s method is just one among many different ways of obtaining autoregressive
filter coefficients ai. Differences arise in how the prediction error is minimized and
what algorithm is used to obtain the filter coefficients [25, 52]. A prominent al-
ternative to the Burg method is the Yule-Walker method [78] which was originally
applied to investigate periodicity in Wolfer’s sunspot numbers. Instead of mini-
mizing a forward and backward prediction error, the Yule-Walker approach tries to
directly optimize all AR coefficients simultaneously in a least squares fashion [51]
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by minimizing

RSSyule(P ) =
∞∑

n=−∞
(xn + a1xn−1 + · · ·+ aPxn−p)2. (3.61)

The Mathworks MATLAB [49] implementation of the MEM algorithm is equiva-
lent to this Yule-Walker approach and the spectra are identical. Forward only and
forward/backward least square methods also exist which minimize the prediction
errors according to

RSSforward(P ) =
N∑

n=P+1
(xn + a1xn−1 + · · ·+ aPxn−p)2 (3.62)

and

RSSforw.&back.(P ) =
N∑

n=P+1
(xn + a1xn−1 + · · ·+ aPxn−p)2

+
N−K∑
n=1

(xn + a1xn−1 + · · ·+ aPxn−p)2 (3.63)

respectively. The main advantage of Burg’s method over the Yule-Walker method is
its efficient usage of information. The Yule-Walker algorithms uses N-P data points
for each filter coefficient while Burg’s method used N-1 for the first, N-2 for the
second, N-P for the P’th filter coefficient. For large number of filter coefficients this
is a severe limitation of the Yule-Walker and other least squares algorithms.

3.3 Simulation Scheme

A major challenge in preparation of the thesis was the development of a state of the
art simulation scheme for calculating excited state anharmonic vibrational spectra.
The steps performed for the calculation of anharmonic spectra are the following
First, a QM/MM simulation environment has to be set up for the states of interest.

States can consist of different molecular conformations or excitation levels and are
used to calculate the difference spectra. It is important to use the same QM method
for all simulated states as each QM method will likely experience different frequency
shifts. The shifts would otherwise severely influence the quality of the difference
spectrum. In the classical MM region, all bond vibrations have to be constrained in
order to remove their frequency contribution to the QM dipole moment time series.
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The motivation for this is the large number of 3N-6 vibrational degrees of freedom.
Only the smaller subset of vibrations in the QM region can be resolved from the
small number of samples generated in QM/MM simulations. A suitable algorithm
for constraining bonds is the LINCS algorithm by B. Hess et al. [31]. The QM/MM
simulation system should be small enough to propagate it for around 2000-3000 time
steps of 1 fs but shorter trajectories lengths are possible for very small QM regions.
Longer trajectories will increase the quality of the spectra and increase the number
of vibrational degrees of freedom which can be identified. During the Simulation,
the coordinates of all QM atoms are recorded each time step together with the dipole
moment vector from the QM wave function. A set of multiple simulation trajectories
is required to reduce the spectral variance.
Second, the QM/MM dipole moment time series is analyzed to obtain the spec-

trum. The post processing of the coordinate and dipole information consists of
removing the QM system center of mass motion as described in section 3.1.3. The
Fourier and the parametric Burg method, as described in section 3.2.3, are used
to calculate the spectrum. The number of AR parameters needs to be determined
beforehand to reduce artifacts of line splitting and zombie peaks in the Burg spec-
trum. Therefore, a normal mode spectrum is calculated beforehand for the system
of interest, see section 3.1.2. This normal mode spectrum is assumed to have a
similar but different peak distribution and peak number compared to the spectrum
generated from the QM/MM trajectory. Therefore, the NMA frequency distribu-
tion is used to generate a stationary signal composed of sinusoids in additive white
noise. The initial phase of each sine functions corresponding to a NMA frequency is
chosen randomly. The Burg method is applied to the generated spectrum and the
optimal model order P is determined based on the quality of the identified peaks.
Afterward, the Burg method of model order P is applied to the measured signal
from the QM/MM simulation trajectories. A variance reduced averaged vibrational
spectrum is calculated from multiple QM/MM trajectories as described in equation
3.48. Finally, the difference spectrum can be calculated from the averaged single
state spectra by subtraction of the spectra.

3.4 Assumptions, Approximations and Limitations

The method presented in this chapter greatly improves the sampling of the energy
landscape compared to the Normal Mode Analysis. It also removes the harmonic
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approximation and directly connects QM/MM simulation trajectories to spectral
analysis. This makes experimental infrared spectra a new, valuable source of in-
formation about the quality of simulated protein dynamics. A simulated infrared
spectrum which agrees with the experimental data greatly improves the confidence
in the physical correctness of the simulation.

However, the method does make several approximations and assumptions about
the system and its environment which inevitably lead to limitations in applicabil-
ity. First, all frequency analysis methods discussed in section 3.2 require stationary
signals. This explicitly limits the presented method to static processes. During
the simulation, no transitions into other states may occur and large conformational
changes must be avoided. Conformational changes can be described by simulating
the initial and the final state in two separate simulations. The initial velocity dis-
tribution should already be converged to the target temperature and must not be
coupled to a thermostat during the simulation. The rescaling of velocities in ther-
mostats has unpredictable effects on the spectrum as it introduces discontinuities
in the dipole moment time series. The spectra generated from time series should
be averaged over multiple simulation trajectories to reduce artifacts of poor starting
conformations. The number of required trajectories is not well defined beforehand
but can be estimated by monitoring the variance of the identified peaks as a function
of included trajectories.

Second, the nuclear motion is assumed to be classical in QM/MM simulations.
This introduces errors in the power distribution as the energy stored in each mode
is not discrete but continuous. This should in principle also effect normal mode
spectra. The common frequency scaling of harmonic normal modes to correct for
anharmonic effects [34] is not required for time series based spectra. Normal mode
frequencies are too high because the harmonic approximation to the true potential
is too narrow. Therefore, the resulting spectrum is commonly scaled by a factor
of around of 0.9 for DFT based spectra. Time series based spectra do not make
harmonic approximations to the underlying potential and identify periodic motion
directly which makes the scaling obsolete.

Third, systematic errors in the simulation setup may greatly reduce the quality
of the calculated spectra. QM/MM simulations usually describe electrostatic in-
teractions using a cutoff scheme which is known to produce artifacts on long time
scales. For short trajectory lengths the error is assumed to be small. The motion of
bond vibrations is not well approximated by harmonic MM bond potentials which
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is why the bond motion is constrained to the equilibrium value. This also reduces
artifacts in the bond vibrational part of the final spectrum. However, errors in the
QM region itself are likely more severe than in the MM region. The excited state
simulations performed using the CASSCF method with a reduced active space may
introduce further errors. It was not investigated how the reduction of the active
space effects the dynamics of the dipole moment. Only the static case was consid-
ered which showed a considerable change in the overall dipole moment for different
reduced active spaces.
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4.1 Green Fluorescent Protein

Figure 4.1: Proposed sequential GFP photo cycle [20]; A) ground state; A∗) first
excited state; I∗0 and I∗) excited state intermediates; I1 and I0) ground
state intermediates.

The Green Fluorescent Protein (GFP) is a barrel shaped protein with a photoac-
tive chromophore in its center. The protein absorbs light in the UV range and emits
green light in the visual part of the spectrum. GFP has become a widely used tool
for fluorescent labeling as the protein can be fused into other proteins by inserting
the GFP gene into the host DNA. The protein and its chromophore self-assemble au-
tocatalytically. The chromophore is formed from the tripeptide Ser65-Tyr66-Gly67
without enzymatic assistance[50]. GFP is also an interesting candidate for super
resolution imaging which is no longer bound to the Abbe diffraction limit [27, 30]
However, despite the existing experimental tools to produce new GFP variants, the
precise molecular mechanism of the GFP active pocket after photo excitation is still
an active matter of debate [20, 65, 66]. Figure 4.1 illustrates the sequential model
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proposed by M.L. Groot et al. and shows six proposed stages of the photo cycle.
Simulated protein dynamics may help to identify the proposed states by relating
calculated difference spectra to the experimental data.

4.1.1 GFP Model Order Prediction

Frequency analysis is a tricky business with considerable pitfalls to consider. Sec-
tion 3.3 introduced the simulation scheme which is used to generate the data and
section 3.2 introduced three main spectral analysis methods. These are the Fourier
transform, the Burg autoregressive filter analysis and the Yule-Walker or Maximum
Entropy Method. The predictive quality with respect to the GFP chromophore
hydrogen bond network was investigated.
The main motivation of this analysis is to overcome the uncertainty principle of

the Fourier transform which relates the spectral resolution ∆ω to the trajectory
length ∆T as

∆ωmax ≤
1

∆T . (4.1)

However, the higher resolution does come at the price of introducing autoregressive
parameters p which may cause severe artifacts if not chosen carefully. These artifacts
are line splitting, false positives, initial phase dependence of the peak location and
high variance in the peak heights. Therefore, the test system was carefully designed
to help identify theses artifacts on data similar to the expected simulation trajectory
data. First, the normal mode frequencies ωi were used as input for generating the
signals si(t) of length L as

si(t) = Asin(ωit+ ϕ). (4.2)

The amplitude A was set to one and the phase ϕ was drawn randomly from the
interval [−2π..2π]. The unit amplitudes distribute the power equally over the signal
and therefore all spectral peaks are expected to have the same height. The random
phase recreates the actual simulation conditions. The final signal S(t) is the sum of
all normal mode contributions si(t) and additive white noise ξ(t) as

S(t) =
3J−6∑
j

si(t) + ξ(t). (4.3)

The white noise was generated with a signal to noise ratio of s2n = 20 dB according
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to the root mean square deviations (rms) of signal S and noise ξ

s2n = 20log10

(
rms(∑3J−6

j si(t))
rms(ξ(t))

)
(4.4)

which corresponds to a signal which is 10 times stronger than the additive noise.
This model does not include non additive noise from a thermostat or bond vibrations
in the MM region. The simulation setup was carefully designed to avoid such non
additive contributions by constraining MM bond vibrations and deactivating the
thermostat in the QM region. However, non additive noise can, at the present stage
of development, not fully be excluded.

Figure 4.2: normal mode spectrum of the GFP chromophore hydrogen bond net-
work; (blue) NMA spectrum; (green) 58 major frequency peaks; (red)
full NMA frequency density

The GFP chromophore hydrogen bond network has J = 45 atoms which results in
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Figure 4.3: Stucture of GFP hydrogen bond network for Normal Mode Analysis

3J − 6 = 129 degrees of freedom and an 129 possible frequencies. Figure 4.2 shows
the frequency density and the 58 main frequency peaks of the harmonic normal
mode spectrum in vacuum. As the cost of GFP QM/MM simulations is very high,
a simulation trajectory length of L = 1000 fs was used to generate the GFP test
signal. The result is shown in figure 4.4.

The spectral information of the GFP test system is only poorly recovered from
the 1000 fs trajectory. The signal was generated such that all peak heights are
expected to be equal in the unscaled Fourier spectrum. For the Burg spectrum,
the area under the peaks is expected to be constant. Neither is the case as can be
seen in figures 4.4 and 4.5. The maximum resolution estimate from equation 4.1 for
a 1000 fs trajectory is ∆ω ≈ 34 cm−1 and 500 autoregressive parameters are not
sufficient to reduce this below the desired < 10 cm−1 experimental resolution. The
GFP model system is expected to reach single wavenumber resolution at roughly
32000 fs but already 3000 fs yield usable frequency resolution. The 3000 fs example
is shown in figure 4.6 and 4.7. The data shown in figure 4.4 helps to put the quality
of spectra calculated in section 4.1.3 into perspective. Due to the large size of the
GFP chromophore system, excited state QM/MM calculations of 3000 fs are out of
reach given the computational resources present at the time of writing this thesis.
The presented 1000 fs trajectories have very poor frequency resolution and should
only be seen as proof of principle for the developed simulation method.
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Figure 4.4: Portion of GFP like 1000 fs spectrum with 129 NMA frequencies (red);
Burg peaks (green); Fourier spectrum (cyan); Burg spectrum (blue);
peak heights are not well recovered, target frequencies are not matched.
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Figure 4.5: GFP like 1000 fs spectrum from figure 4.4; Burg spectrum (blue lines);
integrated area under peaks (blue dots). The area under the Burg peaks
is not constant.
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Figure 4.6: Portion of GFP like 3000 fs spectrum with 129 NMA frequencies (red);
Burg peaks (green); Fourier spectrum (cyan); Burg spectrum (blue);
target frequencies are well matched and peak heights greatly improved
over 1000 fs spectrum.

4.1.2 Simulation Setup

Before discussing the quality of the simulated QM/MM spectra a short introduc-
tion into the simulation setup is given at this point. The ground state GFP x-ray
structure 1GFL [76] was equilibrated and used as the starting point for generating a
structure for the proposed I∗ state. The I∗ structure was generated by constraining
all heavy atoms in the active pocket and only optimizing the hydrogen atoms for
the deprotonated chromophore. Figure 4.1 shows a stick representation of the re-
sulting conformation as well as the ground state conformation with the protonated
chromophore. The MM part of the system was parametrized using the AMBER03
force field together with a custom parameter set for the protonated and unproto-
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Figure 4.7: GFP like 3000 fs spectrum from figure 4.6; Burg spectrum (blue lines);
integrated area under peaks (blue dots). The area under the peaks
greatly improved over 1000 fs spectrum but not optimal.

nated gfp chromophore as kindly provided by Gerrit Groenhof. The AMBER99sb
[33] parametrization procedure described for the PYP chromophore in section 4.2
was also applied to the GFP chromophore but did not result in a stable hydrogen
bond network which is why the existing AMBER03 parameter set was used. A total
of 48 snapshots were forked off a 30 ps MD simulation trajectory for both the A and
I1 state. The Gromacs 4.5.1 QM/MM simulation software was modified to record
the dipole moment vector time series as well as the coordinates of the chromophore
pocket. The QM/MM simulations were run for 1000 fs each. From this data, the
dipole moment time series was corrected for the center of mass motion of the chro-
mophore pocket. To illustrate what the result of these simulations is, the resulting
time series for the ground state is shown in Appendix figure 7.9.
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Reduction of CASSCF active space

The CASSCF method was introduced in section 2.2.4. CASSCF is a truncated
version of the full CI method which produces good results for excited states. It
only includes selected electrons into the CI expansion while all other electrons are
described at the lower Hartree-Fock level of theory. The selection of the CASSCF
active space is crucial for the quality of the resulting wave function. This makes
CASSCF one of the few quantum chemical methods which are not ‘black box’.
Instead, the chemically important delocalized π-orbitals are selected individually
by hand. Due to the very high cost of large active spaces, the full GFP π electron
system cannot be included. Therefore, a reduction of the active space is unavoidable.

The reduction is usually performed by removing orbitals piecewise based on their
electron occupation numbers. The reduction process requires careful orbital eval-
uations and a great portion of ‘chemical intuition’. Therefore, the reduction from
CASSCF(12/12) to CASSCF(6/6) may require up to 12 reduction steps. As there
are only

N(12/12)→(6/6) =
(

3
6

)
bind

(
3
6

)
anti

= 400 (4.5)

possible candidates to reduce the CASSCF(12/12) active space to CASSCF(6/6) a
brute force algorithm was developed to try them all. Thus, the reduction process
would no longer require chemical intuition. A selection rule was designed such
that the physically important quantities of dipole moment and excitation energy
are conserved in the reduction process. All 400 active space reductions were scored
according to the function

C = ∆pgs + ∆ps1 + 100 ∗∆Evert. (4.6)

In this approach, the difference in dipole moment for the ground ∆pgs and first ex-
cited state ∆ps1 between the larger CASSCF(12/12) and each smaller CASSCF(6/6)
active space was used. Additionally, the difference in vertical excitation energies
∆Evert was added to the two dipole moment differences to obtain the total devia-
tion measure C. The choice of the two dipole moment difference parameters is based
on the assumption that a reduced active space should reproduce a similar wave func-
tion of only the most relevant correlated orbitals which is expected to results in only
a small deviation of the total dipole moment. The vertical excitation energy was
included as a quality measure for the description of the transition to the first ex-
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cited state. This energy was added in units of Hartree and has therefore only a
small contribution to the overall score. The dipole moment is considered to be more
important for the subsequent spectral analysis. The result of this reduction for the
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Figure 4.8: Representation of all converged candidates out of the 400 possible
CASSCF(12/12) to CASSCF(6/6) reductions; (magenta) total score C
for each conformation C = ∆pgs + ∆ps1 + 100 ∗∆Evert (lower is better);
(red) ∆pgs difference in ground state dipole moment CASSCF(12/12)-
CASSCF(6/6); (green) ∆ps1 difference in exited state dipole moment
CASSCF(12/12)-CASSCF(6/6); (blue) 100∆Evert vertical excitation en-
ergy difference CASSCF(12/12)-CASSCF(6/6). The best candidate is
shown in figure 4.9.

neutral GFP chromophore pocket is shown in figure 4.8. An interesting feature of
this diffuse plot is the large spread in dipole moment differences. This is an indirect
measure of the quality of the underlying wave function which strongly depends on
the orbitals chosen in the reduced space. In order to determine the best reduced
active space, the energies of the eight lowest overall scores where examined. These
eight candidates all have an overall score of less than two and seven of which also
have degenerate total energies. This implies that there is more than one best active
space and several reduction choices correspond to the same reduced wave function.
Out of the seven degenerate reductions the one with a slightly lower overall score
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4.1 Green Fluorescent Protein

Figure 4.9: Orbital representation for the optimal reduction candidate of the GFP
CASSCF(12/12) active space: (right) best CASSCF(6/6) reduced active
space out of all 400 possible combinations.
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was chosen for the final CASSCF reduced active space. The orbitals corresponding
to this best candidate are presented in figure 4.9
Unfortunately, the reduced CASSCF(6/6) wave function still required 65 minutes

of computing time per time step. The cluster node was a 2Ghz Magny-Cour AMD
machine with 8GB of RAM using 4 cores and the Gaussian03 [23] quantum package
and a convergence parameter of 10−8. The Molpro [73] quantum package was also
tested but did not improve the Gaussian result. In conclusion, the required 3000 fs
of simulation trajectory for the A∗ and I∗ states in GFP would consume around 4
months of computing time which is not an option at the time of writing this thesis.
In order to still test the applicability of the developed method to GFP, ground state
trajectories were generated using the very efficient density functional theory (DFT)
in combination with the B3LYP functional.

4.1.3 Anharmonic GFP Spectra from QM/MM Simulation

The GFP protein was simulated in the A and I1 state using the ground state DFT
method and the B3LYP functional together with a 6-31g* Gaussian type basis set. A
trajectory length of 1000 fs was chosen as this is currently the limit for excited state
calculations. However, ground state trajectories can in principle be extended to the
required 3-4 ps trajectory length. From the resulting dipole moment time series, both
the Burg and the Fourier spectra were calculated. The maximum entropy spectral
data is not shown due to its inferior performance in the model order prediction
calculations. The ground state raw data for all 48 trajectories is shown in Appendix
figure 7.9 and the I1 state raw data is shown in Appendix figure 7.10. The raw
data is included to illustrate that the time series are stationary as required by the
analysis methods. Not all generated time series were used for signal analysis. The
selected subset is described in the raw data figure captions. The selection was
made to exclude short trajectories due to hardware defects, slow node performance
and anomalies observed in the visual trajectory inspection. Trajectories in which
the hydrogen bond network broke were excluded as well as trajectories in which the
starting conformation showed a twisted GLU222 residue. In the I1 state trajectories,
GLU222 twisting was observed in five cases out of the 24 1 ps trajectories. The
twisting did not result in a breaking of the hydrogen bond network. The simulation
data roughly corresponds to a 4 ps−1 decay process. However, a more reliable
estimate of the observed process as well as the possible identification of the I0 state
requires longer trajectories and better statistics.
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4.1 Green Fluorescent Protein

In total 33 individual vibrational spectra were used to calculate averaged Fourier
and Burg spectra. The overlay of both spectra is shown in figure 4.10. The same
procedure was applied to the Fourier and Burg spectra for the I1 state. The resulting
averaged spectra are shown in figure 4.11.

Figure 4.10: Anharmonic GFP spectrum of the ground A state from 33 1000 fs
QM/MM simulations (unscaled frequencies).

The results are in agreement with the expected accuracy from the model order
estimation process in section 4.1.1. The model order estimation calculations pre-
dicted that 1000 fs sampling of the underlying GFP potential is not sufficient to
distinguish individual peaks in the spectrum. Additionally, the Burg peak locations
do most likely not correspond to the expected frequencies nor do the peak heights
correspond to the correct power distribution. The predicted resolution limit of the
Fourier transform cannot be improved due insufficient trajectory lengths. The res-
olution does also not increase through averaging of multiple trajectories. However,
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Figure 4.11: Anharmonic GFP spectrum of the I1 state from 24 1000 fs QM/MM
simulations (unscaled frequencies).
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4.1 Green Fluorescent Protein

the simulations do reveal an interesting effect of the MM environment on the QM
dipole moment time series which the model order prediction calculations in section
4.1.1 do not consider. The effect becomes visible when the full spectrum is ex-
amined. Figure 4.12 illustrates how the MM environment contributes to the low
frequency part of the spectrum below 1000 cm−1. The contribution is likely caused
by angle and dihedral vibrations. The bond vibrations from the MM region were
constrained during the QM/MM simulation and should not appear in the spectrum.
However, the angle and dihedral degrees of freedom were not constrained to ensure
a physically correct behavior of the protein. The center of mass motion of the active
pocket which was removed beforehand also contributes to this part of the spectrum.
It becomes eminent that the low frequency bias to the spectrum is the price to pay
when including the protein explicitly into the analysis of the chromophore spec-
trum. The MM contribution also increases the total number of degrees of freedom
which have to be identified. The total required trajectory length and autoregressive
parameter number may increase beyond the predictions made in section 4.1.1 due
to this effect. The spectral analysis of GFP is concluded at this point, as longer
simulation trajectories are required for further analysis.
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Figure 4.12: Full GFP I1 state spectrum (unscaled frequencies), 24 1000 fs QM/MM
simulations; A) slow dihedral and angle vibrational contributions from
MM region (MM bond vibrations constrained to zero during simula-
tion); B) carbon and oxygen bond vibrations QM region; C) fast hy-
drogen bond vibrations.

4.2 Photoactive Yellow Protein

The method testing now continues with the spectral analysis of the Photoactive
Yellow Protein (PYP) chromophore. This system was predominantly chosen for its
accessibility in both simulations and experiments. The QM region in this system can
be chosen much smaller than in GFP which enables longer trajectories and higher
spectral resolution due to a decrease in total vibrational degrees of freedom. The
reader is reminded that the question to be answered at this point is not about the
biology of the PYP system. Two open questions remain. First, it is not clear whether
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4.2 Photoactive Yellow Protein

QM/MM trajectory lengths are sufficient to identify individual contributions to the
spectrum. Second, it will be investigated whether or not the Burg method can be
used to improve the resolution limit set by the Fourier transform of short QM/MM
simulation time series.

4.2.1 PYP Model Order Prediction

The model order prediction scheme described for GFP in section 4.1.1 was also
applied to the smaller locked PYP chromophore, figure 4.14. The QM/MM sim-
ulations of GFP included the complete proton wire surrounding the chromophore
with a total of 45 atoms (182 electrons). The PYP QM region was reduced to only
the locked chromophore without including any further protein residues into the QM
region. This effectively reduces the number of QM atoms to N = 26 (116 electrons)
and the total degrees of freedom to 3N−6=72. Given the same size of CASSCF ac-
tive space, the PYP QM calculation can be expected to be around four times faster
than the GFP system due to the reduced number of electrons. Figure 4.13 shows the
normal mode spectrum and the frequency density for all 72 harmonic frequencies.
The locked chromophore has two additional carbon atoms. Therefore, a parameter
set which sufficiently describes the locked chromophore is assumed to also perform
well for the smaller wild type chromophore.
The spectrum for a 2500 fs trajectory generated from the locked PYP chromophore

normal mode frequencies is shown in figures 4.15 and 4.16. The identification of fre-
quency peak locations is significantly better than for the 3000 fs GFP trajectory.
The input frequencies are recovered within less than 10 wavenumber deviation. Also,
the recovery of spectral power is significantly better than for the GFP system. The
Burg spectrum separates peaks which cannot be distinguished in the Fourier spec-
trum and overcomes the resolution limit described in formula 4.1. The raw data
for the Burg, Fourier and maximum entropy spectra are shown in appendix figures
7.1, 7.2 and 7.3. The maximum entropy spectrum only marginally improves the
frequency resolution compared to the Fourier spectrum. This barely justifies the
drawbacks on including a parameter based model. Therefore, the parameter based
maximum entropy method is no alternative to the parameter free Fourier transform.
The Burg spectrum is also parameter dependent but noticeably improves the Fourier
frequency resolution.
Based on these model prediction order calculations, Burg’s method is the prefer-

able choice for PYP spectral analysis given a sufficiently long trajectory of 2500

59



4 Applications

Figure 4.13: normal mode spectrum of the locked PYP chromophore; (blue) NMA
spectrum; (green) 48 major frequency peaks; (red) full NMA frequency
density

fs. The performance for shorter trajectories was also examined and 1000 fs spectra
are shown in appendix figures 7.4, 7.5, 7.6, 7.7 and 7.8. The quality of the 1000
fs spectrum is sightly better than the 1000 fs GFP spectrum but not sufficient for
the calculation of accurate difference spectra. At 1000 fs simulation length, only
qualitative spectral differences and large shifts are visible.

4.2.2 Simulation Setup

Simulations of the Photoactive Yellow Protein (PYP) wild type and three selected
mutants, see figure4.17, were performed. All systems were simulated in the ground
state at the DFT-B3LYP/6-31g* level of theory while the locked mutant was also
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4.2 Photoactive Yellow Protein

Figure 4.14: Stucture of locked PYP chromophore for Normal Mode Analysis

simulated at the CASSCF(6/6) level of theory.

The wild type PYP x-ray crystal structure, pdb code 2ZOH [75], was used as the
starting conformation. Based on this conformation, three mutants were generated.
First, the wild type chromophore was replaced by a locked PYP chromophore which
disables one of the two known isomerization channels by locking the single bond
dihedral. Second, two additional mutants were generated by replacing the arginine
residue 52 by alanine (R52A) in the wild type and locked protein. The Gromacs
molecular dynamics program [18] was used to assign AMBER99sb [33] force field
parameters to the amino acid residues. The AMBER99sb force field was chosen
for its good description of protein interactions together with the computationally
efficient tip3p[36] water model. The AMBER99sb force field was also chosen for
its strong dependence on quantum mechanical calculations. This greatly simplifies
the procedure of extending the force field with new residues. However, force field
parametrization remains a tedious process that also requires experimental validation.
The setup up to this point covers most of the protein and water dynamics but does
not yet describe the dynamics of the most important part of the PYP protein, the
chromophore.

The chromophore of the PYP protein is not part of any modern force field. This
implies that this part of the protein cannot be simulated using the molecular dynam-
ics methods. To resolve this issue, a custom force field parameter set was generated.
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Figure 4.15: Portion of PYP like 2500 fs spectrum with 72 NMA frequencies (red);
Burg peaks (green); Fourier spectrum (cyan); Burg spectrum (blue);
Burg peak heights and frequency identification improves Fourier spec-
tral estimates.
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4.2 Photoactive Yellow Protein

Figure 4.16: PYP like 2500 fs spectrum from figure 4.15; Burg spectrum (blue lines);
integrated area under peaks (blue dots); variance in power (area under
peaks) in good agreement with the expected flat power distribution
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Figure 4.17: PYP wild type and three selected mutants; top left: PYP wild type
(WT); top right: PYP locked WTL mutant; bottom left: PYP
WTR52A mutant; bottom right: PYP locked WTLR52A mutant;

This was done following the parametrization philosophy of the previously applied
AMBER99sb forcefield. However, the generated parameter set for the WT and
locked PYP chromophore should be considered of comparable but not of equal qual-
ity as AMBER99sb. Modern protein force fields heavily rely on experimental input
in form of configurational energies and solvation free energies, among many others.
At the time of writing, this data was not available for the two PYP chromophore
variants parametrized in this thesis.
The chromophore parameters were generated using the Generalized Amber Force

Field (GAFF) [70] . The initial guess was generated using the automated atom
and bondtype assignment procedure [71] developed in the lab of D. Case and the
former Kollman group. The automatically generated parameters were subsequently
checked and corrected by hand to match the known chemical topology. At this
stage, the bonded parameters, i.e. bond stretching, angle bending, dihedral torsions
and the ring planarity are covered. The Lennard-Jones parameters were taken as
found in the AMBER99sb and GAFF parameter set.The electrostatic potential was
reduced onto the nuclear centers using the Restrained Electrostatic Potential Fit
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4.2 Photoactive Yellow Protein

(RESP)[3]. Here, the backbone atomic charges were restrained to match the stan-
dard AMBER values to avoid incompatibilities. At this point the standard AM-
BER99sb parametrization philosophy was left. Instead of using the Hartree-Fock
RESP charges from a vacuum calculation, the chromophores were placed inside the
protein and the RESP charges were calculated using Density Functional Theory
DFT and the B3LYP exchange/correlation functional. This procedure was cho-
sen to better mimic the charge polarization of the chromophore inside the protein
pocket.
The generated parameter sets for the WT and the locked WTL mutant were used

to generate 6 ns of classical MD trajectories. From each trajectory, 48 snap shots
were forked off as input for subsequent ground state QM/MM simulations. The
DFT B3LYP/6-31g* QM/MM simulations were setup to run 1000 fs. However, the
calculations for the model prediction error suggested that much longer trajectories
are required to achieve reasonably high frequency resolutions. Therefore, the PYP
WT as well as the PYP WTL mutant simulation trajectories were extended to up
to 4 ps. In the following, only the data for these extended trajectories is shown. The
quality of the 1000 fs spectra for the WTR52A and WTLR52A mutants is slightly
better than those for the short GFP trajectories but still not sufficient to calculate
difference spectra.

4.2.3 CASSCF Results

Much of the interesting PYP dynamics takes place in the excited state. Therefore,
CASSCF simulations were prepared in order to simulate the excited state dynamics.
This short section summarizes the problems in generating dipole time series for the
excited chromophore. The active space of the PYP WTL chromophore was reduced
in the same way as the GFP chromophore in section 4.1.2. The chromophore orien-
tations from 48 DFT/B3LYP ground state frames were used to create CASSCF(6/6)
guess wave functions. The chromophore structures from the snap shots were opti-
mized at the HF/6-31g* level of theory followed by a CASSCF(12/12) single point
calculation and the subsequent reduction to CASSCF(6/6). The same active space
orbital selection was generated for each frame. Similar to the GFP reduction, the
CASSCF(6/6) active space with the lowest overall score was used. The simulations
were started in the ground state for each frame.
The resulting trajectories clearly speak against the described automated active

space reduction. Out of 48 trajectories, only three trajectories reached 300 fs trajec-
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tory length without convergence failure. The proposed reduction is appealing as it
does not require chemical intuition. However, this is also what seems to be missing.
Usage of the proposed scheme is therefore not advised.

4.2.4 PYP WTL-WT Difference Spectrum

The extended ground state simulation trajectories for the PYP wild type and the
locked mutant were used to generate averaged anharmonic Fourier and Burg spectra.
The raw time series data is shown in Appendix figures 7.11 and 7.12. From the set
of all trajectories, only a small subset of 11 long trajectories of at least 2800 fs
were selected for both systems. Longer trajectories are expected to result in higher
frequency resolution. From these subsets, averaged spectra for the WT and WTL
chromophore were calculated which are shown in figures 4.18 and 4.19. Both figures
also include the corresponding normal mode spectra for the isolated chromophores
in vacuum. In addition, the WTL spectrum highlights three important spectral
features.
First, the Burg spectrum contains several smaller side peaks. These side peaks

were not present in the model order estimation calculations for the PYP WTL
system. However, the nature of these peaks is likely not related to the vibrations
of the chromophore but rather an artifact of the high model order. The number of
suspected artifacts reduced significantly by increasing the trajectory lengths from
2300 to 2800 fs. A commonly applied upper bound for the Burg parameter number
p in the literature is L/3 for L samples. In both of the PYP spectra, model orders as
large as L/2 were used in combination with a low pass filter to smooth the resulting
closely split lines. In the model order estimation section, this procedure was found
to be in good agreement with the Fourier results as the closely split lines gathered
around the expected frequencies and their convoluted heights corresponded to the
Fourier amplitudes. However, the low pass filter also causes sightly lower Burg peak
amplitudes in the PYP spectrum. An alternative way to reduce the side peaks could
also be to include the full trajectory set into the average instead of just the small
subset given sufficiently long simulation times.
Second, the normal mode spectrum fails to correctly predict the peak amplitudes

at 300K. Instead, the NMA predicts a high spectral amplitude for a WTL peak
located at 1590 cm−1 which is much lower in the actual simulated spectrum. Normal
mode spectra are by design calculated at 0K which makes it difficult to predict
temperature effects. The B) label in the WTL spectrum also shows a peak without
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Figure 4.18: Anharmonic PYP WT ground state spectrum from 11 QM/MM simu-
lations of length 2800 fs; blue line: average Fourier spectrum; green line:
average Burg spectrum; red dots: normal mode spectrum of isolated
chromophore in vacuum.

NMA amplitude that clearly contributes in the simulated spectrum.

Third, there are clear frequency shifts between the normal mode and time series
spectra. From this data alone, it cannot be distinguished whether the frequency
shifts result from the protein environment or from the difference in methodology. To
separate the two possible sources, a small test system was simulated in vacuum. The
spectrum was calculated using both time series analysis and NMA. The resulting
spectra are shown in Appendix figure 7.14. However, this small test system also
shows slight shifts in frequency which makes it difficult to determine the effect
of the PYP protein environment without performing QM simulations of only the
chromophores in vacuum.
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Figure 4.19: Anharmonic PYP WTL ground state spectrum from 11 QM/MM sim-
ulations of length 2800 fs; blue line: average Fourier spectrum; green
line: average Burg spectrum; red dots: normal mode spectrum of iso-
lated chromophore in vacuum. A) Burg line splitting due to over fitting.
B) Failure of NMA to determine IR amplitude of the circled mode. C)
Frequency shift between NMA and QM/MM spectrum.

Finally, the subset of long simulation trajectories was used to calculate a truely
anharmonic vibrational difference spectrum between the WTL and the WT ground
state spectrum. The resulting difference spectrum is especially exciting as it can
directly be related to future experimental data which was not available at the time
of writing this thesis. The calculated spectra reflect the frequency resolved average
power distribution over the full trajectory length. An increase in trajectory length
will also increases the accuracy at which power contributions can be located in the
spectrum. This results in higher but narrower peaks which has to be considered when
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Figure 4.20: Anharmonic PYP WTL-WT ground state difference spectrum from 11
QM/MM simulations of length 2800 fs ; green arrow indicates a large
difference in the WTL spectrum at around 1590 cm−1; black arrows
visualize the corresponding Normal Coordinate in the WT and WTL
chromophore. The large negative peak in the spectrum indicates that
the illustrated motion is absent in the WTL chromophore.

applying the presented method to calculate difference spectra. Difference spectra
will have the highest accuracy when both systems have similar overall degrees of
freedom and equal trajectory lengths.

The WTL-WT spectrum is shown in figure 4.20. A trajectory length of L=2800
fs was used for all analyzed time series. The spectrum clearly shows a large negative
peak at 1590 cm−1. Based on the normal mode data calculated for both chro-
mophores in vacuum, the closest corresponding vibrational frequency to the 1590
cm−1 peak was identified for each. Both frequencies also correspond to the same
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nuclear motion which is illustrated by the black arrows. The absence of this motion
in the WTL chromophore could be explained by the mechanical restrain on this
motion introduced by the additional two carbon atoms in the WTL chromophore.
To avoid overinterpretation of the simulated spectrum, only the most intense dif-

ference is considered for now but further analysis is possible. Hopefully, experimental
data will shed light on the true predictive power of the smaller peaks.
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The attempt to increase the spectral resolution using parameter based methods
revealed many pitfalls which turned out to be difficult to control. The quality of
model based spectra strongly depends on the model order. It is tempting to increase
the subjective quality of a spectrum by tuning the Burg model order. However,
the predictive quality of these tuned spectra will be meaningless as any result can
be obtained this way. Therefore, the model order was carefully estimated using
a reference signal generated from the normal mode frequency density. The model
order obtained this way was not changed during data analysis which restores the
objectivity of the spectra.
It is noteworthy that the estimated optimal Burg model orders were fairly high

with p=1250 for the PYP and p=1500 for the GFP case. This is due to the fact that
all-pole models, such as Burg’s method, only poorly describe gaps in the spectrum
which greatly increases the required model order. Combined all-pole|all-zero ARMA
models also exist in the literature which combine autoregressive filters with moving
average models at the cost of introducing another model parameter. However, a
second model parameter only complicates the already difficult process of determining
the right models order. Therefore, high Burg model orders are likely unavoidable to
increase the spectral resolution.
Burg’s method does increase the resolution limit compared to Fourier spectra.

However, parameter based methods should not be seen as a replacement for the
Fourier transform. Instead, Burg’s method offers an alternative and independent
way of analyzing the QM/MM time series. Fourier spectra of short trajectories are
very smooth and tend to combine closely separated peaks into one. Burg spectra on
the other hand tend to overshoot due to their all-pole nature and quickly separate
broad Fourier peaks into two or more peaks. When long simulation trajectories
are available, it turned out to be very useful to analyze also shorter versions of the
generated time series while increasing the amount analyzed data stepwise. This
revealed that the Burg spectrum already identifies features in short data sets which
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later also become visible in the Fourier spectrum. The sequential analysis helps to
identify regions were the peak identification is converged as well as rapidly changing
regions. The confidence in the accuracy of the peaks in the difference spectrum can
be increased this way. Results obtained from the Yule-Walker or Maximum Entropy
method do not justify the drawbacks of introducing a parameter based model.

Ground state QM/MM simulations of GFP in combination with the model order
prediction scheme revealed that excited state simulations of at least 3 ps are required
to achieve acceptable frequency resolution. This can currently not be achieved using
the available software and hardware resources at the time of writing. Considerable
effort is required before anharmonic excited state GFP difference spectra can be
calculated using the presented approach. Additionally, there is currently no afford-
able QM method which correctly describes short hydrogen bonds. This makes it
especially difficult to calculate spectra for the I∗0 state in the GFP photo cycle. The
1 ps ground state simulation trajectories from figure 4.10 and 4.11 are not sufficient
to compare the simulations to experimental difference spectra which is why no dif-
ference spectrum is shown. It is also unclear whether the structure generated for
the I1 state is close enough to the true I1 state to match experimental difference
spectra. It might be worth trying a multilayer ONIOM [19] approach to record one
time series for the hydrogen bond network using a fast ground state method and
one time series for the excited state chromophore. However, the accuracy of this
approach will be lower than the presented full electronic embedding of the active
pocket.

The PYP simulation results are promising. However, the calculated difference
WTL-WT spectrum in figure 4.20 only considers differences in the chromophore.
Changes in Protein modes are only included indirectly and will likely not be visible
in the difference spectrum. The difference spectrum in figure 4.20 also shows two
corresponding normal mode eigenvectors which match the target frequency. The
identified mode is reasonable as the lock in the WTL mutant might suppress the
illustrated motion. However, it is not guaranteed to actually correspond to the true
motion. This is due to the fact that the normal mode eigenvectors were calculated
in vacuum using the harmonic approximation. Experimental data is highly desirable
to see if the dominant peak at 1590 cm−1 is also present in the experiment.

The author of this thesis was not satisfied with the way CASSCF active spaces
are identified and reduced using mostly chemical intuition. Therefore, considerable
effort was put into automatically reducing the CASSCF active space by calculating
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all possible one step reductions. The resulting active spaces for PYP and GFP
suffered from convergence problems and poor performance. The developed scoring
function is clearly missing part of the information required to select good active
space reductions. Considering that the reduction process has to be performed once
per system and takes less than one day, it is likely not worth the effort to pursuit
this automated reduction scheme any further.
The calculated vibrational spectra take the full protein environment into account

without relying on harmonic approximations. Spectral amplitudes are recovered
from the simulated protein dynamics in absolute values. This is a clear improvement
over the relative normal mode amplitudes. No modifications to the QM/MM code
other than recording the dipole moment time series with respect to the center of
mass motion of the QM region are required. The only approximation made for
calculating dipole time series based spectra is that the electric field of the infrared
photon is only a small perturbation to the molecular wave function. The identified
minimum required trajectory lengths of 2-3 ps are barely reachable with post Hartree
Fock methods but certainly not impossible to simulate. Vibrational spectra should
be representative and should not be calculated from single trajectories but rather
consist of a statistically independent ensemble of many trajectories. The progress
in computer performance does no longer justify using single trajectory data for
quantitative predictions. The calculation of high level QM/MM difference spectra
was shown to be a practical method that can be applied using today’s computing
resources.
Normal mode analysis remains a popular tool for calculating vibrational spectra

because it is simple to use not because it is very accurate. The comparative results
presented for PYP in figures 4.18 and 4.19 clearly show that vacuum NMA spec-
tra do not reflect the in protein behavior of the chromophore. Comparison to the
experimental difference spectra will likely support this statement further.
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6 Conclusions

Anharmonic vibrational difference spectra can be calculated from QM/MM simu-
lations including the full protein environment. The developed simulation scheme
is capable of calculating vibrational difference spectra for charged QM regions and
excited states.
The parametric Burg method was identified as a valuable alternative to state of

the art Fourier dipole time series analysis. An objective Burg model order estimation
method was developed based on the normal mode frequency density.

6.1 Outlook
Comparison to experimental IR difference spectra is the next logical step in the
development of the presented method. Without experimental data, the quality of
the calculated results is difficult to evaluate.
The presented model order estimation scheme would greatly benefit from including

the large number of protein degrees of freedom in the low frequency range below 1000
cm−1. This can easily be included into the test signal in terms of many additional
low frequency sinusoid.
Currently, the presented time series analysis of QM/MM trajectories does not

allow a visual inspection of the motion corresponding to the identified peaks in
the spectrum. Promising methods for calculating normal coordinates without the
harmonic approximation exist in the literature [48] but have not been included in
this thesis. The short QM/MM trajectory lengths will likely reduce the quality of
the identified modes.
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7 Appendix

Figure 7.1: Portion of Burg PYP like 2000 fs spectrum with 72 NMA frequencies
(green); Burg peaks (red); Burg spectrum (green line); no low pass filter
was applied, raw spectrum shown.
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7 Appendix

Figure 7.2: Portion of Fourier PYP like 2000 fs spectrum with 72 NMA frequencies
(green); Fourier peaks (red); Fourier spectrum (green line).
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Figure 7.3: Portion of maximum entropy PYP like 2000 fs spectrum with 72 NMA
frequencies (green); maximum entropy peaks (red); maximum entropy
spectrum (green line).
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7 Appendix

Figure 7.4: Portion of PYP like 1000 fs spectrum with 72 NMA frequencies (red);
Burg peaks (green); Fourier spectrum (cyan); Burg spectrum (blue);
Burg peak height prediction and frequency identification is poor; Fourier
spectral resolution is low.
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Figure 7.5: PYP like 1000 fs spectrum from figure 7.4; Burg spectrum (blue lines);
integrated area under peaks (blue dots); variance in power (area under
peaks) in too large for accurate spectral estimation.
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7 Appendix

Figure 7.6: Portion of Burg PYP like 1000 fs spectrum with 72 NMA frequencies
(green); Burg peaks (red); Burg spectrum (green line); no low pass filter
was applied, raw spectrum shown.
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Figure 7.7: Portion of Fourier PYP like 1000 fs spectrum with 72 NMA frequencies
(green); Fourier peaks (red); Fourier spectrum (green line).
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7 Appendix

Figure 7.8: Portion of maximum entropy PYP like 1000 fs spectrum with 72 NMA
frequencies (green); maximum entropy peaks (red); maximum entropy
spectrum (green line).
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Figure 7.9: GFP ground state dipole moment time series from 48 1000fs QM/MM
simulations B3LYP/6-31g*; data excluded from spectral analysis: tra-
jectories 1-13 due to failure of remote gwdg storage system causing mul-
tiple uncontrolled job restarts; trajectory 30 due to breaking of H-bond
network; trajectory 37 due to slow performance of cluster node.
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7 Appendix

Figure 7.10: GFP I1 state dipole moment time series from 48 1000fs QM/MM sim-
ulations B3LYP/6-31g*; data excluded from spectral analysis: trajec-
tories 9-16 due to machine failure; trajectories 33-40 due to slow per-
formance of cluster nodes L«1000fs; trajectories 7,19,22,23,29 due to
H-bond breaking or bad conformations; 41,42,46 starting structures
showed twist in GLU222
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Figure 7.11: PYP WT ground state dipole moment time series from 48 QM/MM
simulations B3LYP/6-31g*; data used for spectral analysis: trajectories
1, 2, 3, 5, 6, 7, 8, 9, 12, 13; only the longest trajectories were considered
to improve spectral resolution.
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7 Appendix

Figure 7.12: PYP WTL ground state dipole moment time series from 48 QM/MM
simulations B3LYP/6-31g*; data used for spectral analysis: trajecto-
ries 1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 18; only the longest trajectories were
considered to improve spectral resolution.

96



Figure 7.13: Effect of removing the center of mass motion (COM) from the dipole
moment time series; COM spectral contribution localized below 1000
cm−1
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7 Appendix

Figure 7.14: Reference calculation for the depicted molecule in vacuum using both
the Normal Mode Analysis and dipole time series analysis, no protein
environment was present; blue line: Burg spectrum; green line: Fourier
spectrum; red line: normal mode spectrum. Small frequency shifts
are visible which are not environment related. Spectrum calculated
using 2 cm−1 resolution which might explain the shifts due to numerical
uncertainty.
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