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A system of three coupled toroidal microresonators arranged in a loop configuration is studied.
This setup allows light entering the resonator setup from a tapered fiber to evolve along a variety
of different pathways before leaving again through the fiber. In particular, the loop configuration of
the resonators allows for an evolution which we term roundtrip process, in which the light evolves
from one resonator sequentially through all others back to the initial one. This process renders
the optical properties of the system sensitive to the phases of all coupling and scattering constants
in the system. We analyze the transmission and reflection spectra, and interpret them in terms
of interference between the various possible evolution pathways through the resonator system. In
particular, we focus on the phase dependence of the optical properties. Finally, we discuss possible
applications for this phase sensitivity induced by the roundtrip process, such as the measurement of
the position of a nanoparticle close to one of the resonators, and the measurement of changes in the
refractive index between two resonators. Our analytical results for the applications are supported by
proof-of-principle calculations based on finite-difference-time-domain solution of Maxwell’s equations
in two dimensions on a grid.

PACS numbers: 42.60.Da,42.82.Et,42.25.Hz,42.50.Ct

I. INTRODUCTION

In recent years, optical microresonators have received
considerable attention, since they offer a wide range of
applications such as strong-coupling cavity quantum elec-
trodynamics, the modification of spontaneous emission,
optical communication, or as sources of light [1, 2]. A
particular promising example combining several of these
ideas is the goal of establishing quantum networks [3, 4].
By now, a large variety of implementations has been
achieved [1, 5–11]. Naturally, also the extension to more
than one cavity has been suggested, for example, as
chains of coupled ring or disc resonators [12, 13], of de-
fects in photonic crystal hosts [14, 15], of coupled res-
onator spheres [16–18], or of coupled square resonators
on a grid [19].

A particular variant of coupled cavities involves two-
dimensional arrays of microcavities, which can be used,
e.g., to form photonic molecules [20, 21], or optical fil-
ters [17, 22–24]. Light entering such an array can take
a number of different pathways inside the cavities before
leaving the coupled system, and the interference between
these different pathways determines the optical proper-
ties of the resonator system. This in a certain sense can
be seen in analogy to an atom with multiple energy lev-
els connected by several driving laser fields. Also the
atom can evolve via different pathways. But a particu-
larly interesting case arises if the laser fields are applied
to the atom in a so-called closed-loop configuration [25–
38]. This means that the laser fields are applied such
that the atom can evolve in a non-trivial loop pathway
from one initial state through the level scheme back to
the initial state, e.g., |1〉 → |2〉 → |3〉 → |1〉 with atomic
states |i〉 (i ∈ {1, 2, 3}). The loop structure induces rich
possibilities for interference between the different path-
ways, and at the same time renders the optical properties

of the atoms sensitive to the phase of the applied driv-
ing fields. This prompts the question whether similar
interference effects and phase-sensitivity could also arise
in arrays of microresonators. The couplings between the
resonators are mediated via their evanescent fields, and
the corresponding coupling constants are in general com-
plex. Similarly, the scattering inside a given cavity is
characterized by a complex scattering constant. Thus it
is not surprising that even for simple systems such as two
coupled cavities the phase of the couplings can strongly
influence the output fluxes. However, there are also cases
in which the phases do not influence the final transmis-
sion or reflection observed from a resonator, and therefore
the coupling constants often are treated as real numbers,
neglecting the phase information [18, 23].
Motivated by this, here, we study array of microres-
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FIG. 1. (Color online) The considered setup of three coupled
resonators in loop configuration. The resonators are probed
by a fiber coupled to one of the resonators. Due to the ar-
rangement of the resonators, light can evolve in a roundtrip
process, e.g., from cavity 1 via cavities 2 and 3 back to cav-
ity 1 without leaving the resonator array, which leads to rich
interference effects.
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onators in situations in which the phase of the coupling
constants are crucial. In particular, we focus on situ-
ations in which processes analogous to the closed-loop
pathways in atoms occur. For this, we analyze an array
of three coupled microresonators probed by a tapered
fiber, see Fig. 1. This setup is the simplest arrange-
ment which allows for a closed-loop roundtrip pathway in
analogy to the closed-loop atomic level systems. Due to
the arrangement of the resonators, light can evolve in a
roundtrip process, e.g., from cavity 1 via cavities 2 and 3
back to cavity 1 without leaving the resonator array. We
identify the evolution pathways for the photons entering
the resonator array contributing to the transmission and
reflection, and determine conditions for the dependence
of these optical properties on the phases of the coupling
and scattering constants. Based on these results, we an-
alyze the phase dependence for several configurations in
detail. Finally, we discuss possible applications for the
phase-sensitivity. Our analytical results and interpreta-
tions are based on quantum mechanical coupled mode
theory. Additionally, we verify mechanism of the pro-
posed applications using numerical finite-difference time-
domain solutions of Maxwell’s equations in two dimen-
sion on a grid.
This article is organized as follows. In Sec. II, we de-

scribe our model and the observables. In Sec. III, we
present our results. We start by analyzing the differ-
ent pathways light can take through the resonator array,
and how phase-sensitivity can arise from these pathways.
We then move on to a discussion of transmission and re-
flection spectra for phase-dependent systems, and of the
most important roundtrip process enabled by the loop
structure of the resonators. Finally, possible applica-
tions are discussed in Sec. IV. Here, we show how to
use our setup in order to measure the refractive index of
a medium or to determine the position of a nanoparticle.

II. THEORETICAL CONSIDERATIONS

A. Description of the model system

The system we consider consists of three equal nearby
whispering gallery mode microresonators coupled to a ta-
pered glass fiber, arranged as shown in Fig. 1. In such
a toroidal microresonator a photon can be many times
totally reflected at the edges of the cavity and thus move
on a polygonal path very similar to a circle. The origi-
nally undisturbed resonances of the cavity occur in pairs
of clock- and anticlockwise propagating modes. Photons
belonging to such a pair {am, bm} (m ∈ {1, 2, 3}) differ
only by their propagation direction but have the same fre-
quency. Due to scattering processes, e.g. caused by ma-
terial imperfections, the modes of such pairs can be scat-
tered into each other. This scattering affects the eigen-
modes of the system and thus also changes its eigenener-
gies.
As input field we consider a weak probe field of mode

a1,in, which is coupled into cavity 1. The scattering in-
side cavity number n we describe by the parameter hn

with n ∈ {1, 2, 3}. The coupling between resonators n
and m is described by the coupling constant ξmn with
m,n ∈ {1, 2, 3}. κ denotes the coupling strength between
the fiber and cavity 1. Using these definitions, in a suit-
able interaction picture the Hamiltonian of our system
reads [39]

H = H0 +HL +HCS , (1)

with

H0 = ~

3
∑

l=1

∆l(a
†
l al + b†l bl) , (2a)

HL = i~
√
2κ[a1,ina

†
1 − a∗1,ina1] , (2b)

HCS = ~

3
∑

m,n=1

(ξnma†nbm + ξ∗nmb†man) . (2c)

Here for notational simplicity we defined hn = ξnn,
and used ξnm = ξmn. The detunings are defined as
∆l = ωl − ωin, where ωl is the resonance frequency
of resonator l and ωin is the frequency of the probing
light. In the following, we assume equal resonance fre-
quencies of the resonators ∆1 = ∆2 = ∆3 = ∆ in our
calculations. We write the complex couplings constants
as ξmn = |ξmn|eiφmn . For our calculations we assume

the critical coupling condition κ =
√

ξ211 + (γ1/2)2 for
the coupling between the fiber and cavity 1 to be ful-
filled [40]. Since the modes {am, bm} are assumed to have
the same frequency it is reasonable to assume equal inter-
nal loss rates γ1 = γ2 = γ3 = γ for all modes {am, bm}.
Then the total decay of mode a1 [b1] can be calculated
according to γa1

= 2κ + γ1 [γb1 = 2κ + γ1], whereas
γa2

= γb2 = γa3
= γb3 = γ.

From the Heisenberg equation, the time evolutions of
the six mode operators am and bm can be obtained as

ȧm =−
(

i∆m +
1

2
γam

)

am − i
3

∑

n=1

ξmnbn

+ δm1

√
2κam,in , (3a)

ḃm =−
(

i∆m +
1

2
γbm

)

bm − i

3
∑

n=1

ξ∗nman , (3b)

where δij is the Kronecker Delta function. Since only
cavity one couples to the fiber, in the following we write
a1,in = ain, a1,out = aout and b1,out = bout.

B. Observables

In our numerical calculations we investigate the trans-
mission and reflection of light sent into the system via
the coupled fiber. In particular, we are interested in the
steady state mean values of the output mode operators.
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We neglect fluctuations of the photon mode operators
and calculate the steady state by setting ȧm = ḃm = 0
in Eq. 3. For the calculation of the output operators, we
use the input-output relation [41]

〈aout〉 =− ain +
√
2κ〈am〉 , (4a)

〈bout〉 =
√
2κ〈bm〉 . (4b)

Then the transmission and reflection become

T =
|〈a†outaout〉|2

|ain|2
≈ |〈aout〉|2

|ain|2
, (5a)

R =
|〈b†outbout〉|2

|ain|2
≈ |〈bout〉|2

|ain|2
. (5b)

III. RESULTS

A. Light pathway analysis

Light entering our three coupled resonator system can
travel along a variety of different pathways before leav-
ing cavity 1 as a transmitted or reflected photon. The
different pathways have relative phases, since every time
a photon is scattered inside one cavity or moves between
two cavities the pathway amplitude is multiplied by the
respective complex coupling constant or scattering pa-
rameter with phase angle φij . The total reflected and
transmitted light then arises as the interference of all pos-
sible pathways amplitudes. Therefore the phase angles
φij can be expected to have a great impact on the result-
ing output fluxes. In the following, we analyze conditions
on the system parameters for obtaining phase-dependent
or phase-independent reflections and transmissions.
We start with a reduced system in which only phase in-

dependent pathways are possible and afterwards explain
how a phase dependence can arise. For this we set some
of the couplings and scattering rates to zero. If we decou-
ple cavities 2 and 3 from cavity 1 by setting ξ12 = ξ13 = 0
as shown in Fig. 2(A), no coupling process can take place

but only scattering a1
ξ∗
11−→ b1 and vice versa is possible.

Although the scattering parameter ξ11 has an impact on
the light’s phase, the overall transmission or reflection
are not phase dependent. The reason for this is that all
pathways contributing to the transmission include no or
an even number of scattering processes, e.g. from a1 to
b1 and back. Since the respective scattering parameters
are complex conjugates, they have no net influence on
the phase of the outcoming flux of each pathways. Simi-
larly, the reflected light constitutes of contributions from
pathways with an uneven number of scattering processes.
This also means that all interfering contributions have
the same phase when leaving the system and thus their
interference is constructive independent of the phase of
the scattering parameter.
In the next step, we consider two coupled microcav-

ities by setting ξ12 6= 0 whereas the scattering rate ξ22

(A) (B)

(C) (D)

(E) (F)

ξ11
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ξ33
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FIG. 2. (Color online) Example pathways of photons passing
through the resonator array. In (A), the photon enters only
the first cavity, scatters inside cavity 1, and then leaves the
cavity back into the fiber. In (B), the photon traverses two
cavities, but scatters only in cavity 1. (C) shows a pathway
through two cavities with scattering in both the cavities, (D)
a path through all cavities with scattering in cavity 1 only,
(E) a path through all cavities without scattering, and (F) an
evolution through three cavities with scattering in cavities 2
and 3.

in cavity 2 is assumed to be zero, see Fig. 2(B). Taking
into account only small numbers of scattering or coupling
processes, the following three different pathways are pos-
sible:

a1
ξ∗
11−→ b1 , (6a)

a1
ξ∗
12−→ b2

ξ12−→ a1 , (6b)

a1
ξ∗
12−→ b2

ξ12−→ a1
ξ∗
11−→ b1 . (6c)

Note that we have omitted here pathways differing from
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the ones in Eqs. (6) by a double scattering within cavity
1. In this reduced system, light evolving into cavity 2 al-
ways returns to cavity 1 on the same way, and these pro-
cesses are described by ξ12 and ξ∗12, such that the phase
of the coupling constant ξ12 does not affect the output in-
tensities. Similar to the case in Fig. 2(A), also the phase
of ξ11 does not affect the transmission or reflection.
Next, in addition we set ξ22 non-zero, see Fig. 2(C).

In this case, the phases φij do affect the transmission
and reflection, since now in addition to the pathways in
Eqs. (6), two additional leading order pathways are pos-
sible:

a1
ξ∗
12−→ b2

ξ22−→ a2
ξ∗
12−→ b1 , (7a)

a1
ξ∗
11−→ b1

ξ12−→ a2
ξ∗
22−→ b2

ξ12−→ a1 . (7b)

Thus incoming light can propagate through cavity 1, en-
ter cavity 2, scatter there, and then leave the system in
reflection direction. Also, it can pass through cavities 1
and 2 and be scattered in both cavities, leaving the sys-
tem in transmission direction. These pathways depend
on the phase of ξ22, ξ11 and ξ12, and thus the transmis-
sion and reflection become dependent on these phases.
Adding the third cavity, a qualitatively different evo-

lution through the cavity system becomes possible. We
first only chose the scattering rate ξ11 as nonzero, see
Fig. 2(D). Now incoming light can evolve on a roundtrip
through all three cavities, be scattered in cavity 1 from
mode b1 to a1 and afterwards leave the coupled resonator
system in transmission direction. Processes like this in
which light moves along pathways which describe a loop
through all three cavities will play a special role in our
further investigations, as they depend on the phases of
all coupling constants between the coupled cavities. In
the following we will refer to them as roundtrip processes.
Beside these roundtrip pathways, also non-roundtrip pro-
cesses are possible, and the transmission and reflection
in leading order are superpositions of the pathways men-
tioned in Eqs. (6) and the following pathways:

a1
ξ∗
13−→ b3

ξ23−→ a2
ξ∗
12−→ b1 , (8a)

a1
ξ∗
12−→ b2

ξ23−→ a3
ξ∗
13−→ b1 , (8b)

a1
ξ∗
13−→ b3

ξ23−→ a2
ξ∗
12−→ b1

ξ11−→ a1 , (8c)

a1
ξ∗
12−→ b2

ξ23−→ a3
ξ∗
13−→ b1

ξ11−→ a1 , (8d)

a1
ξ∗
13−→ b3

ξ23−→ a2
ξ∗
23−→ b3

ξ13−→ a1 , (8e)

a1
ξ∗
12−→ b2

ξ23−→ a3
ξ∗
23−→ b2

ξ12−→ a1 , (8f)

plus the pathway in which light enters cavity 1 and leaves
the system without any further scattering. The resulting
superposition of these amplitudes renders the transmis-
sion and reflection dependent on both the phases of the
couplings constants φij and the phases of the scattering
rate φ11.
It should be noted, however, that without scattering

ξii = 0 as in Fig. 2(E), also the dependence of the output

intensities on the phases of the coupling constants φij

disappears. All leading order pathways contributing to
the reflection lead the light on a roundtrip pathway [see
Eq. (8a) and (8b)] such that they have the same final
phase and thus interfere constructively for all choices of
the phase angles φij . Similarly, the phase dependence in
transmission direction vanishes.
In the most general case with all coupling constants

and scattering rates different from zero as indicated in
Fig. 2(F), many interfering phase dependent pathways
become possible, such that a dependence on all phases
can be expected. In the following, we will analyze this
phase dependence in detail.

B. Transmission and reflection without roundtrip

process

We now turn to numerical results for the transmis-
sion and reflection in the loop system. In Fig. 3 the
transmission and reflection are shown for different values
of the phase angles φij in dependence of the detuning
∆ of the modes in cavity 1 to the incident light. We
choose the scattering rates ξ11 = 30γ, ξ22 = 20eiφ22γ
and ξ33 = 20γ. The couplings between the two cavities
are ξ12 = 30eiφ12γ, ξ13 = 30eiφ13γ and ξ23 = 0. Since
ξ23 = 0, no roundtrip process is possible. For this choice
of parameters, the pathways in Eq. (6) and (7) are possi-
ble as shown in Fig. 2(C), and additionally the analogous
ones for cavity 3 instead of cavity 2.
While studying the phase dependence, our variables

are the angles φ12, φ13 and φ22. In the solid lines in
Fig. 3(A) all φij = 0, i.e. all coupling and scattering
constants are taken as real numbers. In order to explain
this result we consider the occupancy and the phase of
each light mode inside cavity 1. Since coupling light out
of the cavity into the glass fiber leads to a phase shift
of π, the outcoupled light of mode a1 interferes construc-
tively with ain when its phase φa1

= π whereas we obtain
destructive interference for φa1

= 0, see also the input-
output relations Eq. (4). As we choose ain ∈ R only
the absolute value of φa1

is of relevance for analyzing the
interference. Therefore we define φa = |φa1

|. Accord-
ing to the input-output relations Eq. (4) we can expect
zero transmission T = 0 if both the phase has a value
leading to destructive interference in forward direction,
and the amplitude satisfies 2κ|a1|2 = |ain|2. If only one
of the two conditions is fulfilled, only partial transmis-
sion can be expected. In contrast, for mode b, there is
no input field which can interfere with the field leaking
out of cavity 1 into reflection direction. Therefore the
reflected intensity is proportional to the intensity of b1
inside cavity 1.
To verify this interpretation quantitatively, in the up-

per two subfigures of Fig. 4 we show (A) the scaled pho-
ton mode occupancies Oa1

and Ob1 inside cavity 1 pro-
portional to |a1|2 and |b1|2, respectively, and (B) the an-
gle φa. Note that the amplitude condition for maximum
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FIG. 3. (Color online) Transmission T and reflection R in the
loop system. The parameters are ξ12 = ξ13 = 30γ and ξ23 = 0,
such that scattering between cavities 1 ↔ 2 and 1 ↔ 3 are
possible, but not between 2 and 3. Scattering occurs in all
cavities with rates ξ11 = 30γ and ξ22 = ξ33 = 20γ. In (A)
all phases are chosen zero, φij = 0. The dashed lines show
corresponding results for transmission (T̄ ) and reflection (R̄)
averaged over the phase angles φ12 or φ22. In (B), the phases
are chosen as φ12 = 0.2π, and and all other φij = 0. In (C),
φ12 = −0.6π and φ13 = 0.4π, and all other φij = 0.

transmission corresponds to the horizontal line at scaled
occupancies equal to one in Fig. 4(A). As one can see from
Fig 4(A), the occupancies of both the modes a1 and b1
have maxima around ∆ = ±20γ. By contrast, the trans-
mission in Fig. 3(A) shows minima for these detunings.
The reason for this is that φa(∆ = ±20γ) = 0. Thus, the
field leaking from a1 into the fiber interferes destructively
with the input field ain. Almost perfect suppression in
forward direction T ≈ 0 is achieved since for this detun-
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FIG. 4. (Color online) Field configuration in resonator 1.
(A) and (C): Scaled occupancies Oa1

= 2κ|a1|
2/|ain|

2 and
Ob1 = 2κ|b1|

2/|ain|
2 of the two counter-propagating modes

a1 and b1 inside cavity 1. (B) and (D): Phase φa = |φa1
| of

the counter-clockwise propagating mode inside cavity 1 which
is coupled out into the fiber in transmission direction. In (A)
and (B), the parameters are chosen as in Fig. 3(A), whereas
in (C) and (D) they are as in Fig. 3(B).

ing 2κ|a1|2 ≈ |ain|2. A similar interpretation holds for
∆ = ±60γ. For resonant light, i.e. ∆ = 0, a maximum in
T can be observed in Fig. 3(A). This can be traced back
to the low occupancy of mode a1 in Fig 4(A), such that
the transmission mainly consists of ain. Note that for
the parameters chosen in Fig. 3(A), both the occupan-
cies and the phases shown in Fig. 4 are symmetric with
respect to the detuning. From this it follows that also T
and R are symmetric functions of ∆.
In the next example in Fig. 3(B), we in contrast to (A)

set φ12 = 0.2π, but keep all other φij = 0. Compared
to the reflection and transmission in (A), we can observe
two additional peaks in the transmission and two addi-
tional zeros in the reflection signal around ∆ = ±20γ. In
order to explain these results, we consider Fig. 4(C) and
(D). The minima in T at positions ∆ = ±10γ, ∆ = ±30γ
and ∆ = ±60γ again arise from destructive interference
with φa = 0 and nearly fulfilled amplitude condition. At
∆ = ±20γ the modes of cavity 1 are nearly unpopulated.
Thus R ≈ 0 and the transmission is governed by the in-
put flux ain. Interestingly, cavities 2 and 3 nevertheless
contain much higher light intensities, which leads to de-
coherence via γ. From T (∆ = ±20) = 0.82 6= 1 we find
that even though cavity 1 is almost empty, about 20% of
the input light is coupled into the system. For larger de-
tunings ∆ all results in Fig. 4(C) and (D) are similar to
the graphs in (A) and (B). From this we conclude that in
the offresonant case, as expected the phase angles φij of
the coupling and scattering parameters have only weak
influence on the systems dynamics. Interestingly, the re-
flection in Fig. 3(B) is not a symmetric function of the
detuning, while the transmission still is symmetric. This
difference can arise since different pathways contribute
to T and R.
In the third example in Fig. 3(C) we chose φ12 = −0.6π



6

0 1 2 3 4

-60

-40

-20

0

20

40

60

0 1 2 3 4
-60

-40

-20

0

20

40

60

0 2 4 6 8 10
0.001

0.1

10

1000

105

107

109

0 2 4 6 8 10
0.001

0.1

10

1000

105

107

109

(A) (B)

(C) (D)

ζ
/γ

ζ
/γ

|ζ̃
|2

(a
rb

.
u
n
it

s)
|ζ̃
|2

(a
rb

.
u
n
it

s)

φ12/π

φ12/π

l

l

FIG. 5. (Color online) Eigenvalue analysis to interpret the
phase dependence. The left subfigures (A) and (C) show the
imaginary part of the eigenvalues (ζ) of the matrix M de-
scribing the system dynamics, which correspond to the en-
ergy of the system’s dressed states. They are plotted against
the phase angle φ12. The right subfigures (B) and (D) show

the power spectrum |ζ̃|2 of one eigenvalue as example, reveal-
ing the periodicity of the eigenenergies in φ12. The parame-
ters in (A) and (B) are ξ11 = ξ13 = 30γ, ξ22 = ξ33 = 20γ,
ξ12 = 30γeiφ12 and ξ23 = 0, thus no roundtrip process is pos-
sible. In (C) and (D) ξ23 = 15γ, thus the roundtrip process
is possible.

and φ13 = 0.4π, but keep all other phases zero. Thus
transitions between resonators 1 ↔ 3 and 1 ↔ 2 are pos-
sible, but not between 2 and 3. It can be seen that this
change in the phase of the coupling parameters leads to
considerable modifications of the transmission and reflec-
tion properties. Both transmission and reflection have a
simple structure, but are not symmetric with respect to
∆. The interpretation of the peak structure is similar to
the two previous cases.
Analyzing the phase-dependence, we found that the

transmission and reflection are π-periodic in φ12 and φ13

but 2π-periodic in the phases of the scattering parame-
ters φii. In the following section, we study and interpret
this periodicity of our results in more detail using an
eigenvalue analysis.

C. Eigenvalue analysis

In this section, we analyze the phase-dependence of
the transmission and reflection spectra in a more general
way. For this, we consider the eigenvalues of the matrix
governing our system’s dynamics. The equations of mo-
tion for the six mode operators {ai, bi} can be written as

∂

∂t
~C = M· ~C , (9a)

~C = (a1, b1, a2, b2, a3, b3)
T . (9b)

By diagonalizingM, the dressed states of the system can
be evaluated. The complex eigenvalues correspond to the

complex eigenenergies of these dressed states. The real
part of the eigenvalues of M can be interpreted as the
decay rates whereas the imaginary parts correspond to
the eigenenergies. Coupling constants as well as scatter-
ing parameters included in M shift the original eigenfre-
quencies of the resonators. Thus the imaginary parts ζ
of the eigenvalues of matrix M are possible positions for
peaks or dips in the reflection and transmission. These
eigenvalues thus allow for a study of the dependence of
the transmission and reflection spectra on the phase an-
gles φij . For example, to study the dependence on φ12, a
Fourier transformation of one of the eigenvalues ζ gives

ζ(φ12) =
1√
2π

∫

l

ζ̃(l)eilφ12 dl . (10)

The Fourier coefficients ζ̃(l) then determine the peri-
odicity of the eigenvalues in the phase φ12. First, we
consider the case where no roundtrip process is possi-
ble, i.e. ξ23 = 0. In Fig. 5 we show the six eigenvalues
(A) and their power spectrum (B) for the parameters
ξ11 = ξ13 = 30γ, ξ22 = ξ33 = 20γ, ξ12 = 30γ exp[iφ12]

and ξ23 = 0. In this case, we observe that ζ̃(l) is different
from zero only for even numbers of l. This means that the
eigenvalues are π periodic in φ12. If no roundtrip process
can take place, light evolving from cavity 1 into cavity 2
or 3 has to move the same way back in order to leave the
system and to be detected as output light. Thus it inter-
acts two times with the same coupling constant. This is
the reason why the Fourier coefficient belonging to φ12

vanishes for uneven numbers of l. In Fig. 5(C) and (D)
we show the eigenvalues for ξ23 = 15γ. All further pa-
rameters are the same as before. This setup corresponds
to Fig. 2(F). In this case, a roundtrip process is possible,

and the Fourier coefficients ζ̃(l) are different from zero
both for even or uneven numbers of l. The reason is that
light can evolve, e.g., from cavity 1 via cavities 2 and
3 back to 1 such that the phase φ12 influences the path
amplitude only once. Thus in this case, the eigenenergies
are 2π periodic in φ12.

Similar analysis allows to also reveal the phase depen-
dence of the other coupling constants.

D. The roundtrip process

In this Section we study the roundtrip process and the
resulting effects in detail. For this, we make use of the
fact that by turning the coupling ξ23 on and off it can
be controlled whether or not a roundtrip pathway can
be taken by entering light. Therefore, in the first step
we expand the transmission T in this coupling constant
around ξ23 = 0. This expansion will reveal the leading
order effects of the roundtrip process for small ξ23. Af-
terwards we present numerical results for T and R for
more general parameter sets which allow the roundtrip
processes to take place.
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FIG. 6. (Color online) Expansion of the transmission in or-
ders of the roundtrip process. For this, the transmission is
expanded around 0 in |ξ23|/γ. The parameters are ξ11 = 50γ,
ξ22 = 20eiφ22γ, ξ33 = 20γ, ξ23 = 10γ, ξ13 = 30eiφ13γ and
all φij = 0. (A) zero order contribution (ξ23 = 0), (B) first
order contribution c1, (C) second order contribution c2, (D)
complete transmission for ξ23 = 3γ.

1. Expansion in orders of the roundtrip process

To elucidate the impact of the roundtrip process on
the transmission spectrum, we performed a Taylor expan-
sion of the transmission amplitude to the second order in
|ξ23|/γ around ξ23 = 0. This refers to the case where the
coupling between cavity 2 and 3 is much weaker than the
other couplings ξij . The expanded transmission reads:

|〈aout〉|2
|〈ain〉|2

≈
∣

∣

∣

∣

c0 + c1
|ξ23|
γ

+ c2
|ξ23|2
γ2

∣

∣

∣

∣

2

. (11)

Here, cn are the Taylor expansion coefficients. The 0th
order corresponds to the case where no roundtrip process
is possible, i.e. ξ23 = 0. The respective result is shown
in Fig. 6 (A). The parameters are chosen as ξ11 = 50γ,
ξ22 = 20eiφ22γ, ξ33 = 20γ, ξ12 = 10γ, ξ13 = 30eiφ13γ
and all φij = 0. In Fig. 6(B) and (C) we show the first
and second order Taylor coefficients c1 and c2 which pro-
vide the respective correction terms for the transmission.
The first order corresponds to a pathway in which light
interacts once with the coupling constant ξ23. The most
probable process of this kind that ends in a1 is a single
roundtrip through all three cavities, see e.g. Eq. (8c)
and (8d). The second order contributions correspond to
pathways where light moves twice between cavity 2 and
3, including a double roundtrip process. Examples for
such pathways are given in Eq. (8e) and (8f).
We can see from these figures that the first order cor-

rection leads to a small dip that overlaps with the broad
resonance round ∆ = 0. By contrast, the second or-
der correction consists of two sharp resonances round
∆ = 20γ = ξ22 = ξ33. Comparing the sum of the curves
of Fig. 6 (B) and (C) to the full output for ξ23 = 3γ (D),
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FIG. 7. (Color online) Transmission (blue) and reflection
(red) spectra for parameters which allow for the roundtrip
process. The parameters are the same as in Fig. 6 except for
ξ23 = 5γ. In (A) and (B), all phases are zero (φij = 0). In
(C) and (D), φ22 = 1.6π and φ13 = 0.4π and all other phases
are chosen zero. In (E) and (F), φ22 = 1.6π and φ13 = −0.4π
and all other φij = 0.

we find that for the small value of ξ23 taken in our ex-
ample the first two orders in the expansion are sufficient
to almost perfectly approximate the full result in (D).

The structure of T can be explained using the same
interpretation techniques as applied for Fig. 3 based on
the occupancy and phase of the fields inside cavity 1.

2. Transmission and reflection with roundtrip process

Next we study the phase dependence of the trans-
mission T and reflection R for a choice of parameters
for which a roundtrip process is possible. For this, we
choose all coupling constants and all scattering parame-
ters non-zero, as shown in Fig. 2(F). All parameters are
as in Fig. 6 except for ξ23 = 5γ. We start by consid-
ering the transmission and reflection if all phase angles
φij = 0. The respective results are shown in Fig. 7(A)
and (B). We can see clearly the two side band dips around
|∆| = 20γ = |ξ22| = |ξ33| arising from the second order
Taylor correction of Eq. (11).

Fig. 7(C) and (D) show corresponding results with
phase angles changed to φ22 = 1.6π and φ13 = 0.4π. We
observe that the reflection becomes asymmetric and only
one sharp dip around ∆ = 20γ remains. The transmis-
sion also changes, but remains symmetric. Upon chang-
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FIG. 8. (Color online) Transmission (blue) and reflection
(red) spectra for parameters which allow for the roundtrip
process. The spectra are plotted against the phase φ13. The
other parameters are chosen as in Fig. 7 with ∆ = −19.5γ.

ing the sign of phase φ13, the sharp dip moves to the
opposite side of the spectrum, i.e., to ∆ ≈ −20γ, see
subfigures (E) and (F). The transmission still remains
symmetric, but is also affected by the phase change of
φ13. In Fig. 8 we show T and R in dependence on the
phase angle φ13 for ∆ = −19.5γ which is the position of
one of the narrow structures. We find that even for small
changes of the angle φ13, the transmission and reflection
can changes considerably.

We thus conclude that the possibility of taking a
roundtrip pathway in the loop system is the origin of
narrow structures in both the transmission and the re-
flection, and these narrow structures are sensitive to the
phases of the coupling constants. This invites applica-
tions based on the dependence of these coupling con-
stants on an observable. In the following Section we de-
scribe two possible applications based on the sensitivity
of the transmission spectrum on the phase angles φij .

IV. APPLICATIONS

In this Section we discuss two possible applications of
our setup. They rely on the dependency of the trans-
mission and reflection on the scattering and coupling pa-
rameters. First, we analyze the possibility to detect the
position of a small particle such as an atom or a nano ob-
ject close to one of the resonators as shown in Fig. 9(A).
Second, we aim at measuring small changes in the refrac-
tive index between two cavities. These changes could be
induced by an object placed in the free space, or by em-
bedding the interface area in a liquid. The corresponding
setup is sketched in Fig. 9(B).

In the following, we first provide a theoretical back-
ground to our calculations, and then discuss numerical
results both based on the coupled mode theory and on a
numerical integration of Maxwell’s equations on a grid.

FIG. 9. (Color online) Setups for the two example applica-
tions. (A) shows the measurement of the position of a particle

at position ~Rp close to resonator 2. (B) shows the measure-
ment of changes in the index of refraction between resonators
2 and 3 induced, e.g., by slabs of different refractive indices.

A. Monitoring the position of a nano particle

A subwavelength refractive object located very close
to one of our cavities as shown in Fig. 9(A) gives rise to
a scattering of the fields propagating inside the cavities.
This results in damping and in a coupling between conter-
propagating WGM pairs {an, bn} [42, 43]. The scattering
resulting from a nano particle has been studied in [42, 44],
where it was demonstrated that the size of a nano par-
ticle can be determined using high-Q WGM. This raises
the question, whether also the particle position can be
determined. To address this question, we note that in
the coupled mode theory, the complex electric fields of
the modes an and bn in the n-th cavity are related and
can be written in cylindrical coordinates R = (ρ, θ, z)T

as [44]

E
0
b(R) =

(

E0
ρ(ρ, z), iE

0
θ (ρ, z), E

0
z(ρ, z)

)T
eimθ (12a)

E
0
a(R) =

(

E0
ρ(ρ, z),−iE0

θ(ρ, z), E
0
z (ρ, z)

)T
e−imθ .

(12b)

The origin of the used coordinate system is at the cen-
ter of the WGM cavity. For high-Q WGMs with small
loss rate, an and bn are to a good approximation com-
plex conjugates of each other, such that the three com-
ponents E0

ρ , E
0
θ , E

0
z are real functions [44]. We assume

that a scattering particle at position Rp giving rise to a
point-like dielectric fluctuation with size much smaller
than the wavelength. We denote the dielectric con-
stant of the resonators as εc, that of the homogeneous
medium surrounding the resonators as εs, and that of
the medium with added particle as εp(R). The scatter-
ing parameter ξnn is the proportional to the difference
δε(R) = εp(R) − εs as well as to the intensity of the
electric field at the position of the particle, and can be
written as [44, 45]

ξnn =
ωm

2

∫

Vp
(εp(R)− εs)E

0∗
a (R)E0

b(R)dR
∫

εs|E0
n(R)|2dR (13a)

∝ δε(Rp)e
2imθn(Rp)|E0

n(Rp)|2 . (13b)

Here, m is the azimuthal mode number, and in Eq. (13b),
for simplicity, we set E0(R) = E

0
b(R) = E

0∗
a (R). It can



9

be seen that the scattering resulting from the particle
is a complex number. Its phase depends on the posi-
tion θn(Rp) of the particle, see Fig. 9(A). According to
Eq. (13b), this angle enters the phase of the coupling
constants via 2mθn(Rp), such that an increase of the az-
imuthal mode number leads to higher position sensitivity,
but at the cost of a smaller range of uniquely determined
positions, since the phase is only determined modulo 2π.
Since we found in the previous sections that the trans-
mission and the reflection in our loop setup is sensitive
to the phase of the coupling constants, in principle, a
position determination becomes possible.

B. Monitoring the dielectric constant of a nano

slab

Next, we turn to the measurement of the dielectric
constant of a thin object located in the space between
two of the cavities. Alternatively, this slight change could
also be induced by the concentration of a fluid between
the two resonators, or by varying the temperature [46].
In general, modifying the dielectric constant in between
the two cavities gives rise to a change in the coupling
of two cavities and to scattering. However, for a larger
sample exceeding the wavelength scale, the scattering can
be small such that the change in the coupling constant is
dominant. In the following, we assume this condition to
be fulfilled and neglect the scattering induced by the slab,
and consider a slab in the region Vslab. The total coupling
can then be separated into three parts: The coupling

without slab ξ
(0)
nm, the contribution ξ

(slab)
nm from the slab

with a reference constant ε0slab inserted in the gap of two

cavities, and a change δξ
(slab)
nm as the dielectric constant

of the slab varies according to δεslab = εslab−ε0slab. Thus
the total coupling is given by

ξ(0)nm = N
∫

Vcavity

(εc − εs)E
0∗
n (R)E0

m(R)dR (14a)

ξ(slab)nm = N
∫

Vslab

(ε0slab − εs)E
0∗
n (R)E0

m(R) dR (14b)

δξ(slab)nm = N
∫

Vslab

(εslab − ε0slab)E
0∗
n (R)E0

m(R)dR

(14c)

ξnm = ξ(0)nm + ξ(slab)nm + δξ(slab)nm , (14d)

where

N =
ωm

2

(
∫

εs|E0
n(R)|2dR

∫

εs|E0
m(R)|2dR

)−1/2

.

(15)

Using a similar approximation as in case of the nano par-

ticle, the change δξ
(slab)
nm induced is proportional to δεslab

and given by [44, 45]

δξ(slab)nm =
δεslab

ε0slab − εs
ξ(slab)nm . (16)

Thus a large static coupling ξ
(slab)
nm is favorable. Again,

since the transmission and reflection in our setup depend
on the coupling constants, such a variation of the cou-
pling constants can be detected.

C. Reflection and transmission averaged over

coupling and scattering phases

In this Section we study the impact of an averaging
over certain phase angles φij on the transmission and re-
flection spectra. In all cases, we average over the full
range of 2π. The averaging over the coupling constant
phase φ12 could be visualized as an experimental setting
in which the refractive index of the medium between cav-
ity 1 and 2 changes between several measurements, e.g.,
due to changes in the concentration of a fluid filling this
region. The averaging over a scattering constant φ22 can
be visualized as arising from different particle positions
throughout the measurements [47].

In general, we find that the averaged curves differ con-
siderably from the curves obtained for fixed phases such
as φij = 0. Fig. 3(A) shows that averaging over φ12 or
φ22 lead to the same results, as long as resonators 2 and
3 are uncoupled, i.e., ξ23 = 0. This can be understood
by noting that in case of ξ23 = 0, all pathways in which
φ12 or φ22 lead to a final phase shift of the corresponding
amplitude include both an interaction with the coupling
ξ12 and an interaction with the scattering rate ξ22, see
Eq. (7a). Therefore either averaging has the same effect.

In contrast, if ξ23 6= 0, the spectra averaged over the
scattering phase φ22 or over the coupling phase φ12 dif-
fer, see Fig. 10. The reason is that now φ12 and φ22

affect different pathways. For example, the pathways in
Eqs. (8a)-(8d) include a phase contribution of φ12, but
not of φ22. Thus in contrast to the case without roundtrip
process, the averaging over the two phases leads to dif-
ferent results.

D. Numerical simulations with FDTD

In this section we numerically verify the suggested ap-
plications using a finite-difference time-domain (FDTD)
solution of Maxwell’s equations on a grid [48]. The sim-
ulations consider two dimensions for TM modes propa-
gating in x direction (field components Ex, Ey , Hz) on a
Yee-grid with grid size of 30 nm. The grid boundaries are
modeled using Berenger-type perfectly absorbing bound-
ary conditions, and we use a point-like sinusoidally os-
cillating source in Hz. We consider a background with
permittivity εs = 1, and resonators and a waveguide with
permittivity εc = 4. The waveguide resonators have
outer radius 3500 nm and inner radius 3350 nm. The
distance between waveguide and resonator is 120 nm,
the distances between the resonators are chosen equal
as 200 nm. The waveguide has a width of 150 nm.
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FIG. 10. (Color online) Transmission T, T̄ and reflection R, R̄
for parameters as in Fig. 5. In (A), the solid lines T, R show
the case with phases φij = 0, the dashed lines T̄ , R̄ show
results averaged over φ22. In (B), the solid lines T, R show
the case with phases φij = 0, the dashed lines T̄ , R̄ show
results averaged over φ12.

A typical example for three resonators in loop config-
uration is shown in Fig 11. The figure shows the field
component Hz after the time evolution has reached a
stationary state. The pointlike source is in the lower left
corner, and is placed in the center of the waveguide which
runs along the lower edge of the figure. Since the point-
like source does not exclusively excite waveguide modes,
circularly spreading background waves originating from
the source can be seen as well. The excitation then runs
along the waveguide to the three resonators seen as the
circular field arrangements. In this particular example,
the two upper cavities contain standing wave excitations,
which manifest themselves a modulated total intensity
(“blinking”) in the time-dependent dynamics of the field
configuration. The right half of the lower cavity exhibits
a less pronounced standing wave, whereas the left half
is mostly filled by a running wave in clockwise direction.
This “blinking” can be seen by comparing the figure to
a corresponding snapshot slightly later in time. If the
time is chosen appropriately, the time evolution of the
standing waves is close to a minimum, such that the
bright field regions in Fig 11 are almost invisible. In con-

FIG. 11. (Color online) Configuration of the field component
Hz obtained from the FDTD-simulation for three resonators
in loop configuration without particle or slab. The image
shows one snapshot in time. The excitation wavelength is
λ = 571.8 nm. See text for further explanation.
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FIG. 12. (Color online) Transmission spectrum obtained from
FDTD simulations for three resonators in loop configuration
without particle or slab.

trast, the running wave parts remain similar. In total,
the setup in Fig 11 leads to a weak forward transmission
(T ≪ 1), which can be seen from the low field excita-
tion downstream of the resonators. The energy is instead
mostly reflected, which again is evidenced by standing
wave field components in the waveguide between source
and resonators. In contrast, the other waveguide parts
only carry running wave excitations, as expected.
To evaluate the transmission, we sum the time-

averaged Poynting vector contributions in a plane
transversal to the waveguide to the right of the res-
onators. The obtained energy flux is normalized to the
case without resonators. By varying the frequency of the
excitation, a transmission spectrum can be determined.
A typical example is shown in Fig. 12.
For the applications, we add a particle or a slab to

the cavities as indicated in Fig. 9. The particle has a
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FIG. 13. (Color online) Transmission spectrum obtained from
FDTD simulations for three resonators in loop configuration
with a particle placed close to the top left resonator. The
different curves show particle positions (i) θ = 90◦, (ii) θ =
95◦, and (iii) θ = 180◦.
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FIG. 14. (Color online) Transmission spectrum obtained from
FDTD simulations for three resonators in loop configuration
with a slab placed between the two rightmost cavities, see
Fig. 9(B). (A) and (B) show two spectral lines at different
wavelengths. (i) corresponds to a slab with permittivity ǫ =
4.0, (ii) to a slab with ǫ = 4.1.

radius of 90 nm, and it is placed at different azimuthal
positions with a radial distance of 90 nm to the top left
cavity. The transmission spectrum around one spectral
peak is shown for different particle positions in Fig 13.
Other than the azimuthal position, no parameters are
changed between the three curves in this figure. It can
be seen that changing the position leads to a shift of the
resonance line in the transmission spectrum. This shift
can be observed over a large range of position values, as
indicated by the lines with 90 degrees and 180 degrees.
On the other hand, a shift can already be observed for
a change of position by 5 degrees. This has to be com-

pared to the angular range of about 7 degrees for one
wavelength in the azimuthal mode number 52 realized in
this numerical example.
Fig. 14 shows corresponding results for a slab. The

slab has width 60 nm and length 1500 nm and is placed
symmetrically between the two rightmost resonators. We
consider slabs with permittivity ε = 4.0 and ε = 4.1.
The two subfigures in Fig. 14 show two resonances in the
transmission spectrum. It can be seen that the change
in the permittivity from 4.0 to 4.1 shifts the position of
a resonance line. It is interesting to note that not the
whole spectrum is shifted, but only part of the spectral
lines, as can be seen by the parts in Fig. 14 which are
not affected by the change of the slab.
We thus conclude that the FDTD simulations of the

considered loop systems with additional particle or slab
serve as a proof or principle for the applications discussed
in Sec. IV. While a direct connection to the coupled-
mode calculations is not possible since the individual cou-
pling constants and resonator properties realized in the
numerical simulations are unknown, both the variation
of the particle position and the index of refraction of the
slab led to a shift of resonance lines in the transmission
spectrum, and therefore should be detectable.

V. SUMMARY

We analyzed interference effects in a system consisting
of three coupled microcavities arranged in such a way
that light can evolve through the resonators in a non-
trivial loop roundtrip. The system is probed by a fiber
coupled to one of the resonators. The interplay of the
different pathways light can take while passing through
the resonator array leads to rich structures in the trans-
mission and reflection spectra of the system. In partic-
ular, we have focused on a sensitivity of the spectra on
the phases of the different scattering and coupling con-
stants. We found that the roundtrip process in which
light moves on a circle through all three cavities, enabled
by the special arrangement of the resonators, leads to
additional pathways which increase the sensitivity of the
spectra to the phases. Finally, we discussed two appli-
cations for the found phase-sensitivity. First, we studied
the determination of the position of a particle placed in
the evanescent field of one of the resonators. Second,
we analyzed the measurement of the index of refraction
of a slab placed between two cavities. Our results are
on the one hand based on quantum mechanical coupled
mode theory, which allows to interpret the spectra in de-
tail based on the underlying physical mechanisms. On
the other hand, we verified the sensitivity of the spectra
in the two discussed simulations using numerical finite-
difference time-domain simulations of Maxwell’s equa-
tions on a grid.
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